1 Introduction

In this paper, we study the existence and uniqueness of mild and classical solutions for a class of abstract impulsive differential equations of the form

$$\begin{aligned} u'(t)= & {} Au(t)+ f(t, u(\zeta (t,u(t)))), \,\, \quad t\in I_{i}= (t_{i},t_{i+1}], \,i=0,\ldots , N, \end{aligned}$$
(1.1)
$$\begin{aligned} u(t_{j}^{+})= & {} g_{j}(u(\sigma _{j}(u(t_{j}^{+})))), \,\,\,\, j=1,\ldots , N, \end{aligned}$$
(1.2)
$$\begin{aligned} u_{0}= & {} \varphi \in {\mathcal {B}}= C( I_{-1};X) , \,\,\, I_{-1}=[-p,0], \end{aligned}$$
(1.3)

where \(A:D(A)\subset X\mapsto X\) is the generator of an analytic semigroup of bounded linear operators \((T(t))_{t\ge 0}\) on a Banach space \((X,\parallel \cdot \parallel )\), \(0=t_{0}<t_{1}< t_{2}<\cdots<t_{N}< t_{N+1} =a\) are pre-fixed numbers and \(f(\cdot )\), \(g_{i}(\cdot )\), \(\sigma _{i}(\cdot )\), \( i=1,\ldots , N,\) are functions specified be later.

The study of state-dependent delay equations is motivated by applications and theory. Related ODEs on finite dimensional spaces we cite the early works by Driver [9, 10] and Aiello et al. [1], the survey by Hartung, Krisztin et al. [15], the papers by Hartung et.al. [16,17,18] and the references in these works. For the case PDEs and abstract differential equations with state-dependent delay, we mention [19, 20, 26, 36,37,38] and the recent interesting works by Krisztin and Rezounenko [25], Yunfei et al. [33], Kosovalic et al. [26, 27] and Hernandez et al. [24].

Concerning the theory of impulsive differential equations, their motivations and relevant developments, we cite the books by Bainov and Covachev [2], Lakshmikantham et al. [28], Samoilenko and Perestyuk [40] for the case of ordinary differential equations on finite dimensional space and Benchohra et al. [7] for abstract differential equations and partial differential equations. In addition, we cite the interesting papers [8, 11, 20,21,22,23, 29, 31, 34, 39, 43] and the references therein. Related differential equations with impulse at state-dependent moments and state-dependent delayed impulses, we refer the reader to [3,4,5,6, 13, 14, 30, 41].

Our work is motivated by the papers Hakl et al. [14] related partial differential equations with impulse at state-dependent moments and Li and Wu [30] on differential equations with state-dependent delayed impulses. Specifically, we study the existence and “uniqueness” of solutions for the problem (1.1)–(1.3) which is a highly not trivial problem since functions of the form \(u\mapsto u(\zeta (\cdot ,u(\cdot ))) \) are (in general) nonlinear and not Lipschitz on space of continuous or sectionally continuous functions. By noting that

$$\begin{aligned}&{{\parallel u(\zeta (\cdot ,u(\cdot ))) - v(\zeta (\cdot ,v(\cdot ))) \parallel _{C([-p,a];X )} }} \\&\quad \le (1+ [v]_{C_\mathrm{Lip}([-p,a];X)}[\zeta ]_{C_\mathrm{Lip}([0,a]\times X;[-p,a])}) \parallel u-v \parallel _{ C_\mathrm{Lip}([-p,a];X)}, \\&{{ \parallel u(\sigma _{i}(u(t_{i}^{+}))) - v(\sigma _{i}(v(t_{i}^{+}))) \parallel }} \\&\quad \le (1+ [v]_{C_\mathrm{Lip}([-p,a];X)}[\sigma _{i}]_{C_\mathrm{Lip}(X;[-p,a]})\parallel u-v \parallel _{C([-p,a];X)} , \end{aligned}$$

when the involved functions are Lipschitz, we study the existence of solutions on spaces of sectionally Lipschitz functions, a hard problem in the semigroup framework and in the general field of partial differential equations. In addition, we note that the Lipschizianity of \(T(\cdot ) g_{i}(u(\sigma _{i}(u(t_{i}^{+}))))\) not depend on the Lipschizianity of \(g_{i}(\cdot )\) and \(u(\cdot )\), which introduce a extra difficulty in our studies.

This paper has four sections. The existence and uniqueness of a classical solution via the contraction mapping principle is proved in Theorems 2.1, 2.2 and Proposition 2.3. In Theorem 2.3 we prove the existence of a mild solution using the Schauder’s fixed point Theorem. The particular case in which \(\sigma _{i}(\cdot )\) and (or) \(\zeta (\cdot )\) have values in \([-p,0]\), is studied in Propositions 2.1 and 2.2. In the last section some examples on partial differential equations are presented.

We include now some notations and results used in this work. Let \((Z,\parallel \cdot \parallel _{Z})\) and \((W,\parallel \cdot \parallel _{W})\) be Banach spaces. We denote by \({\mathcal {L}}(Z,W)\) the space of bounded linear operators from Z into W endowed with operator norm denoted by \(\parallel \cdot \parallel _{{\mathcal {L}}(Z,W)} \) and we write \({\mathcal {L}}(Z)\) and \(\parallel \cdot \parallel _{{\mathcal {L}}(Z)} \) if \(Z = W\). Moreover, if \(X=Z=W\) we write simply \(\parallel \cdot \parallel \) for the norms \(\parallel \cdot \parallel _{ X} \) and \(\parallel \cdot \parallel _{{\mathcal {L}}(X)} \). In addition, \(B_{r}(z,Z)=\{y\in Z:\parallel y-z\parallel _{Z}\le r\}\).

Let \(J\subset {\mathbb {R}}\) be a bounded interval. The spaces C(JZ) and \(C_\mathrm{Lip}(J,Z)\) and their norms denoted by \(\parallel \cdot \parallel _{C (J,Z)}\) and \(\parallel \cdot \parallel _{C_\mathrm{Lip}(J,Z)}\) are the usual. We only note that \(\parallel \cdot \parallel _{C_\mathrm{Lip}(J;Z)}\) is given by \(\parallel \cdot \parallel _{C_\mathrm{Lip}(J;Z)} =\parallel \cdot \parallel _{C(J;Z)} +[ \cdot ]_{C_\mathrm{Lip}(J;Z)} \) where \( [ \zeta ]_{C_\mathrm{Lip}(J;Z)} =\sup _{t,s\in J, t\ne s }\frac{\parallel \zeta (s)-\zeta (t)\parallel _{Z}}{\mid t-s\mid }\).

The notation \({{\mathcal {P}}{\mathcal {C}}}(Z)\) is used for the space formed by all the bounded functions \(u :[0, a] \mapsto Z\) such that \(u(\cdot )\) is continuous at \(t \ne t_{i},\) \( u(t_{i}^{-})= u(t_{i}) \) and \(u(t_{i}^{+}) \) exists for all \(i = 1, \ldots , N\), provided with the norm \(\parallel u\parallel _{{{\mathcal {P}}{\mathcal {C}}}(Z)}=\max _{i=0,1,\ldots ,N}\parallel u\parallel _{C((t_{i},t_{i+1}];Z)}\). In addition, \({{\mathcal {P}}{\mathcal {C}}}_\mathrm{Lip}(Z)\) represents the space of functions \(u\in {{\mathcal {P}}{\mathcal {C}}}(Z)\) such that \(u_{\mid _{(t_{i},_{i+1}]}}\in C_\mathrm{Lip}((t_{i},t_{i+1}];Z)\) for all \(i=0,1,\ldots t_{N+1}\), endowed with the norm \(\parallel u\parallel _{{{\mathcal {P}}{\mathcal {C}}}_\mathrm{Lip}(Z)}=\max _{i=0,\ldots , N} \parallel u_{\mid _{(t_{i},t_{i+1}]}}\parallel _{C_\mathrm{Lip}((t_{i},_{i+1}];Z)}\).

We use the symbol \( {\mathcal {B}}{{\mathcal {P}}{\mathcal {C}}}(Z)\) for the set of all the functions \(u:[-p,a]\mapsto Z\) such that \( u_{\mid _{[-p,t_{1}]}}\in C([-p,t_{1}];Z)\) and \( u_{\mid _{[0,a]}}\in {{\mathcal {P}}{\mathcal {C}}}(Z)\). In addition, \({\mathcal {B}}{{\mathcal {P}}{\mathcal {C}}}_\mathrm{Lip}(Z)\) is the space formed by all the functions \(u:[-p,a]\mapsto Z\) such that \(u\in {\mathcal {B}}{{\mathcal {P}}{\mathcal {C}}}(Z)\), \(u_{\mid _{[-p,0]}}\in {C}_\mathrm{Lip}([-p,0];Z)\) and \( u_{\mid _{[0,a]}}\in {\mathcal {P}}{\mathcal {C}}_\mathrm{Lip}(Z)\), endowed with the norm \(\parallel u\parallel _{{\mathcal {B}}{{\mathcal {P}}{\mathcal {C}}}_\mathrm{Lip}(Z)}=\max \{\parallel u_{\mid _{I_{i}}}\parallel _{C_\mathrm{Lip}( I_{i};Z)} : i=-1,0,\ldots , N\} .\)

For \(u\in {\mathcal {B}}{{\mathcal {P}}{\mathcal {C}}}(Z)\) and \( i\in \{-1, 0, 1, \cdots , N\}\), we use the notation \({\tilde{u}}_{i} \) for the function \({\tilde{u}}_{i} \in C([t_{i},t_{i+1}];Z) \) given by \( {\widetilde{u}}_{i}(t) = u(t)\) for \(t\in (t_{i},t_{i+1}]\) and \( {\widetilde{u}}_{i}(t) =u(t_{i}^{+}) \) for \( t=t_{i}\). For \(B\subseteq {\mathcal {B}}{{\mathcal {P}}{\mathcal {C}}}(Z) \) and \( i\in \{-1,0, 1, \cdots , N\}\), \({\widetilde{B}}_{i}\) is the set \({\widetilde{B}}_{i}=\{ {\tilde{u}}_{i}: u\in B \}.\) We note the following Ascoli–Arzela type criteria.

Lemma 1.1

A set \(B\subseteq {\mathcal {B}}{{\mathcal {P}}{\mathcal {C}}(Z)}\) is relatively compact in \( {\mathcal {B}}{{\mathcal {P}}{\mathcal {C}}(Z)}\) if and only if each set \({\widetilde{B}}_{i}\) is relatively compact in \(C([t_{i},t_{i+1}],Z)\).

In this paper, \(X_{1}\) is the domain of A endowed with the norm \(\parallel x\parallel _{X_{1}}=\parallel x\parallel +\parallel Ax\parallel \) and \( C_{0}, C_{1}\) are positive constants such that \(\parallel AT(s)\parallel _{{\mathcal {L}}(X_{1},X)} \le C_{1}\), \(\parallel T(s)\parallel \le C_{0}\) and \(\parallel AT(t)\parallel \le \frac{ C_{1}}{t}\) for all \(s\in [0,a] \) and \(t\in (0,a]\).

