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Abstract
We define and study a functional calculus for vector valued n-harmonic functions. As appli-
cations, we obtain a generalization of the well-known von-Neumann’s inequality to several
variables. We also use weighted algebras analogues of the classical theorems of N. Wiener
and P. Lévy on absolutely Fourier series in order to obtain multi-dimensional versions of N.
Wiener and P. Lévy theorems.
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1 Preliminaries and introduction

Let (A, ‖.‖) be a complex algebra with unit. If x ∈ A the symbols SpA(x) and ρA(x) denote
the spectrum of x and its spectral radius, respectively. Let x �−→ x∗ be an involution on
A. An element h of A is called hermitian if h∗ = h. The set of all hermitian elements of A
will be denoted by H(A). The real and imaginary parts of an element x of A are denoted
by Rex and Imx , respectively, i.e., Rex = (x + x∗) /2, Imx = (x − x∗) /2i . We say that
a Banach algebra A is hermitian if the spectrum of every element of H(A) is real ([12],
Definition 5.1, p. 23). For elements h and k of H(A), we write h ≥ k to indicate that h− k is
positive, i.e., SpA(h − k) ⊂ [0,+∞[. Let x be an element of A. We denote by |x | the square
root of the spectral radius of the element x∗x , i.e., |x | = ρA(x∗x) 1

2 . In ([12], Theorem 5.2,
(5.4) and (5.8), p. 23-25), V. Pt àk proved the following result: If A is hermitian, then |.| is
an algebra seminorm on A such that ρA(x) ≤ |x |, for every x ∈ A. The following result of
Shirali- Ford ([16], Theorem 1, p. 275) will be needed throughout the paper:

A is hermitian �⇒ x∗x ≥ 0, for every x ∈ A. (1)
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Throughout the paper, e will denote the unit of A, and for scalars r we often write simply r
for the element re of A. Also Sp(A) denotes the spectrum of A, that is the set of non-zero
continuous characters of A. Let n be a positive integer and let An denote the cartesian product
of n copies of A. Let a = (a1, . . . , an) ∈ An be a commutative family of elements of A (a
c. f .e. in short). Then the full sub-algebra B generated by a is a unital commutative algebra.
Let â denote the Gel’fand transformation defined by:

â (χ) = (χ (a1) , . . . , χ (an)) ∈ C
n , for every χ ∈ Sp (B) .

The image â (SpB) ⊂ C
n is therefore a nonempty compact subset of C

n . It is called the
simultaneous spectrum or the joint spectrum of a and denoted by Sp (A, a) or just Sp (a)

([2], Definition 7, p. 100). One has Sp (a) ⊂
n
∏

i=1
SpA (ai ).

Let A be a complex unital Banach algebra and A′ the topological dual of A. Let � be
an open subset of C

n and f : � −→ A be an A-valued function. Then f is said to be
holomorphic if ϕ( f (z)) is holomorphic on � in the classical sense for every ϕ ∈ A′. The
set of all holomorphic A-valued functions on � is denoted by H (�, A). Since the dual
A′ separates the points of A, the most results of complex function theory ([13, 14]), such as
Cauchy’s integral, Taylor expansion, Cauchy estimates and so on, are applicable toH (�, A).
It is clear thatH (�, A) is a complex unital algebra. Moreover, if f is an element ofH (�, A)

and if f (z) is invertible for every z ∈ �, then the function f −1 defined by f −1 (z) = f (z)−1

for each z ∈ � is an element of H (�, A) .

A continuous A-valued function f : � −→ A is a said to be n-harmonic if f is harmonic
in each complex variable that is if z j = x j +iy j , f should satisfy the n differential equations:

∂2 f

∂2x j
+ ∂2 f

∂2y j
= 0, for j = 1, . . . , n.

The set of alln-harmonic A-valued functions on� is denoted by h (�, A). If f is holomorphic
on �, then it is holomorphic in each variable, so we have H (�, A) ⊂ h (�, A). Let A be
an involutive complex Banach algebra. An A-valued function f : � −→ A is said to be
hermitian if f (z) = f (z)∗, for every z ∈ �. We denote by Ref (resp. Im f ) the real part of f
(resp. the imaginary part of f ) defined by Ref (z) = Re ( f (z)) (resp. Im f (z) = Im ( f (z))),
for every z ∈ �.

Let z0 ∈ C and r > 0, the open (resp. closed) disc with center z0 and radius r is denoted
by D (z0, r) (resp. D (z0, r)); its boundary, denoted by T (z0, r), is the circle with center z0
and radius r . If z0 = (

z01, . . . , z
0
n

) ∈ C
n and r = (r1, . . . , rn) is a multi-index

(

R
∗+
)n , the

open polydisc with center z0 and radius r is the set

Dn (z0, r
) =

n
∏

j=1

D
(

z0j , r j
)

.

