1 Preliminaries and introduction

Let \((A,\left\| .\right\| )\) be a complex algebra with unit. If \(x\in A\) the symbols \(Sp_{A}(x)\) and \(\rho _{A}(x)\) denote the spectrum of x and its spectral radius, respectively. Let \(x\longmapsto x^{*}\) be an involution on A.An element h of A is called hermitian if \(h^{*}=h\). The set of all hermitian elements of A will be denoted by H(A). The real and imaginary parts of an element x of A are denoted by Rex and Imx, respectively, i.e., \(\textit{Re}x=\left( x+x^{*}\right) /2\), \( Im x=\left( x-x^{*}\right) /2i.\) We say that a Banach algebra \(A\ \)is hermitian if the spectrum of every element of H(A) is real ([12], Definition 5.1, p. 23). For elements \(h\ \)and k of H(A),  we write \( h\ge k\) to indicate that \(h-k\) is positive, i.e., \(Sp_{A}(h-k)\subset [ 0,+\infty [\). Let x be an element of A. We denote by \( \left| x\right| \) the square root of the spectral radius of the element \(x^{*}x\), i.e., \(\left| x\right| =\rho _{A}(x^{*}x)^{ \frac{1}{2}}\). In ([12], Theorem 5.2, (5.4) and (5.8), p. 23-25), V. Pt àk proved the following result: If A is hermitian, then \(\left| .\right| \) is an algebra seminorm on A such that \(\rho _{A}(x)\le \left| x\right| \), for every \(x\in A.\) The following result of Shirali- Ford ([16], Theorem 1, p. 275) will be needed throughout the paper:

$$\begin{aligned} A\ \text {is hermitian}\Longrightarrow x^{*}x\ge 0\text {, for every } x\in A. \end{aligned}$$
(1)

Throughout the paper, e will denote the unit of A, and for scalars r we often write simply r for the element re of A. Also Sp(A) denotes the spectrum of A, that is the set of non-zero continuous characters of A. Let n be a positive integer and let \(A^{n}\) denote the cartesian product of n copies of A. Let \(\textbf{a}=\left( a_{1},\ldots ,a_{n}\right) \in A^{n} \) be a commutative family of elements of A (a c.f.e. in short). Then the full sub-algebra B generated by \(\textbf{a}\) is a unital commutative algebra. Let \(\widehat{\textbf{a}}\) denote the Gel’fand transformation defined by:

$$\begin{aligned} \widehat{\textbf{a}}\left( \chi \right) =\left( \chi \left( a_{1}\right) ,\ldots ,\chi \left( a_{n}\right) \right) \in \mathbb {C}^{n}\text {, for every } \chi \in Sp\left( B\right) . \end{aligned}$$

The image \(\widehat{\textbf{a}}\left( SpB\right) \subset \mathbb {C}^{n}\) is therefore a nonempty compact subset of \(\mathbb {C}^{n}\). It is called the simultaneous spectrum or the joint spectrum of \(\textbf{a}\) and denoted by \(Sp\left( A,\textbf{a}\right) \) or just \(Sp\left( \textbf{a} \right) \) ([2], Definition 7, p. 100). One has \(Sp\left( \textbf{a}\right) \subset \prod \limits _{i=1}^{n}Sp_{A}\left( a_{i}\right) \).

Let A be a complex unital Banach algebra and \(A^{\prime }\ \)the topological dual of A. Let \(\Omega \) be an open subset of \(\mathbb {C}^{n}\) and \(f:\Omega \longrightarrow A\) be an A-valued function. Then f is said to be holomorphic if \(\varphi (f(z))\) is holomorphic on \(\Omega \) in the classical sense for every \(\varphi \in A^{\prime }\). The set of all holomorphic\(\ A\)-valued functions on \(\Omega \ \)isdenoted by \(\mathcal {H} \left( \Omega ,A\right) \).Since the dual \(A^{\prime }\) separates the points of A, the most results of complex function theory ([13, 14]), such as Cauchy’s integral, Taylor expansion, Cauchy estimates and so on, are applicable to \(\mathcal {H}\left( \Omega ,A\right) \). It is clear that \( \mathcal {H}\left( \Omega ,A\right) \) is a complex unital algebra. Moreover, if f is an element of \(\mathcal {H}\left( \Omega ,A\right) \) and if \(f(z)\ \) is invertible for every \(z\in \Omega \), then the function \(f^{-1}\) defined by \(f^{-1}\left( z\right) =f(z)^{-1}\) for each \(z\in \Omega \) is an element of \(\mathcal {H}\left( \Omega ,A\right) .\)

A continuous A-valued function \(f:\Omega \longrightarrow A\) is a said to be n-harmonic if f is harmonic in each complex variable that is if \(z_{j}=x_{j}+iy_{j}\), f should satisfy the n differential equations:

$$\begin{aligned} \frac{\partial ^{2}f}{\partial ^{2}x_{j}}+\frac{\partial ^{2}f}{\partial ^{2}y_{j}}=0,\ \text { for }j=1,\ldots ,n. \end{aligned}$$

The set of all n-harmonic A-valued functions on \(\Omega \) is denoted by \(h\left( \Omega ,A\right) \). If f is holomorphic on \(\Omega \), then it is holomorphic in each variable, so we have \(\mathcal {H}\left( \Omega ,A\right) \subset h\left( \Omega ,A\right) \). Let A be an involutive complex Banach algebra. An A-valued function \(f:\Omega \longrightarrow A\) is said to be hermitian if \(f(z)=f(z)^{*}\), for every \(z\in \Omega \). We denote by Ref (resp. Imf) the real part of f (resp. the imaginary part of f) defined by \(Re f(z)=Re\left( f(z)\right) \) (resp. \(Imf(z)=Im\left( f(z)\right) \)), for every \(z\in \Omega \).

Let \(z_{0}\in \mathbb {C}\) and \(r>0\), the open (resp. closed) disc with center \(z_{0}\) and radius r is denoted by \(D\left( z_{0},r\right) \) (resp. \(\overline{D}\left( z_{0},r\right) \)); its boundary, denoted by \(T\left( z_{0},r\right) \), is the circle with center \(z_{0}\) and radius r. If \( z^{0}=\left( z_{1}^{0},\ldots ,z_{n}^{0}\right) \in \mathbb {C}^{n}\) and \( r=\left( r_{1},\ldots ,r_{n}\right) \) is a multi-index \(\left( \mathbb {R} _{+}^{*}\right) ^{n}\), the open polydisc with center \(z^{0}\) and radius r is the set

$$\begin{aligned} D^{n}\left( z^{0},r\right) =\prod \limits _{j=1}^{n}D\left( z_{j}^{0},r_{j}\right) . \end{aligned}$$

Itsclosureis denoted by \(\overline{D}^{n}\left( z^{0},r\right) \). The notation \(T^{n}\left( z^{0},r\right) \ \)denotes the torus of \(\mathbb { C}^{n}\ \)with center \(z^{0}\) and radius r, that is \(T^{n}\left( z^{0},r\right) =\prod \nolimits _{j=1}^{n}T\left( z_{j}^{0},r_{j}\right) \). Let \(\mathbb {Z}^{+}=\left\{ 0,1,2,..\right\} \).A multi-index \(\alpha \) is an element of \(\left( \mathbb {Z}^{+}\right) ^{n}\). If\(\ \alpha =\left( \alpha _{1},\ldots ,\alpha _{n}\right) \) is a multi-index and \(w=\left( w_{1},\ldots ,w_{n}\right) \in \mathbb {C}^{n}\), we write \(w^{\alpha }\) for the monomial (power product) \(w_{1}^{\alpha _{1}}\ldots w_{n}^{\alpha _{n}}\). We also consider the following differential form, on \(\mathbb {C}^{n}\), \( dz=dz_{1}\ldots dz_{n}\). In the sequel, all algebras considered here are complex and unital ones.