Related the abstract Cauchy problem

$$\begin{aligned} u' (t) = Au(t) +\xi (t) , \quad t\in [a,b], \quad u(c)=x \in X, \end{aligned}$$
(1.4)

we note that the function \(u\in C ([c,d];X) \) given by \( u(t) = T(t-c)x +\int _{c}^{t}T(t-s) \xi (s) {\text {d}}s\), is called mild solution of (1.4). In addition, a function \(v\in C ([c,d];X) \) is said to be a classical solution of (1.4) if \(v\in C^{1}((c,d];X) \cap C ((c,d];X_{1} ) \) and \(v(\cdot )\) satisfies (1.4) on (cd].

2 Existence of solutions

In this section we present some results on the existence of solution for (1.1)–(1.3). To begin, we introduce the followings concepts of solution.

Definition 2.1

A function \(u\in {\mathcal {B}}{{\mathcal {P}}{\mathcal {C}}}(X)\) is called a mild solution of the problem (1.1)–(1.3) if \(u_{0}=\varphi \), \( u(t_{i}^{+})= g_{i}(u(\sigma _{i}(u(t_{i}^{+}))))\) for all \( i=1,\ldots , N\) and

$$\begin{aligned} u(t)= & {} T(t) \varphi (0) + \int _{0}^{t}T(t-\tau )f(\tau ,u(\zeta (\tau ,u(\tau )))){\text {d}}\tau , \,\,\,\,\, t\in [0,t_{1}], \\ u(t)= & {} T(t-t_{i}) g_{i}(u(\sigma _{i}(u(t_{i}^{+})))) +\int _{t_{i}}^{t}T(t-\tau )f(\tau ,u(\zeta (\tau ,u(\tau )))) {\text {d}}\tau , \end{aligned}$$

for all \(t\in (t_{i},t_{i+1}]\) and \(i=1,\ldots , N.\)

Definition 2.2

A function \(u\in {\mathcal {B}}{{\mathcal {P}}{\mathcal {C}}}(X)\) is called a classical solution of (1.1)–(1.3) if \(u_{0}=\varphi \), \( u(t_{i}^{+})= g_{i}(u(\sigma _{i}(u(t_{i}^{+}))))\) for all \( i=1,\ldots , N\) and \(u(\cdot )\) satisfy (1.1).

In the remainder of this work, we assume that \((W,\parallel \cdot \parallel _{W})\) is Banach continuously embedded in \( (X,\parallel \cdot \parallel )\) such that \( A T(\cdot )\in L^{\infty }([0,a];{\mathcal {L}}(W,X))\). To prove our results, we introduce the following conditions.

\({\mathbf{H}}_{\zeta }\) :

\(\zeta \in C_\mathrm{Lip}( [0,a]\times X ;[-p,a])\) and there is a function \(j:\{1,\ldots , N\}\mapsto \{-1,0,1,\ldots , N\}\) such that \(\zeta \in C_\mathrm{Lip}( I_{i}\times X ;I_{j(i)})\) and \(j(i)\le i\) for all \(i\in \{1,\ldots , N\}\).

\({\mathbf{H}}_{\sigma _{{\mathbf{i}}} }\) :

There is a function \(q:\{1,\ldots , N\}\mapsto \{-1,0,1,\ldots , N\}\) such that \( q(i)\le i\) and \(\sigma _{i}\in C(X,I_{q(i)})\) for all \(i\in \{1,\ldots , N\}\). Next we write \([\sigma _{i}]_{C_\mathrm{Lip}}\) in place \([\sigma _{i}]_{C_\mathrm{Lip}( X;I_{q(i)})}\).

\({\mathbf{H_{g,X}^{W}}}\) :

\(g_{i} \in C_\mathrm{Lip}(X; W)\) and \( {\mathcal {C}}_{X,W}(g_{i})= \parallel g_{i}\parallel _{ C(X; W)}<\infty \) for every \(i\in \{1,\ldots , N\}\). Next, \(L_{Z,W}(g_{i})\) denotes the Lipschitz constant of \(g_{i}(\cdot )\), \(L_{Z,W}(g)=\max _{i=1,\ldots , N}L_{Z,W}(g_{i})\) and \({\mathcal {C}}_{Z,W}(g)=\max _{i=1,\ldots , N} {\mathcal {C}}_{Z,W}(g_{i})\).

\({\mathbf{H_{g}}}\) :

\(g_{i} \in C_\mathrm{Lip}(X;X)\) and \( {\mathcal {C}}_{X}(g_{i})= \parallel g_{i}\parallel _{ C(X; X)}<\infty \) for all \(i\in \{1,\ldots , N\}\). Next, \(L_{g_{i}}\) is the Lipschitz constant of \(g_{i}(\cdot )\), \(L_{g}=\max _{i=1,\ldots , N}L_{g_{i}}\) and \({\mathcal {C}}_{X}(g)=\max _{i=1,\ldots , N} {\mathcal {C}}_{X}(g_{i})\).

\({\mathbf{H_{f}}} \) :

\(f\in C_\mathrm{Lip}([0,a]\times X; X)\) and \(C_{X}(f)= \parallel f\parallel _{ C([0,a]\times X; X)}<\infty \). Next, \(L_{f}\) denotes the Lipschitz constant of \(f(\cdot )\).

Notations 1

Next, for convenience, we write \([\zeta ]_{C_\mathrm{Lip}} \) in place \([\zeta ]_{C_\mathrm{Lip}( [0,a]\times X ; [-p,a])}\), \(b_{i}=t_{i+1}-t_{i}\), \(b=\max _{i= 1,\ldots , N }b_{i}\), \(i_{c}: W\mapsto X\) is the inclusion map and

$$\begin{aligned} \Lambda _{X,W}&= \max \{\parallel AT(\cdot ) \parallel _{L^{\infty }([0,b],{\mathcal {L}}(W,X))}, C_{0}{ \parallel i_{c}\parallel _{{\mathcal {L}}(W,X)}} \} \\ \Phi _{X,W}&= \Lambda _{X,W} {\mathcal {C}}_{X,W}(g) + C_{0}( C_{X}(f) + b L_{f} ) + [T(\cdot )\varphi (0)]_{C_\mathrm{Lip}([0,a];X)}\\&\quad + [\varphi ]_{C_\mathrm{Lip}([-p,0];X)} . \end{aligned}$$

The next useful result follows from the proof of [24, Lemma 1]. The proof is omitted.

Lemma 2.2

Assume that the conditions \({\mathbf{H}}_{\zeta }\), \({\mathbf{H}}_{\sigma _{{\mathbf{i}}}}\) are satisfied, \(u,v\in {\mathcal {B}}{\mathcal {P}}{\mathcal {C}}_\mathrm{Lip}(X)\) and \(u_{0}=v_{0} \). Then \( u(\zeta (\cdot ,u(\cdot ))) \in {\mathcal {P}}{\mathcal {C}}_\mathrm{Lip}(X) \) and

$$\begin{aligned} { [ u(\zeta (\cdot ,u(\cdot ))) ]_{ {{\mathcal {P}}{\mathcal {C}}}_\mathrm{Lip}(X)} }\le & {} [u]_{{\mathcal {B}}{\mathcal {P}}{\mathcal {C}}_\mathrm{Lip}(X)} [\zeta ]_{C_\mathrm{Lip}}(1 +[u_{\mid _{[0,a]}}]_{ {{\mathcal {P}}{\mathcal {C}}}_\mathrm{Lip}(X)}) , \end{aligned}$$
(2.1)
$$\begin{aligned} \parallel u(\zeta (\cdot ,u(\cdot ))) - v(\zeta (\cdot ,v(\cdot ))) \parallel _{ {{\mathcal {P}}{\mathcal {C}}(X)}}\le & {} (1+ [v]_{ {\mathcal {B}}{\mathcal {P}}{\mathcal {C}}_\mathrm{Lip}(X)}[\zeta ]_{C_\mathrm{Lip}})\parallel u-v \parallel _{ {{\mathcal {P}}{\mathcal {C}}(X)}} , \end{aligned}$$
(2.2)
$$\begin{aligned} \parallel u(\sigma _{i}(u(t_{i}^{+}))) - v(\sigma _{i}(v(t_{i}^{+}))) \parallel\le & {} (1+ [v]_{ {{\mathcal {B}}{\mathcal {P}}{\mathcal {C}}}_\mathrm{Lip}(X)}[\sigma _{i}]_{C_\mathrm{Lip}})\parallel u-v \parallel _{{{\mathcal {P}}{\mathcal {C}}(X)}} .\nonumber \\ \end{aligned}$$
(2.3)

We can prove now our first result.

Theorem 2.1

Assume that the conditions \({\mathbf{\mathbf H}}_{\zeta }, {\mathbf{H}}_{\sigma _{{\mathbf{i}}} }\), \({\mathbf{H}}_{{\mathbf{g,X}}}^{{\mathbf{W}}}\) and \({\mathbf{H}}_{{\mathbf{f}}}\) are satisfied, \(T(\cdot )\varphi (0)\in C_\mathrm{Lip}([0,a];X)\), \(\varphi \in C_\mathrm{Lip}([-p,0];X)\) and

$$\begin{aligned}&2 C_{0}b L_{f}( 1+ [\zeta ]_{C_\mathrm{Lip}} (1+ 2\Phi _{X,W}) )\nonumber \\&\quad +\,2 \Lambda _{X,W}L_{X,W}(g) (1+ 2\max _{i=1,\ldots ,N}[\sigma _{i}]_{C_\mathrm{Lip}} \Phi _{X,W}) <1. \end{aligned}$$
(2.4)

Then there exists a unique classical solution \(u\in {\mathcal {B}}{{\mathcal {P}}{\mathcal {C}}}_\mathrm{Lip}(X)\) of the problem (1.1)–(1.3).

