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1. Introduction

In this paper, we study the existence and uniqueness of mild and classical
solutions for a class of abstract impulsive differential equations of the form

u′(t) = Au(t) + f(t, u(ζ(t, u(t)))), t ∈ Ii = (ti, ti+1], i = 0, . . . , N,

(1.1)
u(t+j ) = gj(u(σj(u(t+j )))), j = 1, . . . , N, (1.2)

u0 = ϕ ∈ B = C(I−1;X), I−1 = [−p, 0], (1.3)

where A : D(A) ⊂ X �→ X is the generator of an analytic semigroup of
bounded linear operators (T (t))t≥0 on a Banach space (X, ‖ · ‖), 0 = t0 <
t1 < t2 < · · · < tN < tN+1 = a are pre-fixed numbers and f(·), gi(·), σi(·),
i = 1, . . . , N, are functions specified be later.

The study of state-dependent delay equations is motivated by appli-
cations and theory. Related ODEs on finite dimensional spaces we cite the
early works by Driver [9,10] and Aiello et al. [1], the survey by Hartung,
Krisztin et al. [15], the papers by Hartung et.al. [16–18] and the references
in these works. For the case PDEs and abstract differential equations with
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state-dependent delay, we mention [19,20,26,36–38] and the recent interest-
ing works by Krisztin and Rezounenko [25], Yunfei et al. [33], Kosovalic et
al. [26,27] and Hernandez et al. [24].

Concerning the theory of impulsive differential equations, their motiva-
tions and relevant developments, we cite the books by Bainov and Covachev
[2], Lakshmikantham et al. [28], Samoilenko and Perestyuk [40] for the case
of ordinary differential equations on finite dimensional space and Benchohra
et al. [7] for abstract differential equations and partial differential equa-
tions. In addition, we cite the interesting papers [8,11,20–23,29,31,34,39,43]
and the references therein. Related differential equations with impulse at
state-dependent moments and state-dependent delayed impulses, we refer
the reader to [3–6,13,14,30,41].

Our work is motivated by the papers Hakl et al. [14] related partial dif-
ferential equations with impulse at state-dependent moments and Li and Wu
[30] on differential equations with state-dependent delayed impulses. Specif-
ically, we study the existence and “uniqueness” of solutions for the problem
(1.1)–(1.3) which is a highly not trivial problem since functions of the form
u �→ u(ζ(·, u(·))) are (in general) nonlinear and not Lipschitz on space of
continuous or sectionally continuous functions. By noting that

‖ u(ζ(·, u(·))) − v(ζ(·, v(·))) ‖C([−p,a];X)

≤ (1 + [v]CLip([−p,a];X)[ζ]CLip([0,a]×X;[−p,a])) ‖ u − v ‖CLip([−p,a];X),

‖ u(σi(u(t+i ))) − v(σi(v(t+i ))) ‖
≤ (1 + [v]CLip([−p,a];X)[σi]CLip(X;[−p,a]) ‖ u − v ‖C([−p,a];X),

when the involved functions are Lipschitz, we study the existence of solutions
on spaces of sectionally Lipschitz functions, a hard problem in the semigroup
framework and in the general field of partial differential equations. In addi-
tion, we note that the Lipschizianity of T (·)gi(u(σi(u(t+i )))) not depend on
the Lipschizianity of gi(·) and u(·), which introduce a extra difficulty in our
studies.

This paper has four sections. The existence and uniqueness of a classical
solution via the contraction mapping principle is proved in Theorems 2.1, 2.2
and Proposition 2.3. In Theorem 2.3 we prove the existence of a mild solution
using the Schauder’s fixed point Theorem. The particular case in which σi(·)
and (or) ζ(·) have values in [−p, 0], is studied in Propositions 2.1 and 2.2. In
the last section some examples on partial differential equations are presented.

We include now some notations and results used in this work. Let (Z, ‖
· ‖Z) and (W, ‖ · ‖W ) be Banach spaces. We denote by L(Z,W ) the space
of bounded linear operators from Z into W endowed with operator norm
denoted by ‖ · ‖L(Z,W ) and we write L(Z) and ‖ · ‖L(Z) if Z = W . Moreover,
if X = Z = W we write simply ‖ · ‖ for the norms ‖ · ‖X and ‖ · ‖L(X). In
addition, Br(z, Z) = {y ∈ Z :‖ y − z ‖Z≤ r}.

Let J ⊂ R be a bounded interval. The spaces C(J, Z) and CLip(J, Z)
and their norms denoted by ‖ · ‖C(J,Z) and ‖ · ‖CLip(J,Z) are the usual. We
only note that ‖ · ‖CLip(J;Z) is given by ‖ · ‖CLip(J;Z)=‖ · ‖C(J;Z) +[·]CLip(J;Z)

where [ζ]CLip(J;Z) = supt,s∈J,t�=s
‖ζ(s)−ζ(t)‖Z

|t−s| .
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The notation PC(Z) is used for the space formed by all the bounded
functions u : [0, a] �→ Z such that u(·) is continuous at t �= ti, u(t−i ) = u(ti)
and u(t+i ) exists for all i = 1, . . . , N , provided with the norm ‖ u ‖PC(Z)=
maxi=0,1,...,N ‖ u ‖C((ti,ti+1];Z). In addition, PCLip(Z) represents the space
of functions u ∈ PC(Z) such that u|(ti,i+1]

∈ CLip((ti, ti+1];Z) for all i =
0, 1, . . . tN+1, endowed with the norm ‖ u ‖PCLip(Z)= maxi=0,...,N ‖ u|(ti,ti+1]

‖CLip((ti,i+1];Z).

We use the symbol BPC(Z) for the set of all the functions u : [−p, a] �→
Z such that u|[−p,t1]

∈ C([−p, t1];Z) and u|[0,a]
∈ PC(Z). In addition,

BPCLip(Z) is the space formed by all the functions u : [−p, a] �→ Z such
that u ∈ BPC(Z), u|[−p,0]

∈ CLip([−p, 0];Z) and u|[0,a]
∈ PCLip(Z), endowed

with the norm ‖ u ‖BPCLip(Z)= max{‖ u|Ii
‖CLip(Ii;Z): i = −1, 0, . . . , N}.