The A-valued harmonic functional calculus for an element of an involutive Banach algebra is defined and studied in [5]. Here we construct an A -valued n-harmonic calculus for an arbitrary n-tuple of elements of an involutive Banach algebra elements. This calculus consists in giving a sense to \(f(\mathbf {a)}\) whenever \(\mathbf {a=}\left( a_{1},\ldots ,a_{n}\right) \in A^{n}\) and f is an A-valued n-harmonic function on a neighbourhood U of the simultaneous spectrum \(Sp(\textbf{a})\) of \(\textbf{a}\). To that aim, we need to introduce a functional calculus for holomorphic A-functions. The paper is organized as follows. In Sect. 2, we introduce a vector-valued Cauchy transform. This allows us to introduce a functional calculus for holomorphic A-functions. We show that this calculus is continuous (namely the mapping \(f\longmapsto C\left[ f\right] \left( \textbf{ a}\right) \ \)is continuous) and satisfies the spectral mapping theorem . Sect. 3 relies highly on Sect. 2 where we define and study a vector-valued n-harmonic calculus. The most important properties of this calculus are studied. The last section is devoted to applications. The first one is a generalization of the well-known von-Neumann’s inequality to several variables. The second concerns the classical and famous theorems of N. Wiener [19] and P. Lévy [11].

For more details on holomorphic functional calculus, we refer the reader to [1, 18].

2 A vector-valued Cauchy transform

We first introduce a vector-valued Cauchy transform by means of appropriate vector-valued kernel. In particular, we obtain a functional calculus for holomorphic A-functions which will be useful to us later.

Definition 2.1

Let A be a complex unital Banach algebra, \(\Omega \) an open subset of \( \mathbb {C}^{n}\), \(z^{0}=\left( z_{1}^{0},\ldots ,z_{n}^{0}\right) \in \Omega \), \( r=\left( r_{1},\ldots ,r_{n}\right) \in \left( \mathbb {R}_{+}^{*}\right) ^{n} \) such that \(\overline{D}^{n}\left( z^{0},r\right) \subset \Omega \). If \(f\in \mathcal {H}\left( \Omega ,A\right) \) and \(\textbf{a}=\left( a_{1},\ldots ,a_{n}\right) \in A^{n}\) be a c.f.e. with \(Sp(\mathbf {a)\subset } D^{n}\left( z^{0},r\right) \), then

$$\begin{aligned} f(\textbf{a})=\frac{1}{\left( 2\pi i\right) ^{n}}\int _{T^{n}\left( z^{0},r\right) }f(z)C(\textbf{a},z)dz, \end{aligned}$$

where

$$\begin{aligned} C(\textbf{a},z)=\prod \limits _{j=1}^{n}(z_{j}-a_{j})^{-1}=\prod \limits _{j=1}^{n}C(a_{j},z_{j}). \end{aligned}$$

If we denote by \(\Phi _{\textbf{a}}(f)\) the element \(f(\textbf{a})\), one has a linear mapping of \(\mathcal {H}\left( \Omega ,A\right) \) into A, denoted by:

$$\begin{aligned} \Phi _{\textbf{a}}:\mathcal {H}\left( \Omega ,A\right) \longrightarrow A:f\longmapsto f(\textbf{a}) \end{aligned}$$
(2)

Suppose f is a function on \(\Omega \) into A and \(\textbf{a}=\left( a_{1},\ldots ,a_{n}\right) \in A^{n}\). The function \(\textbf{a}f\) is defined by:

$$\begin{aligned} \textbf{a}f(z)=\left( a_{1}f(z),\ldots ,a_{n}f(z)\right) ,\text { for every }z\in \Omega . \end{aligned}$$

We say that \(\textbf{a}\) and f are commuting if \(\textbf{a}f(z)=f(z) \textbf{a}\) for all z in \(\Omega \) that is:

$$\begin{aligned} \left( a_{1}f(z),\ldots ,a_{n}f(z)\right) =\left( f(z)a_{1},\ldots ,f(z)a_{n}\right) ,\text { for every }z\in \Omega . \end{aligned}$$

If \(\textbf{a}\) commutes with every element of \(\mathcal {H}\left( \Omega ,A\right) \), then we say that \(\textbf{a}\) and \(\mathcal {H}\left( \Omega ,A\right) \) commute. Now \(f,g\in \mathcal {H}\left( \Omega ,A\right) \) and \( \textbf{a}=\left( a_{1},\ldots ,a_{n}\right) \) be a c.f.e. as described in Definition 2.1. Then as in the classical case, one has \(\left( fg\right) ( \textbf{a})=f(\textbf{a})g(\textbf{a})\) if \(\textbf{a}\) and g are commuting. Unless otherwise stated we assume that \(\textbf{a}\) and \(\mathcal { H}\left( \Omega ,A\right) \) are commuting.

Let \(\mathcal {C(}T^{n},A)\), where \(T^{n}=T^{n}\left( 0,1\right) \), be the algebra of all A-valued continuous functions on \(T^{n}\).For every \( f\in \mathcal {C}\left( T^{n},A\right) \), we define

$$\begin{aligned} C\left[ f\right] \left( \textbf{a}\right) =\frac{1}{\left( 2\pi i\right) ^{n} }\int _{T^{n}\left( z^{0},r\right) }f(z)C(\textbf{a},z)dz. \end{aligned}$$

The mapping \(\mathcal {C}\left( T^{n},A\right) \longrightarrow A:f\longmapsto C\left[ f\right] \left( \textbf{a}\right) \) is obviously a linear map. Now, since the mapping \(z\longmapsto \left\| C(\textbf{a},z)\right\| \) is continuous, and therefore bounded, on \(T^{n}\left( z^{0},r\right) \), there exists a positive constant M such that:

$$\begin{aligned} \left\| C\left[ f\right] \left( \textbf{a}\right) \right\| \le M\left| f\right| _{T^{n}\left( z^{0},r\right) }\text {,}\ \text {for every }f\in \mathcal {C}\left( T^{n}(z^{0},r),A\right) , \end{aligned}$$

where

$$\begin{aligned} \left| f\right| _{T^{n}\left( z^{0},r\right) }=\sup \left\{ \left\| f(z)\right\| :z\in T^{n}(z^{0},r)\right\} . \end{aligned}$$

It follows that the mapping

$$\begin{aligned} f\longmapsto C\left[ f\right] \left( \textbf{a}\right) \end{aligned}$$

is continuous from \(\left( \mathcal {C}\left( T^{n},A\right) ,\text { } \left| .\right| _{T^{n}\left( z^{0},r\right) }\right) \) into \(\left( A,\left\| .\right\| \right) \). It is called the Cauchy transform of f at \(\textbf{a}\) ([17], p. 49). If \(\textbf{a}=\left( a_{1},\ldots ,a_{n}\right) \in A^{n}\) be a c.f.e. with \(Sp(\mathbf {a)\subset } D^{n}\left( 0,1\right) \), then for every \(f\in \mathcal {H}(\Omega ,A)\), we have \(C\left[ f\right] \left( \textbf{a}\right) =\Phi _{\textbf{a}}(f)\). Moreover if \(P(z)=z_{1}^{\gamma _{1}}\ldots z_{n}^{\gamma _{n}}\) is a monomial, then \(C\left[ P\right] \left( \textbf{a}\right) \) is actually \(a_{1}^{\gamma _{1}}\ldots a_{n}^{\gamma _{n}}\), where \(\gamma _{1},..,\gamma _{n}\in \mathbb {Z} _{+}\). Whence for every analytic polynomial P, one has \(C\left[ P\right] \left( \textbf{a}\right) =P(\textbf{a}).\ \)So we have the following:

Theorem 2.2

Let A be a complex unital Banach algebra, \(\Omega \) an open subset of \( \mathbb {C}^{n}\), \(z^{0}=\left( z_{1}^{0},\ldots ,z_{n}^{0}\right) \in \Omega \), \( r=\left( r_{1},\ldots ,r_{n}\right) \in \mathbb {R}_{+}^{n}\) such that \(\overline{ D}^{n}\left( z^{0},r\right) \subset \Omega \) and \(\textbf{a}=\left( a_{1},\ldots ,a_{n}\right) \in A^{n}\) be a c.f.e. with

$$\begin{aligned} Sp\mathbf {(\mathbf {a)}\subset }D^{n}\left( z^{0},r\right) . \end{aligned}$$

Then there exists a continuous linear map \(\Theta _{\textbf{a}}\) from \( \mathcal {C}\left( T^{n}(z^{0},r),A\right) \) into A with the following properties:

(1) For every analytic polynomial P, one has

$$\begin{aligned} \Theta _{\textbf{a}}\left( P\right) =P(\textbf{a}) \end{aligned}$$

(2) \(\Theta _{\textbf{a}}/_{\mathcal {H}\left( \Omega ,A\right) }\) is multiplicative and \(\Theta _{\textbf{a}}\left( z_{j}\right) =a_{j}\), \( (j=1,\ldots ,n)\), here \(z_{j}\) denotes the j-th coordinate projection \(\mathbb { C}^{n}\longrightarrow \mathbb {C}\).