Its closure is denoted by D
n (

z0, r
)

. The notation T n
(

z0, r
)

denotes the torus of C
n with

center z0 and radius r , that is T n
(

z0, r
) = ∏n

j=1 T
(

z0j , r j
)

. Let Z
+ = {0, 1, 2, ..}. A

multi-index α is an element of
(

Z
+)n . If α = (α1, . . . , αn) is a multi-index and w =

(w1, . . . , wn) ∈ C
n , we write wα for the monomial (power product) w

α1
1 . . . w

αn
n . We also

consider the following differential form, on C
n , dz = dz1 . . . dzn . In the sequel, all algebras

considered here are complex and unital ones.
The A-valued harmonic functional calculus for an element of an involutive Banach algebra

is defined and studied in [5]. Here we construct an A -valued n-harmonic calculus for an
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arbitrary n-tuple of elements of an involutive Banach algebra elements. This calculus consists
in giving a sense to f (a) whenever a = (a1, . . . , an) ∈ An and f is an A-valued n-harmonic
function on a neighbourhood U of the simultaneous spectrum Sp(a) of a. To that aim, we
need to introduce a functional calculus for holomorphic A-functions. The paper is organized
as follows. In Sect. 2, we introduce a vector-valued Cauchy transform. This allows us to
introduce a functional calculus for holomorphic A-functions. We show that this calculus is
continuous (namely the mapping f �−→ C [ f ] (a) is continuous) and satisfies the spectral
mapping theorem . Sect. 3 relies highly on Sect. 2 where we define and study a vector-valued
n-harmonic calculus. The most important properties of this calculus are studied. The last
section is devoted to applications. The first one is a generalization of the well-known von-
Neumann’s inequality to several variables. The second concerns the classical and famous
theorems of N. Wiener [19] and P. Lévy [11].

For more details on holomorphic functional calculus, we refer the reader to [1, 18].

2 A vector-valued Cauchy transform

We first introduce a vector-valued Cauchy transform by means of appropriate vector-valued
kernel. In particular, we obtain a functional calculus for holomorphic A-functions which will
be useful to us later.

Definition 2.1 Let A be a complex unital Banach algebra, � an open subset of C
n , z0 =

(

z01, . . . , z
0
n

) ∈ �, r = (r1, . . . , rn) ∈ (

R
∗+
)n such that D

n (
z0, r

) ⊂ �. If f ∈ H (�, A)

and a = (a1, . . . , an) ∈ An be a c. f .e. with Sp(a) ⊂Dn
(

z0, r
)

, then

f (a) = 1

(2π i)n

∫

T n(z0,r)
f (z)C(a, z)dz,

where

C(a, z) =
n
∏

j=1

(z j − a j )
−1 =

n
∏

j=1

C(a j , z j ).

If we denote by 	a( f ) the element f (a), one has a linear mapping of H (�, A) into A,
denoted by:

	a : H (�, A) −→ A : f �−→ f (a) (2)

Suppose f is a function on � into A and a = (a1, . . . , an) ∈ An . The function a f is
defined by:

a f (z) = (a1 f (z), . . . , an f (z)) , for every z ∈ �.

We say that a and f are commuting if a f (z) = f (z)a for all z in � that is:

(a1 f (z), . . . , an f (z)) = ( f (z)a1, . . . , f (z)an) , for every z ∈ �.

If a commutes with every element of H (�, A), then we say that a and H (�, A) commute.
Now f , g ∈ H (�, A) and a = (a1, . . . , an) be a c. f .e. as described in Definition 2.1. Then
as in the classical case, one has ( f g) (a) = f (a)g(a) if a and g are commuting. Unless
otherwise stated we assume that a and H (�, A) are commuting.

Let C(T n, A), where T n = T n (0, 1), be the algebra of all A-valued continuous functions
on T n . For every f ∈ C (T n, A), we define

C [ f ] (a) = 1

(2π i)n

∫

T n(z0,r)
f (z)C(a, z)dz.
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The mapping C (T n, A) −→ A : f �−→ C [ f ] (a) is obviously a linear map. Now, since the
mapping z �−→ ‖C(a, z)‖ is continuous, and therefore bounded, on T n

(

z0, r
)

, there exists
a positive constant M such that:

‖C [ f ] (a)‖ ≤ M | f |T n(z0,r) , for every f ∈ C (T n(z0, r), A
)

,

where
| f |T n(z0,r) = sup

{‖ f (z)‖ : z ∈ T n(z0, r)
}

.

