1 Introduction

In this paper, we consider a question about congruences for the Fourier coefficients of vector valued Siegel modular forms of type (k, 2), which was answered by Sturm [11] in the case of an elliptic modular form and by Choi–Choie–Kikuta [2], Poor–Yuen [8] in the case of a scalar valued Siegel modular form and Raum–Richter [9] in the case of a scalar valued Siegel modular form and of some, but not of type (k, 2), vector valued Siegel modular forms.

Let p be a prime number and \({\mathbb {Z}}_{(p)}\) be the local ring of the p-integral rational numbers. Suppose that \({f=\sum\nolimits _{n=0}^{\infty }a(n;f)q^n}\) is an elliptic modular form of weight k with integral coefficients. In [11] Sturm proved that if \(a(n;f)\equiv 0\pmod {p}\) for \(0\le n\le \frac{k}{12}\), then \(a(n;f)\equiv 0\pmod {p}\) for every \(n\ge 0\). This bound is called a Sturm bound. In this paper we study the Sturm bound of the vector-valued Siegel modular forms of type (k, 2) and degree 2 such that all Fourier coefficients lie in \({\mathrm {Sym}}_2^{*}({\mathbb {Z}}_{(p)}):=\{T=(t_{ij})\in {\mathrm {Sym}}_2({\mathbb {Q}})\mid t_{ii},2t_{ij}\in {\mathbb {Z}}_{(p)}\}\). Here p is a prime with \(p\ge 5\) and k is an even integer.

We state our result more precisely. A Siegel modular form of type (k, 2) is a holomorphic function f on the Siegel upper-half plane \({\mathbb {H}}_2\) with values in \({\mathrm {Sym}}_2({\mathbb {C}})\), satisfying

$$\begin{aligned} f(M\langle Z\rangle )={\mathrm {det}}(CZ+D)^k(CZ+D)f(Z){}^t\!(CZ+D) \end{aligned}$$

for all \(M=\left( {\begin{array}{c}A\;B\\ C\;D\end{array}}\right)\) in the Siegel modular group \(\varGamma _2=Sp_2({\mathbb {Z}})\) and for all \(Z\in {\mathbb {H}}_2\). Here (k, 2) comes from the fact that the automorphy factor is the one of representatives in the equivalence class of the representation \({\mathrm {det}}^k\otimes{ \mathrm {Sym}}(2)\). We denote by \(M_{k,2}(\varGamma _2)_{{\mathbb {Z}}_{(p)}}\) the module consisting of all such f whose Fourier coefficients are in \({\mathrm {Sym}}_2^{*}({\mathbb {Z}}_{(p)})\). The following theorem is our main result.

Theorem 1

For each even integer k and each prime \(p\ge 5\), suppose that F is a Siegel modular form in \(M_{k, 2}(\varGamma _2)_{{\mathbb {Z}}_{(p)}}\) having the form

$$\begin{aligned} F(\tau , \tau ^\prime , \omega )=\sum \limits_{\begin{subarray}{c} m,n\in {\mathbb {Z}}, \ r\in \frac{1}{2}{\mathbb {Z}} \\ m,n,mn-r^2\ge 0 \end{subarray}}A(m,n,r)q_\tau ^mq_{\tau ^\prime }^nq_{\omega }^{2r} \end{aligned}$$

with \(q_\tau =e^{2\pi i\tau }, q_{\tau ^\prime }=e^{2\pi i\tau ^\prime }, q_{\omega }=e^{2\pi i\omega }\) and \(\left( {\begin{array}{c}\tau \ \omega \\ \omega \ \tau ^\prime \end{array}}\right)\) in the Siegel upper half space \({\mathbb {H}}_2\) of degree 2, where \({\mathbb {H}}_2:=\left\{ \left( {\begin{array}{c}\tau \ \omega \\ \omega \ \tau ^\prime \end{array}}\right) \in M_2({\mathbb {C}})\mid Im \left( {\begin{array}{c}\tau \ \omega \\ \omega \ \tau ^\prime \end{array}}\right) >0\right\}\). If \(A(m, n, r)\equiv 0\pmod {p}\), i.e. all the elements of A(mnr) are congruent to 0 mod p, for every m, n such that

$$\begin{aligned} 0\le m\le \left[ \frac{k}{10}\right] ,\ \ \ \ 0\le n\le \left[ \frac{k}{10}\right] , \end{aligned}$$

then \(F\equiv 0\pmod {p}\).

The proof of the theorem is due to an inductive argument on the determinant weight k and our main tool is the Witt operator and Theorem 2 (Sect. 2.5).

2 Preliminary

2.1 Siegel modular forms of type (k, 2) and degree 2

The Siegel upper-half space of degree 2 is defined as

$$\begin{aligned} {\mathbb {H}}_2:= \{Z=X+iY\in {\mathrm {Sym}}_2({\mathbb {C}})\;|\; Y>0\;(\text {positive definite})\;\}. \end{aligned}$$

The real symplectic group \({\mathrm {Sp}}_2({\mathbb {R}})\) acts on \({\mathbb {H}}_{2}\) in the following way:

$$\begin{aligned}&Z\longrightarrow M\langle Z\rangle :=(AZ+B)(CZ+D)^{-1},\\&Z\in {\mathbb {H}}_2,\ M=\begin{pmatrix}A&{}B\\ C&{}D\end{pmatrix} \in {\mathrm {Sp}}_2({\mathbb {R}}). \end{aligned}$$

A Siegel modular form of type (k, 2) on \(\varGamma _2\) with character \(\nu\) is a holomorphic function f on \({\mathbb {H}}_2\) with values in \({\mathrm {Sym}}_2({\mathbb {C}})\), satisfying

$$\begin{aligned} f(M\langle Z\rangle )=\nu (M){\mathrm {det}}(CZ+D)^k(CZ+D)f(Z){}^t\!(CZ+D) \end{aligned}$$

for all \(M=\left( {\begin{array}{c}A\;B\\ C\;D\end{array}}\right) \in \varGamma _2\) and for all \(Z\in {\mathbb {H}}_2\). We denote by \(M_{k,2}(\varGamma _2, \nu )\) (resp. \(S_{k,2}(\varGamma _2,\nu )\)) the \({\mathbb {C}}\)-vector space of Siegel modular forms (resp. cusp forms) of type (k, 2) on \(\varGamma _2\) with character \(\nu\).

2.2 Fourier expansions

Any \(F(Z)\in M_{k,2}(\varGamma _2, \nu )\) has a Fourier expansion of the form

$$\begin{aligned} F(Z)=\sum \limits_{0\le T\in \frac{1}{2}\varLambda _2}a(T;F)\exp (2\pi i{\mathrm {tr}}(TZ)),\quad a(T;F)\in {\mathrm {Sym}} _2({\mathbb {C}}), \end{aligned}$$

where T runs over all positive semi-definite elements of \(\frac{1}{2}\varLambda _2\) defined as

$$\begin{aligned} \varLambda _2 :=\{T=(t_{ij})\in {\mathrm {Sym}}_2({\mathbb {Q}})\mid t_{ii},2t_{ij}\in {\mathbb {Z}}\}. \end{aligned}$$

Taking \(q_{\tau }:={\mathrm {exp}}(2\pi i\tau )\), \(q_{\omega }:={\mathrm {exp}}(2\pi i\omega )\) and \(q_{\tau ^\prime }:={\mathrm {exp}}(2\pi i\tau ^{\prime })\) for \(Z=\left( {\begin{array}{c}\tau \omega \\ \omega \tau ^{\prime }\end{array}}\right) \in {\mathbb {H}}_2\), we can write

$$\begin{aligned} q^T:={\mathrm {exp}}(2\pi i{\mathrm {tr}}(TZ))=q_{\omega }^{2t_{12}}q_{\tau }^{t_{11}}q_{\tau ^{\prime }}^{t_{22}}. \end{aligned}$$

Using this notation, we have the generalized q-expansion:

$$\begin{aligned} F&=\sum \limits_{0\le T\in \frac{1}{2}\varLambda _2}a(T;F)q^T\\&=\sum \limits_{0\le (t_{ij})\in \frac{1}{2}\varLambda _2}(a(T;F)q_{\omega }^{2t_{12}})q_{\tau }^{t_{11}}q_{\tau ^{\prime }}^{t_{22}}\in {\mathrm {Sym}}_2({\mathbb {C}})[q_{\omega }^{-\frac{1}{2}},q_{\omega }^{\frac{1}{2}}] [\![q_{\tau }^{\frac{1}{2}},q_{\tau ^{\prime }}^{\frac{1}{2}}]\!]. \end{aligned}$$

For any subring R of \({\mathbb {C}}\), we denote by \(M_{k,2}(\varGamma _2, \nu )_R\) the R-module consisting of those F in \(M_{k,2}(\varGamma _2,\nu )\) for which a(TF) is in \({\mathrm {Sym}}_2^{*}(R)\) for every \(T\in \frac{1}{2}\varLambda _2\) where

$$\begin{aligned} {\mathrm {Sym}}_2^{*}(R):=\{T=(t_{ij})\in {\mathrm {Sym}}_2({\mathbb {C}})\mid t_{ii},2t_{ij}\in R\}. \end{aligned}$$