For u ∈ BPC(Z) and i ∈ {−1, 0, 1, · · · , N}, we use the notation ũi for
the function ũi ∈ C([ti, ti+1];Z) given by ũi(t) = u(t) for t ∈ (ti, ti+1] and
ũi(t) = u(t+i ) for t = ti. For B ⊆ BPC(Z) and i ∈ {−1, 0, 1, · · · , N}, ˜Bi is
the set ˜Bi = {ũi : u ∈ B}. We note the following Ascoli–Arzela type criteria.

Lemma 1.1. A set B ⊆ BPC(Z) is relatively compact in BPC(Z) if and only
if each set ˜Bi is relatively compact in C([ti, ti+1], Z).

In this paper, X1 is the domain of A endowed with the norm ‖ x ‖X1=‖
x ‖ + ‖ Ax ‖ and C0, C1 are positive constants such that ‖ AT (s) ‖L(X1,X)≤
C1, ‖ T (s) ‖≤ C0 and ‖ AT (t) ‖≤ C1

t for all s ∈ [0, a] and t ∈ (0, a].
Related the abstract Cauchy problem

u′(t) = Au(t) + ξ(t), t ∈ [a, b], u(c) = x ∈ X, (1.4)

we note that the function u ∈ C([c, d];X) given by u(t) = T (t − c)x +
∫ t

c
T (t − s)ξ(s)ds, is called mild solution of (1.4). In addition, a function

v ∈ C([c, d];X) is said to be a classical solution of (1.4) if v ∈ C1((c, d];X) ∩
C((c, d];X1) and v(·) satisfies (1.4) on (c, d].

2. Existence of solutions

In this section we present some results on the existence of solution for (1.1)–
(1.3). To begin, we introduce the followings concepts of solution.

Definition 2.1. A function u ∈ BPC(X) is called a mild solution of the prob-
lem (1.1)–(1.3) if u0 = ϕ, u(t+i ) = gi(u(σi(u(t+i )))) for all i = 1, . . . , N and

u(t) = T (t)ϕ(0) +
∫ t

0

T (t − τ)f(τ, u(ζ(τ, u(τ))))dτ, t ∈ [0, t1],

u(t) = T (t − ti)gi(u(σi(u(t+i )))) +
∫ t

ti

T (t − τ)f(τ, u(ζ(τ, u(τ))))dτ,

for all t ∈ (ti, ti+1] and i = 1, . . . , N.

Definition 2.2. A function u ∈ BPC(X) is called a classical solution of (1.1)–
(1.3) if u0 = ϕ, u(t+i ) = gi(u(σi(u(t+i )))) for all i = 1, . . . , N and u(·) satisfy
(1.1).
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In the remainder of this work, we assume that (W, ‖ · ‖W ) is Banach
continuously embedded in (X, ‖ · ‖) such that AT (·) ∈ L∞([0, a];L(W,X)).
To prove our results, we introduce the following conditions.

Hζ ζ ∈ CLip([0, a] × X; [−p, a]) and there is a function j : {1, . . . , N} �→
{−1, 0, 1, . . . , N} such that ζ ∈ CLip(Ii × X; Ij(i)) and j(i) ≤ i for all
i ∈ {1, . . . , N}.

Hσi
There is a function q : {1, . . . , N} �→ {−1, 0, 1, . . . , N} such that q(i) ≤
i and σi ∈ C(X, Iq(i)) for all i ∈ {1, . . . , N}. Next we write [σi]CLip in
place [σi]CLip(X;Iq(i)).

HW
g,X gi ∈ CLip(X;W ) and CX,W (gi) =‖ gi ‖C(X;W )< ∞ for every i ∈

{1, . . . , N}. Next, LZ,W (gi) denotes the Lipschitz constant of gi(·),
LZ,W (g) = maxi=1,...,N LZ,W (gi) and CZ,W (g) = maxi=1,...,N CZ,W (gi).

Hg gi ∈ CLip(X;X) and CX(gi) =‖ gi ‖C(X;X)< ∞ for all i ∈ {1, . . . , N}.
Next, Lgi

is the Lipschitz constant of gi(·), Lg = maxi=1,...,N Lgi
and

CX(g) = maxi=1,...,N CX(gi).
Hf f ∈ CLip([0, a] × X;X) and CX(f) =‖ f ‖C([0,a]×X;X)< ∞. Next, Lf

denotes the Lipschitz constant of f(·).
Notations 1. Next, for convenience, we write [ζ]CLip in place
[ζ]CLip([0,a]×X;[−p,a]), bi = ti+1 − ti, b = maxi=1,...,N bi, ic : W �→ X is the
inclusion map and

ΛX,W = max{‖ AT (·) ‖L∞([0,b],L(W,X)), C0‖ ic ‖L(W,X)}
ΦX,W = ΛX,W CX,W (g) + C0(CX(f) + bLf ) + [T (·)ϕ(0)]CLip([0,a];X)

+ [ϕ]CLip([−p,0];X).

The next useful result follows from the proof of [24, Lemma 1]. The
proof is omitted.

Lemma 2.2. Assume that the conditions Hζ , Hσi
are satisfied, u, v ∈

BPCLip(X) and u0 = v0. Then u(ζ(·, u(·))) ∈ PCLip(X) and

[u(ζ(·, u(·)))]PCLip(X) ≤ [u]BPCLip(X)[ζ]CLip(1 + [u|[0,a]
]PCLip(X)),

(2.1)
‖ u(ζ(·, u(·))) − v(ζ(·, v(·))) ‖PC(X) ≤ (1 + [v]BPCLip(X)[ζ]CLip) ‖ u − v ‖PC(X),

(2.2)
‖ u(σi(u(t+i ))) − v(σi(v(t+i ))) ‖ ≤ (1 + [v]BPCLip(X)[σi]CLip) ‖ u − v ‖PC(X) .

(2.3)

We can prove now our first result.