Proof

Let \(P:{\mathbb {R}}\mapsto {\mathbb {R}} \) be the polynomial given by

$$\begin{aligned} P(x)= & {} \Phi _{X,W} + (C_{0}b L_{f}(1+ [\zeta ]_{C_\mathrm{Lip}})+\Lambda _{X,W}L_{X,W}(g) -1)x\nonumber \\&(\Lambda _{X,W}L_{X,W}(g) \max _{i=1,\ldots ,N}[\sigma _{i}]_{C_\mathrm{Lip}} + C_{0}bL_{f} [\zeta ]_{C_\mathrm{Lip}}) x^{2} . \end{aligned}$$
(2.5)

From (2.4) and noting that \( C_{0}b L_{f}(1+ [\zeta ]_{C_\mathrm{Lip}})+\Lambda _{X,W}L_{X,W}(g) <1\), we infer that \(P(\cdot )\) has a root \(R_{1}>0\) and there exists \(R>0\) such that \(P(R)<0\). From the definition of \(P(\cdot )\), we get

$$\begin{aligned} \Phi _{X,W} + C_{0}b L_{f} [\zeta ]_{C_\mathrm{Lip}}( R+ R^{2})< & {} R, \end{aligned}$$
(2.6)
$$\begin{aligned} \Lambda _{X,W}L_{X,W}(g)(1+ \max _{i=1,\ldots ,N}[\sigma _{i}]_{C_\mathrm{Lip}} R) + C_{0}bL_{f} ( 1+ R[\zeta ]_{C_\mathrm{Lip}})< & {} 1. \end{aligned}$$
(2.7)

Let \({\mathcal {S}}(R)\) be the space \({\mathcal {S}}(R)= \{u\in {\mathcal {B}}{{\mathcal {P}}{\mathcal {C}}}_\mathrm{Lip}(X) \, ;\, u_{0}=\varphi , \, [u_{\mid _{[0,a]}}]_{{{\mathcal {P}}{\mathcal {C}}}_\mathrm{Lip}(X)}\le R\} ,\) endowed with the metric \(d(u,v)=\parallel u-v\parallel _{{\mathcal {B}}{{\mathcal {P}}{\mathcal {C}}} (X)} \) and \(\Gamma : {\mathcal {S}}(R) \mapsto {\mathcal {B}}{{\mathcal {P}}{\mathcal {C}}} (X) \) be the map defined by \((\Gamma u)_{0} =\varphi \) and

$$\begin{aligned} \Gamma u(t)= & {} T(t)\varphi (0)+ \int _{0}^{t}T(t-s)f(s,u(\zeta (s ,u(s)))){\text {d}}s, \,\,\,\, t\in [0,t_{1}], \\ \Gamma u(t)= & {} T(t-t_{i}) g_{i}(u(\sigma _{i}(u(t_{i}^{+})))) + \int _{t_{i}}^{t}T(t-s)f(s,u(\zeta (s,u(s)))) {\text {d}}s, \,\,\,\, \end{aligned}$$

for \(t\in (t_{i},t_{i+1}]\) and \(i=1,\ldots , N.\)

It’s easy to see that \({\mathcal {S}}(R)\) is closed in \({\mathcal {B}}{\mathcal {P}}{\mathcal {C}}(X) \) and that \(\Gamma (\cdot ) \) is well defined. Moreover, from Lemma 2.2, for \(i\in \{1,\ldots ,i\}\), \(t\in (t_{i},t_{i+1}) \) and \(h>0\) such that \(t+h\in (t_{i},t_{i+1}] \), we get

$$\begin{aligned}&{{\parallel \Gamma u(t+h)- \Gamma u(t)\parallel }} \\&\quad \le \int _{t-t_{i}}^{t+h-t_{i}} \parallel A T(s) g_{i}(u(\sigma _{i}(u(t_{i}^{+}))))\parallel {\text {d}}s\\&\qquad + \int _{t_{i}}^{t_{i}+h} \parallel T(t+h-s) f(s,u(\zeta (s,u(s))))\parallel {\text {d}}s \\&\qquad + \int _{t_{i}}^{t} \parallel T(t-s) \parallel \parallel f(s+h, u(\zeta (s+h,u(s+h)))- f(s, u(\zeta (s,u(s))))\parallel {\text {d}}s \\&\quad \le \parallel AT(\cdot )\parallel _{L^{\infty }([0,b_{i}];{\mathcal {L}}(W,X))} h {\mathcal {C}}_{X,W}(g) + C_{0} {\mathcal {C}}_{X}(f) h \\&\qquad + \int _{t_{i}}^{t}\parallel T(t-s) \parallel L_{f}(1+ [ u(\zeta (\cdot ,u(\cdot )))]_{ C_\mathrm{Lip}(I_{i};X)}) h {\text {d}}s \\&\quad \le \parallel AT(\cdot )\parallel _{L^{\infty }([0,b_{i}];{\mathcal {L}}(W,X))} h {\mathcal {C}}_{X,W}(g) + C_{0}( {\mathcal {C}}_{X}(f) + L_{f}b ) h \\&\qquad +\, C_{0} bL_{f} [u]_{{\mathcal {B}}{\mathcal {P}}{\mathcal {C}}_\mathrm{Lip}(X)} [\zeta ]_{C_\mathrm{Lip}}( 1 + [u]_{{\mathcal {P}}{\mathcal {C}}_\mathrm{Lip}(X)}) h , \end{aligned}$$

which implies that \( [ (\Gamma u)_{\mid _{I_{i}}} ]_{C_\mathrm{Lip}( I_{i};X)} \le \Phi _{X,W} + C_{0}b L_{f} [\zeta ]_{C_\mathrm{Lip}}( R+ R^{2})<R . \) In a similar way, we obtain that

$$\begin{aligned}{}[ (\Gamma u)_{\mid _{[0,t_{1}]}} ]_{C_\mathrm{Lip}([0,t_{1}];X)}\le & {} [T(\cdot )\varphi (0)]_{C_\mathrm{Lip}([0,a];X)} + C_{0} ( {\mathcal {C}}_{X}(f) + b L_{f}) \\&+\, C_{0}b L_{f} [\zeta ]_{C_\mathrm{Lip}}( R+ R^{2})) \le R. \end{aligned}$$

From the above and noting that \( [\varphi ]_{C_\mathrm{Lip}([-p,0];X)}\le R\), we obtain that \( [ \Gamma u]_{ {\mathcal {B}}{{\mathcal {P}}{\mathcal {C}}}_\mathrm{Lip}(X)}\le R\), which implies that \(\Gamma \) is a \({\mathcal {S}}(R)\)-valued function.

On the other hand, using (2.2), for \(u,v \in {\mathcal {S}}(R)\), \(i=1,\ldots , N\) and \(t\in (t_{i},t_{i+1}]\) we have that

$$\begin{aligned}&\parallel \Gamma u (t)- \Gamma v(t)\parallel \le C_{0} { \parallel i_{c}\parallel _{{\mathcal {L}}(W,X)}} L_{X,W}(g) \parallel u(\sigma _{i}(u(t_{i}^{+}))) - v(\sigma _{i}(v(t_{i}^{+}))) \parallel \\&\qquad +{\ } C_{0} L_{f}\int _{t_{i}}^{t} \parallel u(\zeta (\cdot ,u(\cdot ))) - v(\zeta (\cdot ,v(\cdot ))) \parallel _{C(I_{i}; X )} {\text {d}}s \\&\quad \le \left( \Lambda _{X,W} L_{X,W}(g) (1+ R[\sigma _{i}]_{C_\mathrm{Lip}}) + C_{0}b L_{f} (1+ R[\zeta ]_{C_\mathrm{Lip}}) \right) d(u,v) . \end{aligned}$$

In addition, for \(t\in [0,t_{1}]\) we note that \( \parallel \Gamma u (t)- \Gamma v(t)\parallel \le C_{0}bL_{f} (1+ R[\zeta ]_{C_\mathrm{Lip}}) d(u,v) .\) From the above estimates we infer that

$$\begin{aligned} d( \Gamma u , \Gamma v) \le (\Lambda _{X,W}L_{X,W}(g)(1+ R\max _{i=1,\ldots ,N}[\sigma _{i}]_{C_\mathrm{Lip}}) + C_{0}bL_{f} ( 1+ R[\zeta ]_{C_\mathrm{Lip}}))d(u,v) . \end{aligned}$$

Thus, \(\Gamma (\cdot )\) is a contraction and there exists a unique mild solution \(u\in {\mathcal {S}}(R)\) of (1.1)–(1.3).

We prove now that \(u(\cdot )\) is a classical solution. Let \({\widetilde{u}}_{i}\), \(i=1,\ldots N,\) be defined as in the introduction. It is easy to see that \({\widetilde{u}}_{i}(\cdot )\) is the mild solution of the problem

$$\begin{aligned} w'(t)= & {} Aw(t)+ f(t, u(\zeta (t,u(t)))), \,\, \quad t\in I_{i}= [t_{i},t_{i+1}], \end{aligned}$$
(2.8)
$$\begin{aligned} w(t_{i})= & {} g _{i}(u(\sigma _{i}(u(t_{i}^{+})))). \end{aligned}$$
(2.9)

Since \( f(\cdot , u(\zeta (\cdot ,u(\cdot ))))\) is Lipschitz on \(I_{i}\) and the semigroup is analytic, from [35, Theorem 4.3.2] it follows that \({\widetilde{u}}_{i}\) is a classical solution of (2.8)–(2.9). The same argument prove that \({\widetilde{u}}_{0}\) is a classical solution of (2.8) on \([0,t_{1}]\) with initial condition \(u(0)=\varphi (0)\). From the above, we obtain that \(u(\cdot )\) is a classical solution of (1.1)–(1.3). \(\square \)

In the next result we establish the existence and uniqueness of a classical solution without to use condition \({\mathbf{H}}_{{\mathbf{g,X}}}^{{\mathbf{W}}}\). In place of this condition, we introduce the following one:

\( {\mathbf{H}}_{{{g}}_{{{i}}},\sigma _{{{j}}}}\) :

\(\sigma _{i}\in C_\mathrm{Lip}(X,[-p,a])\) for all \(i\in \{1,\ldots , N\}\), \(\overline{\cup _{i=1}^{N}\sigma _{i}(X)}\subset \cup _{i=0}^{N}I_{i}\cup [-p,0]\), \(g_{i}\in C(X_{1};X_{1})\cap C_\mathrm{Lip}(X;X)\) and there are constants \(l_{g_{i}}, k_{g_{i}}\) such that \(\parallel Ag_{i}(x)\parallel \le l_{g_{i}}r+ k_{g_{i}} \) for all \(x\in B_{r}(0,X_{1})\), \(i\in \{1,\ldots , N\}\) and every \(r>0\).