It follows that the mapping
f �−→ C [ f ] (a)

is continuous from
(

C (T n, A) , |.|T n(z0,r)

)

into (A, ‖.‖). It is called the Cauchy transform
of f at a ([17], p. 49). If a = (a1, . . . , an) ∈ An be a c. f .e. with Sp(a) ⊂Dn (0, 1), then
for every f ∈ H(�, A), we have C [ f ] (a) = 	a( f ). Moreover if P(z) = zγ11 . . . zγnn is a
monomial, then C [P] (a) is actually aγ1

1 . . . aγn
n , where γ1, .., γn ∈ Z+. Whence for every

analytic polynomial P , one has C [P] (a) = P(a). So we have the following:

Theorem 2.2 Let A be a complex unital Banach algebra, � an open subset of C
n, z0 =

(

z01, . . . , z
0
n

) ∈ �, r = (r1, . . . , rn) ∈ R
n+ such that D

n (
z0, r

) ⊂ � and a = (a1, . . . , an) ∈
An be a c. f .e. with

Sp(a) ⊂Dn (z0, r
)

.

Then there exists a continuous linear map�a from C (T n(z0, r), A
)

into A with the following
properties:

(1) For every analytic polynomial P, one has

�a (P) = P(a)

(2) �a/H(�,A) is multiplicative and �a
(

z j
) = a j , ( j = 1, . . . , n), here z j denotes the

j-th coordinate projection C
n −→ C.

Remark 2.3 (1) Let � = Dn (0, R) , where R = (R1, . . . , Rn) ∈ R
n+, and f ∈

H (�, A) with the the Taylor expansion

f (z) =
∑

α

aαz
α , for every z ∈ �,

where (aα) is a sequence in A. If x = (x1, . . . , xn) ∈ An be c. f .e. with ρ
(

x j
)

< R j ( j =
1, . . . , n), then

f (a) =
∑

α

aαx
α.

(2) Let f ∈ H(�, A) be such that f (z)−1 exists, for every z ∈ �. Then f −1(x) = f (x)−1,
i.e.,

f (x)−1 = 1

(2π i)n

∫

T n(z0,r)
f (z)−1C(x, z)dz.

Let �1 and �2 be two open subsets of C. Suppose f ∈ H (�1, A) and g ∈ H (�2, A)

satisfy the condition that for every compact set K2 in �2, there exists a compact K1 in �1

such that SpA (g(z)) is contained in K1, for every z in K2. Let z0 ∈ �2 and r ∈ Z+ such
that D (z0, r) ⊂ �2. Let K1 be a compact set in �1, which contains each SpA (g(z)) for
every z ∈ D (z0, r). As in ([2], Proposition 3, p. 29), we choose a suitable positively oriented
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simple closed rectifiable contour �1 such that the interior domain int(�1) of �1 contains K1

and int(�1) ∪ �1 ⊂ �1. Then for z ∈ D (z0, r), we have

SpA(g(z)) ⊂ K1 ⊂ int(�1) ∪ �1 ⊂ �1.

It follows, from ([2], Proposition 4, p. 29), that:

f (g(z)) = 1

2π i

∫

�1

f (w) (we − g(z))−1 dw (3)

Since for any fixed w on �1,
z �−→ (we − g(z))−1

is analytic on D (z0, r), it follows from 2) of Remark 2.3 that, for w ∈ �1 and z ∈ D (z0, r),

(we − g(z))−1 = 1

2π i

∫

T (z0,r)
(we − g(u))−1 (u − z)−1du

which shows that, for every z ∈ D (z0, r), one has

f (g(z)) =
(

1

2π i

)2 ∫

�1

∫

T (z0,r)
f (w) (we − g(u))−1 (u − z)−1dudw.

Let ϕ be any bounded functional on A. As in ([20], Lemma 2.4, p. 297), we can prove that
ϕ ( f (g(z))) is analytic on D (z0, r). It follows, from ([15], Definition 3. 30, p. 78), that the
"composite function" h = f ◦g defined by h(z) = f (g(z)) for every z ∈ �2 is an element of
H (�2, A).More generally, we obtain a theorem of composition of functions for holomorphic
functional calculus given by:

Proposition 2.4 Let �1 and �2 be two open subsets of C. Let f ∈ H (�1, A) and g ∈
H (�2, A) satisfy the condition that for every compact set K2 in�2, there exists a compact K1

in �1 such that SpA (g(z)) is contained in K1, for every z in K2. Let a∈A with SpA(a) ⊂�2

and SpA (g(a)) ⊂ �1. Then f ◦ g(a) = f (g(a)).

Proof Let �2 be a positively oriented simple closed rectifiable contour such that
SpA(a)⊂int(�2) and int(�2) ∪ �2 ⊂ �2. By our assumption, there exists a compact set
K1 in �1 such that SpA (g(z)) ⊂ K1 for all z ∈ int(�2) ∪ �2. Now, since int(�2) ∪ �2

is a compact subset of �2 ([3], Definition 3.1, p. 45), one can choose a suitable positively
oriented simple closed rectifiable contour �1 so that both SpA (g(a)) and K1 are contained
in int(�1) and int(�1) ∪ �1 ⊂ �1. Then in the same manner as before, one has:

f (g(a)) = 1

2π i

∫

�1

f (w) (we − g(a))−1 dw.