2.3 Generators of scalar valued Siegel modular forms

Let \(\varphi _4\), \(\varphi _6\), \(X_{10}\), \(X_{12}\) be Igusa’s generators over \({\mathbb {Z}}\) of weight 4, 6, 10, 12, respectively given in [5]. Let \(M_k(\varGamma _2,\nu )\) (resp. \(S_k(\varGamma _2,\nu )\)) be the \({\mathbb {C}}\)-vector space consisting of the scalar valued Siegel modular forms (resp. cusp forms) of weight k on \(\varGamma _2\) with the character \(\nu\). We denote by \(M_{k}(\varGamma _2, \nu )_{{\mathbb {Z}}_{(p)}}\) (resp. \(S_k(\varGamma _2,\nu )_{{\mathbb {Z}}_{(p)}}\)) the \({\mathbb {Z}}_{(p)}\)-module consisting of the scalar valued Siegel modular forms in \(M_{k}(\varGamma _2,\nu )\) (resp. cusp forms in \(S_{k}(\varGamma _2,\nu )\)) for which a(TF) is in \({\mathbb {Z}}_{(p)}\) for every \(T\in \frac{1}{2}\varLambda _2\). In the case of scalar valued Siegel modular forms, we have

$$\begin{aligned} M_*^{\mathrm {ev}}({\mathbb {Z}}_{(p)})&:=\bigoplus _{k\in 2{{\mathbb {Z}}}}M_k(\varGamma _2)_{{{\mathbb {Z}}}_{(p)}}\\&={{\mathbb {Z}}}_{(p)}[\varphi _4,\varphi _6,X_{10},X_{12}] ,\ {\mathrm{if}}\ p\ge 5. \end{aligned}$$

Let \({\mathcal {C}}{\mathrm {Sp}}_2({\mathbb {Z}})\) be the commutator subgroup of \(\varGamma _2\). Let \(\chi :\varGamma _2 \rightarrow \{\pm 1\}\) be a non-trivial abelian character, which is basically a character of \({\mathrm {Sp}}_2({\mathbb {Z}}/2{\mathbb {Z}})\cong \varSigma _6\), the symmetric group of 6 letters. Any Siegel modular form of weight k on \({\mathcal {C}}{\mathrm {Sp}}_2({\mathbb {Z}})\) also has a Fourier expansion of the form

$$\begin{aligned} \sum \limits_{0\le T\in \frac{1}{2}\varLambda _2}b(T;F)\exp (2\pi i{\mathrm {tr}}(TZ)),\ \ b(T;F)\in {\mathbb {C}}. \end{aligned}$$

In this case Igusa [4] showed that

$$\begin{aligned} M_{*}({\mathcal {C}}{\mathrm {Sp}}_2({\mathbb {Z}}))&:=\bigoplus _{k}M_k({\mathcal {C}}{\mathrm {Sp}}_2({\mathbb {Z}})) \\&= {\mathbb {C}}[\varphi _4,\varDelta _5,\varphi _6,X_{12},\varDelta _{30}], \end{aligned}$$

where \(\varDelta _k\in M_{k}({\mathcal {C}}{\mathrm {Sp}}_2({\mathbb {Z}}))=M_k(\varGamma _2, \chi )\) is constructed by theta series with Fourier coefficients

$$\begin{aligned} b\left( \begin{pmatrix}\frac{1}{2}&{}\frac{1}{4}\\ \frac{1}{4}&{}\frac{1}{2}\end{pmatrix};\varDelta _5\right) =b\left( \begin{pmatrix}\frac{3}{2}&{}\frac{1}{4}\\ \frac{1}{4}&{}\frac{5}{2}\end{pmatrix};\varDelta _{30}\right) =1. \end{aligned}$$

The modular forms \(\varphi _4, \varDelta _5, \varphi _6, X_{12}\) are algebraically independent and \(\varDelta _5 ^2=X_{10}\). We remark that there exists a unique relation among the generators;

$$\begin{aligned} \varDelta _{30}^2\in {\mathbb {C}}[\varphi _4, \varDelta _5, \varphi _6, X_{12}]. \end{aligned}$$

2.4 p-order of modular forms

We shall define the p-order of modular forms. Let p be a prime with \(p\ge 5\) and \(\nu _p\) the additive valuation on \({\mathbb {Q}}\) normalized as \(\nu _p(p)=1\).

Let F be a formal power series with bounded denominators of the form

$$\begin{aligned} F=\sum \limits_{T\in \frac{1}{N}\varLambda _2}a(T;F)q^T,\quad a(T;F)\in {\mathrm {Sym}}_2({\mathbb {Q}}). \end{aligned}$$

for some positive integer N.

In the scalar valued case, let \(\nu _p\) be just as in Böcherer–Nagaoka [1] and elsewhere. Define a value \(\nu _p\) for F with \(a(T;F)\in {\mathrm {Sym}}_2({\mathbb {Q}})\) as

$$\begin{aligned} \nu _p (F):=\inf \left\{ \nu _p(a(T;F)) \,|\, T\in {\mathrm {Sym}}_2({\mathbb {Q}}) \right\} , \end{aligned}$$

where \({\nu _p(a(T;F)):={\mathrm {min}}_{1\le i, j\le 2}(\nu _p(a_{ij}(T; F)))}\) for \(a(T; F)=\left( {\begin{array}{c}a_{11}(T; F) \ a_{12}(T; F) \\ a_{12}(T; F) \ a_{22}(T; F) \end{array}}\right)\).

The following statement and its proof are due to Kikuta:

Lemma 1

(1) Let \({ f=\sum \nolimits_{T\in \frac{1}{N}\varLambda _2} a(T;f)q^T}\) and \({ g=\sum \nolimits_{T\in \frac{1}{N}\varLambda _2} a(T;g)q^T}\) with a(Tf), \(a(T;g)\in {\mathbb {Q}}\) be formal power series with bounded denominators. Then we have \(\nu _p(fg)=\nu _p (f)+\nu _p (g)\).

(2) Let \({F=\sum \nolimits_{T\in \frac{1}{N}\varLambda _2}a(T;F)q^T}\) with \(a(T;F)\in {\mathrm {Sym}}_2({\mathbb {Q}})\) be a formal power series with bounded denominators and g be as in (1). Then we have \(\nu _p(Fg)=\nu _p (F)+\nu _p (g)\).

The proof of Lemma 1 is, for example, in [6].

We remark that, for a formal power series of the form

$$\begin{aligned} F=\sum \limits_{T\in \frac{1}{N}\varLambda _2}a(T;F)q^T,\quad a(T;F)\in {\mathrm {Sym}}_2({\mathbb {Q}}), \end{aligned}$$

we have \(a(T;F)\in {\mathrm {Sym}}_2^{*}({\mathbb {Z}}_{(p)})\) for all \(T\in \frac{1}{N}\varLambda _2\) if and only if \(\nu _p(F)\ge 0\).

2.5 Generators of vector valued Siegel modular forms over \({\mathbb {Z}}_{(p)}\)

Let R be a subring of \({{\mathbb {C}}}\) and N be 1 or 2. For a formal power series f of the form

$$\begin{aligned} f=\sum \limits_{T\in \frac{1}{N}\varLambda _2}a(T;f)q^{T}\in R[q_{\omega }^{-\frac{1}{N}},q_{\omega }^{\frac{1}{N}}][\![q_{\tau }^{\frac{1}{N}},q_{\tau ^{\prime }}^{\frac{1}{N}}]\!], \end{aligned}$$

the theta operator \(\varTheta ^{[1]}\) is defined by

$$\begin{aligned} \varTheta ^{[1]}(f)=\sum \limits_{T\in \frac{1}{N}\varLambda _2}T\cdot a(T;f)q^{T} \in {\mathrm {Sym}}_2^{*}(R)[q_{\omega }^{-\frac{1}{N}},q_{\omega }^{\frac{1}{N}}][\![q_{\tau }^{\frac{1}{N}},q_{\tau ^{\prime }}^{\frac{1}{N}}]\!] . \end{aligned}$$

Let \(\varGamma\) be either \(\varGamma _2\) or \({\mathcal {C}}Sp_2({\mathbb {Z}})\) and \(f\in M_k(\varGamma )\) and \(g\in M_j(\varGamma )\). We put

$$\begin{aligned}{}[f, g]:= \frac{1}{j}f\varTheta ^{[1]}(g)-\frac{1}{k}g\varTheta ^{[1]}(f). \end{aligned}$$

Then the results of Satoh [10] states that \([f, g]\in M_{k+j, 2}(\varGamma )\).