Notations 2

If condition \( {\mathbf{H}}_{{{g}}_{{{i}}},\sigma _{{{j}}}}\) is verified, we use the notations \(l_{g}=\max _{i=1,\ldots }l_{g_{i}} \) and

$$\begin{aligned} \Upsilon&= C_{0}\max _{i=1,\ldots , N}k_{g_{i}} + { 2 C_{0} C_{X}(f) } + b(C_{0} +C_{1})L_{f} + [T(\cdot )\varphi (0)]_{C_\mathrm{Lip}([-p,0];X)} \\&\quad + \parallel \varphi \parallel _{C([-p,0];X_{1})} + [\varphi ]_{C_\mathrm{Lip}([-p,0];X)} . \end{aligned}$$

Theorem 2.2

Assume that the conditions \({\mathbf{H}}_{\zeta } \), \( {\mathbf{H}}_{{{g}}_{{{i}}},\sigma _{{{j}}}}\), \({\mathbf{H}}_{\mathbf{g}}\) and \({\mathbf{H}}_{{\mathbf{f}}}\) are satisfied, X is a Hilbert space, A is self-adjoint, \(T(\cdot )\varphi (0)\in C_\mathrm{Lip}([0,a];X)\), \(\varphi \in C_\mathrm{Lip}([-p,0];X)\cap C([-p,0];X_{1})\) and

$$\begin{aligned} 2 bL_{f}( ( C_{0} +C_{1}) [\zeta ]_{C_\mathrm{Lip}} (1+ 2\Upsilon ) +C_{0}) +2 C_{0} (l_{g} + L_{g} (1+ 2\max _{i=1,\ldots ,N}[\sigma _{i}]_{C_\mathrm{Lip}} \Upsilon )) <1.\nonumber \\ \end{aligned}$$
(2.10)

Then there exists a unique classical solution \(u\in {\mathcal {B}}{{\mathcal {P}}{\mathcal {C}}}_\mathrm{Lip}(X)\) of the problem (1.1)–(1.3) such that \(A{\widetilde{u}}_{i} \in C([t_{i},t_{i+1}];X )\) for all \(i=1,\ldots , N \).

Proof

Let \(P:{\mathbb {R}}\mapsto {\mathbb {R}} \) be the polynomial given by

$$\begin{aligned} P(x)= & {} \Upsilon + (b L_{f}( ( C_{0} +C_{1}) [\zeta ]_{C_\mathrm{Lip}}+C_{0}) + C_{0}(L_{g} +L_{G}) -1)x\nonumber \\&(C_{0}L_{g} \max _{i=1,\ldots ,N}[\sigma _{i}]_{C_\mathrm{Lip}} + bL_{f} ( C_{0} +C_{1}) [\zeta ]_{C_\mathrm{Lip}}) x^{2} . \end{aligned}$$
(2.11)

From (2.10) there exists \(R>0\) such that \(P(R)<0\) and

$$\begin{aligned} \Upsilon + C_{0}l_{g}R +{ ( C_{0} +C_{1})}b L_{f} [\zeta ]_{C_\mathrm{Lip}}( R+ R^{2})< & {} R, \end{aligned}$$
(2.12)
$$\begin{aligned} C_{0}L_{X,X}(g)(1+ R\max _{i=1,\ldots ,N}[\sigma _{i}]_{C_\mathrm{Lip}}) + C_{0}bL_{f} ( 1+ R[\zeta ]_{C_\mathrm{Lip}})< & {} 1. \end{aligned}$$
(2.13)

Let \({\mathcal {S}}(R)\) the space in the proof of Theorem 2.1 and \({\mathcal {S}}(\sigma _{i},R)\) be the space

$$\begin{aligned} {\mathcal {S}}(\sigma _{i},R) = \{u\in {\mathcal {S}}(R) : u(t)\in D(A)\,\,\hbox {and} \parallel Au(t) \parallel \le R, \, \, \, \forall \,\, t\in \cup _{i=1}^{N}\sigma _{i}(X) \} ,\nonumber \\ \end{aligned}$$
(2.14)

endowed with the metric \(d(u,v)=\parallel u-v\parallel _{{{\mathcal {P}}{\mathcal {C}}} (X)} \). Let \(\Gamma :{\mathcal {S}}(\sigma _{i},R) \mapsto {\mathcal {B}}{{\mathcal {P}}{\mathcal {C}}}(X) \) be defined as in the proof of Theorem 2.1. Next we prove that \(\Gamma \) is a contraction on \({\mathcal {S}}(\sigma _{i},R)\).

Let \(u\in {\mathcal {S}}(\sigma _{i},R) \), \( i\in \{1,\ldots ,N\}\), \(t\in (t_{i},t_{i+1}) \) and \(h>0\) such that \(t+h\in (t_{i},t_{i+1}] \). Arguing as in the proof of Theorem 2.1 and noting that \(u(\sigma (u(t_{i}^{+})))\in X_{1}\), we see that

$$\begin{aligned}&\parallel \Gamma u(t+h)- \Gamma u(t)\parallel \\&\quad \le \int _{t-t_{i}}^{t+h-t_{i}} \parallel T(s) A g_{i}(u(\sigma _{i}(u(t_{i}^{+}))))\parallel {\text {d}}s \ + ( C_{0} ({\mathcal {C}}_{X}(f) + b L_{f} )h \\&\qquad +\, C_{0}b L_{f} [\zeta ]_{C_\mathrm{Lip}}( R+ R^{2} )h \le C_{0}( l_{g_{i}}R +k_{g_{i}}) h \\&\qquad +\, C_{0} ({\mathcal {C}}_{X}(f) + b L_{f} )h \\&\qquad +\, C_{0}b L_{f} [\zeta ]_{C_\mathrm{Lip}}( R+ R^{2} )h , \end{aligned}$$

and hence, \( [ (\Gamma u)_{\mid _{I_{i}}} ]_{C_\mathrm{Lip}( I_{i};X)} \le \Upsilon + C_{0} l_{g_{i}}R+ C_{0}b L_{f} [\zeta ]_{C_\mathrm{Lip}}( R+ R^{2})\le R . \) In addition, it is easy to see that

$$\begin{aligned} {[} (\Gamma u)_{\mid _{[0,t_{1}]}} ]_{C_\mathrm{Lip}([0,t_{1}];X)}\le & {} [T(\cdot )\varphi (0)]_{C_\mathrm{Lip}([-p,0];Z)} + C_{0}({\mathcal {C}}_{X}(f) +b L_{f}) \\&+\,C_{0}b L_{f} [\zeta ]_{C_\mathrm{Lip}}( R+ R^{2})) \le R. \end{aligned}$$

From the above remarks we have that \( [ (\Gamma u)_{\mid _{[0,a]}} ]_{ {{\mathcal {P}}{\mathcal {C}}}_\mathrm{Lip}(X)}\le R\) which shows that \(\Gamma u\in {\mathcal {S}}(R) \). In addition, arguing as in the proof of Theorem 2.1 it follows that

$$\begin{aligned} d( \Gamma u , \Gamma v) \le C_{0} (L_{g}(1+ R\max _{i=1,\ldots ,N}[\sigma _{i}]_{C_\mathrm{Lip}}) + bL_{f} ( 1+ R[\zeta ]_{C_\mathrm{Lip}}))d(u,v) . \end{aligned}$$

From the above remarks, we have that \(\Gamma \) is a contraction on \( {\mathcal {S}}(R)\).

Next we show that \( \parallel A\Gamma u(t)\parallel \le R \) for all \(t\in \cup _{j=1}^{N}\sigma _{j}(X)\). Let \(t\in \cup _{j=1}^{N}\sigma _{j}(X)\) and assume that \(t\in (t_{i},t_{i+1}] \) for \(i\ge 1\). Using that \((T(t))_{t\ge 0}\) is analytic and that \(u(\sigma (u(t_{i}^{+})))\in X_{1}\) and \( \parallel A u(\sigma (u(t_{i}^{+}))) \parallel \le l_{g_{i}}R +k_{g_{i}} \), we note that

$$\begin{aligned} A\Gamma u(t)= & {} T(t-t_{i})A g_{i}(u(\sigma _{i}(u(t_{i}^{+}))))\\&+ \, { T(t-t_{i} )f(t, u(\zeta (t,u(t))))- f(t, u(\zeta (t,u(t))))}\\&+ \,\int _{ t_{i}}^{t} A T(t-s)(f(s, u(\zeta (s,u(s)))- f(t, u(\zeta (t,u(t)))) {\text {d}}s,\\ \parallel A\Gamma u(t)\parallel\le & {} C_{0}( l_{g_{i}}R +k_{g_{i}}) + 2C_{0}C_{X}(f) \\&+ \,\int _{0}^{t} \frac{C_{1}}{t-s} L_{f}(1+ [ u(\zeta (\cdot ,u(\cdot )))]_{ C_\mathrm{Lip}(I_{i};X)})(t-s) {\text {d}}s \\\le & {} C_{0}( l_{g_{i}}R +k_{g_{i}})+ 2C_{0} C_{X}(f) + bC_{1} L_{f} + C_{1} b L_{f} [\zeta ]_{C_\mathrm{Lip}}( R+ R^{2}), \end{aligned}$$

which implies that \( \parallel A\Gamma u(t)\parallel \le \Upsilon + C_{0} l_{g_{i}}R + C_{1}b L_{f} [\zeta ]_{C_\mathrm{Lip}}( R+ R^{2})\le R . \) If \(t\in I_{1}\) we see that

$$\begin{aligned} \parallel A\Gamma u(t)\parallel {\le } C_{0}\parallel A \varphi (0)\parallel + 2C_{0}C_{X}(f) + bC_{1} L_{f} + C_{1}b L_{f} [\zeta ]_{C_\mathrm{Lip}}( R+ R^{2}) {\le } R . \end{aligned}$$

Thus, \( \parallel A\Gamma u(t)\parallel \le R\) for all \(t\in \cup _{i=1}^{N}\sigma _{i}(X)\) and \(\Gamma \) is a \({\mathcal {S}}(\sigma _{i},R)\)-valued function.

To finish the proof, we prove that \({\mathcal {S}}(\sigma _{i},R) \) is a closet subset of \( {\mathcal {S}}(R)\). Let \((u_{n})_{n\in {\mathbb {N}}}\) be a sequence in \({\mathcal {S}}(\sigma _{i},R) \) and \(u\in {\mathcal {B}}{{\mathcal {P}}{\mathcal {C}}} (X) \) such that \(u_{n}\rightarrow u\) as \(n\rightarrow \infty \). Let \(t\in \cup _{i=1}^{N}\sigma _{i}(X)\). Since \((Au_{n}(t))_{n\in {\mathbb {N}}}\) is bounded, there exists \(w\in X\) such that \(<Au_{n}(t), z>\rightarrow <w, z> \) as \(n\rightarrow \infty \) for all \(z\in X\). In particular, for \(v\in X_{1}\) we have that \(<Au_{n}(t),v>=<u_{n}(t),Av>\rightarrow <u(t),Av>\) as \(n\rightarrow \infty \), which implies that \(<w, v> = <u(t),Av> \) for all \(v\in X_{1}\). Using that A is self-adjoint, we obtain that \(u(t)\in X_{1} \), \(Au(t)=w\) and \(\parallel Au(t)\parallel =\parallel w\parallel \le \liminf _{n\rightarrow \infty } \parallel Au_{n}(t)\parallel \le R\), which completes the proof that \( {\mathcal {S}}(\sigma _{i},R)\) is closed.

From the above it follows that \(\Gamma \) is a contraction on \( {\mathcal {S}}(\sigma _{i},R)\) and there exists a unique mild solution \(u\in {\mathcal {S}}(\sigma _{i},R)\). The fact that \(u(\cdot )\) is a classical solution follows from the proof of Theorem 2.1. \(\square \)

The next result consider the case where \(\sigma _{i}(X)\subset [-p,0]\) for all \(i=1,\ldots ,N\). The proof use the ideas in the proof of Theorem 2.1 and we include a short proof for completeness.