Remark 2.3

(1) Let \(\Omega =D^{n}\left( 0,R\right) ,\) where \(R=\left( R_{1},\ldots ,R_{n}\right) \in \mathbb {R}_{+}^{n}\), and \(f\in \mathcal {H}\left( \Omega ,A\right) \ \)with the the Taylor expansion

$$\begin{aligned} f(z)=\sum _{\alpha }a_{\alpha }z^{\alpha }\text {, for every }z\in \Omega , \end{aligned}$$

where \(\left( a_{\alpha }\right) \) is a sequence in A. If \(x=\left( x_{1},\ldots ,x_{n}\right) \in A^{n}\) be c.f.e. with \(\rho \left( x_{j}\right) <R_{j}\ (j=1,\ldots ,n)\), then

$$\begin{aligned} f(\textbf{a})=\sum _{\alpha }a_{\alpha }x^{\alpha }. \end{aligned}$$

(2) Let \(f\in \mathcal {H}(\Omega ,A)\) be such that \(f(z)^{-1}\) exists, for every \(z\in \Omega \). Then \(f^{-1}(x)=f(x)^{-1}\), i.e.,

$$\begin{aligned} f(x)^{-1}=\frac{1}{\left( 2\pi i\right) ^{n}}\int _{T^{n}\left( z^{0},r\right) }f(z)^{-1}C(x,z)dz. \end{aligned}$$

Let \(\Omega _{1}\) and \(\Omega _{2}\ \)be two open subsets of \(\mathbb {C}\). Suppose \(f\in \mathcal {H}\left( \Omega _{1},A\right) \) and \(g\in \mathcal {H} \left( \Omega _{2},A\right) \) satisfy the condition that for every compact set \(K_{2}\) in \(\Omega _{2}\), there exists a compact \(K_{1}\) in \(\Omega _{1}\) such that \(Sp_{A}\left( g(z)\right) \) is contained in \(K_{1}\), for every z in \(K_{2}\). Let \(z_{0}\in \Omega _{2}\) and \(r\in \mathbb {Z}_{+}\) such that \( \overline{D}\left( z_{0},r\right) \subset \Omega _{2}\). Let \(K_{1}\) be a compact set in \(\Omega _{1}\), which contains each \(Sp_{A}\left( g(z)\right) \ \)for every \(z\in \overline{D}\left( z_{0},r\right) \). As in ([2], Proposition 3, p. 29), we choose a suitable positively oriented simple closed rectifiable contour \(\Gamma _{1}\) such that the interior domain \( int(\Gamma _{1})\ \)of \(\Gamma _{1}\) contains \(K_{1}\) and \(int(\Gamma _{1})\cup \Gamma _{1}\subset \Omega _{1}\). Then for \(z\in \overline{D} \left( z_{0},r\right) \), we have

$$\begin{aligned} Sp_{A}(g(z))\subset K_{1}\subset int(\Gamma _{1})\cup \Gamma _{1}\subset \Omega _{1}. \end{aligned}$$

It follows, from ([2], Proposition 4, p. 29), that:

$$\begin{aligned} f\left( g(z)\right) =\frac{1}{2\pi i}\int _{\Gamma _{1}}f(w)\left( we-g(z)\right) ^{-1}dw \end{aligned}$$
(3)

Since for any fixed w on \(\Gamma _{1}\),

$$\begin{aligned} z\longmapsto \left( we-g(z)\right) ^{-1} \end{aligned}$$

is analytic on \(D\left( z_{0},r\right) \), it follows from 2) of Remark 2.3 that, for \(w\in \Gamma _{1}\) and \(z\in D\left( z_{0},r\right) \),

$$\begin{aligned} \left( we-g(z)\right) ^{-1}=\frac{1}{2\pi i}\int _{T\left( z_{0},r\right) }\left( we-g(u)\right) ^{-1}(u-z)^{-1}du \end{aligned}$$

which shows that, for every \(z\in D\left( z_{0},r\right) \), one has

$$\begin{aligned} f\left( g(z)\right) =\left( \frac{1}{2\pi i}\right) ^{2}\int _{\Gamma _{1}}\int _{T\left( z_{0},r\right) }f(w)\left( we-g(u)\right) ^{-1}(u-z)^{-1}dudw. \end{aligned}$$

Let \(\varphi \) be any bounded functional on A. As in ([20], Lemma 2.4, p. 297), we can prove that \(\varphi \left( f\left( g(z)\right) \right) \) is analytic on \(D\left( z_{0},r\right) \). It follows, from ([15], Definition 3. 30, p. 78), that the "composite function" \(h=f\circ g\) defined by \( h(z)=f(g(z))\ \)for every \(z\in \) \(\Omega _{2}\) is an element of \(\mathcal {H} \left( \Omega _{2},A\right) \).More generally, we obtain a theorem of composition of functions for holomorphic functional calculus given by:

Proposition 2.4

Let \(\Omega _{1}\) and \(\Omega _{2}\ \)be two open subsets of \(\mathbb {C}\). Let \(f\in \mathcal {H}\left( \Omega _{1},A\right) \) and \(g\in \mathcal {H} \left( \Omega _{2},A\right) \) satisfy the condition that for every compact set \(K_{2}\) in \(\Omega _{2}\), there exists a compact \(K_{1}\) in \(\Omega _{1}\) such that \(Sp_{A}\left( g(z)\right) \) is contained in \(K_{1}\), for every z in \(K_{2}\). Let \(a\mathbf {\in }A\) with \(Sp_{A}(a\mathbf {)\subset }\Omega _{2}\) and \(Sp_{A}\left( g(a)\right) \subset \Omega _{1}\). Then \(f\circ g(a)=f(g(a)).\)

Proof

Let \(\Gamma _{2}\) be a positively oriented simple closed rectifiable contour such that \(Sp_{A}(a)\mathbf {\subset }int(\Gamma _{2})\) and \(int(\Gamma _{2})\cup \Gamma _{2}\subset \Omega _{2}\). By our assumption, there exists a compact set \(K_{1}\) in \(\Omega _{1}\) such that \(Sp_{A}\left( g(z)\right) \subset K_{1}\) for all \(z\in int(\Gamma _{2})\cup \Gamma _{2}\). Now, since \( int(\Gamma _{2})\cup \Gamma _{2}\) is a compact subset of \(\Omega _{2}\) ([3], Definition 3.1, p.45), one can choose a suitable positively oriented simple closed rectifiable contour \(\Gamma _{1}\) so that both \(Sp_{A}\left( g(a)\right) \) and \(K_{1}\) are contained in \(int(\Gamma _{1})\) and \( int(\Gamma _{1})\cup \Gamma _{1}\subset \Omega _{1}\). Then in the same manner as before, one has:

$$\begin{aligned} f\left( g(a)\right) =\frac{1}{2\pi i}\int _{\Gamma _{1}}f(w)\left( we-g(a)\right) ^{-1}dw. \end{aligned}$$

By 2) of Remark 2.3, one has:

$$\begin{aligned} \left( we-g(a)\right) ^{-1}=\frac{1}{2\pi i}\int _{\Gamma _{2}}\left( we-g(z)\right) ^{-1}(ze-a)^{-1}dz. \end{aligned}$$

It follows that:

$$\begin{aligned} f\left( g(a)\right) =\left( \frac{1}{2\pi i}\right) ^{2}\int _{\Gamma _{1}}\int _{\Gamma _{2}}f(w)\left( we-g(z)\right) ^{-1}(ze-a)^{-1}dzdw. \end{aligned}$$