By 2) of Remark 2.3, one has:

(we − g(a))−1 = 1

2π i

∫

�2

(we − g(z))−1 (ze − a)−1dz.

It follows that:

f (g(a)) =
(

1

2π i

)2 ∫

�1

∫

�2

f (w) (we − g(z))−1 (ze − a)−1dzdw.

The continuity of in (w, z) on �1 × �2 ([2], Proposition 6, p. 11) of the function:

(w, z) �−→ f (w) (we − g(z))−1 (ze − a)−1
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allows us to change the order of integration. Thus

f (g(a)) =
(

1

2π i

)2 ∫

�2

[∫

�1

f (w) (we − g(z))−1 dw

]

(ze − a)−1dz.

Now, by (3),

f (g(z)) = 1

2π i

∫

�1

f (w) (we − g(z))−1 dw.

Whence

f (g(a)) = 1

2π i

∫

�2

f (g(z))(ze − a)−1dz

= f ◦ g(a).

This completes the proof. ��

Now, we examine one of themost powerful properties of holomorphic functional calculus.
That is the spectral mapping theorem:

Proposition 2.5 Let A be a complex unital Banach algebra and a be a c. f .e and � as
described in Definition 2.1. Then themapping	a defined by (2) is an algebra homomorphism
of H (�, A) into A such that

	̂a ( f ) (χ) = (χ ◦ f ) (χ(a))), for every χ ∈ Sp(A).

Proof Let χ ∈ Sp(A). Then 	̂a ( f ) (χ) = χ (	a ( f )) and

χ (	a ( f )) = 1

(2π i)n

∫

T n(z0,r)
χ ( f (z)C(a, z)) dz

= 1

(2π i)n

∫

T n(z0,r)
χ ( f (z)) χ (C(a, z)) dz.

Therefore, taking into account the fact that χ (C(a, z)) = (C(χ (a) , z)), we have

χ (	a ( f )) = 1

(2π i)n

∫

T n(z0,r)
(χ ◦ f ) (z) (C(χ (a) , z)) dz

= (χ ◦ f ) (χ(a))).

��

Proposition 2.6 Let A be a complex unital Banach algebra and � be an open subset of C
n

as described in Definition 2.1. If f ∈ H (�, A) and a = (a1, . . . , an) ∈ An be a c. f .e. with
Sp(a) ⊂Dn

(

z0, r
)

, then
(1)

SpA ( f (a))⊂
⋃

λ∈Sp(a)
SpA ( f (λ)) .

(2) If f = ˜f e, where ˜f is a holomorphic scalar function on �, then

SpA ( f (a)) = f (Sp(a)).
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Proof (1) Observe first that if f has no inverse on Sp(a), then g = f −1is holomorphic in an
open set �1 such that Sp(a) ⊂�1 ⊂ �. Since f g = e in �1, it follows that f (a) g (a) = e
and f (a) is invertible. Now fix β ∈ C. Then β ∈ SpA ( f (a)) if and only if f (a)−βe is not
invertible in A. From the above, there exists λ ∈ Sp(a) such that f (λ)−βe is not invertible
in A, that is β ∈ SpA ( f (λ)) . (2) If f = ˜f e, where ˜f is a holomorphic scalar function on
�, then

⋃

λ∈Sp(a) Sp ( f (λ)) = f (Sp(a)). Furthermore, for χ ∈ Sp(A), one has

f̂ (a) (χ) = (χ ◦ f ) (χ(a))) = f (χ(a)) .

Therefore f (Sp(a)) ⊂SpA ( f (a)) . ��
Remark 2.7 The inclusion 1) of Proposition 2.6. can be strict as the simple example shows.
Let x ∈ A be an invertible element such that SpA (x) = {1, 2} and put f (z) = x−1z. Since
f (x) = e, we have SpA ( f (x)) ={1} but SpA ( f (1))= { 1

2 , 1
}

.

3 A vector-valued n-hamonic functional calculus

In this section we define a functional calculus for A-valued n-harmonic functions of several
variables and describe some of its properties. Let z ∈ Dn

(

z0, r
)

and w ∈ T n
(

z0, r
)

. Then
the Poisson kernel Pn (z, w) is the product

Pn (z, w) = P (z1, w1) . . . P (zn, wn) ,

where P (zi , wi ) is the classical Poisson kernel for the disk D
(

z0i , ri
)

. Note that

P (zi , wi ) = Re
[(

wi + zi − 2z0i
)

(wi − zi )
−1]

= (wi − zi )
−1
[

r2i −
(

zi − z0i

)

(

zi − z0i
)

]

(wi − zi )
−1

= C (zi , wi )
[

r2i −
(

zi − z0i

)

(

zi − z0i
)

]

C (zi , wi ) .