Theorem 2.1. Assume that the conditions Hζ ,Hσi
, HW

g,X and Hf are satis-
fied, T (·)ϕ(0) ∈ CLip([0, a];X), ϕ ∈ CLip([−p, 0];X) and

2C0bLf (1 + [ζ]CLip(1 + 2ΦX,W ))
+ 2ΛX,W LX,W (g)(1 + 2 max

i=1,...,N
[σi]CLipΦX,W ) < 1. (2.4)

Then there exists a unique classical solution u ∈ BPCLip(X) of the problem
(1.1)–(1.3).
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Proof. Let P : R �→ R be the polynomial given by

P (x) = ΦX,W + (C0bLf (1 + [ζ]CLip) + ΛX,W LX,W (g) − 1)x

(ΛX,W LX,W (g) max
i=1,...,N

[σi]CLip + C0bLf [ζ]CLip)x
2. (2.5)

From (2.4) and noting that C0bLf (1 + [ζ]CLip) + ΛX,W LX,W (g) < 1, we infer
that P (·) has a root R1 > 0 and there exists R > 0 such that P (R) < 0.
From the definition of P (·), we get

ΦX,W + C0bLf [ζ]CLip(R + R2) < R, (2.6)
ΛX,W LX,W (g)(1 + max

i=1,...,N
[σi]CLipR) + C0bLf (1 + R[ζ]CLip) < 1. (2.7)

Let S(R) be the space S(R) = {u ∈ BPCLip(X) ; u0 = ϕ, [u|[0,a]
]PCLip(X) ≤

R}, endowed with the metric d(u, v) =‖ u − v ‖BPC(X) and Γ : S(R) �→
BPC(X) be the map defined by (Γu)0 = ϕ and

Γu(t) = T (t)ϕ(0) +
∫ t

0

T (t − s)f(s, u(ζ(s, u(s))))ds, t ∈ [0, t1],

Γu(t) = T (t − ti)gi(u(σi(u(t+i )))) +
∫ t

ti

T (t − s)f(s, u(ζ(s, u(s))))ds,

for t ∈ (ti, ti+1] and i = 1, . . . , N.

It’s easy to see that S(R) is closed in BPC(X) and that Γ(·) is well
defined. Moreover, from Lemma 2.2, for i ∈ {1, . . . , i}, t ∈ (ti, ti+1) and
h > 0 such that t + h ∈ (ti, ti+1], we get

‖ Γu(t + h) − Γu(t) ‖

≤
∫ t+h−ti

t−ti

‖ AT (s)gi(u(σi(u(t+i )))) ‖ ds

+

∫ ti+h

ti

‖ T (t + h − s)f(s, u(ζ(s, u(s)))) ‖ ds

+

∫ t

ti

‖ T (t − s) ‖‖ f(s + h, u(ζ(s + h, u(s + h))) − f(s, u(ζ(s, u(s)))) ‖ ds

≤‖ AT (·) ‖L∞([0,bi];L(W,X)) hCX,W (g) + C0CX(f)h

+

∫ t

ti

‖ T (t − s) ‖ Lf (1 + [u(ζ(·, u(·)))]CLip(Ii;X))hds

≤‖ AT (·) ‖L∞([0,bi];L(W,X)) hCX,W (g) + C0(CX(f) + Lf b)h

+ C0bLf [u]BPCLip(X)[ζ]CLip(1 + [u]PCLip(X))h,

which implies that [(Γu)|Ii
]CLip(Ii;X) ≤ ΦX,W + C0bLf [ζ]CLip(R + R2) < R.

In a similar way, we obtain that

[(Γu)|[0,t1]
]CLip([0,t1];X) ≤ [T (·)ϕ(0)]CLip([0,a];X) + C0(CX(f) + bLf )

+C0bLf [ζ]CLip(R + R2)) ≤ R.

From the above and noting that [ϕ]CLip([−p,0];X) ≤ R, we obtain that
[Γu]BPCLip(X) ≤ R, which implies that Γ is a S(R)-valued function.
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On the other hand, using (2.2), for u, v ∈ S(R), i = 1, . . . , N and
t ∈ (ti, ti+1] we have that

‖ Γu(t) − Γv(t) ‖≤ C0‖ ic ‖L(W,X)LX,W (g) ‖ u(σi(u(t+i ))) − v(σi(v(t+i ))) ‖

+ C0Lf

∫ t

ti

‖ u(ζ(·, u(·))) − v(ζ(·, v(·))) ‖C(Ii;X) ds

≤ (

ΛX,W LX,W (g)(1 + R[σi]CLip) + C0bLf (1 + R[ζ]CLip)
)

d(u, v).

In addition, for t ∈ [0, t1] we note that ‖ Γu(t) − Γv(t) ‖≤ C0bLf (1 +
R[ζ]CLip)d(u, v). From the above estimates we infer that

d(Γu, Γv) ≤ (ΛX,W LX,W (g)(1 + R max
i=1,...,N

[σi]CLip) + C0bLf (1 + R[ζ]CLip))d(u, v).

Thus, Γ(·) is a contraction and there exists a unique mild solution u ∈ S(R)
of (1.1)–(1.3).

We prove now that u(·) is a classical solution. Let ũi, i = 1, . . . N, be
defined as in the introduction. It is easy to see that ũi(·) is the mild solution
of the problem

w′(t) = Aw(t) + f(t, u(ζ(t, u(t)))), t ∈ Ii = [ti, ti+1], (2.8)
w(ti) = gi(u(σi(u(t+i )))). (2.9)

Since f(·, u(ζ(·, u(·)))) is Lipschitz on Ii and the semigroup is analytic, from
[35, Theorem 4.3.2] it follows that ũi is a classical solution of (2.8)–(2.9).
The same argument prove that ũ0 is a classical solution of (2.8) on [0, t1]
with initial condition u(0) = ϕ(0). From the above, we obtain that u(·) is a
classical solution of (1.1)–(1.3). �

In the next result we establish the existence and uniqueness of a clas-
sical solution without to use condition HW

g,X. In place of this condition, we
introduce the following one:

Hgi,σj
σi ∈ CLip(X, [−p, a]) for all i ∈ {1, . . . , N}, ∪N

i=1σi(X) ⊂ ∪N
i=0Ii ∪

[−p, 0], gi ∈ C(X1;X1) ∩ CLip(X;X) and there are constants lgi
, kgi

such that ‖ Agi(x) ‖≤ lgi
r + kgi

for all x ∈ Br(0,X1), i ∈ {1, . . . , N}
and every r > 0.

Notations 2. If condition Hgi,σj
is verified, we use the notations lg =

maxi=1,... lgi
and

Υ = C0 max
i=1,...,N

kgi
+ 2C0CX(f) + b(C0 + C1)Lf + [T (·)ϕ(0)]CLip([−p,0];X)

+ ‖ ϕ ‖C([−p,0];X1) +[ϕ]CLip([−p,0];X).