The continuity of in \(\left( w,z\right) \) on \(\Gamma _{1}\times \Gamma _{2}\) ([2], Proposition 6, p. 11) of the function:

$$\begin{aligned} \left( w,z\right) \longmapsto f(w)\left( we-g(z)\right) ^{-1}(ze-a)^{-1} \end{aligned}$$

allows us to change the order of integration. Thus

$$\begin{aligned} f\left( g(a)\right) =\left( \frac{1}{2\pi i}\right) ^{2}\int _{\Gamma _{2}} \left[ \int _{\Gamma _{1}}f(w)\left( we-g(z)\right) ^{-1}dw\right] (ze-a)^{-1}dz. \end{aligned}$$

Now, by (3),

$$\begin{aligned} f\left( g(z)\right) =\frac{1}{2\pi i}\int _{\Gamma _{1}}f(w)\left( we-g(z)\right) ^{-1}dw. \end{aligned}$$

Whence

$$\begin{aligned} f\left( g(a)\right)= & {} \frac{1}{2\pi i}\int _{\Gamma _{2}}f(g(z))(ze-a)^{-1}dz \\= & {} f\circ g(a). \end{aligned}$$

This completes the proof. \(\square \)

Now, we examine one of the most powerful properties of holomorphic functional calculus. That is the spectral mapping theorem:

Proposition 2.5

Let A be a complex unital Banach algebra and \(\textbf{a}\) be a c.f.e and \(\Omega \) as described in Definition 2.1. Then the mapping \(\Phi _{\textbf{a }}\) defined by (2) is an algebra homomorphism of \(\mathcal {H}\left( \Omega ,A\right) \) into \(A\ \)such that

$$\begin{aligned} \widehat{\Phi _{\textbf{a}}\left( f\right) }\left( \chi \right) =\left( \chi \circ f\right) \left( \chi (\mathbf {a)}\right) )\text {, for every }\chi \in Sp(A)\text {.} \end{aligned}$$

Proof

Let \(\chi \in Sp(A)\). Then\(\ \widehat{\Phi _{\textbf{a}}\left( f\right) } \left( \chi \right) =\chi \left( \Phi _{\textbf{a}}\left( f\right) \right) \) and

$$\begin{aligned} \chi \left( \Phi _{\textbf{a}}\left( f\right) \right)= & {} \frac{1}{\left( 2\pi i\right) ^{n}}\int _{T^{n}\left( z^{0},r\right) }\chi \left( f(z)C( \textbf{a},z)\right) dz \\= & {} \frac{1}{\left( 2\pi i\right) ^{n}}\int _{T^{n}\left( z^{0},r\right) }\chi \left( f(z)\right) \chi \left( C(\textbf{a},z)\right) dz. \end{aligned}$$

Therefore, taking into account the fact that \(\chi \left( C(\textbf{a},z)\right) =\left( C(\chi \left( \textbf{a}\right) ,z)\right) \), we have

$$\begin{aligned} \chi \left( \Phi _{\textbf{a}}\left( f\right) \right)= & {} \frac{1}{\left( 2\pi i\right) ^{n}}\int _{T^{n}\left( z^{0},r\right) }\left( \chi \circ f\right) \left( z\right) \left( C(\chi \left( \textbf{a}\right) ,z)\right) dz \\= & {} \left( \chi \circ f\right) \left( \chi (\mathbf {a)}\right) ). \end{aligned}$$

\(\square \)

Proposition 2.6

Let A be a complex unital Banach algebra and \(\Omega \) be an open subset of \(\mathbb {C}^{n}\) as described in Definition 2.1. If \(f\in \mathcal {H} \left( \Omega ,A\right) \) and \(\textbf{a}=\left( a_{1},\ldots ,a_{n}\right) \in A^{n}\) be a c.f.e. with \(Sp(\mathbf {a)\subset }D^{n}\left( z^{0},r\right) \), then

(1)

$$\begin{aligned} Sp_{A}\left( f(\mathbf {a)}\right) \mathbf {\subset }\bigcup \limits _{\lambda \in Sp(\mathbf {a)}}Sp_{A}\left( f(\lambda )\right) . \end{aligned}$$

(2) If \(f=\widetilde{f}e\), where \(\widetilde{f}\) is a holomorphic scalar function on \(\Omega \), then

$$\begin{aligned} Sp_{A}\left( f(\mathbf {a)}\right) \mathbf {=}f(Sp(\mathbf {a)}). \end{aligned}$$

Proof

(1) Observe first that if f has no inverse on \(Sp(\mathbf {a)}\), then \(g=f^{-1}\)is holomorphic in an open set \(\Omega _{1}\) such that \(Sp( \mathbf {a)\subset }\Omega _{1}\subset \Omega \). Since \(fg=e\) in \(\Omega _{1} \), it follows that \(f\left( \textbf{a}\right) g\left( \textbf{a}\right) =e\) and \(f(\textbf{a})\) is invertible. Now fix \(\beta \in \mathbb {C}\). Then \(\beta \in Sp_{A}\left( f(\mathbf {a)}\right) \) if and only if \(f(\mathbf {a)-} \beta e\) is not invertible in A. From the above, there exists \(\lambda \in Sp(\mathbf {a)}\) such that \(f(\lambda \mathbf {)-}\beta e\) is not invertible in A, that is \(\beta \in Sp_{A}\left( f(\lambda \mathbf {)}\right) \mathbf {. }\) (2) If \(f=\widetilde{f}e\), where \(\widetilde{f}\) is a holomorphic scalar function on \(\Omega \), then \(\bigcup \nolimits _{\lambda \in Sp\left( \textbf{a}\right) }Sp\left( f(\lambda )\right) =f(Sp(\mathbf {a))}.\) Furthermore, for \(\chi \in Sp(A)\), one has

$$\begin{aligned} \widehat{f(\mathbf {a)}}\left( \chi \right) =\left( \chi \circ f\right) \left( \chi (\mathbf {a)}\right) )=f\left( \chi (\mathbf {a)}\right) . \end{aligned}$$

Therefore \(f(Sp(\mathbf {a))\subset }Sp_{A}\left( f(\mathbf {a)}\right) \mathbf {.}\) \(\square \)

Remark 2.7

The inclusion 1) of Proposition 2.6. can be strict as the simple example shows. Let \(x\in A\) be an invertible element such that \(Sp_{A}\left( x\right) =\left\{ 1,2\right\} \) and put \(f(z)=x^{-1}z\). Since \(f(x)=e,\) we have \(Sp_{A}\left( f(x\mathbf {)}\right) \mathbf {=}\left\{ 1\right\} \) but \( Sp_{A}\left( f(1\mathbf {)}\right) \mathbf {=}\left\{ \frac{1}{2},1\right\} .\)

3 A vector-valued n-hamonic functional calculus

In this section we define a functional calculus for A-valued n-harmonic functions of several variables and describe some of its properties. Let \( z\in D^{n}\left( z^{0},r\right) \) and \(w\in T^{n}\left( z^{0},r\right) \). Then the Poisson kernel \(P^{n}\left( z,w\right) \) is the product

$$\begin{aligned} P^{n}\left( z,w\right) =P\left( z_{1},w_{1}\right) \ldots P\left( z_{n},w_{n}\right) , \end{aligned}$$

where \(P\left( z_{i},w_{i}\right) \) is the classical Poisson kernel for the disk \(D\left( z_{i}^{0},r_{i}\right) \). Note that

$$\begin{aligned} P\left( z_{i},w_{i}\right)= & {} Re\left[ \left( w_{i}+z_{i}-2z_{i}^{0}\right) \left( w_{i}-z_{i}\right) ^{-1}\right] \\= & {} \left( \overline{w_{i}}-\overline{z_{i}}\right) ^{-1}\left[ r_{i}^{2}-\left( \overline{z_{i}}-\overline{z_{i}^{0}}\right) \left( z_{i}-z_{i}^{0}\right) \right] \left( w_{i}-z_{i}\right) ^{-1} \\= & {} \overline{C\left( z_{i},w_{i}\right) }\left[ r_{i}^{2}-\left( \overline{ z_{i}}-\overline{z_{i}^{0}}\right) \left( z_{i}-z_{i}^{0}\right) \right] C\left( z_{i},w_{i}\right) . \end{aligned}$$