If we put

�
(

zi , z
0
i

) = r2i −
(

zi − z0i

)

(

zi − z0i
)

,

then
P (zi , wi ) = C (zi , wi ) �

(

zi , z
0
i

)

C (zi , wi )

and

P (z, w) = C (z, w)

n
∏

i=1

�
(

zi , z
0
i

)

C (z, w) .

We also put

�n (z, z0
) =

n
∏

i=1

�
(

zi , z
0
i

)

Let A be a complex unital Banach algebra with continuous involution x �−→ x∗, z0 =
(

z01, . . . , z
0
n

) ∈ C
n , r = (r1, . . . , rn) ∈ R

n+. If x = (x1, . . . , xn) ∈ An be a c. f .e. with
SpA(x) ⊂Dn

(

z0, r
)

, then the A-valued Poisson kernel is defined by the equality:

P (x, w) = C (x, w)∗ �n (x, z0
)

C (x, w) , w ∈ T n (z0, r
)

,
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where

�n (x, z0
) =

n
∏

i=1

�
(

xi , z
0
i

) =
n
∏

i=1

[

r2i −
(

x∗
i − z0i

)

(

xi − z0i
)

]

.

If n = 1, then

P (x1, w) = C (x1, w)∗ �1 (x1, z
0)C (x1, w)

= (

w − x∗
1

)−1
[

r2 −
(

x∗
1 − z01

)

(

x1 − z0
)

]

(w − x1)
−1

= Re
[(

w + x1 − 2z01
)

(w − x1)
−1)

] ≥ 0.

Definition 3.1 Let A be a complex unital Banach algebra with continuous involution x �−→
x∗, � an open subset of C

n , z0 = (

z01, . . . , z
0
n

) ∈ �, r = (r1, . . . , rn) ∈ R
n+ such that

D
n (

z0, r
) ⊂ �, x = (x1, . . . , xn) ∈ An be a c. f .e. with Sp(x)⊂Dn

(

z0, r
)

and f ∈
h(�, A). Then the element of A given by the Poisson integral formula:

1

(2π)n

∫

T n(z0,r)
f (w)P(x, w)

|dw1|
r1

. . .
|dwn |
rn

is denoted by P [ f ] (x).

If we denote by �x( f ) or just f (x) the element P [ f ] (x), one has a mapping of h(�, A)

into A, noted �x, given by:

�x : h(�, A) −→ A : f �−→ �x ( f ) = P [ f ] (x) = f (x).

Then �x is an involutive homomorphism from h(�, A) into A that extends the algebra
homomorphism�a given by theCauchy transform ([18], Proposition 9, p. 103). Furthermore,
if K is a compact neighbourhood contained in � and containing Sp(x), then the mapping
�x is continuous with respect to the uniform convergence on K .

Proposition 3.2 Let A be a hermitian Banach algebra with continuous involution x �−→ x∗,
� and x as described in Definition 3.1. If x is normal, then, for every f ∈ h (�, A) , one has

�̂x ( f ) (χ) = (χ ◦ f ) (χ(x))), for every χ ∈ Sp(A).

Corollary 3.3 Let A be a hermitian Banach algebra with continuous involution x �−→ x∗, �
and x as described in Definition 3.1. If x is normal, then

(1) SpA ( f (x))⊂⋃

λ∈Sp(x) SpA ( f (λ)), for every f ∈ h (�, A) .

(2) If f = ˜f e, where ˜f is a harmonic scalar function on �, then

SpA ( f (x)) = f (Sp(x)).

Remark 3.4 The proofs of Proposition 3.2 andCorollary 3.3 are similar to those of Proposition
2.5 and Proposition 2.6. Here the hypothesis that A is hermitian is used to get

χ (P(x, w)) = P(χ (x) , w) , for every χ ∈ Sp(A)

which results from the fact that every character χ of a hermitian algebra A is hermitian ([4],
(i), Theorem 1.4.1, p. 11), i.e.,

χ
(

x∗) = χ (x), for every x ∈ A.
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4 Some applications

In this section, we give some applications of functional calculi as explored in the preceding
sections. Its applications concern a generalization of von Neumann’s theorem ([5], Théorème
6, p. 506), N. Wiener and P. Lé vy theorems ([9], Theorem 4.2, p. 337 and Theorem 5.1, p.
339) and ([6], Theorem 3.1 and Theoerem 3.2). We obtain an analog of Neumann’s theorem
for A-valued holomorphic functions of several variables. Afterwardwe useweighted algebras
analogues of the classical theorems of N. Wiener and P. L évy on absolutely Fourier series
and we get multi-dimensional versions of N. Wiener and P. Lévy theorems given in ([8],
Theorem l, 347 and Theorem 2, p. 349).