Let \(\varphi _4\), \(\varphi _6\), \(X_{10}\), \(X_{12}\) be Igusa’s generators over \({\mathbb {Z}}\) of weight 4, 6, 10, 12, respectively given in [5]. It is known that the \(M_{*}^{\text {ev}}(\varGamma _2)\)-module of Siegel modular forms of type (k, 2) over \({\mathbb {Z}}_{(p)}\) has six generators:

Theorem 2

([6])

For each even integer k and each prime \(p\ge 5\), \({\bigoplus _{k\in 2{\mathbb {Z}}} M_{k,2}(\varGamma _2)_{{\mathbb {Z}}_{(p)}}}\) is a \(M_{*}^{\text {ev}}({\mathbb {Z}}_{(p)})\)-module generated by 6 elements whose weights are 10, 14, 16, 16, 18, 22. If we write them as \(\varPhi _k\in M_{k,2}(\varGamma _2)_{{\mathbb {Z}}_{(p)}}(k=10,14,16,18,22)\) and \(\varPsi _{16}\in M_{16,2}(\varGamma _2)_{{\mathbb {Z}}_{(p)}}\), then we have (as a \({\mathbb {Z}}_{(p)}\)-module)

$$\begin{aligned} M_{k, 2}(\varGamma _2)_{{\mathbb {Z}}_{(p)}}&=M_{k-10}(\varGamma _2)_{{\mathbb {Z}}_{(p)}} \varPhi _{10} \oplus M_{k-14}(\varGamma _2)_{{\mathbb {Z}}_{(p)}} \varPhi _{14}\\&\oplus M_{k-16}(\varGamma _2)_{{\mathbb {Z}}_{(p)}} \varPhi _{16}\oplus V_{k-16}(\varGamma _2)_{{\mathbb {Z}}_{(p)}} \varPsi _{16}\\&\oplus V_{k-18}(\varGamma _2)_{{\mathbb {Z}}_{(p)}} \varPhi _{18}\oplus W_{k-22}(\varGamma _2)_{{\mathbb {Z}}_{(p)}} \varPhi _{22},\end{aligned}$$

where

$$\begin{aligned} V_{k}(\varGamma _2)_{{\mathbb {Z}}_{(p)}}=M_{k}(\varGamma _2)_{\mathbb Z_{(p)}}\cap {\mathbb {Z}}_{(p)}[\varphi _6, X_{10}, X_{12}], \ \ \ \ W_{k}(\varGamma _2)_{{\mathbb {Z}}_{(p)}}=M_{k}(\varGamma _2)_{\mathbb Z_{(p)}}\cap {\mathbb {Z}}_{(p)}[X_{10}, X_{12}]. \end{aligned}$$

We construct \(\varPhi _k\) (\(k=10\), 14, 16, 18, 22) and \(\varPsi _{16}\) by taking constant multiples of these generators:

$$\begin{aligned}&\varPhi _{10}=-\frac{1}{144}[\varphi _4, \varphi _6],&\varPhi _{14} =10[\varphi _4, X_{10}],&\varPhi _{16}=12[\varphi _4, X_{12}],&\\&\varPsi _{16} =10[\varphi _6, X_{10}],&\varPhi _{18}=12[\varphi _6, X_{12}],&\varPhi _{22}=-120[X_{10}, X_{12}].&\end{aligned}$$

Then we have

$$\begin{aligned}&a\left( \left( {\begin{array}{c}1\;0\\ 0\;0\end{array}}\right) ; \varPhi _{10}\right) =\left( {\begin{array}{c}1\;0\\ 0\;0\end{array}}\right) ,&a\left( \left( {\begin{array}{c}1\;\frac{1}{2}\\ \frac{1}{2}\;1\end{array}}\right) ;\varPhi _{14}\right) =\left( {\begin{array}{c}1\;\frac{1}{2}\\ \frac{1}{2}\;1\end{array}}\right) ,&a\left( \left( {\begin{array}{c}1\;\frac{1}{2}\\ \frac{1}{2}\;1\end{array}}\right) ;\varPhi _{16}\right) =\left( {\begin{array}{c}1\;\frac{1}{2}\\ \frac{1}{2}\;1\end{array}}\right) ,&\\&a\left( \left( {\begin{array}{c}1\;\frac{1}{2}\\ \frac{1}{2}\;1\end{array}}\right) ;\varPsi _{16}\right) =\left( {\begin{array}{c}1\;\frac{1}{2}\\ \frac{1}{2}\;1\end{array}}\right) ,&a\left( \left( {\begin{array}{c}1\;\frac{1}{2}\\ \frac{1}{2}\;1\end{array}}\right) ;\varPhi _{18}\right) =\left( {\begin{array}{c}1\;\frac{1}{2}\\ \frac{1}{2}\;1\end{array}}\right) ,&a\left( \left( {\begin{array}{c}2\;1\\ 1\;2\end{array}}\right) ;\varPhi _{22}\right) =\left( {\begin{array}{c}2\;1\\ 1\;2\end{array}}\right) . \end{aligned}$$

Moreover, we put also \(\varPhi _9:=10[\varphi _4, \varDelta _{5}]\), \(\varPhi _{11}:=10[\varphi _6, \varDelta _{5}]\), \(\varPhi _{17}:=-120[\varDelta _{5}, X_{12}]\). We will use them in the proof of our main theorem.

Proposition 1

([6]) Let p be a prime with \(p\ge 5\). Then we have \(\nu _p(\varPsi _{16})\ge 0\) and \(\nu _p (\varPhi _k)\ge 0\) for \(k=9\), 10, 11, 14, 16, 17, 18, 22.

2.6 The Witt operator

Let F be a holomorphic function on \({\mathbb {H}}_2\). Then the Witt operator is defined by

$$\begin{aligned} W(F)(\tau , \tau ^\prime ):=F\left( {\begin{array}{c}\tau \;0\\ 0\;\tau ^\prime \end{array}}\right) , \ \ (\tau , \tau ^\prime )\in {\mathbb {H}}_1\times {\mathbb {H}}_1. \end{aligned}$$

This operator was first introduced in Witt [12]. We extend the Witt operator to the case of vector valued forms. Let \(G=\left( {\begin{array}{c}G_{11}\;G_{12}\\ G_{12}\;G_{22}\end{array}}\right) \in M_{k,2}(\varGamma _2, \nu )\) be a vector valued Siegel modular form of type (k, 2) on \(\varGamma _2\) with character \(\nu\), then we define

$$\begin{aligned} W(G)(\tau , \tau ^\prime ):=\begin{pmatrix}W(G_{11})&{}W(G_{12})\\ W(G_{12})&{}W(G_{22})\end{pmatrix}, \ \ (\tau , \tau ^\prime )\in {\mathbb {H}}_1\times {\mathbb {H}}_1. \end{aligned}$$

For later use, we introduce some examples:

$$\begin{aligned}&W(\varphi _4)(\tau , \tau ^\prime )=E_4(\tau )E_4(\tau ^\prime ), \ \ \ \ \ \ \ \ W(\varphi _6)(\tau , \tau ^\prime )=E_6(\tau )E_6(\tau ^\prime ),\\&W(X_{10})(\tau , \tau ^\prime )\equiv 0,\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ W(X_{12})(\tau , \tau ^\prime )=12\varDelta (\tau )\varDelta (\tau ^\prime ),&\\&W(\varDelta _5)(\tau , \tau ^\prime )\equiv 0,\\&W(\varPhi _{10})=\begin{pmatrix}\varDelta (\tau )E_4(\tau ^\prime )E_6(\tau ^\prime )&{}0\\ 0&{}E_4(\tau )E_6(\tau )\varDelta (\tau ^\prime )\end{pmatrix},&\\&W(\varPhi _{16})=12\begin{pmatrix}E_6(\tau )\varDelta (\tau )E_4(\tau ^\prime )\varDelta (\tau ^\prime )&{}0\\ 0&{}E_4(\tau )\varDelta (\tau )E_6(\tau ^\prime )\varDelta (\tau ^\prime )\end{pmatrix},&\\&W(\varPhi _{18})=12\begin{pmatrix}E_4(\tau )^2\varDelta (\tau )E_6(\tau ^\prime )\varDelta (\tau ^\prime )&{}0\\ 0&{}E_6(\tau )\varDelta (\tau )E_4(\tau ^\prime )^2\varDelta (\tau ^\prime )\end{pmatrix},&\\&W(\varPhi _{14})=W(\varPsi _{16})=W(\varPhi _{22})\equiv 0,\\&W(\varPhi _9)=2E_4(\tau )E_4(\tau ^\prime )\eta (\tau )^{12}\eta (\tau ^\prime )^{12}\left( {\begin{array}{c}01\\ 10\end{array}}\right) ,\\&W(\varPhi _{11})=2E_6(\tau )E_6(\tau ^\prime )\eta (\tau )^{12}\eta (\tau ^\prime )^{12}\left( {\begin{array}{c}01\\ 10\end{array}}\right) ,\\&W(\varPhi _{17})=288\varDelta (\tau )\varDelta (\tau ^\prime )\eta (\tau )^{12}\eta (\tau ^\prime )^{12}\left( {\begin{array}{c}01\\ 10\end{array}}\right) , \end{aligned}$$

where \(\eta\) is the usual Dedekind eta function defined as \(\eta (\tau )=q_{\tau }^{\frac{1}{24}}\prod _{m=1}^\infty (1-q_{\tau }^m)\).

Theorem 3

(Freitag [3]) If \(F\in M_k(\varGamma _2)\) satisfies \(W(F)\equiv 0\), then \(\frac{F}{X_{10}}\in M_{k-10}(\varGamma _2)\), namely, F is divisible by \(X_{10}\).

Nagaoka’s reasoning on page 416 of [7] proves the following lemma.

Lemma 2

(Nagaoka [7]) Assume that \(p\ge 5\). Let \(F\in {\mathbb {Q}}[\![q_{\tau },q_{\tau ^{\prime }}]\!]\) be a formal power series of the form

$$\begin{aligned} F=\sum \limits_{a,b,c\ge 0}\gamma _{abc}W(\varphi _4)^aW(\varphi _6)^bW(X_{12})^c,\quad \gamma _{abc}\in {\mathbb {Q}}. \end{aligned}$$

If \(\nu _p(F)\ge 0\), then the \(\gamma _{abc}\) satisfy \(\nu _p(\gamma _{abc})\ge 0\) for all \(a,b,c\ge 0\).