Proposition 2.1

Let conditions \({\mathbf{H}}_{\mathbf{g}} \) and \({\mathbf{H}}_{\mathbf{f}}\) be holds. Assume \(\zeta \in C_\mathrm{Lip}([0,a]\times X;[-p,a])\), \(\sigma _{i}\in C_\mathrm{Lip}(X;[-p,0])\) for all \(i=1,\ldots ,N\), \(T(\cdot )\varphi (0)\in C_\mathrm{Lip}([0,a];X)\), \(\varphi \in C_\mathrm{Lip}([-p,0];X)\), \(g_{i}(\varphi (\cdot ))\in C([-p,0];W)\) for all \(i=1,\ldots ,N\) and

$$\begin{aligned} 2C_{0}b L_{f}(1+ [\zeta ]_{C_\mathrm{Lip}} (1+ 2\Phi _{X,W,\varphi })) + 2 L_{g}\Psi _{\varphi ,\sigma _{i},g_{i}} <1. \end{aligned}$$
(2.15)

where \( { \Phi _{X,W,\varphi }} = \Phi _{X,W}\max _{i=1,\ldots ,N}\parallel g_{i}(\varphi (\cdot ))\parallel _{C([-p,0];W)} + C_{0} ( {\mathcal {C}}_{X}(f) + bL_{f}) + [\varphi ]_{C_\mathrm{Lip}([-p,0];X)} \) \(+[T(\cdot )\varphi (0)]_{C_\mathrm{Lip}([-p,0];X)} \) and \(\Psi _{\varphi ,\sigma _{i},g_{i}}= C_{0}[\varphi ]_{C_\mathrm{Lip}([-p,0];X)}\max _{i=1,\ldots , N}[\sigma _{i}]_{C_\mathrm{Lip}}\). Then there exists a unique classical solution \(u \in {\mathcal {B}}{{\mathcal {P}}{\mathcal {C}}}_\mathrm{Lip}(X)\) of the problem (1.1)–(1.3).

Proof

Let \(P:{\mathbb {R}}\mapsto {\mathbb {R}} \) be given by \( P(x) = \Phi _{X,W,\varphi } + (C_{0}b L_{f}(1+ [\zeta ]_{C_\mathrm{Lip}})+ L_{g}\Psi _{\varphi ,\sigma _{i},g_{i}}-1)x + C_{0}bL_{f} [\zeta ]_{C_\mathrm{Lip}} x^{2} . \) From (2.15) there exists \(R>0\) such that \(P(R)<0\). Let \({\mathcal {S}}(R)\) be defined as in the proof of Theorem 2.1 and \(\Gamma : {\mathcal {S}}(R) \mapsto {\mathcal {B}}{{\mathcal {P}}{\mathcal {C}}} (X) \) be the map given by \(\Gamma u_{0} =\varphi \) and

$$\begin{aligned} \Gamma u(t)= & {} T(t)\varphi (0)+ \int _{0}^{t}T(t-\tau )f(\tau ,u(\zeta (\tau ,u(\tau )))){\text {d}}\tau , \,\,\,\, t\in [0,t_{1}], \\ \Gamma u(t)= & {} T(t-t_{i}) g_{i}(\varphi (\sigma _{i}(u(t_{i}^{+})))) + \int _{t_{i}}^{t}T(t-s)f(s,u(\zeta (s,u(s)))) {\text {d}}s, \,\,\,\, t\in (t_{i},t_{i+1}]. \end{aligned}$$

Arguing as in the proof of Theorem 2.1, for \(i\in \{1,\ldots ,i\}\), \(t\in (t_{i},t_{i+1}) \) and \(h>0\) such that \(t+h\in (t_{i},t_{i+1}] \), it is easy to see that

$$\begin{aligned} \parallel \Gamma u(t+h)- \Gamma u(t)\parallel\le & {} \Phi _{X,W}\max _{j=1,\ldots ,N,} \parallel g_{j}(\varphi (\cdot ))\parallel _{C([-p,0];W)} h \\&+\, ( C_{0} {\mathcal {C}}_{X}(f) + b L_{f}) h+ C_{0}b L_{f} [\zeta ]_{C_\mathrm{Lip}}( R+ R^{2}) h , \end{aligned}$$

which implies (from the definition of \(P(\cdot )\)) that \( [ (\Gamma u)_{\mid _{I_{i}}} ]_{C_\mathrm{Lip}( I_{i};X)} \le R . \) Similarly, we have that

$$\begin{aligned} {[} (\Gamma u)_{\mid _{[0,t_{1}]}} ]_{C_\mathrm{Lip}([0,t_{1}];X)}\le & {} [T(\cdot )\varphi (0)]_{C_\mathrm{Lip}([-p,0];X)} + C_{0} ( {\mathcal {C}}_{X}(f) + b L_{f}) \\&+ \, C_{0}b L_{f} [\zeta ]_{C_\mathrm{Lip}}( R+ R^{2}) \\\le & {} \Phi _{X,W,\varphi }+ C_{0}b L_{f} [\zeta ]_{C_\mathrm{Lip}}( R+ R^{2})\le R. \end{aligned}$$

From the above, \( [ (\Gamma u)_{\mid _{[0,a]}} ]_{ {{\mathcal {P}}{\mathcal {C}}}_\mathrm{Lip}(X)}\le R,\) which proves that \(\Gamma \) is a \({\mathcal {S}}(R)\)-valued function.

On the other hand, for \(u,v \in {\mathcal {S}}(R)\), \(i=1,\ldots , N\), \(t\in (t_{i},t_{i+1}]\) and \(s\in [0,t_{1}]\) we get

$$\begin{aligned} \parallel \Gamma u (t)- \Gamma v(t)\parallel\le & {} ( C_{0} L_{g}[\varphi ]_{C_\mathrm{Lip}([-p,0];X)}\max _{j=1,\ldots , N}[\sigma _{j}]_{C_\mathrm{Lip}}\\&+ \, C_{0}b L_{f} (1+ R[\zeta ]_{C_\mathrm{Lip}}) ) d(u,v) ,\\ \parallel \Gamma u (s)- \Gamma v(s)\parallel\le & {} C_{0}bL_{f}( 1+ R[\zeta ]_{C_\mathrm{Lip}} )d(u,v) , \end{aligned}$$

which allows us infer that \(\Gamma \) is a contraction and there exists a unique mild solution \(u\in {\mathcal {S}}(R)\) of the problem (1.1)–(1.3). The fact that \(u(\cdot )\) is a classical solution follows from the proof of Theorem 2.1. \(\square \)

In the next result, we assume that the functions \(\zeta (\cdot )\) and \(\sigma _{i}(\cdot )\) have values in \([-r,0]\).

Proposition 2.2

Suppose that the conditions \({\mathbf{H}}_{\mathbf{g}}\), \({\mathbf{H}}_{{\mathbf{f}}}\) are satisfied, \(\varphi \in C_\mathrm{Lip}([-p,0];X)\), \(\sigma _{i}\in C_\mathrm{Lip}(X;[-p,0])\) for all \(i=1,\ldots ,N\), \(\zeta \in C_\mathrm{Lip}([0,a]\times X;[-p,0])\) and

$$\begin{aligned} C_{0} [\varphi ]_{C_\mathrm{Lip}([-p,0];X)}( L_{g} \max _{j=1,\ldots , N}[\sigma _{j}]_{C_\mathrm{Lip}} + b L_{f} [\zeta ]_{C_\mathrm{Lip}}) < 1. \end{aligned}$$

Then there exists a unique mild solution \(u\in {{\mathcal {P}}{\mathcal {C}}}_\mathrm{Lip}(X)\) of (1.1)–(1.3).

Proof

Let \(\Gamma : {\mathcal {B}}{{\mathcal {P}}{\mathcal {C}}} (X) \mapsto {\mathcal {B}}{{\mathcal {P}}{\mathcal {C}}} (X) \) be defined as in the proof of Theorem 2.1, but using \(f(\tau ,\varphi (\zeta (\tau ,u(\tau ))))\) in place \( f(\tau ,u(\zeta (\tau ,u(\tau )))) \). In this case, for \(u,v\in {\mathcal {B}}{{\mathcal {P}}{\mathcal {C}}}_\mathrm{Lip}(X) \) we see that

$$\begin{aligned} \parallel \Gamma u - \Gamma v\parallel _{C((t_{i},t_{i+1}];X)}\le & {} C_{0} L_{g}[\varphi ]_{C_\mathrm{Lip}([-p,0];X)}\max _{j=1,\ldots , N}[\sigma _{j}]_{C_\mathrm{Lip}} d(u,v) \\&+ \, C_{0}b L_{f}[\varphi ]_{C_\mathrm{Lip}([-p,0];X)}[\zeta ]_{C_\mathrm{Lip}} d(u,v) ,\\ \parallel \Gamma u - \Gamma v\parallel _{C([0,t_{1}];X)}\le & {} C_{0}b L_{f}[\varphi ]_{C_\mathrm{Lip}([-p,0];X)}[\zeta ]_{C_\mathrm{Lip}} d(u,v) , \end{aligned}$$

which allows us to conclude that \(\Gamma \) is a contraction. \(\square \)

Next, we discuss briefly the case in which the functions \(f(\cdot )\) and \(g_{i}(\cdot )\) are locally bounded and (or) locally Lipschitz. For sake of clarity, we include the next conditions.

\( {\mathcal {H}}_{g, X}^{W}\) :

For all \(i=1,\ldots ,N\), there is \({L}_{X,W}(g_{i},\cdot )\in C({\mathbb {R}}; {\mathbb {R}})\) such that \(\parallel g_{i}(x)-g_{i}(y)\parallel _{W}\le {L}_{X,W}(g_{i},r)\parallel x-y\parallel \) for all \(x,y\in B_{r}(0,X)\) and every \(r>0\). Next, \({L}_{X,W}(g,r)= \max _{i=1,\ldots , N} L_{X,W}(g_{i},r)\) and \({\mathcal {C}}_{X,W}(g_{i},r)=\parallel g_{i}\parallel _{C(B_{r}(0,X);W)} \).

\( {\mathcal {H}}_{f}\) :

There is \({L}_{f} \in C({\mathbb {R}}; {\mathbb {R}})\) such that \(\parallel f(t,x)-f(s,y)\parallel \le {L}_{f}(r)(\mid t-s\mid + \parallel x-y\parallel ) \) for all \(x,y\in B_{r}(0,X)\), \(t,s\in [0,a]\) and \(r>0\). Next, for \(r>0\) we use the notation \({\mathcal {C}}_{X}(f,r)=\parallel f\parallel _{C([0,a]\times B_{r}(0,X);X)} \).

