Skip to main content

Advertisement

Log in

Measuring myocardial blood flow using dynamic myocardial perfusion SPECT: artifacts and pitfalls

  • REVIEW ARTICLE
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

Dynamic acquisition allows absolute quantification of myocardial perfusion and flow reserve, offering an alternative to overcome the potential limits of relative quantification, especially in patients with balanced multivessel coronary artery disease. SPECT myocardial perfusion is widely available, at lower cost than PET. Dynamic cardiac SPECT is now feasible and has the potential to be the next step of comprehensive perfusion imaging. In order to help nuclear cardiologists potentially interested in using dynamic perfusion SPECT, we sought to review the different steps of acquisition, processing, and reporting of dynamic SPECT studies in order to enlighten the potentially critical pitfalls and artifacts. Both patient-related and technical artifacts are discussed. Key parameters of the acquisition include pharmacological stress, radiopharmaceuticals, and injection device. When it comes to image processing, attention must be paid to image-derived input function, patient motion, and extra-cardiac activity. This review also mentions compartment models, cameras, and attenuation correction. Finally, published data enlighten some facets of dynamic cardiac SPECT while several issues remain. Harmonizing acquisition and quality control procedures will likely improve its performance and clinical strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2 
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Abbreviations

CZT:

Cadmium zinc telluride

CAT:

Coronary artery disease

FFR:

Fractional flow reserve

MBF:

Myocardial blood flow

MFR:

Myocardial flow reserve

AC:

Attenuation correction

MC:

Motion correction

MC:

Motion correction

SC:

Scatter correction

na:

Non available

References

  1. Zavadovsky KV, Mochula AV, Maltseva AN, et al. The current status of CZT SPECT myocardial blood flow and reserve assessment: Tips and tricks. J Nucl Cardiol 2021. https://doi.org/10.1007/s12350-021-02620-y.

    Article  PubMed  Google Scholar 

  2. Imbert L, Poussier S, Franken PR, et al. Compared performance of high-sensitivity cameras dedicated to myocardial perfusion SPECT: A comprehensive analysis of phantom and human images. J Nucl Med 2012;53:1897‐903. https://doi.org/10.2967/jnumed.112.107417.

    Article  PubMed  Google Scholar 

  3. Wells RG, Marvin B. Measuring SPECT myocardial blood flow at the University of Ottawa Heart Institute. J Nucl Cardiol 2021;28:1298‐303. https://doi.org/10.1007/s12350-020-02102-7.

    Article  PubMed  Google Scholar 

  4. Acampa W, Assante R, Mannarino T, et al. Low-dose dynamic myocardial perfusion imaging by CZT-SPECT in the identification of obstructive coronary artery disease. Eur J Nucl Med Mol Imaging 2020;47:1705‐12. https://doi.org/10.1007/s00259-019-04644-6.

    Article  CAS  PubMed  Google Scholar 

  5. Freitag MT, Bremerich J, Wild D, et al. Quantitative myocardial perfusion 82Rb-PET assessed by hybrid PET/coronary-CT: Normal values and diagnostic performance. J Nucl Cardiol 2022;29:464‐73. https://doi.org/10.1007/s12350-020-02264-4.

    Article  PubMed  Google Scholar 

  6. Renaud JM, DaSilva JN, Beanlands RSB, DeKemp RA. Characterizing the normal range of myocardial blood flow with 82rubidium and 13N-ammonia PET imaging. J Nucl Cardiol 2013;20:578‐91. https://doi.org/10.1007/s12350-013-9721-3.

    Article  PubMed  Google Scholar 

  7. Goudarzi B, Fukushima K, Bravo P, et al. Comparison of the myocardial blood flow response to regadenoson and dipyridamole: A quantitative analysis in patients referred for clinical 82Rb myocardial perfusion PET. Eur J Nucl Med Mol Imaging 2011;38:1908‐16. https://doi.org/10.1007/s00259-011-1853-6.

    Article  CAS  PubMed  Google Scholar 

  8. Brana Q, Thibault F, Courtehoux M, et al. Regadenoson versus dipyridamole: Evaluation of stress myocardial blood flow response on a CZT-SPECT camera. J Nucl Cardiol 2022;29:113‐22. https://doi.org/10.1007/s12350-020-02271-5.

    Article  PubMed  Google Scholar 

  9. Glover DK, Ruiz M, Yang JY, et al. Myocardial 99mTc-tetrofosmin uptake during adenosine-induced vasodilatation with either a critical or mild coronary stenosis: Comparison with 201Tl and regional myocardial blood flow. Circulation 1997;96:2332‐8. https://doi.org/10.1161/01.cir.96.7.2332.

    Article  CAS  PubMed  Google Scholar 

  10. Wells RG, Timmins R, Klein R, et al. Dynamic SPECT measurement of absolute myocardial blood flow in a porcine model. J Nucl Med 2014;55:1685‐91. https://doi.org/10.2967/jnumed.114.139782.