If we put

$$\begin{aligned} \Delta \left( z_{i},z_{i}^{0}\right) =r_{i}^{2}-\left( \overline{z_{i}}- \overline{z_{i}^{0}}\right) \left( z_{i}-z_{i}^{0}\right) , \end{aligned}$$

then

$$\begin{aligned} P\left( z_{i},w_{i}\right) =\overline{C\left( z_{i},w_{i}\right) }\ \Delta \left( z_{i},z_{i}^{0}\right) C\left( z_{i},w_{i}\right) \end{aligned}$$

and

$$\begin{aligned} P\left( z,w\right) =\overline{C\left( z,w\right) }\ \prod \limits _{i=1}^{n}\Delta \left( z_{i},z_{i}^{0}\right) C\left( z,w\right) . \end{aligned}$$

We also put

$$\begin{aligned} \Delta ^{n}\left( z,z^{0}\right) =\prod \limits _{i=1}^{n}\Delta \left( z_{i},z_{i}^{0}\right) \end{aligned}$$

Let A be a complex unital Banach algebra with continuous involution \( x\longmapsto x^{*}\), \(z^{0}=\left( z_{1}^{0},\ldots ,z_{n}^{0}\right) \in \mathbb {C}^{n}\), \(r=\left( r_{1},\ldots ,r_{n}\right) \in \mathbb {R}_{+}^{n}\). If \(\textbf{x}=\left( x_{1},\ldots ,x_{n}\right) \in A^{n}\) be a c.f.e. with \( Sp_{A}(\mathbf {x)\subset }D^{n}\left( z^{0},r\right) \), then the A-valued Poisson kernel is defined by the equality:

$$\begin{aligned} P\left( \textbf{x},w\right) =C\left( \textbf{x},w\right) ^{*}\Delta ^{n}\left( \textbf{x},z^{0}\right) C\left( \textbf{x},w\right) ,\ w\in T^{n}\left( z^{0},r\right) , \end{aligned}$$

where

$$\begin{aligned} \Delta ^{n}\left( \textbf{x},z^{0}\right) =\prod \limits _{i=1}^{n}\Delta \left( x_{i},z_{i}^{0}\right) =\prod \limits _{i=1}^{n}\left[ r_{i}^{2}-\left( x_{i}^{*}-\overline{z_{i}^{0}}\right) \left( x_{i}-z_{i}^{0}\right) \right] . \end{aligned}$$

If \(n=1\), then

$$\begin{aligned} P\left( x_{1},w\right)= & {} C\left( x_{1},w\right) ^{*}\Delta ^{1}\left( x_{1},z^{0}\right) C\left( x_{1},w\right) \\= & {} \left( w-x_{1}^{*}\right) ^{-1}\left[ r^{2}-\left( x_{1}^{*}- \overline{z_{1}^{0}}\right) \left( x_{1}-z^{0}\right) \right] \left( w-x_{1}\right) ^{-1} \\= & {} Re\left[ \left( w+x_{1}-2z_{1}^{0}\right) \left( w-x_{1}\right) ^{-1}) \right] \ge 0. \end{aligned}$$

Definition 3.1

Let A be a complex unital Banach algebra with continuous involution \( x\longmapsto x^{*}\), \(\Omega \) an open subset of \(\mathbb {C}^{n}\), \( z^{0}=\left( z_{1}^{0},\ldots ,z_{n}^{0}\right) \) \(\in \Omega \),\(\ r=\left( r_{1},\ldots ,r_{n}\right) \in \mathbb {R}_{+}^{n}\) such that \(\overline{D}^{n}\left( z^{0},r\right) \subset \Omega ,\) \(\textbf{x }=\left( x_{1},\ldots ,x_{n}\right) \in A^{n}\) be a c.f.e. with \(Sp(\textbf{x}) \mathbf {\subset }D^{n}\left( z^{0},r\right) \) and \(f\in h(\Omega ,A).\) Then the element of A given by the Poisson integral formula:

$$\begin{aligned} \frac{1}{\left( 2\pi \right) ^{n}}\int _{T^{n}\left( z^{0},r\right) }f(w)P( \textbf{x},w)\frac{\left| dw_{1}\right| }{r_{1}}\ldots \frac{\left| dw_{n}\right| }{r_{n}} \end{aligned}$$

is denoted by \(P\left[ f\right] (\textbf{x})\).

If we denote by \(\Psi _{\textbf{x}}(f)\) or just \(f(\textbf{x})\) the element \( P\left[ f\right] (\textbf{x})\), one has a mapping of \(h(\Omega ,A)\) into A, noted \(\Psi _{\textbf{x}}\), given by:

$$\begin{aligned} \Psi _{\textbf{x}}:h(\Omega ,A)\longrightarrow A:f\longmapsto \Psi _{\textbf{ x}}\left( f\right) =P\left[ f\right] (\textbf{x})=f(\textbf{x}). \end{aligned}$$

Then \(\Psi _{\textbf{x}}\) is an involutive homomorphism from \(h(\Omega ,A)\) into A that extends the algebra homomorphism \(\Theta _{\textbf{a}}\) given by the Cauchy transform ([18], Proposition 9, p. 103). Furthermore, if \(K\ \) is a compact neighbourhood contained in \(\Omega \) and containing \(Sp(\textbf{ x})\), then the mapping \(\Psi _{\textbf{x}}\) is continuous with respect to the uniform convergence on K.

Proposition 3.2

Let A be a hermitian Banach algebra with continuous involution \( x\longmapsto x^{*}\), \(\Omega \) and \(\textbf{x}\) as described in Definition 3.1. If \(\textbf{x}\) is normal, then, for every \(f\in h\left( \Omega ,A\right) ,\) one has

$$\begin{aligned} \widehat{\Psi _{\textbf{x}}\left( f\right) }\left( \chi \right) =\left( \chi \circ f\right) \left( \chi (\mathbf {x)}\right) )\text {, for every }\chi \in Sp(A). \end{aligned}$$

Corollary 3.3

Let A be a hermitian Banach algebra with continuous involution \( x\longmapsto x^{*}\), \(\Omega \) and \(\textbf{x}\) as described in Definition 3.1. If \(\textbf{x}\) is normal, then

(1) \(Sp_{A}\left( f(\mathbf {x)}\right) \mathbf {\subset } \bigcup \nolimits _{\lambda \in Sp(\mathbf {x)}}Sp_{A}\left( f(\lambda )\right) \), for every \(f\in h\left( \Omega ,A\right) .\)

(2) If \(f=\widetilde{f}e\), where \(\widetilde{f}\) is a harmonic scalar function on \(\Omega \), then

$$\begin{aligned} Sp_{A}\left( f(\mathbf {x)}\right) \mathbf {=}f(Sp(\textbf{x})). \end{aligned}$$

Remark 3.4

The proofs of Proposition 3.2 and Corollary 3.3 are similar to those of Proposition 2.5 and Proposition 2.6. Here the hypothesis that \(A\ \)is hermitian is used to get

$$\begin{aligned} \chi \left( P(\textbf{x},w)\right) =P(\chi \left( \textbf{x}\right) ,w)\text { , for every }\chi \in Sp(A) \end{aligned}$$

which results from the fact that every character \(\chi \) of a hermitian algebra \(A\ \)is hermitian ([4], (i), Theorem 1.4.1, p. 11), i.e.,

$$\begin{aligned} \chi \left( x^{*}\right) =\overline{\chi \left( x\right) }\text {, for every }x\in A. \end{aligned}$$

4 Some applications

In this section, we give some applications of functional calculi as explored in the preceding sections. Its applications concern a generalization of von Neumann’s theorem ([5], Théorème 6, p. 506), N. Wiener and P. Lé vy theorems ([9], Theorem 4.2, p. 337 and Theorem 5.1, p. 339) and ([6], Theorem 3.1 and Theoerem 3.2). We obtain an analog of Neumann’s theorem for A-valued holomorphic functions of several variables. Afterward we use weighted algebras analogues of the classical theorems of N. Wiener and P. L évy on absolutely Fourier series and we get multi-dimensional versions of N. Wiener and P. Lévy theorems given in ([8], Theorem l, 347 and Theorem 2, p. 349).