From this lemma, we get the following corollary.

Corollary 1

Assume that \(p\ge 5\). Let \(F\in {\mathbb {Q}}[\![q_{\tau },q_{\tau ^{\prime }}]\!]\) be a formal power series of the form

$$\begin{aligned} F=\sum \limits_{a,b,c\ge 0}\gamma _{abc}W(\varphi _4)^aW(\varphi _6)^bW(X_{12})^c,\quad \gamma _{abc}\in {\mathbb {Q}}. \end{aligned}$$

If \(\nu _p(F)\ge 1\), then the \(\gamma _{abc}\) satisfy \(\nu _p(\gamma _{abc})\ge 1\) for all \(a,b,c\ge 0\).

Proof

Since \(\nu _p(F)\ge 1\), we get \(\nu _p(\frac{1}{p}F)\ge 0\). Hence from Lemma 2, we can take

$$\begin{aligned} \frac{1}{p}F=\sum \limits_{a,b,c\ge 0}\frac{1}{p}\gamma _{abc}W(\varphi _4)^aW(\varphi _6)^bW(X_{12})^c,\quad \nu _p(\frac{1}{p}\gamma _{abc})\ge 0. \end{aligned}$$

Hence we can take \(\nu _p(\gamma _{abc})\ge 1\) for all \(a,b,c\ge 0\). \(\square\)

3 Proof of the main theorem (Theorem 1)

We prove it by an inductive argument on the weight. By Theorem 2 (Sect. 2.5), for any \(F\in M_{k,2}(\varGamma _2)_{{\mathbb {Z}}_{(p)}}\), we can write F in the form

$$\begin{aligned} F&=(P_1+X_{10}Q_1)\varPhi _{10}+(P_2+X_{10}Q_2)\varPhi _{14}+(P_3+X_{10}Q_3)\varPhi _{16}\\& \quad +(P_4+X_{10}Q_4)\varPsi _{16}+(P_5+X_{10}Q_5)\varPhi _{18}+(P_6+X_{10}Q_6)\varPhi _{22}, \end{aligned}$$

where \(P_1\in M_{k-10}(\varGamma _2)\cap {\mathbb {Z}}_{(p)}[\varphi _4, \varphi _6, X_{12}]\), \(Q_1 \in M_{k-20}(\varGamma _2)_{\mathbb Z_{(p)}}\), \(P_2\in M_{k-14}(\varGamma _2)\cap {\mathbb {Z}}_{(p)}[\varphi _4, \varphi _6, X_{12}]\), \(Q_2\in M_{k-24}(\varGamma _2)_{\mathbb Z_{(p)}}\), \(P_3\in M_{k-16}(\varGamma _2)\cap {\mathbb {Z}}_{(p)}[\varphi _4, \varphi _6, X_{12}]\), \(Q_3\in M_{k-26}(\varGamma _2)_{\mathbb Z_{(p)}}\), \(P_4\in V_{k-16}(\varGamma _2)\cap {\mathbb {Z}}_{(p)}[\varphi _6, X_{12}]\), \(Q_4\in V_{k-26}(\varGamma _2)_{{\mathbb {Z}}_{(p)}}\), \(P_5\in V_{k-18}(\varGamma _2)\cap \ {\mathbb {Z}}_{(p)}[\varphi _6, X_{12}]\), \(Q_5\in V_{k-28}(\varGamma _2)_{{\mathbb {Z}}_{(p)}}\), \(P_6\in W_{k-22}(\varGamma _2)\cap {\mathbb {Z}}_{(p)}[X_{12}]\), \(Q_6\in W_{k-32}(\varGamma _2)_{{\mathbb {Z}}_{(p)}}\).

Here we regard \(P_i\) as polynomials (with coefficients in \(\mathbb Z_{(p)}\)) \(P_1=P_1(\varphi _4, \varphi _6, X_{12})\), \(P_2=P_2(\varphi _4, \varphi _6, X_{12})\), \(P_3=P_3(\varphi _4, \varphi _6, X_{12})\), \(P_4=P_4(\varphi _6, X_{12})\), \(P_5=P_5(\varphi _6, X_{12})\), \(P_6=P_6(X_{12})\).

We apply the Witt operator to F. Since \(W(X_{10})=W(\varPhi _{14})=W(\varPsi _{16})=W(\varPhi _{22})=0\), we get

$$\begin{aligned}W(F) &=W(P_1)W(\varPhi _{10})+W(P_3)W(\varPhi _{16})+W(P_5)W(\varPhi _{18})\\&=\begin{pmatrix}ME_1&{}0\\ 0&{}ME_2\end{pmatrix}\\&:=\begin{pmatrix} {\sum \limits_{m,n\ge 0}B_{11}(m, n)q_{\tau }^mq_{\tau ^\prime }^n}&{}0\\ 0&{} {\sum \limits_{m,n\ge 0}B_{22}(m, n)q_{\tau }^mq_{\tau ^\prime }^n}\end{pmatrix} ,\end{aligned}$$

where

$$\begin{aligned}&ME_1= {\sum \limits_{\begin{subarray}{c} 12i+4j+6t=k+2\\ 12i^\prime +4j^\prime +6t^\prime =k\\ t, t^\prime =0,1 \end{subarray}}C_1(i, i^\prime )\varDelta (\tau )^iE_4(\tau )^jE_6(\tau )^t\varDelta (\tau ^\prime )^{i^\prime }E_4(\tau ^\prime )^{j^\prime }E_6(\tau ^\prime )^{t^\prime }}\\&ME_2= {\sum \limits_{\begin{subarray}{c} 12i+4j+6t=k\\ 12i^\prime +4j^\prime +6t^\prime =k+2\\ t, t^\prime =0,1 \end{subarray}}C_2(i, i^\prime )\varDelta (\tau )^iE_4(\tau )^jE_6(\tau )^t\varDelta (\tau ^\prime )^{i^\prime }E_4(\tau ^\prime )^{j^\prime }E_6(\tau ^\prime )^{t^\prime }}. \end{aligned}$$

The \(q_{\tau }\)-expansion of \(\varDelta (\tau )^iE_4(\tau )^jE_6(\tau )^t\) has the form

$$\begin{aligned} \varDelta (\tau )^iE_4(\tau )^jE_6(\tau )^t=q_{\tau }^i+\cdots . \end{aligned}$$

The numbers j and t, where t is 0 or 1, are uniquely determined by choosing a value of i.

For each m, n such that \(0 \le m, n \le \left[ \frac{k}{10}\right]\), \(A(m,n,r)\equiv 0\pmod {p}\). We have that if \(m\le \left[ \frac{k}{10}\right]\) and \(n\le \left[ \frac{k}{10}\right]\), then \(B_{11}(m,n)\equiv B_{22}(m,n)\equiv 0\pmod {p}\). This implies that \(C_1(i,i^\prime )\equiv C_2(i,i^\prime )\equiv 0\pmod {p}\) for \(i, i^\prime \le \left[ \frac{k}{10}\right]\). Note that \(i, i^\prime \le \left[ \frac{k}{10}\right]\) since \(12i+4j+6t=k\) or \(k+2\) and \(12i^\prime +4j^\prime +6t^\prime =k\) or \(k+2\) and \(\left[ \frac{k}{12}\right] \le \left[ \frac{k+2}{12}\right] \le \left[ \frac{k}{10}\right]\). Thus we have \(W(F) \equiv 0\pmod {p}\).

Lemma 3

\(P_1, P_3, P_5\equiv 0\pmod {p}\).

Proof of Lemma 3

Using fact that \(W(\varDelta _5)=0\), we get

$$\begin{aligned}W(F)&=W(P_1)W(\varPhi _{10})+W(P_3)W(\varPhi _{16})+W(P_5)W(\varPhi _{18})\\&=W(P_1)\begin{pmatrix}\varDelta (\tau )E_4(\tau ^\prime )E_6(\tau ^\prime )&{}0\\ 0&{}E_4(\tau )E_6(\tau )\varDelta (\tau ^\prime )\end{pmatrix}\\&\quad +12W(P_3)\begin{pmatrix}E_6(\tau )\varDelta (\tau )E_4(\tau ^\prime )\varDelta (\tau ^\prime )&{}0\\ 0&{}E_4(\tau )\varDelta (\tau )E_6(\tau ^\prime )\varDelta (\tau ^\prime )\end{pmatrix}\\&\quad +12W(P_5)\begin{pmatrix}E_4(\tau )^2\varDelta (\tau )E_6(\tau ^\prime )\varDelta (\tau ^\prime )&{}0\\ 0&{}E_6(\tau )\varDelta (\tau )E_4(\tau ^\prime )^2\varDelta (\tau ^\prime )\end{pmatrix}\\&=\{ W(P_1)\begin{pmatrix}E_4(\tau ^\prime )E_6(\tau ^\prime )&{}0\\ 0&{}E_4(\tau )E_6(\tau )\end{pmatrix}\\&\quad +12W(P_3)\begin{pmatrix}E_6(\tau )E_4(\tau ^\prime )\varDelta (\tau ^\prime )&{}0\\ 0&{}E_4(\tau )\varDelta (\tau )E_6(\tau ^\prime )\end{pmatrix}\\&\quad +12W(P_5)\begin{pmatrix}E_4(\tau )^2E_6(\tau ^\prime )\varDelta (\tau ^\prime )&{}0\\ 0&{}E_6(\tau )\varDelta (\tau )E_4(\tau ^\prime )^2\end{pmatrix}\}\begin{pmatrix}\varDelta (\tau )&{}0\\ 0&{}\varDelta (\tau ^\prime )\end{pmatrix}\\&=\left( {\begin{array}{c}f_{11}\ 0\\ \ 0\ \ \ f_{22}\end{array}}\right) \begin{pmatrix}\varDelta (\tau )&{}0\\ 0&{}\varDelta (\tau ^\prime )\end{pmatrix}. \end{aligned}$$

where the (1, 1)-component and (2, 2)-component of W(F) are

$$\begin{aligned} f_{11}\varDelta (\tau )&=(W(P_1)E_4(\tau ^\prime )E_6(\tau ^\prime )+12W(P_3)E_6(\tau )E_4(\tau ^\prime )\varDelta (\tau ^\prime )\\&\quad +12W(P_5)E_4(\tau )^2E_6(\tau ^\prime )\varDelta (\tau ^\prime ))\varDelta (\tau ),\\ f_{22}\varDelta (\tau ^\prime )&=(W(P_1)E_4(\tau )E_6(\tau )+12W(P_3)E_4(\tau )\varDelta (\tau )E_6(\tau ^\prime )\\&\quad +12W(P_5)E_6(\tau )\varDelta (\tau )E_4(\tau ^\prime )^2)\varDelta (\tau ^\prime ). \end{aligned}$$