\({\mathcal {H}}_{\mathbf{g}}\) :

There are functions \({L}_{g_{i}} \in C({\mathbb {R}}; {\mathbb {R}})\) such that \(\parallel g_{i}(x)-g_{i}(y)\parallel \le {L}_{g_{i}}(r)\parallel x-y\parallel \) for all \(x,y\in B_{r}(0,X)\) and \(r>0\). Next, \(L_{g}(r){=}\max _{i=1,\ldots , N}L_{g_{i}}(r)\), \({\mathcal {C}}_{X}(g)(r)=\max _{i=1,\ldots , N} {\mathcal {C}}_{X}(g_{i})(r)\) and \({\mathcal {C}}_{X}(g_{i},r)=\parallel g_{i}\parallel _{C(B_{r}(0,X);X)} \).

Notations 3

For \(r>0\), we define \( \Phi _{X,W}(r) = \Lambda _{X,W} {\mathcal {C}}_{X,W}(g,r) + C_{0}( C_{X}(f,r) + b L_{f}(r)) + [T(\cdot )\varphi (0)]_{C_\mathrm{Lip}([-p,0];X)} + [\varphi ]_{C_\mathrm{Lip}([-p,0];X)} .\)

The proof of Proposition 2.3 follows from the proof of Theorem 2.1.

Proposition 2.3

Let conditions \({\mathbf{H}}_{\zeta }, {\mathbf{H}}_{\sigma _{{\mathbf{i}}} }\), \( {\mathcal {H}}_{g,X}^{W}\) and \( {\mathcal {H}}_{f}\) be holds. Suppose that \(T(\cdot )\varphi (0)\in C_\mathrm{Lip}([0,a];X)\), \(\varphi \in C_\mathrm{Lip}([-p,0];X)\) and there is \(r>0 \) such that (2.4) is satisfied with \( L_{f}(r),\) \( \Phi _{X,W} (r)\) and \( L_{X,W}(g,r)\) in place \( L_{f}, \Phi _{X,W}\) and \( L_{X,W}(g)\), and

$$\begin{aligned} \max \{C_{0} (\max \{ \parallel \varphi (0)\parallel , \parallel i_{c}\parallel _{{\mathcal {L}}(W,X)} {\mathcal {C}}_{X,W}(g,r)\} + b {\mathcal {C}}_{X}(f,r)),\parallel \varphi \parallel _{C([-p,0];X)}\}\le r. \end{aligned}$$

Then there exists a unique classical solution \(u\in {\mathcal {B}}{{\mathcal {P}}{\mathcal {C}}}_\mathrm{Lip}(X)\) of the problem (1.1)–(1.3).

Proof

Let \(P:{\mathbb {R}}\mapsto {\mathbb {R}} \) be defined as in the proof of Theorem 2.1, but using \( L_{f}(r), \Phi _{X,W} (r)\) and \( L_{X,W}(g,r)\) in place \( L_{f}, \Phi _{X,W}\) and \( L_{X,W}(g)\). Arguing as in the proof of Theorem 2.1 we infer that there exists \(R>0\) such that

$$\begin{aligned} \Phi _{X,W} (r) + C_{0}b L_{f}(r) [\zeta ]_{C_\mathrm{Lip}}( R+ R^{2})< & {} R, \nonumber \\\end{aligned}$$
(2.16)
$$\begin{aligned} \Lambda _{X,W}L_{X,W}(g,r)(1+ R\max _{i=1,\ldots ,N}[\sigma _{i}]_{C_\mathrm{Lip}}) + C_{0}bL_{f}(r) ( 1+ R[\zeta ]_{C_\mathrm{Lip}})< & {} 1.\nonumber \\ \end{aligned}$$
(2.17)

Let \( {\mathcal {S}}(R)\) be the space in the proof of Theorem 2.1 and \( {\mathcal {S}}(r,R)= \{u\in {\mathcal {S}}(R) : \, \parallel u \parallel _{ {\mathcal {B}}{{\mathcal {P}}{\mathcal {C}}} (X)}\le r \} ,\) endowed with the metric \(d(u,v)=\parallel u-v\parallel _{{\mathcal {B}}{{\mathcal {P}}{\mathcal {C}}} (X)} \). Let \(\Gamma : {\mathcal {S}}(r,R) \mapsto {\mathcal {B}}{{\mathcal {P}}{\mathcal {C}}} (X) \) be defined as in the proof of Theorem 2.1.

From the proof of Theorem 2.1 we infer that \(\Gamma \) is a contraction on \( {\mathcal {S}}( R)\). Moreover, for \(t\in I_{i}\) with \(i\ge 0\) it is easy to see that

$$\begin{aligned} \parallel \Gamma u(t)\parallel \le C_{0} \max \{\parallel \varphi (0)\parallel , \parallel i_{c}\parallel _{{\mathcal {L}}(W,X)}{\mathcal {C}}_{X,W}(g,r)\} + C_{0}b {\mathcal {C}}_{X}(f,r) \le r, \end{aligned}$$

which implies that \(\parallel \Gamma u \parallel _{ {\mathcal {B}}{{\mathcal {P}}{\mathcal {C}}} (X)}\le r \) since \( r>\parallel \varphi \parallel _{C([-p,0];X)}\). Thus, \(\Gamma \) is a contraction on \( {\mathcal {S}}( r,R)\) and there exists a unique mild solution \(u\in {\mathcal {S}}(r,R)\) of (1.1)–(1.3). Finally, from [35, Theorem 4.3.2] we infer that \(u(\cdot )\) is a classical solution. \(\square \)

Corollary 2.1

Assume that the conditions \({\mathbf{H}}_{\zeta }, {\mathbf{H}}_{\sigma _{{\mathbf{i}}} }\), \( {\mathcal {H}}_{g,X}^{W}\) and \( {\mathcal {H}}_{f}\) are satisfied, the functions \(L_{f}(\cdot ),\) \({\mathcal {C}}_{X}(f,\cdot )\), \(L_{X,W}(g,\cdot )\) and \({\mathcal {C}}_{X,W}(g,\cdot )\) are non-decreasing, \(\varphi \in C_\mathrm{Lip}([-p,0];X)\), \(T(\cdot )\varphi (0)\in C_\mathrm{Lip}([0,a];X)\), \( \limsup _{r\rightarrow \infty }\frac{1}{r} C_{0} (\parallel i_{c}\parallel _{{\mathcal {L}}(W,X)} {\mathcal {C}}_{X,W}(g,r) + b {\mathcal {C}}_{X}(f,r)) < 1\) and

$$\begin{aligned}&{{ 2 C_{0}b \limsup _{r\rightarrow \infty } L_{f}(r)\frac{1}{r}( 1+ [\zeta ]_{C_\mathrm{Lip}} (1+2 \Phi _{X,W}(r)) }} \nonumber \\&\quad +{\ }2 \Lambda _{X,W}\limsup _{r\rightarrow \infty }L_{X,W}(g,r)\frac{1 }{r}(1+ 2\max _{i=1,\ldots ,N}[\sigma _{i}]_{C_\mathrm{Lip}} \Phi _{X,W}(r)) <1 .\nonumber \\ \end{aligned}$$
(2.18)

Then there exists a unique classical solution \(u\in {\mathcal {B}}{{\mathcal {P}}{\mathcal {C}}}_\mathrm{Lip}(X)\cap B_{r}(0, {\mathcal {B}}{{\mathcal {P}}{\mathcal {C}}} (X))\) of (1.1)–(1.3).

We establish now, without proof, a result similar to Theorem 2.2 for the case where \(f(\cdot )\) satisfy the condition \({\mathcal {H}}_{f}\).

Proposition 2.4

Suppose the conditions \({\mathbf{H}}_{\zeta } \), \({\mathbf{H}}_{g_{i},\sigma _{j}}\), \( {\mathcal {H}}_{g}\) and \( {\mathcal {H}}_{f}\) be holds, X is a Hilbert space, A is self-adjoint, \(T(\cdot )\varphi (0)\in C_\mathrm{Lip}([0,a];X) \) and \(\varphi \in C_\mathrm{Lip}([-p,0];X)\cap C([-p,0];X_{1})\). If there is \(r>0\) such that the inequality (2.10) is valid with \(L_{f}(r)\), \(L_{g}(r)\), \({\mathcal {C}}_{X}(f,r) \) and \({\mathcal {C}}_{X}(g,r)\) in place \(L_{f}\), \(L_{g}\), \({\mathcal {C}}_{X}(f)\) and \({\mathcal {C}}_{X}(g)\), and \( C_{0}( \max \{ \parallel \varphi (0)\parallel ,{\mathcal {C}}_{X}(g,r)\} + b {\mathcal {C}}_{X}(f,r))\le r,\) then there exists a unique classical solution \(u \in B_{r}(0,{\mathcal {B}}{{\mathcal {P}}{\mathcal {C}}} (X))\cap {{\mathcal {P}}{\mathcal {C}}}_\mathrm{Lip}(X))\) of (1.1)–(1.3).

To complete this section, we study the existence of solution using the Schauder’s fixed point Theorem. The next lemma follows from the proof of [32, Proposition 4.2.1].

Lemma 2.3

Let \(\alpha \in (0,1)\), \(\xi \in L^{\infty }([b,c];X) \) and \(v:[b,c]\mapsto X\) be the function defined by \(v(t)=\int _{b}^{t}T(t-s)\xi (s){\text {d}}s\). Then \( { [v]_{ C^{\alpha }([b,c];X) } } \le \parallel \xi \parallel _{L^{\infty }([b,c];X)}({ (c-b)^{1-\alpha }}C_{0}+ \frac{C_{1}}{\alpha (1-\alpha )}) \).

Theorem 2.3

Assume that the conditions \({\mathbf{H}}_{\zeta } \) and \({\mathbf{H}}_{\sigma _{{\mathbf{i}}} }\) are satisfied, there is a Banach space \((Y,\parallel \cdot \parallel _{Y}) \hookrightarrow (X,\parallel \cdot \parallel )\) such that \(\parallel T(t)- I\parallel _{{\mathcal {L}}(Y,X)} \rightarrow 0\) as \(t\rightarrow 0\), \(g_{i} \in C(X;Y)\) for all i, \(f\in C([0,a]\times X;X)\), the functions \(g_{i}(\cdot ),f(\cdot )\) are bounded and \((T(t))_{t\ge 0}\) is compact. Then there exists a mild solution of the problem (1.1)–(1.3).