    Article  CAS  PubMed  Google Scholar 

  11. Swanson TN, Troung DT, Paulsen A, et al. Adsorption of 99mTc-sestamibi onto plastic syringes: Evaluation of factors affecting the degree of adsorption and their impact on clinical studies. J Nucl Med Technol 2013;41:247‐52. https://doi.org/10.2967/jnmt.113.132159.

    Article  PubMed  Google Scholar 

  12. Reynolds SN, Kikut J. Adherence of Tc-99 sestamibi to plastic syringes could complicate efforts in dose reduction in MPI SPECT. J Nucl Cardiol 2016;23:256‐64. https://doi.org/10.1007/s12350-015-0137-0.

    Article  PubMed  Google Scholar 

  13. Wells RG, Marvin B. Measuring SPECT myocardial blood flow at the University of Ottawa Heart Institute. J Nucl Cardiol 2020. https://doi.org/10.1007/s12350-020-02102-7.

    Article  PubMed  Google Scholar 

  14. Hunter CRRN, Klein R, Beanlands RS, deKemp RA. Patient motion effects on the quantification of regional myocardial blood flow with dynamic PET imaging. Med Phys 2016;43:1829. https://doi.org/10.1118/1.4943565.

    Article  PubMed  Google Scholar 

  15. Koenders SS, van Dijk JD, Jager PL, et al. Impact of regadenoson-induced myocardial creep on dynamic rubidium-82 PET myocardial blood flow quantification. J Nucl Cardiol 2019;26:719‐28. https://doi.org/10.1007/s12350-019-01649-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wells RG, Marvin B, Poirier M, et al. Optimization of SPECT measurement of myocardial blood flow with corrections for attenuation, motion, and blood binding compared with PET. J Nucl Med 2017;58:2013‐9. https://doi.org/10.2967/jnumed.117.191049.

    Article  CAS  PubMed  Google Scholar 

  17. Bailly M, Thibault F, Courtehoux M, et al. Impact of attenuation correction for CZT-SPECT measurement of myocardial blood flow. J Nucl Cardiol 2020. https://doi.org/10.1007/s12350-020-02075-7.

    Article  PubMed  Google Scholar 

  18. Giubbini R, Bertoli M, Durmo R, et al. Comparison between N13NH3-PET and 99mTc-Tetrofosmin-CZT SPECT in the evaluation of absolute myocardial blood flow and flow reserve. J Nucl Cardiol 2021;28:1906‐18. https://doi.org/10.1007/s12350-019-01939-x.

    Article  PubMed  Google Scholar 

  19. Poitrasson-Rivière A, Moody JB, Renaud JM, et al. Impact of residual subtraction on myocardial blood flow and reserve estimates from rapid dynamic PET protocols. J Nucl Cardiol 2021. https://doi.org/10.1007/s12350-021-02837-x.

    Article  PubMed  Google Scholar 

  20. Agostini D, Roule V, Nganoa C, et al. First validation of myocardial flow reserve assessed by dynamic 99mTc-sestamibi CZT-SPECT camera: Head to head comparison with 15O-water PET and fractional flow reserve in patients with suspected coronary artery disease. The WATERDAY study. Eur J Nucl Med Mol Imaging 2018;45:1079‐90. https://doi.org/10.1007/s00259-018-3958-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Oliveira JB, Sen YM, Wechalekar K. Intersoftware variability impacts classification of cardiac PET exams. J Nucl Cardiol 2019;26:2007‐12. https://doi.org/10.1007/s12350-018-1444-z.

    Article  PubMed  Google Scholar 

  22. deKemp RA, Declerck J, Klein R, et al. Multisoftware reproducibility study of stress and rest myocardial blood flow assessed with 3D dynamic PET/CT and a 1-tissue-compartment model of 82Rb kinetics. J Nucl Med 2013;54:571‐7. https://doi.org/10.2967/jnumed.112.112219.

    Article  CAS  PubMed  Google Scholar 

  23. Nesterov SV, Sciagrà R, Orozco LEJ, et al. One-tissue compartment model for myocardial perfusion quantification with N-13 ammonia PET provides matching results: A cross-comparison between Carimas, FlowQuant, and PMOD. J Nucl Cardiol 2021. https://doi.org/10.1007/s12350-021-02741-4.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Harms HJ, Nesterov SV, Han C, et al. Comparison of clinical non-commercial tools for automated quantification of myocardial blood flow using oxygen-15-labelled water PET/CT. Eur Heart J Cardiovasc Imaging 2014;15:431‐41. https://doi.org/10.1093/ehjci/jet177.

    Article  PubMed  Google Scholar 

  25. Wells RG, Radonjic I, Clackdoyle D, et al. Test-retest precision of myocardial blood flow measurements with 99mTc-tetrofosmin and solid-state detector single photon emission computed tomography. Circ Cardiovasc Imaging 2020;13:e009769. https://doi.org/10.1161/CIRCIMAGING.119.009769.