Theorem 2.2. Assume that the conditions Hζ , Hgi,σj
, Hg and Hf are sat-

isfied, X is a Hilbert space, A is self-adjoint, T (·)ϕ(0) ∈ CLip([0, a];X),
ϕ ∈ CLip([−p, 0];X) ∩ C([−p, 0];X1) and

2bLf ((C0 + C1)[ζ]CLip(1 + 2Υ) + C0) + 2C0(lg + Lg(1 + 2 max
i=1,...,N

[σi]CLipΥ)) < 1.

(2.10)

Then there exists a unique classical solution u ∈ BPCLip(X) of the problem
(1.1)–(1.3) such that Aũi ∈ C([ti, ti+1];X) for all i = 1, . . . , N .
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Proof. Let P : R �→ R be the polynomial given by

P (x) = Υ + (bLf ((C0 + C1)[ζ]CLip + C0) + C0(Lg + LG) − 1)x

(C0Lg max
i=1,...,N

[σi]CLip + bLf (C0 + C1)[ζ]CLip)x
2. (2.11)

From (2.10) there exists R > 0 such that P (R) < 0 and

Υ + C0lgR + (C0 + C1)bLf [ζ]CLip(R + R2) < R, (2.12)
C0LX,X(g)(1 + R max

i=1,...,N
[σi]CLip) + C0bLf (1 + R[ζ]CLip) < 1. (2.13)

Let S(R) the space in the proof of Theorem 2.1 and S(σi, R) be the space

S(σi, R) = {u ∈ S(R) : u(t) ∈ D(A) and ‖ Au(t) ‖≤ R, ∀ t ∈ ∪N
i=1σi(X)},

(2.14)

endowed with the metric d(u, v) =‖ u−v ‖PC(X). Let Γ : S(σi, R) �→ BPC(X)
be defined as in the proof of Theorem 2.1. Next we prove that Γ is a contrac-
tion on S(σi, R).

Let u ∈ S(σi, R), i ∈ {1, . . . , N}, t ∈ (ti, ti+1) and h > 0 such that
t + h ∈ (ti, ti+1]. Arguing as in the proof of Theorem 2.1 and noting that
u(σ(u(t+i ))) ∈ X1, we see that

‖ Γu(t + h) − Γu(t) ‖

≤
∫ t+h−ti

t−ti

‖ T (s)Agi(u(σi(u(t+i )))) ‖ ds + (C0(CX(f) + bLf )h

+C0bLf [ζ]CLip(R + R2)h ≤ C0(lgi
R + kgi

)h
+C0(CX(f) + bLf )h

+C0bLf [ζ]CLip(R + R2)h,

and hence, [(Γu)|Ii
]CLip(Ii;X) ≤ Υ + C0lgi

R + C0bLf [ζ]CLip(R + R2) ≤ R. In
addition, it is easy to see that

[(Γu)|[0,t1]
]CLip([0,t1];X) ≤ [T (·)ϕ(0)]CLip([−p,0];Z) + C0(CX(f) + bLf )

+C0bLf [ζ]CLip(R + R2)) ≤ R.

From the above remarks we have that [(Γu)|[0,a]
]PCLip(X) ≤ R which shows

that Γu ∈ S(R). In addition, arguing as in the proof of Theorem 2.1 it follows
that

d(Γu,Γv) ≤ C0(Lg(1 + R max
i=1,...,N

[σi]CLip) + bLf (1 + R[ζ]CLip))d(u, v).

From the above remarks, we have that Γ is a contraction on S(R).
Next we show that ‖ AΓu(t) ‖≤ R for all t ∈ ∪N

j=1σj(X). Let t ∈
∪N

j=1σj(X) and assume that t ∈ (ti, ti+1] for i ≥ 1. Using that (T (t))t≥0 is
analytic and that u(σ(u(t+i ))) ∈ X1 and ‖ Au(σ(u(t+i ))) ‖≤ lgi

R + kgi
, we

note that

AΓu(t) = T (t − ti)Agi(u(σi(u(t+i ))))
+T (t − ti)f(t, u(ζ(t, u(t)))) − f(t, u(ζ(t, u(t))))
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+
∫ t

ti

AT (t − s)(f(s, u(ζ(s, u(s))) − f(t, u(ζ(t, u(t))))ds,

‖ AΓu(t) ‖ ≤ C0(lgi
R + kgi

) + 2C0CX(f)

+
∫ t

0

C1

t − s
Lf (1 + [u(ζ(·, u(·)))]CLip(Ii;X))(t − s)ds

≤ C0(lgi
R + kgi

) + 2C0CX(f) + bC1Lf + C1bLf [ζ]CLip(R + R2),

which implies that ‖ AΓu(t) ‖≤ Υ + C0lgi
R + C1bLf [ζ]CLip(R + R2) ≤ R. If

t ∈ I1 we see that

‖ AΓu(t) ‖ ≤C0 ‖ Aϕ(0) ‖ +2C0CX(f) + bC1Lf + C1bLf [ζ]CLip(R + R2)≤R.

Thus, ‖ AΓu(t) ‖≤ R for all t ∈ ∪N
i=1σi(X) and Γ is a S(σi, R)-valued

function.
To finish the proof, we prove that S(σi, R) is a closet subset of S(R).

Let (un)n∈N be a sequence in S(σi, R) and u ∈ BPC(X) such that un → u as
n → ∞. Let t ∈ ∪N

i=1σi(X). Since (Aun(t))n∈N is bounded, there exists w ∈ X
such that < Aun(t), z >→< w, z > as n → ∞ for all z ∈ X. In particular,
for v ∈ X1 we have that < Aun(t), v >=< un(t), Av >→< u(t), Av >
as n → ∞, which implies that < w, v >=< u(t), Av > for all v ∈ X1.
Using that A is self-adjoint, we obtain that u(t) ∈ X1, Au(t) = w and
‖ Au(t) ‖=‖ w ‖≤ lim infn→∞ ‖ Aun(t) ‖≤ R, which completes the proof
that S(σi, R) is closed.

From the above it follows that Γ is a contraction on S(σi, R) and there
exists a unique mild solution u ∈ S(σi, R). The fact that u(·) is a classical
solution follows from the proof of Theorem 2.1. �

The next result consider the case where σi(X) ⊂ [−p, 0] for all i =
1, . . . , N . The proof use the ideas in the proof of Theorem 2.1 and we include
a short proof for completeness.