Proof

Let \({\mathcal {C}}_{X,Y}(g)=\max _{i=1,\ldots , N}\parallel g_{i}\parallel _{ C(X; Y)}\), \(C_{X}(f)= \parallel f\parallel _{ C([0,a]\times X; X)}\) and \(\alpha \in (0,1)\). Let \( {\mathcal {B}}{{\mathcal {P}}{\mathcal {C}}}_{\varphi }(X)=\{ u\in {\mathcal {B}}{{\mathcal {P}}{\mathcal {C}}}(X):\, u_{0}=\varphi \}\) endowed with the metric \(d(u,v)=\parallel u- v\parallel _{{{\mathcal {B}}{\mathcal {P}}{\mathcal {C}}}(X)}\) and \(\Gamma : {\mathcal {B}}{{\mathcal {P}}{\mathcal {C}}}_{\varphi }(X) \mapsto {\mathcal {B}}{{\mathcal {P}}{\mathcal {C}}}(X) \) be defined as in the proof of Theorem 2.1.

It is easy to prove that \(\Gamma \) is continuous. Next, using Lemma 1.1, we show that \(\Gamma \) is completely continuous.

Let \(i\in \{1,\ldots , N\}\). From Lemma 2.3, for \(t\in (t_{i},t_{i+1})\), \(h>0\) with \(t+h\in (t_{i},t_{i+1}]\), we get

$$\begin{aligned}&{{\parallel \Gamma u(t+h)- \Gamma u(t)\parallel }}\\&\quad \le \parallel (T(t+h{ -t_{i}})-T(t{ -t_{i}}))g_{i}(u(\sigma _{i}(u(t_{i}^{+}))))\parallel \\&\qquad + \parallel \int _{t_{i}} ^{t+h} T(t+h-s) f(s, u(\zeta (s,u(s)))) {\text {d}}s- \int _{t_{i}} ^{t} T(t-s) f(s, u(\zeta (s,u(s)))){\text {d}}s \parallel \\&\quad \le \parallel (T(t+h{ -t_{i}})-T(t{ -t_{i}})) \parallel _{{\mathcal {L}}(Y,X)} {\mathcal {C}}_{X,Y}(g) + {\mathcal {C}}_{X}(f)\left( a^{1-\alpha } C_{0}+ \frac{C_{1}}{\alpha (1-\alpha )}\right) h^{\alpha } , \end{aligned}$$

which shows that \(\{(\Gamma u)_{\mid _{I_{i}}} :u\in {\mathcal {B}}{{\mathcal {P}}{\mathcal {C}}}_{\varphi }(X) \}\) is right equicontinuous at \(t\in (t_{i},t_{i+1})\). A similar argument prove that \(\{(\Gamma u)_{\mid _{I_{i}}} :u\in {\mathcal {B}}{{\mathcal {P}}{\mathcal {C}}}_{\varphi }(X) \}\) is left equicontinuous at \(t=t_{i+1}\), which implies that \(\{(\Gamma u)_{\mid _{I_{i}}} :u\in {\mathcal {B}}{{\mathcal {P}}{\mathcal {C}}}_{\varphi }(X) \}\) is equicontinuous on \(I_{i}\). In addition, for \(u\in {\mathcal {B}}{{\mathcal {P}}{\mathcal {C}}}_{\varphi }(X)\) and \(0<h<\delta \) we note that

$$\begin{aligned}&{{\parallel \widetilde{ \Gamma u } (t_{i}+h)- \widetilde{ \Gamma u } (t_{i})\parallel }} \\&\quad = \parallel (T(h)-I)g_{i}(u(\sigma _{i}(u(t_{i}^{+}))))\parallel + \int _{t_{i}} ^{t_{i}+h} T(t_{i}+h-s) f(s, u(\zeta (s,u(s)))) {\text {d}}s\parallel \\&\quad \le \parallel T(h)-I\parallel _{{\mathcal {L}}(Y,X)} {\mathcal {C}}_{X,Y}(g) + {\mathcal {C}}_{X}(f)\left( a^{1-\alpha } C_{0}+ \frac{C_{1}}{\alpha (1-\alpha )}\right) h^{\alpha }, \end{aligned}$$

which proves that \( \widetilde{ \Gamma {\mathcal {B}}{{\mathcal {P}}{\mathcal {C}}}_{\varphi }(X) }_{i}= \{(\widetilde{ \Gamma u})_{i} : u\in {\mathcal {B}}{{\mathcal {P}}{\mathcal {C}}}_{\varphi }(X) \} \) is right equicontinuous at \(t_{i}\). From the above it follows that \(\{\widetilde{(\Gamma u)}_{{i}} :u\in {\mathcal {B}}{{\mathcal {P}}{\mathcal {C}}}_{\varphi }(X) \}\) is equicontinuous on \(I_{i}\).

We prove now that \(\{(\widetilde{ \Gamma u})_{i} (t) :u\in {\mathcal {B}}{{\mathcal {P}}{\mathcal {C}}}_{\varphi }(X) \}\) is relatively compact in X for all \(t\in [t_{i},t_{i+1}]\). Since the semigroup is compact, \((Y,\parallel \cdot \parallel _{Y}) \hookrightarrow (X,\parallel \cdot \parallel )\) and \(g_{i}(\cdot )\) is bounded with values in Y, we have that \(U= \{ g_{j}(u(\sigma _{j}(u(t_{j}^{+})))):u\in {\mathcal {B}}{{\mathcal {P}}{\mathcal {C}}}_{\varphi }(X),\,j=1,\ldots ,N\} \) is relatively compact in X. For \(t\in (t_{i}, t_{i+1}]\) and \(0<\varepsilon <t-t_{i}\), we note that

$$\begin{aligned} (\widetilde{ \Gamma u})_{i}(t)= & {} T(t-t_{i})U+ T(\varepsilon )\int _{t_{i}}^{t-\varepsilon }T(t-\varepsilon -s) f(s, u(\zeta (s,u(s)))) {\text {d}}s \\&+ \int _{t-\varepsilon }^{t}T(t-s) f(s, u(\zeta (s,u(s)))) {\text {d}}s \\&\in T(t-t_{i})U+ T(\varepsilon ) C_{0}(t-\varepsilon -t_{i}) {\mathcal {C}}_{X}(f) B_{1}(0,X) + \varepsilon C_{0}{\mathcal {C}}_{X}(f) B_{1}(0,X), \end{aligned}$$

and hence, \(\{(\widetilde{ \Gamma u})_{i} (t) :u\in {\mathcal {B}}{{\mathcal {P}}{\mathcal {C}}}_{\varphi }(X) \} \subset K_{\varepsilon }+ D_{\varepsilon },\) where \(K_{\varepsilon }\) is relatively compact and the diameter of \(D_{\varepsilon }\) converges to zero as \(\varepsilon \rightarrow 0\). This prove that the set \( \Gamma {\mathcal {B}}{{\mathcal {P}}{\mathcal {C}}}_{\varphi }(X) (t) \) is relatively compact in X. Moreover, since \( \widetilde{ \Gamma {\mathcal {B}}{{\mathcal {P}}{\mathcal {C}}}_{\varphi }(X) }_{i} (t_{i})= \{ g_{i}(u(\sigma _{i}(u(t_{i}^{+})))):u\in {\mathcal {B}}{{\mathcal {P}}{\mathcal {C}}}_{\varphi }(X)\} \subset {\overline{U}}, \) we obtain that \( \widetilde{ \Gamma {\mathcal {B}}{{\mathcal {P}}{\mathcal {C}}}_{\varphi }(X) }(t_{i})\) is relatively compact in X. From the above remarks we have that \( (\widetilde{ \Gamma {\mathcal {B}}{{\mathcal {P}}{\mathcal {C}}}_{\varphi }(X) })_{i}\) is relatively compact in \(C([t_{i},t_{i+1}];X)\). Moreover, the same argument also prove that \( (\widetilde{\Gamma {\mathcal {B}}{{\mathcal {P}}{\mathcal {C}}}_{\varphi }(X)})_{1} =\{ (\Gamma u)_{\mid _{[0,t_{1}]}} : u\in {\mathcal {B}}{{\mathcal {P}}{\mathcal {C}}}_{\varphi }(X))\}\) is relatively compact in \( C([0,t_{1}];X)\).

From the above and Lemma 1.1, it follows that \(\Gamma \) is completely continuous and noting that the functions \(f(\cdot ) \) and \( g_{i}(\cdot )\) are bounded, we infer that there exists \(r>0\) such that \( \Gamma ( {\mathcal {B}}{{\mathcal {P}}{\mathcal {C}}}_{\varphi }(X)) \subset B_{r}( 0, {\mathcal {B}}{{\mathcal {P}}{\mathcal {C}}}_{\varphi }(X) )\). Thus, \(\Gamma \) is completely continuous from \( B_{r}(0, {\mathcal {B}}{{\mathcal {P}}{\mathcal {C}}}_{\varphi }(X) )\) into \( B_{r}(0, {\mathcal {B}}{{\mathcal {P}}{\mathcal {C}}}_{\varphi }(X) ) \) and there exists a mild solution \(u\in B_{r}(0, {\mathcal {B}}{{\mathcal {P}}{\mathcal {C}}}_{\varphi }(X) )\) of (1.1)–(1.3). \(\square \)

3 Examples

In this section, \(X= L^{2}(\Omega ;{\mathbb {R}})\) or \(X= C(\Omega ;{\mathbb {R}})\), \(\Omega \subset {\mathbb {R}}^{n}\) is a open set with smooth boundary and \(A:D(A)\subset X\mapsto X\) is the realization of an second order strongly elliptic operator. Next, we assume that \((T(t))_{t\ge }\) is the analytic semigroup generated by A, \(D(A)=\{u\in L^{2}(\Omega ):Au\in L^{2}(\Omega )\}\) if \(\Omega ={\mathbb {R}}^{n}\) and \(D(A)=W^{2,2}(\Omega )\cap W^{2,1}_{0}(\Omega )\) if \(\Omega \) is bounded. For sake of simplicity, we suppose that the conditions \({\mathbf{H}}_{\zeta }\) and \({\mathbf{H}}_{\sigma _{{\mathbf{i}}} }\) are satisfies, \(0\in \rho (A)\), \(\varphi \in C_\mathrm{Lip}([-p,0];X)\) and \(T(\cdot )\varphi (0)\in C_\mathrm{Lip}([0,a];X)\). In addition, \(X_{1}\) is the domain of A endowed with the norm \(\parallel x\parallel _{X_{1}}= \parallel Ax\parallel \) and \(C_{0},C_{1}\) are the constants in the introduction.