4.1 Analog of von Neumann’s theorem.

The spectral inequality of von Neumann (cf. [10], Theorem 1, p. 276) is well-known. Its
asserts that, given a contraction T on a Hilbert space H, i.e., ‖T ‖ ≤ 1 and a complex
function f analytic on the open unit disk D. If f (D) ⊂ D, then f (T ) is also a contraction
on H. In ([7], Theorem 3.1, p. 933), the third author showed that hermitian algebras are the
natural framework of the last inequality. He also obtained an extension to analytic A-valued
functions ([5], Théorème 1, p. 498). Here, we obtain a generalization of the von-Neumann’s
inequality to several variables.

In the sequel, A will denote a hermitian Banach algebra with continuous involution
x �−→ x∗ and Dn = Dn (0, 1). We consider:

HNA(Dn) = {

f ∈ H(Dn, A) : f (z) is normal, for every z ∈ Dn}

HA(Dn) =
{

f ∈ HNA(Dn) : f (z) f (w) = f (w) f (z),
for every z, w ∈ Dn

}

BA
(

Dn) = {

f ∈ HNA(Dn) : | f (z)| < 1, for every z ∈ Dn}

PA
(

Dn) = {

g ∈ HNA(Dn) : Reg(z) > 0, for every z ∈ Dn} ,

where Reg(z) designates the real part of g(z).
As a first application of the n-harmonic functional calculus, we have the following result:

Theorem 4.1 Let a = (a1, . . . , an) ∈An be a c. f .e. such that |ai | < 1, for every i = 1, . . . , n.

If P(a, w) > 0 for every w in the torus T n(0, 1), then Reg(a) > 0, with g in PA (Dn).

Proof Since g ∈ PA (Dn), one has g ∈ HNA(Dn) and its real part Reg is an A-valued
harmonic function on Dn . Let a ∈An be a c. f .e. such that |ai | < 1, for every i = 1, . . . n.
Choose positive numbers ri and r ′

i with |ai | < ri < r ′
i < 1. It is easy to verify that

SpA(a) ⊂Dn (0, r), where r = (r1, . . . , rn). By hypothesis, g in PA (Dn). It follows that
Reg(z) > 0, for every z ∈ D

n (
0, r ′), i.e., Reg(z) is a positive and invertible element of A.

Consider the function

ψ(z) = ρ
(

[Reg(z)]−1) , for every z ∈ D
n (

0, r ′) .

As the spectral radius x �−→ ρ(x) is upper-semicontinuous on A, the function ψ is therefore
upper semicontinuous on D

n (
0, r ′). So ψ has a maximum on D

n (
0, r ′). Therefore, there

exists δ > 0 such that:

ρ
(

[Reg(z)]−1) ≤ 1

δ
, for every z ∈ D

n (
0, r ′) .
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Whence ρ (Reg(z)) > δ, for every z ∈ D
n (

0, r ′). It follows that Reg(z) > δ, for every
z ∈ Dn

(

0, r ′). Consider h defined by:

h(z) = Reg(z) − δe, for every z ∈ Dn (0, r ′) .

Thus, by Definition 3.1, one has:

h(a) = 1

(2π)n

∫

T n(0,r)
h(w)P(a, w)

|dw1|
r1

. . .
|dwn |
rn

.

By our assumption, P(a, w) ≥ 0, for every w ∈ T n(0, 1). Then, since a and H(Dn, A) are
commuting, we have

h(w)P(a, w) ≥ 0, for every w ∈ T n(0, r).

Indeed, for a fixed w ∈ T n(0, r), one has h(w) > 0 and P(a, w) ≥ 0. Thus there exists
u, v ∈ H(A) such that

h(w) = u2 and P(a, w) = v2.

Moreover u and v commutes since h and a are commuting. It follows that h(w)P(a, w) ∈
H(A) and

h(w)P(a, w) = u2v2 = uv (uv)∗ ≥ 0 by (1).

So h(a) ≥ 0. Finally, since h(a) = Reg(a)−δ, we have Reg(a)−δ ≥ 0, i.e., SpA(Reg(a)−
δ) ⊂ [0,+∞[. Whence SpA (Reg(a)) ⊂ [δ,+∞[. Thus Reg(a) is a hermitian element of
A and SpA (Reg(a)) ⊂]0,∞[ for δ > 0. So Reg(a) > 0. This completes the proof. ��

As in the complex case, the reader can prove that the relations

g(z) = (e + f (z)) (e − f (z))−1 and f (z) = (g(z) − e)(g(z) + e)−1

establish a bijection between the functions f in BA (Dn) and the functions g in PA (Dn).
Using this fact, we obtain an equivalent version of Theorem 4.1 given by:

Theorem 4.2 Let f ∈ BA (Dn) and a = (a1, . . . , an)∈An be a c. f .e. such that |ai | < 1, for
every i = 1, . . . , n. If P(a, w) > 0, for every w ∈ T n(0, 1), then | f (a)| < 1.