Proposition 2.1. Let conditions Hg and Hf be holds. Assume ζ ∈ CLip([0, a]×
X; [−p, a]), σi ∈ CLip(X; [−p, 0]) for all i = 1, . . . , N , T (·)ϕ(0) ∈ CLip

([0, a];X), ϕ ∈ CLip([−p, 0];X), gi(ϕ(·)) ∈ C([−p, 0];W ) for all i = 1, . . . , N
and

2C0bLf (1 + [ζ]CLip(1 + 2ΦX,W,ϕ)) + 2LgΨϕ,σi,gi
< 1. (2.15)

where ΦX,W,ϕ = ΦX,W maxi=1,...,N ‖ gi(ϕ(·)) ‖C([−p,0];W ) +C0(CX(f) +
bLf ) + [ϕ]CLip([−p,0];X) +[T (·)ϕ(0)]CLip([−p,0];X) and Ψϕ,σi,gi

=
C0[ϕ]CLip([−p,0];X) maxi=1,...,N [σi]CLip . Then there exists a unique classical so-
lution u ∈ BPCLip(X) of the problem (1.1)–(1.3).

Proof. Let P : R �→ R be given by P (x) = ΦX,W,ϕ + (C0bLf (1 + [ζ]CLip) +
LgΨϕ,σi,gi

− 1)x + C0bLf [ζ]CLipx
2. From (2.15) there exists R > 0 such that

P (R) < 0. Let S(R) be defined as in the proof of Theorem 2.1 and Γ :
S(R) �→ BPC(X) be the map given by Γu0 = ϕ and

Γu(t) = T (t)ϕ(0) +

∫ t

0
T (t − τ)f(τ, u(ζ(τ, u(τ))))dτ, t ∈ [0, t1],

Γu(t) = T (t − ti)gi(ϕ(σi(u(t+i )))) +

∫ t

ti

T (t − s)f(s, u(ζ(s, u(s))))ds, t ∈ (ti, ti+1].
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Arguing as in the proof of Theorem 2.1, for i ∈ {1, . . . , i}, t ∈ (ti, ti+1) and
h > 0 such that t + h ∈ (ti, ti+1], it is easy to see that

‖ Γu(t + h) − Γu(t) ‖ ≤ ΦX,W max
j=1,...,N,

‖ gj(ϕ(·)) ‖C([−p,0];W ) h

+ (C0CX(f) + bLf )h + C0bLf [ζ]CLip(R + R2)h,

which implies (from the definition of P (·)) that [(Γu)|Ii
]CLip(Ii;X) ≤ R. Simi-

larly, we have that

[(Γu)|[0,t1]
]CLip([0,t1];X) ≤ [T (·)ϕ(0)]CLip([−p,0];X) + C0(CX(f) + bLf )

+C0bLf [ζ]CLip(R + R2)

≤ ΦX,W,ϕ + C0bLf [ζ]CLip(R + R2) ≤ R.

From the above, [(Γu)|[0,a]
]PCLip(X) ≤ R, which proves that Γ is a S(R)-valued

function.
On the other hand, for u, v ∈ S(R), i = 1, . . . , N , t ∈ (ti, ti+1] and

s ∈ [0, t1] we get

‖ Γu(t) − Γv(t) ‖ ≤ (C0Lg[ϕ]CLip([−p,0];X) max
j=1,...,N

[σj ]CLip

+C0bLf (1 + R[ζ]CLip))d(u, v),
‖ Γu(s) − Γv(s) ‖ ≤ C0bLf (1 + R[ζ]CLip)d(u, v),

which allows us infer that Γ is a contraction and there exists a unique mild
solution u ∈ S(R) of the problem (1.1)–(1.3). The fact that u(·) is a classical
solution follows from the proof of Theorem 2.1. �

In the next result, we assume that the functions ζ(·) and σi(·) have
values in [−r, 0].

Proposition 2.2. Suppose that the conditions Hg, Hf are satisfied, ϕ ∈
CLip([−p, 0];X), σi ∈ CLip(X; [−p, 0]) for all i = 1, . . . , N , ζ ∈ CLip([0, a] ×
X; [−p, 0]) and

C0[ϕ]CLip([−p,0];X)(Lg max
j=1,...,N

[σj ]CLip + bLf [ζ]CLip) < 1.

Then there exists a unique mild solution u ∈ PCLip(X) of (1.1)–(1.3).

Proof. Let Γ : BPC(X) �→ BPC(X) be defined as in the proof of Theorem
2.1, but using f(τ, ϕ(ζ(τ, u(τ)))) in place f(τ, u(ζ(τ, u(τ)))). In this case, for
u, v ∈ BPCLip(X) we see that

‖ Γu − Γv ‖C((ti,ti+1];X) ≤ C0Lg[ϕ]CLip([−p,0];X) max
j=1,...,N

[σj ]CLipd(u, v)

+C0bLf [ϕ]CLip([−p,0];X)[ζ]CLipd(u, v),

‖ Γu − Γv ‖C([0,t1];X) ≤ C0bLf [ϕ]CLip([−p,0];X)[ζ]CLipd(u, v),

which allows us to conclude that Γ is a contraction. �

Next, we discuss briefly the case in which the functions f(·) and gi(·)
are locally bounded and (or) locally Lipschitz. For sake of clarity, we include
the next conditions.
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HW
g,X For all i = 1, . . . , N , there is LX,W (gi, ·) ∈ C(R; R) such that ‖ gi(x)−

gi(y) ‖W ≤ LX,W (gi, r) ‖ x − y ‖ for all x, y ∈ Br(0,X) and every
r > 0. Next, LX,W (g, r) = maxi=1,...,N LX,W (gi, r) and CX,W (gi, r) =‖
gi ‖C(Br(0,X);W ).

Hf There is Lf ∈ C(R; R) such that ‖ f(t, x) − f(s, y) ‖≤ Lf (r)(| t − s |
+ ‖ x − y ‖) for all x, y ∈ Br(0,X), t, s ∈ [0, a] and r > 0. Next, for
r > 0 we use the notation CX(f, r) =‖ f ‖C([0,a]×Br(0,X);X).

Hg There are functions Lgi
∈ C(R; R) such that ‖ gi(x)−gi(y) ‖≤ Lgi

(r) ‖
x−y ‖ for all x, y∈Br(0,X) and r>0. Next, Lg(r)= maxi=1,...,N Lgi

(r),
CX(g)(r) = maxi=1,...,N CX(gi)(r) and CX(gi, r) =‖ gi ‖C(Br(0,X);X).