Since \(\nu _p(W(F))\ge 1\), and \(\nu _p(\varDelta (\tau ))=\nu _p(\varDelta (\tau ^\prime ))=0\), we have \(\nu _p(f_{11})=\nu _p(f_{22})\ge 1\). Then we get

$$\begin{aligned}&\nu _p(-E_4(\tau )\varDelta (\tau )E_6(\tau ^\prime )f_{11}+E_6(\tau )E_4(\tau ^\prime )\varDelta (\tau ^\prime )f_{22})\\&=\nu _p((E_4(\tau )^3\varDelta (\tau ^\prime )-\varDelta (\tau )E_4(\tau ^\prime )^3 )(E_4(\tau )E_4(\tau ^\prime )W(P_1)+2^8\cdot 3^4\varDelta (\tau )\varDelta (\tau ^\prime )W(P_5)))\\ {}&\ge 1 \end{aligned}$$

and

$$\begin{aligned}&\nu _p(E_4(\tau )E_6(\tau )f_{11}-E_4(\tau ^\prime )E_6(\tau ^\prime )f_{22})\\&\nu _p(2^2\cdot 3(E_4(\tau )^3\varDelta (\tau ^\prime )-\varDelta (\tau )E_4((\tau ^\prime )^3))(E_4(\tau )E_4(\tau ^\prime )W(P_3)+E_6(\tau )E_6(\tau ^\prime )W(P_5)))\\&\ge 1. \end{aligned}$$

Since \(\nu _p(E_4(\tau )^3\varDelta (\tau ^\prime )-\varDelta (\tau )E_4((\tau ^\prime )^3))=0\), we get

$$\begin{aligned}&\nu _p(E_4(\tau )E_4(\tau ^\prime )W(P_1)+2^8\cdot 3^4\varDelta (\tau )\varDelta (\tau ^\prime )W(P_5))\ge 1,\end{aligned}$$
(1)
$$\begin{aligned}&\nu _p(E_4(\tau )E_4(\tau ^\prime )W(P_3)+E_6(\tau )E_6(\tau ^\prime )W(P_5))\ge 1. \end{aligned}$$
(2)

Case (\(k \not \equiv 0\pmod {6}\))

We have \(W(P_5)=0\). Hence we have \(\nu _p(W(P_1))\ge 1\) and \(\nu _p(W(P_3))\ge 1\). We can write

$$\begin{aligned}&W(P_1)=\sum \limits_{\begin{subarray}{c} \\ 4a+12b+12c=k-10 \end{subarray}}\gamma _{abc}W(\varphi _4)^aW(\varphi _6)^bW(X_{12})^c,\\&W(P_3)=\sum \limits_{\begin{subarray}{c} 4a+12b+12c=k-16 \end{subarray}}\gamma ^{\prime }_{abc}W(\varphi _4)^aW(\varphi _6)^bW(X_{12})^c. \end{aligned}$$

From Corollary 1, we have \(\nu _p(\gamma _{abc})\ge 1\) and \(\nu _p(\gamma ^{\prime } _{abc})\ge 1\). Using \({W(P_1-\sum \limits_{\begin{subarray}{c} 4a+12b+12c=k-10 \end{subarray}}\gamma _{abc}\varphi _4^a\varphi _6^bX_{12}^c)=0}\), \({W(P_3-\sum \limits_{\begin{subarray}{c} 4a+12b+12c=k-16 \end{subarray}}\gamma ^{\prime }_{abc}\varphi _4^a\varphi _6^bX_{12}^c)=0}\), we have \({P_1=\sum \limits_{\begin{subarray}{c} 4a+12b+12c=k-10 \end{subarray}}\gamma _{abc}\varphi _4^a\varphi _6^bX_{12}^c}\) and

\({P_3=\sum \limits_{\begin{subarray}{c} 4a+12b+12c=k-16 \end{subarray}}\gamma ^{\prime }_{abc}\varphi _4^a\varphi _6^bX_{12}^c}\) because the Witt operator is injective on \({\mathbb {C}} [\varphi _4, \varphi _6, X_{12}]\) by Theorem 3 and the fact that Igusa’s generators are algebraically independent over \({\mathbb {C}}\). Hence \(\nu _p(P_1(\varphi _4, \varphi _6, X_{12}))\ge 1\) and \(\nu _p(P_3(\varphi _4, \varphi _6, X_{12}))\ge 1\).

Case ( \(k \equiv 0\pmod {12}\))

We can write

$$\begin{aligned}&W(P_1)=E_6(\tau )E_6(\tau ^\prime )\sum \limits_{\begin{subarray}{c} a\equiv 2\pmod {3}\\ 4a+12b+12c=k-16 \end{subarray}}\gamma _{abc}W(\varphi _4)^aW(\varphi _6^2)^bW(X_{12})^c,\\&W(P_3)=\sum \limits_{\begin{subarray}{c} a\equiv 2\pmod {3}\\ 4a+12b+12c=k-16 \end{subarray}}\gamma ^{\prime }_{abc}W(\varphi _4)^aW(\varphi _6^2)^bW(X_{12})^c,\\&W(P_5)=E_6(\tau )E_6(\tau ^\prime )\sum \limits_{12b+12c=k-24}\gamma ^{\prime \prime }_{bc}W(\varphi _{6}^2)^bW(X_{12})^c. \end{aligned}$$

Using these formulas, we can write

$$\begin{aligned}&E_4(\tau )E_4(\tau ^\prime )W(P_1)+2^8\cdot 3^4\varDelta (\tau )\varDelta (\tau ^\prime )W(P_5)\\&\quad =E_6(\tau )E_6(\tau ^\prime )\sum \limits_{\begin{subarray}{c} a\equiv 0\pmod {3},\ a\ge 3\\ 4a+12b+12c=k-12 \end{subarray}}\gamma _{a-1bc}W(\varphi _4)^aW(\varphi _6^2)^bW(X_{12})^c\\&\qquad +2^6\cdot 3^3E_6(\tau )E_6(\tau ^\prime )\sum \limits_{\begin{subarray}{c} c\ge 1\\ 12b+12c=k-12 \end{subarray}}\gamma ^{\prime \prime }_{bc-1}W(\varphi _6^2)^bW(X_{12})^c\\&\quad =E_6(\tau )E_6(\tau ^\prime )\{\sum \limits_{\begin{subarray}{c} a\equiv 0\pmod {3},\ a\ge 3\\ 4a+12b+12c=k-12 \end{subarray}}\gamma _{a-1bc}W(\varphi _4)^aW(\varphi _6)^{2b}W(X_{12})^c\\&\qquad +2^6\cdot 3^3\sum \limits_{\begin{subarray}{c} c\ge 1\\ 12b+12c=k-12 \end{subarray}}\gamma ^{\prime \prime }_{bc-1}W(\varphi _6)^{2b}W(X_{12})^c\} . \end{aligned}$$

Since \(\nu _p(\mathrm{LHS})\ge 1\), we have \(\nu _p(\mathrm{RHS})\ge 1\) for both of two formulas above. From Corollary 1 and Theorem 3, we get \(\nu _p(P_1(\varphi _4, \varphi _6, X_{12}))\ge 1\) and \(\nu _p(P_5(\varphi _4, \varphi _6, X_{12}))\ge 1\). From the formula (2), \(\nu _p(P_3(\varphi _4, \varphi _6, X_{12}))\ge 1\).