    Article  PubMed  Google Scholar 

  26. Renaud JM, Poitrasson-Rivière A, Hagio T, et al. Myocardial flow reserve estimation with contemporary CZT-SPECT and 99mTc-tracers lacks precision for routine clinical application. J Nucl Cardiol 2021. https://doi.org/10.1007/s12350-021-02761-0.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Danai K, Johnson NP, Roby AE, et al. Routine clinical quantitative rest stress myocardial perfusion for managing coronary artery disease. JACC Cardiovasc Imaging 2017;10:565‐77. https://doi.org/10.1016/j.jcmg.2016.09.019.

    Article  Google Scholar 

  28. Van Tosh A, Cao JJ, Votaw JR, et al. Clinical implications of compromised 82Rb PET data acquisition. J Nucl Cardiol 2021. https://doi.org/10.1007/s12350-021-02774-9.

    Article  PubMed  Google Scholar 

  29. Sciagrà R, Lubberink M, Hyafil F, et al. EANM procedural guidelines for PET/CT quantitative myocardial perfusion imaging. Eur J Nucl Med Mol Imaging 2021;48:1040‐69. https://doi.org/10.1007/s00259-020-05046-9.

    Article  PubMed  Google Scholar 

  30. Shiraishi S, Sakamoto F, Tsuda N, et al. Prediction of left main or 3-vessel disease using myocardial perfusion reserve on dynamic thallium-201 single-photon emission computed tomography with a semiconductor gamma camera. Circ J 2015;79:623‐31. https://doi.org/10.1253/circj.CJ-14-0932.

    Article  PubMed  Google Scholar 

  31. Nkoulou R, Fuchs TA, Pazhenkottil AP, et al. Absolute myocardial blood flow and flow reserve assessed by gated SPECT with cadmium-zinc-telluride detectors using 99mTc-tetrofosmin: head-to-head comparison with 13N-ammonia PET. J Nucl Med 2016;57:1887‐92. https://doi.org/10.2967/jnumed.115.165498.

    Article  CAS  PubMed  Google Scholar 

  32. Han S, Kim Y-H, Ahn J-M, et al. Feasibility of dynamic stress 201Tl/rest 99mTc-tetrofosmin single photon emission computed tomography for quantification of myocardial perfusion reserve in patients with stable coronary artery disease. Eur J Nucl Med Mol Imaging 2018;45:2173‐80. https://doi.org/10.1007/s00259-018-4057-5.

    Article  CAS  PubMed  Google Scholar 

  33. Zavadovsky KV, Mochula AV, Boshchenko AA, et al. Absolute myocardial blood flows derived by dynamic CZT scan vs invasive fractional flow reserve: Correlation and accuracy. J Nucl Cardiol 2021;28:249‐59. https://doi.org/10.1007/s12350-019-01678-z.

    Article  PubMed  Google Scholar 

  34. de Souza AC do AH, Gonçalves BKD, Tedeschi AL, Lima RSL. Quantification of myocardial flow reserve using a gamma camera with solid-state cadmium-zinc-telluride detectors: Relation to angiographic coronary artery disease. J Nucl Cardiol 2019. https://doi.org/10.1007/s12350-019-01775-z.

    Article  Google Scholar 

  35. Zavadovsky KV, Mochula AV, Maltseva AN, et al. The diagnostic value of SPECT CZT quantitative myocardial blood flow in high-risk patients. J Nucl Cardiol 2020. https://doi.org/10.1007/s12350-020-02395-8.

    Article  PubMed  Google Scholar 

  36. Shiraishi S, Tsuda N, Sakamoto F, et al. Clinical usefulness of quantification of myocardial blood flow and flow reserve using CZT-SPECT for detecting coronary artery disease in patients with normal stress perfusion imaging. J Cardiol 2020;75:400‐9. https://doi.org/10.1016/j.jjcc.2019.09.006.

    Article  PubMed  Google Scholar 

  37. Pang Z, Wang J, Li S, et al. Diagnostic analysis of new quantitative parameters of low-dose dynamic myocardial perfusion imaging with CZT SPECT in the detection of suspected or known coronary artery disease. Int J Cardiovasc Imaging 2021;37:367‐78. https://doi.org/10.1007/s10554-020-01962-x.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Alain Manrique is supported by a Grant from the GCS G4 as part of the FHU-CARNAVAL, labeled by AVIESAN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Manrique MD, PhD.

Ethics declarations

Disclosures

Florian Mallet: no conflict of interest. Alexis Poitrasson-Rivière: Employee of INVIA Medical Imaging Solutions. Denis Mariano Goulart: no conflict of interest. Denis Agostini: Scientific consultant, Spectrum Dynamics, Israel. Alain Manrique: no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

All editorial decisions for this article, including selection of reviewers and the final decision, were made by guest editor Randy Thompson, MD.

The authors of this article have provided a PowerPoint file, available for download at SpringerLink, which summarizes the contents of the paper and is free for re-use at meetings and presentations. Search for the article DOI on SpringerLink.com.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PPTX 121 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mallet, F., Poitrasson-Rivière, A., Mariano-Goulart, D. et al. Measuring myocardial blood flow using dynamic myocardial perfusion SPECT: artifacts and pitfalls. J. Nucl. Cardiol. 30, 2006–2017 (2023). https://doi.org/10.1007/s12350-022-03165-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-022-03165-4

Keywords

Navigation