Notations 3. For r > 0, we define ΦX,W (r) = ΛX,W CX,W (g, r) + C0

(CX(f, r) + bLf (r)) + [T (·)ϕ(0)]CLip([−p,0];X) + [ϕ]CLip([−p,0];X).

The proof of Proposition 2.3 follows from the proof of Theorem 2.1.

Proposition 2.3. Let conditions Hζ ,Hσi
, HW

g,X and Hf be holds. Suppose that
T (·)ϕ(0) ∈ CLip([0, a];X), ϕ ∈ CLip([−p, 0];X) and there is r > 0 such that
(2.4) is satisfied with Lf (r), ΦX,W (r) and LX,W (g, r) in place Lf ,ΦX,W and
LX,W (g), and

max{C0(max{‖ ϕ(0) ‖, ‖ ic ‖L(W,X) CX,W (g, r)} + bCX(f, r)), ‖ ϕ ‖C([−p,0];X)} ≤ r.

Then there exists a unique classical solution u ∈ BPCLip(X) of the problem
(1.1)–(1.3).

Proof. Let P : R �→ R be defined as in the proof of Theorem 2.1, but using
Lf (r),ΦX,W (r) and LX,W (g, r) in place Lf ,ΦX,W and LX,W (g). Arguing as
in the proof of Theorem 2.1 we infer that there exists R > 0 such that

ΦX,W (r) + C0bLf (r)[ζ]CLip(R + R2) < R,

(2.16)
ΛX,W LX,W (g, r)(1 + R max

i=1,...,N
[σi]CLip) + C0bLf (r)(1 + R[ζ]CLip) < 1.

(2.17)

Let S(R) be the space in the proof of Theorem 2.1 and S(r,R) = {u ∈
S(R) : ‖ u ‖BPC(X)≤ r}, endowed with the metric d(u, v) =‖ u − v ‖BPC(X).
Let Γ : S(r,R) �→ BPC(X) be defined as in the proof of Theorem 2.1.

From the proof of Theorem 2.1 we infer that Γ is a contraction on S(R).
Moreover, for t ∈ Ii with i ≥ 0 it is easy to see that

‖ Γu(t) ‖≤ C0 max{‖ ϕ(0) ‖, ‖ ic ‖L(W,X) CX,W (g, r)} + C0bCX(f, r) ≤ r,

which implies that ‖ Γu ‖BPC(X)≤ r since r >‖ ϕ ‖C([−p,0];X). Thus, Γ is a
contraction on S(r,R) and there exists a unique mild solution u ∈ S(r,R) of
(1.1)–(1.3). Finally, from [35, Theorem 4.3.2] we infer that u(·) is a classical
solution. �

Corollary 2.1. Assume that the conditions Hζ ,Hσi
, HW

g,X and Hf are satis-
fied, the functions Lf (·), CX(f, ·), LX,W (g, ·) and CX,W (g, ·) are non-decrea-
sing, ϕ ∈ CLip([−p, 0];X), T (·)ϕ(0) ∈ CLip([0, a];X), lim supr→∞

1
r C0(‖
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ic ‖L(W,X) CX,W (g, r) + bCX(f, r)) < 1 and

2C0b lim sup
r→∞

Lf (r)
1
r
(1 + [ζ]CLip(1 + 2ΦX,W (r))

+ 2ΛX,W lim sup
r→∞

LX,W (g, r)
1
r
(1 + 2 max

i=1,...,N
[σi]CLipΦX,W (r)) < 1.

(2.18)

Then there exists a unique classical solution u ∈ BPCLip(X)∩Br(0,BPC(X))
of (1.1)–(1.3).

We establish now, without proof, a result similar to Theorem 2.2 for the
case where f(·) satisfy the condition Hf .

Proposition 2.4. Suppose the conditions Hζ , Hgi,σj
, Hg and Hf be holds,

X is a Hilbert space, A is self-adjoint, T (·)ϕ(0) ∈ CLip([0, a];X) and ϕ ∈
CLip([−p, 0];X) ∩ C([−p, 0];X1). If there is r > 0 such that the inequality
(2.10) is valid with Lf (r), Lg(r), CX(f, r) and CX(g, r) in place Lf , Lg,
CX(f) and CX(g), and C0(max{‖ ϕ(0) ‖, CX(g, r)} + bCX(f, r)) ≤ r, then
there exists a unique classical solution u ∈ Br(0,BPC(X)) ∩ PCLip(X)) of
(1.1)–(1.3).

To complete this section, we study the existence of solution using the
Schauder’s fixed point Theorem. The next lemma follows from the proof of
[32, Proposition 4.2.1].

Lemma 2.3. Let α ∈ (0, 1), ξ ∈ L∞([b, c];X) and v : [b, c] �→ X be the func-
tion defined by v(t) =

∫ t

b
T (t − s)ξ(s)ds. Then [v]Cα([b,c];X) ≤‖ ξ ‖L∞([b,c];X)

((c − b)1−αC0 + C1
α(1−α) ).

Theorem 2.3. Assume that the conditions Hζ and Hσi
are satisfied, there is

a Banach space (Y, ‖ · ‖Y ) ↪→ (X, ‖ · ‖) such that ‖ T (t) − I ‖L(Y,X)→ 0 as
t → 0, gi ∈ C(X;Y ) for all i, f ∈ C([0, a] × X;X), the functions gi(·), f(·)
are bounded and (T (t))t≥0 is compact. Then there exists a mild solution of
the problem (1.1)–(1.3).

Proof. Let CX,Y (g) = maxi=1,...,N ‖ gi ‖C(X;Y ), CX(f) =‖ f ‖C([0,a]×X;X)

and α ∈ (0, 1). Let BPCϕ(X) = {u ∈ BPC(X) : u0 = ϕ} endowed with the
metric d(u, v) =‖ u − v ‖BPC(X) and Γ : BPCϕ(X) �→ BPC(X) be defined as
in the proof of Theorem 2.1.

It is easy to prove that Γ is continuous. Next, using Lemma 1.1, we show
that Γ is completely continuous.