Case \(k\equiv 6\pmod {12}(k\equiv 2\pmod {4}\ \text {and}\ k\equiv 0\pmod {6})\): Similarly to the case of \(k\equiv 0\pmod {12}\), we can prove the assertion of Lemma 3. \(\square\)

By the Lemma 3 above, we get

$$\begin{aligned} F&\equiv \varDelta _5\cdot \{\varDelta _5(Q_1 \varPhi _{10}+Q_3\varPhi _{16}+Q_5\varPhi _{18})+(P_2+X_{10}Q_2)\varPhi _9+(P_4+X_{10}Q_4)\varPhi _{11}\\&\quad +(P_6+X_{10}Q_6)\varPhi _{17}\} \\&:=\varDelta _5\cdot G. \end{aligned}$$

It is known that \(\varDelta _5\not \equiv 0\pmod {p}\) and \(q_{\tau }^{\frac{1}{2}}q_{\tau ^\prime }^{\frac{1}{2}}\mid \varDelta _5\) but \(q_{\tau }q_{\tau ^\prime }\nmid \varDelta _5\). Next we apply the Witt operator to G.

$$\begin{aligned}W(G& =W(P_2)W(\varPhi _9)+W(P_4)W(\varPhi _{11})+W(P_6)W(\varPhi _{17})\\& = {\sum \limits_{\begin{subarray}{c} 12i+4j+6t=k-10\\ 12i^\prime +4j^\prime +6t^\prime =k-10\\ t, t^\prime =0,1 \end{subarray}}C_3(i, i^\prime )\varDelta (\tau )^iE_4(\tau )^jE_6(\tau )^t\varDelta (\tau ^\prime )^{i^\prime }E_4(\tau ^\prime )^{j^\prime }E_6(\tau ^\prime )^{t^\prime }}\eta (\tau )^{12}\eta _(\tau ^\prime )^{12}\left( {\begin{array}{c}01\\ 10\end{array}}\right) \\& =\sum \limits_{m,n\ge 0}B_{12}(m, n)q_{\tau }^mq_{\tau ^\prime }^n\eta (\tau )^{12}\eta _(\tau ^\prime )^{12}\left( {\begin{array}{c}01\\ 10\end{array}}\right) .\end{aligned}$$

It is known that \(\eta (\tau )^{12}\not \equiv 0\pmod {p}\) and \(q_{\tau }^{\frac{1}{2}}q_{\tau ^\prime }^{\frac{1}{2}}\mid \eta (\tau )^{12}\) but \(q_{\tau }q_{\tau ^\prime }\nmid \eta (\tau )^{12}\). Hence we have that if \(m\le \left[ \frac{k}{10}\right] -1\) and \(n\le \left[ \frac{k}{10}\right] -1\), then \(B_{12}(m,n)\equiv 0\pmod {p}\). This implies that \(C_3(i,i^\prime )\equiv 0\pmod {p}\) for \(i, i^\prime \le \left[ \frac{k}{10}\right] -1\). Note that \(i, i^\prime \le \left[ \frac{k}{10}\right] -1\) since \(12i+4j+6t=k-10\) and \(12i^\prime +4j^\prime +6t^\prime =k-10\) and \(\left[ \frac{k-10}{12}\right] \le \left[ \frac{k}{10}\right] -1\). Thus we have \(W(G) \equiv 0\pmod {p}\).

Lemma 4

\(P_2, P_4, P_6\equiv 0\pmod {p}\).

Proof of Lemma 4

Using fact that \(W(\varDelta _5)=0\), we get

$$\begin{aligned} W(G)&=W(P_2)W(\varPhi _{9})+W(P_4)W(\varPhi _{11})+W(P_6)W(\varPhi _{17})\\&=W(P_2)\left( 2E_4(\tau )E_4(\tau ^\prime )\eta (\tau )^{12}\eta (\tau ^\prime )^{12}\left( {\begin{array}{c}01\\ 10\end{array}}\right) \right) \\&\quad +W(P_4)\left( 2E_6(\tau )E_6(\tau ^\prime )\eta (\tau )^{12}\eta (\tau ^\prime )^{12}\left( {\begin{array}{c}01\\ 10\end{array}}\right) \right) \\&\quad +W(P_6)\left( 2^5\cdot 3^2\varDelta (\tau )\varDelta (\tau ^\prime )\eta (\tau )^{12}\eta (\tau ^\prime )^{12}\left( {\begin{array}{c}01\\ 10\end{array}}\right) \right) . \end{aligned}$$

Case \(k \not \equiv 4\pmod {6}\): In this case we have \(P_4=P_6=0\) as polynomials. Therefore we get

\(\nu _p(W(P_2))\ge 1\). From Corollary 1 and Theorem 3, we get \(\nu _p(P_2(\varphi _4, \varphi _6, X_{12}))\ge 1\).

Case \(k\equiv 4\pmod {12}\): We can write

$$\begin{aligned}&W(P_2)=E_6(\tau )E_6(\tau ^\prime )\sum \limits_{\begin{subarray}{c} a\equiv 2\pmod {3}\\ 4a+12b+12c=k-20 \end{subarray}}\gamma _{abc}W(\varphi _4)^aW(\varphi _6^2)^bW(X_{12})^c,\\&W(P_4)=\sum \limits_{12b+12c=k-16}\gamma ^{\prime }_{bc}W(\varphi _{6}^2)^bW(X_{12})^c,\\&W(P_6)=0. \end{aligned}$$

Using these formulas, we can write as

$$\begin{aligned} W(G)&=2\Big ( \sum \limits_{\begin{subarray}{c} a\equiv 0\pmod {3},\ a\ge 3\\ 4a+12b+12c=k-16 \end{subarray}}\gamma _{a-1bc}W(\varphi _4)^aW(\varphi _6)^{2b}W(X_{12})^c\\&\quad +\sum \limits_{12b+12c=k-16}\gamma ^{\prime }_{bc}W(\varphi _6)^{2b}W(X_{12})^c\Big )E_6(\tau )E_6(\tau ^\prime )\eta (\tau )^{12}\eta (\tau ^\prime )^{12}\left( {\begin{array}{c}01\\ 10\end{array}}\right) . \end{aligned}$$

Again from Corollary 1, we have \(\nu _p(\gamma _{a-1bc})\ge 1\) and \(\nu _p(\gamma ^{\prime }_{bc})\ge 1\). These mean that, from Theorem 3, \(\nu _p(P_2(\varphi _4, \varphi _6, X_{12}))\ge 1\) and \(\nu _p(P_4(\varphi _6, X_{12}))\ge 1\).

Case\(k\equiv 10\pmod {12}\): We can write

$$\begin{aligned}&W(P_2)=\sum \limits_{\begin{subarray}{c} a\equiv 2\pmod {3}\\ 4a+12b+12c=k-14 \end{subarray}}\gamma _{abc}W(\varphi _4)^aW(\varphi _6^2)^bW(X_{12})^c,\\&W(P_4)=E_6(\tau )E_6(\tau ^\prime )\sum \limits_{12b+12c=k-22}\gamma ^{\prime }_{bc}W(\varphi _6^2)^bW(X_{12})^c,\\&W(P_6)=\gamma ^{\prime \prime }_{\frac{k-22}{12}}W(X_{12})^{\frac{k-22}{12}}. \end{aligned}$$

Using these formulas, we can write as

$$\begin{aligned} W(G)&=\Big (2\sum \limits_{\begin{subarray}{c} a\equiv 0\pmod {3},\ a\ge 3\\ 4a+12b+12c=k-10 \end{subarray}}\gamma _{a-3bc}W(\varphi _4)^aW(\varphi _6)^{2b}W(X_{12})^c\\&\quad +2\sum \limits_{\begin{subarray}{c} b\ge 1\\ 12b+12c=k-10 \end{subarray}}\gamma ^{\prime }_{b-1c}W(\varphi _6)^{2b}W(X_{12})^c\\&\quad +2^3\cdot 3\gamma ^{\prime \prime }_{\frac{k-22}{12}}W(X_{12})^{\frac{k-10}{12}}\Big )\eta (\tau )^{12}\eta (\tau ^\prime )^{12}\left( {\begin{array}{c}01\\ 10\end{array}}\right) .\end{aligned}$$

Again from Corollary 1, we have \(\nu _p(2\gamma _{a-3bc})\ge 1\), \(\nu _p(2\gamma ^{\prime }_{b-1c})\ge 1\) and \(\nu _p(2^3\cdot 3\gamma ^{\prime \prime }_{\frac{k-22}{12}})\ge 1\). These mean that, from Theorem 3, \(\nu _p(P_2(\varphi _4, \varphi _6, X_{12}))\ge 1\), \(\nu _p(P_4(\varphi _6, X_{12}))\ge 1\) and \(\nu _p(P_6(X_{12}))\ge 1\).

This completes the proof of Lemma 4. \(\square\)

From Lemma 4, we get

$$\begin{aligned} F\equiv X_{10}\cdot (Q_1\varPhi _{10}+Q_2\varPhi _{14}+Q_3\varPhi _{16}+Q_4\varPsi _{16}+Q_5\varPhi _{18}+Q_6\varPhi _{22})\pmod {p}. \end{aligned}$$

Then \(H_1:=Q_1\varPhi _{10}+Q_2\varPhi _{14}+Q_3\varPhi _{16}+Q_4\varPsi _{16}+Q_5\varPhi _{18}+Q_6\varPhi _{22}\in M_{k-10, 2}(\varGamma _2)_{\mathbb Z_{(p)}}\) and \(A((m,n,r);H_1)\equiv 0\pmod {p}\) for every m, n such that \(0\le m\le \left[ \frac{k-10}{10}\right] ,\ \ 0\le n\le \left[ \frac{k-10}{10}\right]\). Moreover \(\nu _p(F)=\nu _p(H_1)\) since \(\nu _p(X_{10})=0\).