4.1 Analog of von Neumann’s theorem.

The spectral inequality of von Neumann (cf. [10], Theorem 1, p. 276) is well-known. Its asserts that, given a contraction T on a Hilbert space \( \mathcal {H}\), i.e., \(\left\| T\right\| \le 1\) and a complex function f analytic on the open unit disk D. If \(f(D)\subset D\), then f(T) is also a contraction on \(\mathcal {H}\). In ([7], Theorem 3.1, p. 933), the third author showed that hermitian algebras are the natural framework of the last inequality. He also obtained an extension to analytic A-valued functions ([5], Théorème 1, p. 498). Here, we obtain a generalization of the von-Neumann’s inequality to several variables.

In the sequel, A will denote a hermitian Banach algebra with continuous involution \(x\longmapsto x^{*}\) and \(D^{n}=D^{n}\left( 0,1\right) \). We consider:

$$\begin{aligned} \mathcal {H}N_{A}(D^{n})= & {} \left\{ f\in \mathcal {H}(D^{n},A):f(z)\text { is normal, for every }z\in D^{n}\right\} \\ \mathcal {H}_{A}(D^{n})= & {} \left\{ \begin{array}{c} f\in \mathcal {H}N_{A}(D^{n}):f(z)f(w)=f(w)f(z)\text {,} \\ \text {for every }z,w\in D^{n} \end{array} \right\} \\ B_{A}\left( D^{n}\right)= & {} \left\{ f\in \mathcal {H}N_{A}(D^{n}):\left| f(z)\right| <1\text {, for every }z\in D^{n}\right\} \\ P_{A}\left( D^{n}\right)= & {} \left\{ g\in \mathcal {H}N_{A}(D^{n}):Reg(z)>0 \text {, for every }z\in D^{n}\right\} , \end{aligned}$$

where Reg(z) designates the real part of g(z).

As a first application of the n-harmonic functional calculus, we have the following result:

Theorem 4.1

Let \(\mathbf {a=}\left( a_{1},\ldots ,a_{n}\right) \mathbf {\in }A^{n}\) be a c.f.e. such that \(\left| a_{i}\right| <1,\) for every \(i=1,\ldots ,n.\) If \(P(\textbf{a},w)>0\) for every w in the torus \(T^{n}(0,1)\), then \(Reg( \textbf{a})>0\), with g in\(\ P_{A}\left( D^{n}\right) \).

Proof

Since \(g\in P_{A}\left( D^{n}\right) \), one has \(g\in \mathcal {H} N_{A}(D^{n})\ \)and its real part Reg is an A-valued harmonic function on \(D^{n}\). Let \(\mathbf {a\in }A^{n}\) be a c.f.e. such that \(\left| a_{i}\right| <1,\) for every \(i=1,\ldots n\). Choose positive numbers \(r_{i}\ \)and\(\ r_{i}^{\prime }\) with \(\left| a_{i}\right|<r_{i}<r_{i}^{\prime }<1\). It is easy to verify that \(Sp_{A}(\mathbf { a)\subset }D^{n}\left( 0,r\right) \), where \(r=\left( r_{1},\ldots ,r_{n}\right) \). By hypothesis, g in\(\ P_{A}\left( D^{n}\right) \). It follows that \( Reg(z)>0\), for every \(z\in \overline{D}^{n}\left( 0,r^{\prime }\right) \), i.e., Reg(z) is a positive and invertible element of A. Consider the function

$$\begin{aligned} \psi (z)=\rho \left( \left[ Reg(z)\right] ^{-1}\right) \text {, for every } z\in \overline{D}^{n}\left( 0,r^{\prime }\right) . \end{aligned}$$

As the spectral radius \(x\longmapsto \rho (x)\) is upper-semicontinuous on A, the function \(\psi \) is therefore upper semicontinuous on \(\overline{D} ^{n}\left( 0,r^{\prime }\right) \).So \(\psi \) has a maximum on \(\overline{ D}^{n}\left( 0,r^{\prime }\right) \). Therefore, there exists \(\delta >0\) such that:

$$\begin{aligned} \rho \left( \left[ Reg(z)\right] ^{-1}\right) \le \dfrac{1}{\delta },\text { for every }z\in \overline{D}^{n}\left( 0,r^{\prime }\right) . \end{aligned}$$

Whence \(\rho \left( Reg(z)\right) >\delta \), for every \(z\in \overline{D} ^{n}\left( 0,r^{\prime }\right) \). It follows that \(Reg(z)>\delta \), for every \(z\in D^{n}\left( 0,r^{\prime }\right) \). Consider h defined by:

$$\begin{aligned} h(z)=Reg(z)-\delta e\text {, for every }z\in D^{n}\left( 0,r^{\prime }\right) . \end{aligned}$$

Thus, by Definition 3.1, one has:

$$\begin{aligned} h(\textbf{a})=\frac{1}{\left( 2\pi \right) ^{n}}\int _{T^{n}\left( 0,r\right) }h(w)P(\textbf{a},w)\frac{\left| dw_{1}\right| }{r_{1}}\ldots \frac{ \left| dw_{n}\right| }{r_{n}}. \end{aligned}$$

By our assumption, \(P(\textbf{a},w)\ge 0\), for every \(w\in T^{n}(0,1).\ \) Then, since \(\textbf{a}\) and \(\mathcal {H}(D^{n},A)\) are commuting, we have

$$\begin{aligned} h(w)P(\textbf{a},w)\ge 0,\text { for every }w\in T^{n}(0,r). \end{aligned}$$

Indeed, for a fixed \(w\in T^{n}(0,r)\), one has \(h(w)>0\) and \(P(\textbf{a},w)\ge 0.\) Thus there exists \(u,v\in H(A)\) such that

$$\begin{aligned} h(w)=u^{2}\text { and }P(\textbf{a},w)=v^{2}. \end{aligned}$$

Moreover u and v commutes since h and \(\textbf{a}\) are commuting. It follows that \(h(w)P(\textbf{a},w)\in H(A)\) and

$$\begin{aligned} h(w)P(\textbf{a},w)=u^{2}v^{2}=uv\left( uv\right) ^{*}\ge 0\text { by }(1). \end{aligned}$$

So \(h(\textbf{a})\ge 0.\) Finally, since \(h(\textbf{a})=Reg(\textbf{a} )-\delta \), we have \(Reg(\textbf{a})-\delta \ge 0\), i.e., \(Sp_{A}(Reg( \textbf{a})-\delta )\subset [ 0,+\infty [ \). Whence \( Sp_{A}\left( Reg(\textbf{a})\right) \subset [ \delta ,+\infty [.\) Thus \(Reg(\textbf{a})\) is a hermitian element of \(A\ \)and \(Sp_{A}\left( Reg( \textbf{a})\right) \subset ] 0,\infty [ \) for \(\delta >0.\) So \( Reg(\textbf{a})>0.\) This completes the proof. \(\square \)

As in the complex case, the reader can prove that the relations

$$\begin{aligned} g(z)=\left( e+f(z)\right) \left( e-f(z)\right) ^{-1}\ \text {and}\ \ f(z)=(g(z)-e)(g(z)+e)^{-1} \end{aligned}$$

establish a bijection between the functions f in \(B_{A}\left( D^{n}\right) \ \)and the functions g in \(P_{A}\left( D^{n}\right) \). Using this fact, we obtain an equivalent version of Theorem 4.1 given by:

Theorem 4.2

Let \(f\in B_{A}\left( D^{n}\right) \) and \(\mathbf {a=}\left( a_{1},\ldots ,a_{n}\right) \mathbf {\in }A^{n}\) be a c.f.e. such that \( \left| a_{i}\right| <1,\) for every \(i=1,\ldots ,n.\) If \(P(\textbf{a},w)>0 \), for every \(w\in T^{n}(0,1)\), then \(\left| f(\textbf{a} )\right| <1\).