To begin, we study the impulsive problem

$$\begin{aligned} u' (t,\xi )= & {} A u(t)(\xi ) + \beta _{1} (t,\xi , u(\zeta (u(t))-t,\xi )) + \beta _{2} (t) u(\zeta (u(t)) ,\xi ) , \,\, t\in I_{i}, \, \xi \in \Omega , \end{aligned}$$
(3.1)
$$\begin{aligned} u(t_{i}^{+},\xi )= & {} \int _{{\mathbb {R}}^{n}}{\mathcal {L}}_{i}(\xi ,y)u( \sigma (u(t_{i}^{+})),y){\text {d}}y, \end{aligned}$$
(3.2)
$$\begin{aligned} u(\theta , \xi )= & {} \varphi (\theta ,\xi ),\quad \theta \in [-p,0], \end{aligned}$$
(3.3)

where \( \Omega = {\mathbb {R}}^{n} \), \(X= L^{2}(\Omega ;{\mathbb {R}})\), \(0=t_{0}< \cdots < t_{N+1} =a\) are pre-fixed, \(I_{i}= (t_{i},t_{i+1}]\), \(\beta _{1}\in C_\mathrm{Lip}([0,a]\times {\mathbb {R}};{\mathbb {R}})\), \(\beta _{1}(\cdot )\) is bounded, \(\beta _{2} \in C_\mathrm{Lip}([-p,a]; {\mathbb {R}})\) and \({\mathcal {L}}_{i}, A {\mathcal {L}}_{i} \in L^{2}(\Omega \times \Omega ,{\mathbb {R}})\). In addition, we assume that there is \(\gamma \in L^{p}(\Omega )\) such that

$$\begin{aligned} \mid \beta _{1}(t,\xi ,x)-\beta _{1}(s,\xi ,y) \mid \le \gamma (\xi )(\mid t-s\mid + \mid x-y\mid ) , \quad \forall \,\, t,s\in [0,a], \xi ,x, y \in {\mathbb {R}}^{n}. \end{aligned}$$

To represent this problem in the form (1.1)–(1.3) we define the functions \(g_{i}(\cdot )\) and \(f(\cdot )\) by \( g_{i}(t,x)(\xi ) = \int _{{\mathbb {R}}^{n}}{\mathcal {L}}(\xi ,y)x(y){\text {d}}y \) and \( f(t,x)(\xi ) {=} \beta _{1} (t,\xi ,x(\xi ))+ \beta _{2} (t) x(\xi )\). It is easy to see that \( \parallel A g_{i}(x)\parallel \le \parallel A{\mathcal {L}}_{i}\parallel _{L^{2}(\Omega \times \Omega ;{\mathbb {R}})}\parallel x\parallel \) and

$$\begin{aligned} \parallel f(t,x)- f(s,y)\parallel\le & {} [ \gamma ]_{C_\mathrm{Lip}}\mid t-s\mid + \parallel \gamma \parallel _{C(\Omega )}\parallel x-y\parallel \\&+\,[\beta _{2}]_{C_\mathrm{Lip}([0,a];{\mathbb {R}})}\parallel x\parallel \mid t-s\mid + \parallel \beta _{2}\parallel _{C(\Omega )}\parallel x-y\parallel . \end{aligned}$$

Thus, we can apply Proposition 2.3 with \(L_{f}(r)= \parallel \gamma \parallel _{C_\mathrm{Lip}(\Omega )} + [\beta _{2}]_{C_\mathrm{Lip}}r + \parallel \beta _{2}\parallel _{C(\Omega )}\), \(C_{X}(f,r)= \parallel \beta _{1}\parallel _{C([0,a]\times \Omega \times \Omega ;{\mathbb {R}})}+ \parallel \beta _{2}\parallel _{C(\Omega )}r\), \(L_{X,X_{1}}(g_{i})=\parallel A{\mathcal {L}}_{i}\parallel _{L^{2}(\Omega \times \Omega ;{\mathbb {R}})}\), \(C_{X,X_{1}}(g,r)= \max _{i=1,\ldots ,n} \parallel A{\mathcal {L}}_{i}\parallel _{L^{2}(\Omega \times \Omega ;{\mathbb {R}})} r\) and \(L_{X,X_{1}}(g)=\sup _{i=1,\ldots ,n} \parallel A{\mathcal {L}}_{i}\parallel _{L^{2}(\Omega \times \Omega ;{\mathbb {R}})}\).

In the next result, we adopt the above notations and the notations in Remark 1. In addition, we say that \(u\in {\mathcal {B}}{{\mathcal {P}}{\mathcal {C}}}(X)\) is a classical solution of (3.1)–(3.3) if \(u(\cdot )\) is a classical solution of the associate problem (1.1)–(1.3) and we adopt a similar (for mild and classical solutions) in the following examples.

Proposition 3.5

If \(\max \{ \parallel \varphi \parallel _{C([-p,0];X)}, C_{0} b {\mathcal {C}}_{X}(f,r) + C_{1} {\mathcal {C}}_{X,W}(g,r)\} \le r\) and

$$\begin{aligned}&{{ 2 C_{0}b L_{f}(r)\frac{1}{r}( 1+ [\zeta ]_{C_\mathrm{Lip}} (1+2 \Phi _{X,W}(r)) }} \\&\quad +\,2 \Lambda _{X,W}L_{X,W}(g,r)\frac{1 }{r}(1+ 2\max _{i=1,\ldots ,N}[\sigma _{i}]_{C_\mathrm{Lip}} \Phi _{X,W}(r)) <1, \end{aligned}$$

for some \(r>0\), then there exists a unique classical solution \(u\in {\mathcal {B}}{{\mathcal {P}}{\mathcal {C}}}_\mathrm{Lip}(X)\) of (3.1)–(3.3).

We study now the problem

$$\begin{aligned} u' (t,x)= & {} A u(t)(x) + \int _{0}^{t} \beta _{1} (s, u(\zeta (u(t))-t,x )){\text {d}}s , \,\,\, \, x\in \Omega ,\,t\in I_{i}= (t_{i},t_{i+1}], \nonumber \\\end{aligned}$$
(3.4)
$$\begin{aligned} u(t_{i}^{+},x)= & {} \alpha _{i}u( \sigma _{i}(u(t_{i}^{+})),x), \end{aligned}$$
(3.5)
$$\begin{aligned} u(\theta , x)= & {} \varphi (\theta ,x),\quad \theta \in [-p,0], x\in \Omega , \end{aligned}$$
(3.6)

where \(\Omega \) is bounded, \(\beta _{1}\in C_\mathrm{Lip}([0,a]\times {\mathbb {R}};{\mathbb {R}})\) and \(\beta _{1}(\cdot )\) is bounded.

To apply Theorem 2.2, we assume \(X=L^{2}(\Omega )\), the condition \( {\mathbf{H}}_{g_{i},\sigma _{j}}\) is satisfied and we define \(g_{i}(\cdot )\) and \(f(\cdot )\) by \( f(t,x)(\xi ) = \int _{0}^{t} \beta _{1} (\tau ,x(\xi )) {\text {d}}\tau \) and \( g_{i}(t,x)(\xi )= \alpha _{i} x(\xi ).\) From the above,

$$\begin{aligned} \parallel f(t,x)- f(s,y)\parallel\le & {} \parallel \beta _{1}\parallel _{C([0,a]\times {\mathbb {R}};{\mathbb {R}} )} \mid t-s\mid + b [\beta _{1}]_{C_\mathrm{Lip}([0,a]\times {\mathbb {R}};{\mathbb {R}} )}\parallel x-y\parallel , \, \\ \parallel g_{i}(x )- g_{i}(y)\parallel\le & {} \mid \alpha _{i}\mid \parallel x-y\parallel ,\,\,\,\, \parallel A g_{i}(z )\parallel \le \mid \alpha _{i}\mid \parallel Az\parallel , \end{aligned}$$

for \(t,s\in [0,a]\), \(x,y\in X\) and \(z\in D(A)\), and the conditions in Theorem 2.2 are satisfied with \(L_{f} =(1+b) \parallel \beta _{1}\parallel _{C_\mathrm{Lip}([0,a]\times {\mathbb {R}};{\mathbb {R}} )} \), \(C_{X}(f)= a\parallel \beta _{1}\parallel _{C([0,a]\times {\mathbb {R}};{\mathbb {R}})}\), \(l_{g_{i}}= \mid \alpha _{i}\mid \), \(k_{g_{i}}=0\), \(L_{g}=\max _{i=1,\ldots ,N} \mid \alpha _{i}\mid \) and \( \Upsilon = 2 C_{0} C_{X}(f) + b(C_{0} +C_{1})L_{f} + [T(\cdot )\varphi (0)]_{C_\mathrm{Lip}([-p,0];X)} + [\varphi ]_{C_\mathrm{Lip}([-p,0];X)} .\) The next result follows from Theorem 2.2.

Proposition 3.6

Under the above conditions and notations, if the inequality (2.10) is verified, then there exists a unique classical solution \(u\in {\mathcal {B}}{{\mathcal {P}}{\mathcal {C}}}_\mathrm{Lip}(X)\) of (3.4)–(3.6).

We complete this section studying a problem motivated by equations arising in population dynamics. Consider the problem

$$\begin{aligned} u' (t,x)= & {} A u(t)(x) + \alpha u(t,x)(1-u(t,x)) , \,\,\, \, x\in \Omega ,\,t\in I_{i}= (t_{i},t_{i+1}], \end{aligned}$$
(3.7)
$$\begin{aligned} u(t_{i}^{+},x)= & {} \alpha _{i}u( \sigma _{i}(u(t_{i}^{+})),x), \end{aligned}$$
(3.8)
$$\begin{aligned} u(\theta , x)= & {} \varphi (\theta ,x),\quad \theta \in [-p,0]. \end{aligned}$$
(3.9)

To treat this problem, we assume \(X= C(\Omega ;{\mathbb {R}})\) and \(\alpha ,\alpha _{i}\in {\mathbb {R}}\) and we define \(g_{i}(\cdot )\) and \(f(\cdot )\) by \( g_{i}(t,x)(\xi )= \alpha _{i} x(\xi ) \) and \( f(t,x)(\xi ) = \alpha x(\xi )(1- x(\xi ))\). It is trivial to see that

$$\begin{aligned} \parallel f(t,x)- f(s,y)\parallel\le & {} \mid \alpha \mid (1+2r)\parallel x-y\parallel , \,\,\,\, \parallel f(t,x)\parallel \le \mid \alpha \mid r(1+r), \\ \parallel g_{i}(x )- g_{i}(y)\parallel\le & {} \mid \alpha _{i}\mid \parallel x-y\parallel \,\,\hbox {and}\,\, \parallel A g_{i}(z )\parallel \le \mid \alpha _{i}\mid \parallel Az\parallel , \end{aligned}$$

for all \(t,s\in [0,a]\), \(x,y\in B_{r}(0;X)\) and \(z\in D(A)\). From Proposition 2.4, we get.

Proposition 3.7

Suppose that there is \(r>\parallel \varphi \parallel _{C([-p,0];X)}\) such that the inequality (2.10) is verified with \(L_{f}(r)\) in place \(L_{f}\) and \( C_{0} ( \parallel \varphi (0)\parallel + b \mid \alpha \mid (1+2r)) + C_{0}(\max _{i=1,\ldots ,N}l_{ g_{i}}r+ k_{g_{i}}) < r.\) Then there exists a unique classical solution \(u\in {\mathcal {B}}{{\mathcal {P}}{\mathcal {C}}}_\mathrm{Lip}(X)\) of (3.7)–(3.9).