Let i ∈ {1, . . . , N}. From Lemma 2.3, for t ∈ (ti, ti+1), h > 0 with
t + h ∈ (ti, ti+1], we get

‖ Γu(t + h) − Γu(t) ‖
≤‖ (T (t + h−ti) − T (t−ti))gi(u(σi(u(t+i )))) ‖

+ ‖
∫ t+h

ti

T (t + h − s)f(s, u(ζ(s, u(s))))ds −
∫ t

ti

T (t − s)f(s, u(ζ(s, u(s))))ds ‖

≤‖ (T (t + h−ti) − T (t−ti)) ‖L(Y,X) CX,Y (g) + CX(f)

(

a1−αC0 +
C1

α(1 − α)

)

hα,
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which shows that {(Γu)|Ii
: u ∈ BPCϕ(X)} is right equicontinuous at t ∈

(ti, ti+1). A similar argument prove that {(Γu)|Ii
: u ∈ BPCϕ(X)} is left

equicontinuous at t = ti+1, which implies that {(Γu)|Ii
: u ∈ BPCϕ(X)} is

equicontinuous on Ii. In addition, for u ∈ BPCϕ(X) and 0 < h < δ we note
that

‖ ˜Γu(ti + h) − ˜Γu(ti) ‖

=‖ (T (h) − I)gi(u(σi(u(t+i )))) ‖ +

∫ ti+h

ti

T (ti + h − s)f(s, u(ζ(s, u(s))))ds ‖

≤‖ T (h) − I ‖L(Y,X) CX,Y (g) + CX(f)

(

a1−αC0 +
C1

α(1 − α)

)

hα,

which proves that ˜ΓBPCϕ(X)i = {(˜Γu)i : u ∈ BPCϕ(X)} is right equicon-
tinuous at ti. From the above it follows that { ˜(Γu)i : u ∈ BPCϕ(X)} is
equicontinuous on Ii.

We prove now that {(˜Γu)i(t) : u ∈ BPCϕ(X)} is relatively compact in X
for all t ∈ [ti, ti+1]. Since the semigroup is compact, (Y, ‖ · ‖Y ) ↪→ (X, ‖ · ‖)
and gi(·) is bounded with values in Y , we have that U = {gj(u(σj(u(t+j )))) :
u ∈ BPCϕ(X), j = 1, . . . , N} is relatively compact in X. For t ∈ (ti, ti+1]
and 0 < ε < t − ti, we note that

(˜Γu)i(t) = T (t − ti)U + T (ε)

∫ t−ε

ti

T (t − ε − s)f(s, u(ζ(s, u(s))))ds

+

∫ t

t−ε

T (t − s)f(s, u(ζ(s, u(s))))ds

∈ T (t − ti)U + T (ε)C0(t − ε − ti)CX(f)B1(0, X) + εC0CX(f)B1(0, X),

and hence, {(˜Γu)i(t) : u ∈ BPCϕ(X)} ⊂ Kε+Dε, where Kε is relatively com-
pact and the diameter of Dε converges to zero as ε → 0. This prove that the
set ΓBPCϕ(X)(t) is relatively compact in X. Moreover, since ˜ΓBPCϕ(X)i(ti)

= {gi(u(σi(u(t+i )))) : u ∈ BPCϕ(X)} ⊂ U, we obtain that ˜ΓBPCϕ(X)(ti) is

relatively compact in X. From the above remarks we have that ( ˜ΓBPCϕ(X))i

is relatively compact in C([ti, ti+1];X). Moreover, the same argument also

prove that ( ˜ΓBPCϕ(X))1 = {(Γu)|[0,t1]
: u ∈ BPCϕ(X))} is relatively com-

pact in C([0, t1];X).
From the above and Lemma 1.1, it follows that Γ is completely con-

tinuous and noting that the functions f(·) and gi(·) are bounded, we infer
that there exists r > 0 such that Γ(BPCϕ(X)) ⊂ Br(0,BPCϕ(X)). Thus,
Γ is completely continuous from Br(0,BPCϕ(X)) into Br(0,BPCϕ(X)) and
there exists a mild solution u ∈ Br(0,BPCϕ(X)) of (1.1)–(1.3). �

3. Examples

In this section, X = L2(Ω; R) or X = C(Ω; R), Ω ⊂ R
n is a open set with

smooth boundary and A : D(A) ⊂ X �→ X is the realization of an second
order strongly elliptic operator. Next, we assume that (T (t))t≥ is the analytic
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semigroup generated by A, D(A) = {u ∈ L2(Ω) : Au ∈ L2(Ω)} if Ω = R
n

and D(A) = W 2,2(Ω) ∩ W 2,1
0 (Ω) if Ω is bounded. For sake of simplicity,

we suppose that the conditions Hζ and Hσi
are satisfies, 0 ∈ ρ(A), ϕ ∈

CLip([−p, 0];X) and T (·)ϕ(0) ∈ CLip([0, a];X). In addition, X1 is the domain
of A endowed with the norm ‖ x ‖X1=‖ Ax ‖ and C0, C1 are the constants
in the introduction.

To begin, we study the impulsive problem

u′(t, ξ) = Au(t)(ξ) + β1(t, ξ, u(ζ(u(t)) − t, ξ)) + β2(t)u(ζ(u(t)), ξ), t ∈ Ii, ξ ∈ Ω,

(3.1)

u(t+i , ξ) =

∫

Rn

Li(ξ, y)u(σ(u(t+i )), y)dy, (3.2)

u(θ, ξ) = ϕ(θ, ξ), θ ∈ [−p, 0], (3.3)

where Ω = R
n, X = L2(Ω; R), 0 = t0 < · · · < tN+1 = a are pre-fixed,

Ii = (ti, ti+1], β1 ∈ CLip([0, a]×R; R), β1(·) is bounded, β2 ∈ CLip([−p, a]; R)
and Li, ALi ∈ L2(Ω × Ω, R). In addition, we assume that there is γ ∈ Lp(Ω)
such that

| β1(t, ξ, x) − β1(s, ξ, y) |≤ γ(ξ)(| t − s | + | x − y |), ∀ t, s ∈ [0, a], ξ, x, y ∈ R
n.

To represent this problem in the form (1.1)–(1.3) we define the functions
gi(·) and f(·) by gi(t, x)(ξ) =

∫

Rn L(ξ, y)x(y)dy and f(t, x)(ξ)=β1(t, ξ, x(ξ))+
β2(t)x(ξ). It is easy to see that ‖ Agi(x) ‖≤‖ ALi ‖L2(Ω×Ω;R)‖ x ‖ and

‖ f(t, x) − f(s, y) ‖ ≤ [γ]CLip | t − s | + ‖ γ ‖C(Ω)‖ x − y ‖
+ [β2]CLip([0,a];R) ‖ x ‖| t − s | + ‖ β2 ‖C(Ω)‖ x − y ‖ .