By repeating this argument, there exists the modular form \(H_t\) of weight \(k-10t\) and \(t_0\) such that

$$\begin{aligned} F\equiv H_t\cdot X_{10}^{t}\pmod {p} \end{aligned}$$

where \(1\le t\le t_0\) and

$$\begin{aligned} A((m,n,r);H_t)\equiv 0\pmod {p} \end{aligned}$$

for every m, n such that \(0\le m\le \left[ \frac{k-10t}{10}\right] ,\ \ \ \ 0\le n\le \left[ \frac{k-10t}{10}\right]\). Thus we have

$$\begin{aligned} \nu _p(F)=\nu _p(H_{t_0}). \end{aligned}$$

Since the weight of \(H_{t_0}\le 22\), we should check the case \(k\le 22\) directly.

Case (\(k \equiv 0\pmod {10}\))

\(H_{t_0}\in M_{10, 2}(\varGamma _2)\) and \(t_0=\frac{k-10}{10}\). Since

$$\begin{aligned} X_{10}=(-2+q_{\omega }+q_{\omega }^{-1})+\cdots , \end{aligned}$$

we have that if \(n\le \left[ \frac{k}{10}\right] -t_0=1\) and \(m\le \left[ \frac{k}{10}\right] -t_0=1\), then \(a((m,n,r);H_{t_0})\equiv 0\pmod {p}\). With \(a_1\in {\mathbb {Z}}_{(p)}\) we can write

$$\begin{aligned} H_{t_0}&=a_1\varPhi _{10}=\left( {\begin{array}{c}a_10\\ 0\ 0\end{array}}\right) q_{\tau }+\cdots . \end{aligned}$$

Hence we have \(a_1\equiv 0\pmod {p}\). Hence we have \(F\equiv 0\pmod {p}\).

Case (\(k \equiv 4\pmod {10}\))

\(H_{t_0}\in M_{14, 2}(\varGamma _2)\) and \(t_0=\frac{k-14}{10}\). Then we have that if \(n\le \left[ \frac{k}{10}\right] -t_0=1\) and \(m\le \left[ \frac{k}{10}\right] -t_0=1\), then \(a((m,n,r);H_{t_0})\equiv 0\pmod {p}\). With \(a_1, a_2\in {\mathbb {Z}}_{(p)}\) we can write

$$\begin{aligned} H_{t_0}&=a_1\varphi _4\varPhi _{10}+a_2\varPhi _{14}\\&=\left( {\begin{array}{c}a_10\\ 0\ 0\end{array}}\right) q_{\tau }+\left( {\begin{array}{c}0\ \ 0\\ 0\ a_1\end{array}}\right) q_{\tau ^\prime }\\&\quad +\left\{ \begin{pmatrix}30a_1+2a_2&{}0\\ 0&{}30a_1+2a_2\end{pmatrix}+\begin{pmatrix}-28a_1-a_2&{}-14a_1-\frac{1}{2}a_2\\ -14a_1-\frac{1}{2}a_2&{}-28a_1-a_2\end{pmatrix}q_{\omega }\right. \\&\quad +\left. \begin{pmatrix}-28a_1-a_2&{}14a_1+\frac{1}{2}a_2\\ 14a_1+\frac{1}{2}a_2&{}-28a_1-a_2\end{pmatrix}q_{\omega }^{-1}+\left( {\begin{array}{c}a_1a_1\\ a_1a_1\end{array}}\right) q_{\omega }^{2}+\left( {\begin{array}{c}a_1\ -a_1\\ -a_1\ \ a_1\end{array}}\right) q_{\omega }^{-2}\right\} q_{\tau }q_{\tau ^\prime }+\cdots . \end{aligned}$$

Hence we have \(a_1\equiv 0\pmod {p}\) and \(-28a_1-a_2\equiv 0\pmod {p}\). Hence we get \(a_2\equiv 0\pmod {p}\). Hence we have \(F\equiv 0\pmod {p}\).

Case ( \(k \equiv 6\pmod {10}\))

\(H_{t_0}\in M_{16, 2}(\varGamma _2)\) and \(t_0=\frac{k-16}{10}\). Then we have that if \(n\le \left[ \frac{k}{10}\right] -t_0=1\) and \(m\le \left[ \frac{k}{10}\right] -t_0=1\), then \(a((m,n,r);H_{t_0})\equiv 0\pmod {p}\). With \(a_1, a_2, a_3\in {\mathbb {Z}}_{(p)}\) we can write

$$\begin{aligned} H_{t_0}&=a_1\varphi _6\varPhi _{10}+a_2\varPhi _{16}+a_3\varPsi _{16}\\&=\left( {\begin{array}{c}a_10\\ 0\ 0\end{array}}\right) q_{\tau }+\left( {\begin{array}{c}0\ \ 0\\ 0\ a_1\end{array}}\right) q_{\tau ^\prime }\\&\quad +\left\{ \begin{pmatrix}-714a_1+10a_2-2a_3&{}0\\ 0&{}-714a_1+10a_2-2a_3\end{pmatrix}\right. \\&\left. \quad +\begin{pmatrix}-28a_1+a_2+a_3&{}-14a_1+\frac{1}{2}a_2+\frac{1}{2}a_3 \\ -14a_1+\frac{1}{2}a_2+\frac{1}{2}a_3&{}-28a_1+a_2+a_3\end{pmatrix}q_{\omega }\right. \\&\quad \left. +\begin{pmatrix}-28a_1+a_2+a_3&{}14a_1-\frac{1}{2}a_2-\frac{1}{2}a_3\\ 14a_1-\frac{1}{2}a_2-\frac{1}{2}a_3&{}-28a_1+a_2+a_3\end{pmatrix}q_{\omega }^{-1}+\left( {\begin{array}{c}a_1a_1\\ a_1a_1\end{array}}\right) q_{\omega }^{2}+\left( {\begin{array}{c}a_1\ -a_1\\ -a_1\ \ a_1\end{array}}\right) q_{\omega }^{-2}\right\} q_{\tau }q_{\tau ^\prime }+\cdots . \end{aligned}$$

Hence we have \(a_1\equiv -714a_1+10a_2-2a_3\equiv -28a_1+a_2+a_3\equiv 0\pmod {p}\). Hence we get \(a_2=\frac{1}{2^2\cdot 3}(10a_2-2a_3+2(a_2+a_3))\equiv 0\pmod {p}\) and \(a_3=\frac{1}{2^2\cdot 3}(-(10a_2-2a_3)+10(a_2+a_3))\equiv 0\pmod {p}\). Hence we have \(F\equiv 0\pmod {p}\).

(Case \(k \equiv 8\pmod {10}\))

\(H_{t_0}\in M_{18, 2}(\varGamma _2)\) and \(t_0=\frac{k-18}{10}\). Then we have that if \(n\le \left[ \frac{k}{10}\right] -t_0=1\) and \(m\le \left[ \frac{k}{10}\right] -t_0=1\), then \(a((m,n,r);H_{t_0})\equiv 0\pmod {p}\). With \(a_1, a_2, a_3\in {\mathbb {Z}}_{(p)}\) we can write

$$\begin{aligned} H_{t_0}&=a_1\varphi _4^2\varPhi _{10}+a_2\varphi _4\varPhi _{14}+a_3\varPhi _{18}\\&=\left( {\begin{array}{c}a_10\\ 0\ 0\end{array}}\right) q_{\tau }+\left( {\begin{array}{c}0\ \ 0\\ 0\ a_1\end{array}}\right) q_{\tau ^\prime }\\&\quad +\left\{ \begin{pmatrix}270a_1-2a_2+10a_3&{}0\\ 0&{}270a_1-2a_2+10a_3\end{pmatrix}\right. \\&\left. \quad +\begin{pmatrix}-28a_1+a_2+a_3&{}-14a_1+\frac{1}{2}a_2+\frac{1}{2}a_3\\ -14a_1+\frac{1}{2}a_2+\frac{1}{2}a_3&{}-28a_1+a_2+a_3\end{pmatrix}q_{\omega }\right. \\&\quad \left. +\begin{pmatrix}-28a_1+a_2+a_3&{}14a_1-\frac{1}{2}a_2-\frac{1}{2}a_3\\ 14a_1-\frac{1}{2}a_2-\frac{1}{2}a_3&{}-28a_1+a_2+a_3\end{pmatrix}q_{\omega }^{-1}+\left( {\begin{array}{c}a_1a_1\\ a_1a_1\end{array}}\right) q_{\omega }^{2}+\left( {\begin{array}{c}a_1\ -a_1\\ -a_1\ \ a_1\end{array}}\right) q_{\omega }^{-2}\right\} q_{\tau }q_{\tau ^\prime }+\cdots . \end{aligned}$$

Hence we have \(a_1\equiv 270a_1-2a_2+10a_3\equiv -28a_1+a_2+a_3\equiv 0\pmod {p}\). Hence we get \(a_2=\frac{1}{2^2\cdot 3}(-(-2a_2+10a_3)+10(a_2+a_3))\equiv 0\) and \(a_3=\frac{1}{2^2\cdot 3}(-2a_2+10a_3+2(a_2+a_3))\equiv 0\pmod {p}\). Hence we have \(F\equiv 0\pmod {p}\).