Remark 4.3

(1) In the case where \(n=1\), we have

$$\begin{aligned} P\left( \textbf{a},w\right)= & {} Re\left[ \left( w+a_{1}\right) \left( \left( w-a_{1}\right) ^{-1}\right) \right] \\= & {} \left( \overline{w}-a_{1}^{*}\right) ^{-1}\left( 1-a_{1}^{*}a_{1}\right) \left( w-a_{1}\right) ^{-1}. \end{aligned}$$

As \(\left| a_{1}\right| <1\), we have \(e-a_{1}^{*}a_{1}>0\), so that

$$\begin{aligned} e-a_{1}^{*}a_{1}=u^{2}\ \text { for some } \ u\in H(A). \end{aligned}$$

Hence

$$\begin{aligned} P\left( a_{1},w\right) =\left( \overline{w}-a_{1}^{*}\right) ^{-1}u\ u\ \left( w-a_{1}\right) ^{-1}. \end{aligned}$$

Then, by (1), we have \(P\left( a_{1},w\right) \ge 0.\)

(2) In the case where \(n=2\) and \(\mathbf {a=}\left( a_{1},a_{2}\right) \), we have:

$$\begin{aligned} P^{2}\left( \textbf{a},w\right) =P\left( a_{1},w_{1}\right) P\left( a_{2},w_{2}\right) \end{aligned}$$

Put \(P\left( a_{1},w_{1}\right) =h^{2}\) and \(P\left( a_{2},w_{2}\right) =k^{2}\), then \(P^{2}\left( \textbf{a},w\right) =h^{2}k^{2}\) and as

$$\begin{aligned} Sp_{A}\left( h^{2}k^{2}\right) =Sp_{A}\left( khhk\right) \text {,} \end{aligned}$$

we obtain \(Sp_{A}\left[ P^{2}\left( \textbf{a},w\right) \right] \subset \mathbb {R}^{+}.\)

Remark 4.4

Using Theorem 4.1, we obtain as in [5], the analog of Schawrz’s lemma ([5], Théorème 4, p. 502) as well as the analog of Pick’s theorem ([5], Théorème 5, p. 504).

4.2 Analogues of Lévy and Wiener’s theorems

For \(p\in ] 1,+\infty [ \), let \(\omega :\mathbb {Z} ^{k}\longrightarrow [ 1,+\infty [ \), \(k\in \mathbb {N}^{*}\ \) fixed, be a weight on \(\mathbb {Z}^{k},\) i.e., \(\omega \) satisfies

$$\begin{aligned} \underset{m\in \mathbb {Z}^{k}}{\sum }\omega ^{\frac{1}{1-p}}(m)<+\infty . \end{aligned}$$
(4)

For \(n=\left( n_{1},\ldots ,n_{k}\right) \in \mathbb {Z}^{k}\) and \(t=\left( t_{1},\ldots ,t_{k}\right) \in \mathbb {R}^{k}\), we will use the notation \( (n,t)=n_{1}t_{1}+\cdots +n_{k}t_{k}\). Now, we consider the following weighted space:

$$\begin{aligned} \mathcal {A}_{k}^{p}\left( \omega \right) =\left\{ f:\mathbb {R} ^{k}\longrightarrow \mathbb {C}:f(t)=\sum \limits _{n\in \mathbb {Z} ^{k}}a_{n}e^{i(n,t)}:\left( a_{n}\right) _{n\in \mathbb {Z}^{k}}\in l_{\omega }^{p}\left( \mathbb {Z}^{k}\right) \right\} , \end{aligned}$$

where \(l_{\omega }^{p}\left( \mathbb {Z}^{k}\right) \) stands for the space of all sequences \(\left( a_{n}\right) _{n\in \mathbb {Z}}\) with \(a_{n}\in \mathbb {C}\) and

$$\begin{aligned} \sum _{n\in \mathbb {Z}^{k}}\left| a_{n}\right| ^{p}\omega \left( n\right) <+\infty . \end{aligned}$$

In \(l_{\omega }^{p}\left( \mathbb {Z}^{k}\right) \), we introduce convolution multiplication given by:

$$\begin{aligned} a*b=\left\{ \sum _{i\in \mathbb {Z}}a_{i}b_{n-i}\right\} _{n} \end{aligned}$$

and we suppose that there exists a constant \(\gamma =\gamma \left( \omega \right) >0\) such that:

$$\begin{aligned} \omega ^{\frac{1}{1-p}}*\omega ^{\frac{1}{1-p}}\le \gamma \omega ^{ \frac{1}{1-p}}. \end{aligned}$$
(5)

Then \(l_{\omega }^{p}\left( \mathbb {Z}^{k}\right) \) becomes a Banach algebra ([6], Theorem 3.3). The space \(\mathcal {A}_{k}^{p}\left( \omega \right) \) endowed with the norm \(\left\| .\right\| _{k,p,\omega }\) defined by:

$$\begin{aligned} \left\| f\right\| _{k,p,\omega }=\left( \sum _{n\in \mathbb {Z} ^{k}}\left| a_{n}\right| ^{p}\omega \left( n\right) \right) ^{\frac{1 }{p}}\text {, for every }f\in \mathcal {A}_{k}^{p}\left( \omega \right) \text {,} \end{aligned}$$

and with the classical pointwise multiplication, becomes a Banach algebra. In the sequel, we suppose:

$$\begin{aligned} \underset{\left| n\right| \longrightarrow +\infty }{\lim }\left( \omega \left( n\right) \right) ^{\frac{1}{n_{j}}}=1, \ \text { for every }\ j=1,\ldots k. \end{aligned}$$
(6)

where \(\left| n\right| =n_{1}+\cdots +n_{k},\) denotes the length of \( n=\left( n_{1},\ldots ,n_{k}\right) \in \mathbb {Z}^{k}\) and

$$\begin{aligned} \omega \left( n+m\right) \le \omega \left( n\right) \omega \left( m\right) \text {, for every }n,m\in \mathbb {Z}^{k} \end{aligned}$$
(7)

Recall that every character of the algebra \(\mathcal {A}_{k}^{p}\left( \omega \right) \) is an evaluation at some \(t^{0}\in \mathbb {R}^{k}\) ([6], Theorem 3.3), where \(t^{0}=\left( t_{1}^{0},\ldots ,t_{k}^{0}\right) \) with \(0\le t_{j}^{0}<2\pi \), for every \(j=1,\ldots ,k\), and so,

$$\begin{aligned} Sp\left( \mathcal {A}_{k}^{p}\left( \omega \right) \right) =\left\{ \chi _{t}:t\in [ 0,2\pi [ ^{k}\right\} , \end{aligned}$$

where \(\chi _{t}(f)=f(t)\), for every \(f\in \mathcal {A}_{k}^{p}\left( \omega \right) \), and

$$\begin{aligned} Sp(f)=\left\{ f(t):t\in [ 0,2\pi [ ^{k}\right\} . \end{aligned}$$

Also the Jacobson radical of \(\mathcal {A}_{k}^{p}\left( \omega \right) \), denoted by \(Rad\left( \mathcal {A}_{k}^{p}\left( \omega \right) \right) ,\) is:

$$\begin{aligned} Rad\left( \mathcal {A}_{k}^{p}\left( \omega \right) \right) =\bigcap \limits _{\chi \in Sp\left( \mathcal {A}_{k}^{p}\left( \omega \right) \right) }\ker \chi . \end{aligned}$$

Whence \(\mathcal {A}_{k}^{p}\left( \omega \right) \) is semi-simple, i.e., \( Rad\left( \mathcal {A}_{k}^{p}\left( \omega \right) \right) =\left\{ 0\right\} \).

Using the fact that the spectrum of an element f of the algebra \(\mathcal {A }_{1}^{p}\left( \omega \right) \) is nothing other than the set of values of f, we obtain the following generalization of P. Lévy theorem for holomorphic functions of several variables.