Thus, we can apply Proposition 2.3 with Lf (r) =‖ γ ‖CLip(Ω) +[β2]CLipr+ ‖
β2 ‖C(Ω), CX(f, r) =‖ β1 ‖C([0,a]×Ω×Ω;R) + ‖ β2 ‖C(Ω) r, LX,X1(gi) =‖
ALi ‖L2(Ω×Ω;R), CX,X1(g, r) = maxi=1,...,n ‖ ALi ‖L2(Ω×Ω;R) r and LX,X1(g)
= supi=1,...,n ‖ ALi ‖L2(Ω×Ω;R).

In the next result, we adopt the above notations and the notations in Re-
mark 1. In addition, we say that u ∈ BPC(X) is a classical solution of (3.1)–
(3.3) if u(·) is a classical solution of the associate problem (1.1)–(1.3) and we
adopt a similar (for mild and classical solutions) in the following examples.

Proposition 3.5. If max{‖ ϕ ‖C([−p,0];X), C0bCX(f, r) + C1CX,W (g, r)} ≤ r
and

2C0bLf (r)
1
r
(1 + [ζ]CLip(1 + 2ΦX,W (r))

+ 2ΛX,W LX,W (g, r)
1
r
(1 + 2 max

i=1,...,N
[σi]CLipΦX,W (r)) < 1,

for some r > 0, then there exists a unique classical solution u ∈ BPCLip(X)
of (3.1)–(3.3).

We study now the problem

u′(t, x)=Au(t)(x)+
∫ t

0

β1(s, u(ζ(u(t))−t, x))ds, x∈Ω, t ∈ Ii =(ti, ti+1],

(3.4)



36 Page 14 of 17 E. Hernández et al. JFPTA

u(t+i , x) = αiu(σi(u(t+i )), x), (3.5)
u(θ, x) = ϕ(θ, x), θ ∈ [−p, 0], x ∈ Ω, (3.6)

where Ω is bounded, β1 ∈ CLip([0, a] × R; R) and β1(·) is bounded.
To apply Theorem 2.2, we assume X = L2(Ω), the condition Hgi,σj

is satisfied and we define gi(·) and f(·) by f(t, x)(ξ) =
∫ t

0
β1(τ, x(ξ))dτ and

gi(t, x)(ξ) = αix(ξ). From the above,

‖ f(t, x) − f(s, y) ‖ ≤ ‖ β1 ‖C([0,a]×R;R)| t − s | +b[β1]CLip([0,a]×R;R) ‖ x − y ‖,

‖ gi(x) − gi(y) ‖ ≤ | αi |‖ x − y ‖, ‖ Agi(z) ‖≤| αi |‖ Az ‖,

for t, s ∈ [0, a], x, y ∈ X and z ∈ D(A), and the conditions in Theorem 2.2 are
satisfied with Lf = (1 + b) ‖ β1 ‖CLip([0,a]×R;R), CX(f) = a ‖ β1 ‖C([0,a]×R;R),
lgi

=| αi |, kgi
= 0, Lg = maxi=1,...,N | αi | and Υ = 2C0CX(f) + b(C0 +

C1)Lf +[T (·)ϕ(0)]CLip([−p,0];X)+[ϕ]CLip([−p,0];X). The next result follows from
Theorem 2.2.

Proposition 3.6. Under the above conditions and notations, if the inequality
(2.10) is verified, then there exists a unique classical solution u ∈ BPCLip(X)
of (3.4)–(3.6).

We complete this section studying a problem motivated by equations
arising in population dynamics. Consider the problem

u′(t, x) = Au(t)(x) + αu(t, x)(1 − u(t, x)), x ∈ Ω, t ∈ Ii = (ti, ti+1],
(3.7)

u(t+i , x) = αiu(σi(u(t+i )), x), (3.8)
u(θ, x) = ϕ(θ, x), θ ∈ [−p, 0]. (3.9)

To treat this problem, we assume X = C(Ω; R) and α, αi ∈ R and we
define gi(·) and f(·) by gi(t, x)(ξ) = αix(ξ) and f(t, x)(ξ) = αx(ξ)(1 − x(ξ)).
It is trivial to see that

‖ f(t, x) − f(s, y) ‖ ≤ | α | (1 + 2r) ‖ x − y ‖, ‖ f(t, x) ‖≤| α | r(1 + r),
‖ gi(x) − gi(y) ‖ ≤ | αi |‖ x − y ‖ and ‖ Agi(z) ‖≤| αi |‖ Az ‖,

for all t, s ∈ [0, a], x, y ∈ Br(0;X) and z ∈ D(A). From Proposition 2.4, we
get.

Proposition 3.7. Suppose that there is r >‖ ϕ ‖C([−p,0];X) such that the in-
equality (2.10) is verified with Lf (r) in place Lf and C0(‖ ϕ(0) ‖ +b | α |
(1+2r))+C0(maxi=1,...,N lgi

r+kgi
) < r. Then there exists a unique classical

solution u ∈ BPCLip(X) of (3.7)–(3.9).
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[6] Belley, J.M., Bondo, É.: Anti-periodic solutions of Liénard equations with state
dependent impulses. J. Differ. Equ. 261(7), 4164–4187 (2016)

[7] Benchohra, M., Henderson, J., Ntouyas, S.: Impulsive Differential Equations
and Inclusions. Contemporary Mathematics and Its Applications, 2. Hindawi
Publishing Corporation, New York (2006)

[8] Chu, J., Nieto, J.: Impulsive periodic solutions of first-order singular differential
equations. Bull. Lond. Math. Soc. 40(1), 143–150 (2008)

[9] Driver, R.D.: A functional-differential system of neutral type arising in a two-
body problem of classical electrodynamics. In: LaSalle, J., Lefschtz S. (eds.)
International Symposium on Nonlinear Differential Equations and Nonlinear
Mechanics, Academic Press, New York, pp. 474-484 (1963)

[10] Driver, R.D.: A neutral system with state-dependent delay. J. Differ. Equ. 54,
73–86 (1984)

[11] Fan, Z., Li, G.: Existence results for semilinear differential equations with non-
local and impulsive conditions. J. Funct. Anal. 258(5), 1709–1727 (2010)

[12] Frigon, M., O’Regan, D.: First order impulsive initial and periodic problems
with variable moments. J. Math. Anal. Appl. 233, 730–739 (1999)

[13] Gabor, Grzegorz: Differential inclusions with state-dependent impulses on the
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