Remark 4.3 (1) In the case where n = 1, we have

P (a, w) = Re
[

(w + a1)
(

(w − a1)
−1)]

= (

w − a∗
1

)−1 (1 − a∗
1a1

)

(w − a1)
−1 .

As |a1| < 1, we have e − a∗
1a1 > 0, so that

e − a∗
1a1 = u2 for some u ∈ H(A).

Hence
P (a1, w) = (

w − a∗
1

)−1
u u (w − a1)

−1 .

Then, by (1), we have P (a1, w) ≥ 0.

(2) In the case where n = 2 and a = (a1, a2), we have:

P2 (a, w) = P (a1, w1) P (a2, w2)

Put P (a1, w1) = h2 and P (a2, w2) = k2, then P2 (a, w) = h2k2 and as

SpA
(

h2k2
) = SpA (khhk) ,

we obtain SpA
[

P2 (a, w)
] ⊂ R

+.
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Remark 4.4 Using Theorem 4.1, we obtain as in [5], the analog of Schawrz’s lemma ([5],
Théorème 4, p. 502) as well as the analog of Pick’s theorem ([5], Théorème 5, p. 504).

4.2 Analogues of Lévy andWiener’s theorems

For p ∈]1,+∞[, let ω : Z
k −→ [1,+∞[, k ∈ N

∗ fixed, be a weight on Z
k, i.e., ω satisfies

∑

m∈Zk

ω
1

1−p (m) < +∞. (4)

For n = (n1, . . . , nk) ∈ Z
k and t = (t1, . . . , tk) ∈ R

k , we will use the notation (n, t) =
n1t1 + · · · + nktk . Now, we consider the following weighted space:

Ap
k (ω) =

⎧

⎨

⎩

f : R
k −→ C : f (t) =

∑

n∈Zk

ane
i(n,t) : (an)n∈Zk ∈ l pω

(

Z
k
)

⎫

⎬

⎭

,

where l pω
(

Z
k
)

stands for the space of all sequences (an)n∈Z with an ∈ C and

∑

n∈Zk

|an |p ω (n) < +∞.

In l pω
(

Z
k
)

, we introduce convolution multiplication given by:

a ∗ b =
{

∑

i∈Z
aibn−i

}

n

and we suppose that there exists a constant γ = γ (ω) > 0 such that:

ω
1

1−p ∗ ω
1

1−p ≤ γω
1

1−p . (5)

Then l pω
(

Z
k
)

becomes a Banach algebra ([6], Theorem 3.3). The spaceAp
k (ω) endowed with

the norm ‖.‖k,p,ω defined by:

‖ f ‖k,p,ω =
⎛

⎝

∑

n∈Zk

|an |p ω (n)

⎞

⎠

1
p

, for every f ∈ Ap
k (ω) ,

and with the classical pointwise multiplication, becomes a Banach algebra. In the sequel, we
suppose:

lim|n|−→+∞ (ω (n))
1
n j = 1, for every j = 1, . . . k. (6)

where |n| = n1 + · · · + nk, denotes the length of n = (n1, . . . , nk) ∈ Z
k and

ω (n + m) ≤ ω (n) ω (m) , for every n,m ∈ Z
k (7)

Recall that every character of the algebra Ap
k (ω) is an evaluation at some t0 ∈ R

k ([6],
Theorem 3.3), where t0 = (

t01 , . . . , t0k
)

with 0 ≤ t0j < 2π , for every j = 1, . . . , k, and so,

Sp
(Ap

k (ω)
) =

{

χt : t ∈ [0, 2π[k
}

,
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where χt ( f ) = f (t), for every f ∈ Ap
k (ω), and

Sp( f ) =
{

f (t) : t ∈ [0, 2π[k
}

.

Also the Jacobson radical of Ap
k (ω), denoted by Rad

(Ap
k (ω)

)

, is:

Rad
(Ap

k (ω)
) =

⋂

χ∈Sp(Ap
k (ω)

)

ker χ.

Whence Ap
k (ω) is semi-simple, i.e., Rad

(Ap
k (ω)

) = {0}.
Using the fact that the spectrum of an element f of the algebra Ap

1 (ω) is nothing other
than the set of values of f , we obtain the following generalization of P. Lévy theorem for
holomorphic functions of several variables.

Theorem 4.5 (Multi-dimensional holomorphic version of P. Lévy theorem) Let p ∈]1,+∞[
and ω be a weight on Z satisfying (5), (6) and (7). Let f = ( f1, . . . , fk), where f j (t) =
∑

n∈Z
an, j eint , where

(

an, j
)

n∈Z ⊂ C, for j = 1, . . . , k, is a periodic function such that:

∥

∥ f j
∥

∥

p,ω =
(

∑

n∈Z

∣

∣an, j
∣

∣

p
ω (n)

) 1
p

< +∞.