(Case \(k \equiv 2\pmod {10}\))

\(H_{t_0}\in M_{22, 2}(\varGamma _2)\) and \(t_0=\frac{k-22}{10}\). Then we have that if \(n\le \left[ \frac{k}{10}\right] -t_0=2\) and \(m\le \left[ \frac{k}{10}\right] -t_0=2\), then \(a((m,n,r);H_{t_0})\equiv 0\pmod {p}\). With \(a_1, a_2, a_3, a_4, a_5, a_6, a_7\in \mathbb {Z}_{(p)}\) we can write

$$\begin{aligned} H_{t_0}&=(a_1\varphi _4^3+a_2\varphi _6^2+a_3X_{12})\varPhi _{10}+a_4\varphi _4^2\varPhi _{14}+a_5\varphi _6\varPhi _{16}+a_6\varphi _6\varPsi _{16}+a_7\varPhi _{22}\\&=\left( {\begin{array}{c}a_1+a_2\ 0\\ 0\ \ \ \ \ \ \ \ \ \ 0\end{array}}\right) q_{\tau }+\left( {\begin{array}{c}0\ \ \ \ \ \ \ \ \ \ \ \ \ \ 0\\ \ \ \ \ \ 0\ \ \ \ \ \ \ \ \ a_1+a_2\end{array}}\right) q_{\tau ^\prime }\\&\quad + \left\{ \begin{pmatrix}510a_1-1218a_2-2a_4+10a_5-2a_6&{}0\\ 0&{}510a_1-1218a_2-2a_4+10a_5-2a_6\end{pmatrix}\right. \\&\quad +\begin{pmatrix}-28a_1-28a_2+a_4+a_5+a_6&{}-14a_1-14a_2+\frac{1}{2}a_4+\frac{1}{2}a_5+\frac{1}{2}a_6\\ -14a_1-14a_2+\frac{1}{2}a_4+\frac{1}{2}a_5+\frac{1}{2}a_6&{}-28a_1-28a_2+a_4+a_5+a_6\end{pmatrix}q_{\omega }\\&\quad +\begin{pmatrix}-28a_1-28a_2+a_4+a_5+a_6&{}14a_1+14a_2-\frac{1}{2}a_4-\frac{1}{2}a_5-\frac{1}{2}a_6\\ 14a_1+14a_2-\frac{1}{2}a_4-\frac{1}{2}a_5-\frac{1}{2}a_6&{}-28a_1-28a_2+a_4+a_5+a_6\end{pmatrix}q_{\omega }^{-1}\\&\quad \left. +\left( {\begin{array}{c}a_1+a_2\ a_1+a_2\\ a_1+a_2\ a_1+a_2\end{array}}\right) q_{\omega }^{2}+\left( {\begin{array}{c}a_1+a_2\ -a_1-a_2\\ -a_1-a_2\ \ a_1+a_2\end{array}}\right) q_{\omega }^{-2}\right\} q_{\tau }q_{\tau ^\prime }\\&\quad +\left( {\begin{array}{c}696a_1-1032a_2\ 0\ \\ 0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 0\end{array}}\right) q_{\tau }^2+\left( {\begin{array}{c}0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 0\\ \ \ \ \ \ \ 0\ \ \ \ \ \ \ \ 696a_1-1032a_2\end{array}}\right) q_{\tau ^\prime }^2\\&\quad +\left\{ \begin{pmatrix}-54324a_1+350028a_2-1404a_4-2772a_5+2052a_6&{}0\\ 0&{}279432a_1+1088136a_2+10a_3-168a_4-10104a_5+408a_6\end{pmatrix}\right. \\&\quad +\begin{pmatrix}-46464a_1+1920a_2+704a_4-352a_5-1024a_6&{}-23232a_1+960a_2+352a_4-176a_5-512a_6\\ -23232a_1+960a_2+352a_4-176a_5-512a_6&{}17952a_1+114720a_2+a_3+88a_4-1160a_5-200a_6\end{pmatrix} q_{\omega }\\ \end{aligned}$$
$$\begin{aligned}&\quad +\begin{pmatrix}-46464a_1+1920a_2+704a_4-352a_5-1024a_6&{}23232a_1-960a_2-352a_4+176a_5+512a_6\\ 23232a_1-960a_2-352a_4+176a_5+512a_6&{}17952a_1+114720a_2+a_3+88a_4-1160a_5-200a_6\end{pmatrix}q_{\omega }^{-1}\\&\quad +\begin{pmatrix}510a_1-1218a_2-2a_4+10a_5-2a_6&{}510a_1-1218a_2-2a_4+10a_5-2a_6\\ 510a_1-1218a_2-2a_4+10a_5-2a_6&{}1020a_1-2436a_2-4a_4+20a_5-4a_6\end{pmatrix}q_{\omega }^2\\&\quad \left. +\begin{pmatrix}510a_1-1218a_2-2a_4+10a_5-2a_6&{}-510a_1+1218a_2+2a_4-10a_5+2a_6\\ -510a_1+1218a_2+2a_4-10a_5+2a_6&{}1020a_1-2436a_2-4a_4+20a_5-4a_6\end{pmatrix}q_{\omega }^{-2}\right\} q_{\tau }q_{\tau ^\prime }^2\\&\quad +\left\{ \begin{pmatrix}A_1&{}0\\ 0&{}B_1\end{pmatrix} +\begin{pmatrix}A_2&{}C_2\\ C_2&{}B_2\end{pmatrix}q_{\omega } +\begin{pmatrix}A_2&{}-C_2\\ -C_2&{}B_2\end{pmatrix}q_{\omega }^{-1}\right. \end{aligned}$$
$$\begin{aligned}&\quad +\begin{pmatrix}-688416a_1+217056a_2-8a_3+3840a_4-1920a_5+19968a_6+2a_7&{}-344208a_1+108528a_2-4a_3+1920a_4-960a_5+9984a_6+a_7\\ -344208a_1+108528a_2-4a_3+1920a_4-960a_5+9984a_6+a_7&{}-688416a_1+217056a_2-8a_3+3840a_4-1920a_5+19968a_6+2a_7\end{pmatrix}q_{\omega }^2\\ &\quad +\begin{pmatrix}-688416a_1+217056a_2-8a_3+3840a_4-1920a_5+19968a_6+2a_7&{}344208a_1-108528a_2+4a_3-1920a_4+960a_5-9984a_6-a_7\\ 344208a_1-108528a_2+4a_3-1920a_4+960a_5-9984a_6-a_7&{}-688416a_1+217056a_2-8a_3+3840a_4-1920a_5+19968a_6+2a_7\end{pmatrix}q_{\omega }^{-2}\end{aligned}$$
$$\begin{aligned}&\quad +\begin{pmatrix}17952a_1+114720a_2+a_3+88a_4-1160a_5-200a_6&{}41184a_1+113760a_2+a_3-264a_4-984a_5+312a_6\\ 41184a_1+113760a_2+a_3-264a_4-984a_5++312a_6&{}17952a_1+114720a_2+a_3+88a_4-1160a_5-200a_6\end{pmatrix}q_{\omega }^3\\&\quad +\begin{pmatrix}17952a_1+114720a_2+a_3+88a_4-1160a_5-200a_6&{}-41184a_1-113760a_2-a_3+264a_4+984a_5-312a_6\\ -41184a_1-113760a_2-a_3+264a_4+984a_5-312a_6&{}17952a_1+114720a_2+a_3+88a_4-1160a_5-200a_6\end{pmatrix}q_{\omega }^{-3}\\&\quad \left. +\begin{pmatrix}696a_1-1032a_2&{}696a_1-1032a_2\\ 696a_1-1032a_2&{}696a_1-1032a_2\end{pmatrix}q_{\omega }^4+\begin{pmatrix}696a_1-1032a_2&{}-696a_1+1032a_2\\ -696a_1+1032a_2&{}696a_1-1032a_2\end{pmatrix}q_{\omega }^{-4}\right\} q_{\tau }^2q_{\tau ^\prime }^2+\cdots , \end{aligned}$$

where

$$\begin{aligned}&A_1=B_1=-59095920a_1-257328624a_2-2288a_3-75776a_4+2537728a_5-329216a_6-36a_7\\&A_2=B_2=-20671008a_1-53005344a_2-577a_3+33960a_4+517512a_5+144840a_6+16a_7\\&C_2=-24544032a_1+15272544a_2-139a_3+239160a_4-205656a_5+511608a_6+70a_7\\ \end{aligned}$$

Hence we get

$$\begin{aligned}&a_1=\frac{1}{2^6\cdot 3^3}(1032(a_1+a_2)+(696a_1-1032a_2))\equiv 0\pmod {p},\\&a_2=\frac{1}{2^6\cdot 3^3}(696(a_1+a_2)-(696a_1-1032a_2))\equiv 0\pmod {p}. \end{aligned}$$

Then we get

$$\begin{aligned} a_5=\frac{1}{2^2\cdot 3}(2(a_4+a_5+a_6)+(-2a_4+10a_5-2a_6))\equiv 0\pmod {p}. \end{aligned}$$

Hence we get \(a_4+a_6\equiv 0\pmod {p}\) and \(704a_4-1024a_6\equiv 0\pmod {p}\). Hence we get

$$\begin{aligned} a_4=\frac{1}{2^6\cdot 3^3}(1024(a_4+a_6)+(704a_4-1024a_6))\equiv 0\pmod {p} \end{aligned}$$

and

$$\begin{aligned} a_6=\frac{1}{2^6\cdot 3^3}(704(a_4+a_6)-(704a_4-1024a_6))\equiv 0\pmod {p} \end{aligned}$$

. Hence we get \(a_3 \equiv a_7\equiv 0\pmod {p}\). Hence we have \(F\equiv 0\pmod {p}\). \(\square\)