Theorem 4.5

(Multi-dimensional holomorphic version of P. Lévy theorem) Let \(p\in ] 1,+\infty [ \) and \(\omega \) be a weight on \(\mathbb {Z} \) satisfying (5), (6) and (7). Let \(f=\left( f_{1},\ldots ,f_{k}\right) \), where \(f_{j}(t)=\sum \limits _{n\in \mathbb {Z} }a_{n,j}e^{int}\), where \(\left( a_{n,j}\right) _{n\in \mathbb {Z}}\subset \mathbb {C}\), for \(j=1,\ldots ,k\), is a periodic function such that:

$$\begin{aligned} \left\| f_{j}\right\| _{p,\omega }=\left( \sum _{n\in \mathbb {Z} }\left| a_{n,j}\right| ^{p}\omega \left( n\right) \right) ^{\frac{1}{ p}}<+\infty \text {.} \end{aligned}$$

Let \(\Omega \) be an open subset of \(\mathbb {C}^{k}\) containing the image of the function f. Let \(F\in \mathcal {H}(\Omega ,\mathcal {A} _{1}^{p}\left( \omega \right) )\). Then F(f) also can be developed in a trigonometric series \(F(f)(t)=\sum \limits _{n\in \mathbb {Z}}b_{n}e^{int}\), where \(\left( b_{n}\right) _{n\in \mathbb {Z}}\subset \mathbb {C}\), such that:

$$\begin{aligned} \left\| F(f)\right\| _{p,\omega }=\left( \sum \limits _{n\in \mathbb {Z} }\left| b_{n}\right| ^{p}\omega \left( n\right) \right) ^{\frac{1}{p} }<+\infty \end{aligned}$$

and, for every \(t\in \mathbb {R}\),

$$\begin{aligned} F(f)(t)=F\left( f_{1}(t),\ldots ,f_{k}(t)\right) \left( t\right) =\sum \limits _{n\in \mathbb {Z}}b_{n}e^{int}. \end{aligned}$$

If moreover \(F\ \)is a holomorphic scalar function on \(\Omega \), then, for every \(t\in \mathbb {R}\),

$$\begin{aligned} F\left( f_{1}(t),\ldots ,f_{k}(t)\right) =\sum \limits _{n\in \mathbb {Z} }b_{n}e^{int}. \end{aligned}$$

Now we consider, in the algebra \(\mathcal {A}_{k}^{p}\left( \omega \right) \), the algebra involution \(f\longmapsto f^{*}\) defined by:

$$\begin{aligned} f^{*}(t)=\sum \limits _{n\in \mathbb {Z}^{k}}\overline{a_{-n}}e^{i\left( n,t\right) }\text {, for every }t\in \mathbb {R}^{k}. \end{aligned}$$

Since the algebra \(\mathcal {A}_{k}^{p}\left( \omega \right) \) is semi-simple, the involution is continuous ([2], Theorem 2, p.191). Moreover \( \left( \mathcal {A}_{k}^{p}\left( \omega \right) ,\left\| .\right\| _{p,\omega }\right) \) is a hermitian algebra.

4.3 Another generalization of Wiener and Lévy theorems

We will now consider complex functions of several variables and analytic functional calculus for a single variable to give generalization of N. Wiener and P. Lévy theorems.

As an immediate consequence, we obtain the following multi-dimen-sional generalization of the N. Wiener theorem.

Theorem 4.6

(Multi-dimensional generalization of N. Wiener theorem) Let \(p\in ] 1,+\infty [ \) and \(\omega \) be a weight on \(\mathbb {Z} ^{k}\) satisfying (5), (6) and (7). Let \( f(t)=f(t_{1},\ldots ,t_{k})\) be a \(2\pi \)-periodic function with respect to each variable, represented by a series

$$\begin{aligned} f(t)=\sum \limits _{n\in \mathbb {Z}^{k}}a_{n}e^{i(n,t)} \end{aligned}$$

such that

$$\begin{aligned} \left\| f\right\| _{k,p,\omega }=\left( \sum _{n\in \mathbb {Z} ^{k}}\left| a_{n}\right| ^{p}\omega \left( n\right) \right) ^{\frac{1 }{p}}<+\infty . \end{aligned}$$

If f(t) is invertible, for every \(t\in \mathbb {R}^{k}\), then the function \( f^{-1}\) can be developed in a trigonometric series \(f^{-1}\left( t\right) =\sum \limits _{n\in \mathbb {Z}^{k}}b_{n}e^{i(n,t)}\), where \(\left( b_{n}\right) _{n}\) is a sequence in \(\mathcal {A}_{k}^{p}\left( \omega \right) ,\) such that:

$$\begin{aligned} \left\| f^{-1}\right\| _{k,p,\omega }=\left( \sum _{n\in \mathbb {Z} ^{k}}\left| b_{n}\right| ^{p}\omega \left( n\right) \right) ^{\frac{1 }{p}}<+\infty . \end{aligned}$$

Using holomorphic functional calculus and Theorem 2.2, we also obtain as a consequence, the following multi-dimensional generalization of the Lévy theorem.

Theorem 4.7

(Multi-dimensional generalization of P. Lévy theorem) Let \(p\in ] 1,+\infty [ \) and \(\omega \) be a weight on \(\mathbb {Z} ^{k}\) satisfying (5), (6) and (7). Let \( f(t)=f(t_{1},\ldots ,t_{k})\) be a \(2\pi \)-periodic \(\mathcal {A}_{k}^{p}\left( \omega \right) \)-valued function with respect to each variable, represented by a series \(f(t)=\sum \limits _{n\in \mathbb {Z}^{k}}a_{n}e^{i(n,t)}\), such that

$$\begin{aligned} \left\| f\right\| _{k,p,\omega }=\left( \sum _{n\in \mathbb {Z} ^{k}}\left| a_{n}\right| ^{p}\omega \left( n\right) \right) ^{\frac{1 }{p}}<+\infty . \end{aligned}$$

Let \(\Omega \) be an open subset of \(\mathbb {C}^{n}\), \(z^{0}=\left( z_{1}^{0},\ldots ,z_{n}^{0}\right) \in \Omega \),\(\ r=\left( r_{1},\ldots ,r_{n}\right) \in \mathbb {R}_{+}^{n}\) such that \(\overline{D} ^{n}\left( z^{0},r\right) \subset \Omega ,\) and \(f\left( \mathbb {R} ^{k}\right) \subset D^{n}\left( z^{0},r\right) \mathbf {.}\) If\(\ F\in h(\Omega ,\mathcal {A}_{k}^{p}\left( \omega \right) ),\) then

$$\begin{aligned} P\left[ F\right] (f)=\frac{1}{\left( 2\pi \right) ^{n}}\int _{T^{n}\left( z^{0},r\right) }F(w)P(f,w)\frac{\left| dw_{1}\right| }{r_{1}}\ldots \frac{\left| dw_{n}\right| }{r_{n}}. \end{aligned}$$

can be developed in a trigonometric series

$$\begin{aligned} P\left[ F\right] (f)(t)=F(f(t))(t)=\sum \limits _{n\in \mathbb {Z} ^{k}}b_{n}e^{i(n,t}), \end{aligned}$$

such that:

$$\begin{aligned} \left\| P\left[ F\right] (f)\right\| _{k,p,\omega }=\left( \sum _{n\in \mathbb {Z}^{k}}\left| b_{n}\right| ^{p}\omega \left( n\right) \right) ^{\frac{1}{p}}<+\infty . \end{aligned}$$

If moreover \(F\in h(\Omega ,\mathbb {C)}\) is an n-harmonic scalar function on \(\Omega \), then, for every \(t\in \mathbb {R}^{k}\),

$$\begin{aligned} P\left[ F\right] (f)(t)=F(f(t))=\sum \limits _{n\in \mathbb {Z} ^{k}}b_{n}e^{i(n,t)}. \end{aligned}$$

Remark 4.8

Under the assumptions of the Theorem 4.7, if\(\ F\in h\left( \Omega ,\mathcal { A}_{k}^{p}\left( \omega \right) \right) ,\) then, by Proposition 3.2, we have:

$$\begin{aligned} \widehat{P\left[ F\right] \left( f\right) }\left( \chi \right) =\left( \chi \circ F\right) \left( \chi (f\mathbf {)}\right) )\text {, for every }\chi \in Sp(A). \end{aligned}$$
(8)

This implies that:

$$\begin{aligned} P\left[ F\right] (f)(t)=F(f(t))(t)\text {, for every }t\in \mathbb {R}^{k}. \end{aligned}$$

While if \(F\in h(\Omega ,\mathbb {C)}\), then (8) becomes as follows:

$$\begin{aligned} \widehat{P\left[ F\right] \left( f\right) }\left( \chi \right) =F\left( \chi (f\mathbf {)}\right) )\text {, for every }\chi \in Sp(A). \end{aligned}$$

So, one has

$$\begin{aligned} P\left[ F\right] (f)(t)=F(f(t))\text {, for every }t\in \mathbb {R}^{k}.\ \end{aligned}$$