Let� be an open subset ofCk containing the image of the function f . Let F ∈ H(�,Ap
1 (ω)).

Then F( f ) also can be developed in a trigonometric series F( f )(t) = ∑

n∈Z
bneint , where

(bn)n∈Z ⊂ C, such that:

‖F( f )‖p,ω =
(

∑

n∈Z
|bn |p ω (n)

) 1
p

< +∞

and, for every t ∈ R,

F( f )(t) = F ( f1(t), . . . , fk(t)) (t) =
∑

n∈Z
bne

int .

If moreover F is a holomorphic scalar function on �, then, for every t ∈ R,

F ( f1(t), . . . , fk(t)) =
∑

n∈Z
bne

int .

Now we consider, in the algebra Ap
k (ω), the algebra involution f �−→ f ∗ defined by:

f ∗(t) =
∑

n∈Zk

a−ne
i(n,t), for every t ∈ R

k .

Since the algebraAp
k (ω) is semi-simple, the involution is continuous ([2], Theorem 2, p.191).

Moreover
(Ap

k (ω) , ‖.‖p,ω
)

is a hermitian algebra.
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4.3 Another generalization ofWiener and Lévy theorems

Wewill now consider complex functions of several variables and analytic functional calculus
for a single variable to give generalization of N. Wiener and P. Lévy theorems.

As an immediate consequence, we obtain the followingmulti-dimen-sional generalization
of the N. Wiener theorem.

Theorem 4.6 (Multi-dimensional generalization of N.Wiener theorem) Let p ∈]1,+∞[ and
ω be a weight on Z

k satisfying (5), (6) and (7). Let f (t) = f (t1, . . . , tk) be a 2π-periodic
function with respect to each variable, represented by a series

f (t) =
∑

n∈Zk

ane
i(n,t)

such that

‖ f ‖k,p,ω =
⎛

⎝

∑

n∈Zk

|an |p ω (n)

⎞

⎠

1
p

< +∞.

If f (t) is invertible, for every t ∈ R
k , then the function f −1 can be developed in a

trigonometric series f −1 (t) = ∑

n∈Zk

bnei(n,t), where (bn)n is a sequence in Ap
k (ω) , such

that:

∥

∥ f −1
∥

∥

k,p,ω =
⎛

⎝

∑

n∈Zk

|bn |p ω (n)

⎞

⎠

1
p

< +∞.

Using holomorphic functional calculus and Theorem 2.2, we also obtain as a consequence,
the following multi-dimensional generalization of the Lévy theorem.

Theorem 4.7 (Multi-dimensional generalization of P. Lévy theorem) Let p ∈]1,+∞[ and
ω be a weight on Z

k satisfying (5), (6) and (7). Let f (t) = f (t1, . . . , tk) be a 2π-
periodic Ap

k (ω)-valued function with respect to each variable, represented by a series
f (t) = ∑

n∈Zk

anei(n,t), such that

‖ f ‖k,p,ω =
⎛

⎝

∑

n∈Zk

|an |p ω (n)

⎞

⎠

1
p

< +∞.

Let � be an open subset of C
n, z0 = (

z01, . . . , z
0
n

) ∈ �, r = (r1, . . . , rn) ∈ R
n+ such that

D
n (

z0, r
) ⊂ �, and f

(

R
k
) ⊂ Dn

(

z0, r
)

. If F ∈ h(�,Ap
k (ω)), then

P [F] ( f ) = 1

(2π)n

∫

T n(z0,r)
F(w)P( f , w)

|dw1|
r1

. . .
|dwn |
rn

.

can be developed in a trigonometric series

P [F] ( f )(t) = F( f (t))(t) =
∑

n∈Zk

bne
i(n,t ),

such that:

‖P [F] ( f )‖k,p,ω =
⎛

⎝

∑

n∈Zk

|bn |p ω (n)

⎞

⎠

1
p

< +∞.
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If moreover F ∈ h(�, C) is an n-harmonic scalar function on �, then, for every t ∈ R
k ,

P [F] ( f )(t) = F( f (t)) =
∑

n∈Zk

bne
i(n,t).

Remark 4.8 Under the assumptions of the Theorem 4.7, if F ∈ h
(

�,Ap
k (ω)

)

, then, by
Proposition 3.2, we have:

̂P [F] ( f ) (χ) = (χ ◦ F) (χ( f ))), for every χ ∈ Sp(A). (8)

This implies that:
P [F] ( f )(t) = F( f (t))(t), for every t ∈ R

k .

While if F ∈ h(�, C), then (8) becomes as follows:

̂P [F] ( f ) (χ) = F (χ( f ))), for every χ ∈ Sp(A).

So, one has
P [F] ( f )(t) = F( f (t)), for every t ∈ R

k .
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