Skip to main content

Advertisement

Log in

DNA methylation in schizophrenia: progress and challenges

  • Review
  • Life & Medical Sciences
  • Published:
Science Bulletin

Abstract

Schizophrenia is a heterogeneous psychiatric disorder broadly accepted being caused by genetic and environmental factors. Although conventional genetic studies have identified some candidate genes for schizophrenia, low odds ratios and penetrance, and a lack of reproducibility have limited their explanatory power. Despite the major efforts made toward identifying environmental factors in schizophrenia, methodological limitations and inconsistent findings of epidemiological reports have obstructed attempts to identify exogenous causal factors. Epigenetic mechanisms, mediating between environment and genes, have recently been proposed to play an important role in the pathogenesis of schizophrenia. DNA methylation is the most stable and well-characterized epigenetic modification. In this paper, we briefly introduce DNA methylation mechanisms, genome-wide DNA methylation studies, and identify specific genomic methylation sites in individuals diagnosed with schizophrenia. The outline candidate genes such as Reelin and COMT, are also outlined before paying attention to the conundrum of recent researches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. McGrath J, Saha S, Chant D et al (2008) Schizophrenia: a concise overview of incidence, prevalence, and mortality. Epidemiol Rev 30:67–76

    Article  Google Scholar 

  2. Ng MY, Levinson DF, Faraone SV et al (2009) Meta-analysis of 32 genome-wide linkage studies of schizophrenia. Mol Psychiatry 14:774–785

    Article  Google Scholar 

  3. Cardno AG, Gottesman II (2000) Twin studies of schizophrenia: from bow-and-arrow concordances to star wars mx and functional genomics. Am J Med Genet 97:12–17

    Article  Google Scholar 

  4. Dempster EL, Pidsley R, Schalkwyk LC et al (2011) Disease-associated epigenetic changes in monozygotic twins discordant for schizophrenia and bipolar disorder. Hum Mol Genet 20:4786–4796

    Article  Google Scholar 

  5. Brown AS (2011) The environment and susceptibility to schizophrenia. Prog Neurobiol 93:23–58

    Article  Google Scholar 

  6. Rutten BP, Mill J (2009) Epigenetic mediation of environmental influences in major psychotic disorders. Schizophr Bull 35:1045–1056

    Article  Google Scholar 

  7. Klose RJ, Bird AP (2006) Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci 31:89–97

    Article  Google Scholar 

  8. Ooi SK, Qiu C, Bernstein E et al (2007) DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA. Nature 448:714–717

    Article  Google Scholar 

  9. Chedin F, Lieber MR, Hsieh CL (2002) The DNA methyltransferase-like protein DNMT3L stimulates de novo methylation by DNMT3a. Proc Natl Acad Sci USA 99:16916–16921

    Article  Google Scholar 

  10. Tang HL, Zhu JH (2007) Epigenetics and neural stem cell commitment. Neurosci Bull 23:241–248

    Article  Google Scholar 

  11. Pidsley R, Mill J (2011) Epigenetic studies of psychosis: current findings, methodological approaches, and implications for postmortem research. Biol Psychiatry 69:146–156

    Article  Google Scholar 

  12. Bibikova M, Barnes B, Tsan C et al (2011) High density DNA methylation array with single cpg site resolution. Genomics 98:288–295

    Article  Google Scholar 

  13. Sandoval J, Heyn H, Moran S et al (2011) Validation of a DNA methylation microarray for 450,000 cpg sites in the human genome. Epigenetics 6:692–702

    Article  Google Scholar 

  14. Levenson JM, Roth TL, Lubin FD et al (2006) Evidence that DNA (cytosine-5) methyltransferase regulates synaptic plasticity in the hippocampus. J Biol Chem 281:15763–15773

    Article  Google Scholar 

  15. Sui L, Wang Y, Ju LH et al (2012) Epigenetic regulation of reelin and brain-derived neurotrophic factor genes in long-term potentiation in rat medial prefrontal cortex. Neurobiol Learn Mem 97:425–440

    Article  Google Scholar 

  16. Razin A, Shemer R (1995) DNA methylation in early development. Hum Mol Genet 4(Suppl 1):1751–1755

    Google Scholar 

  17. Petronis A, Gottesman II, Kan P et al (2003) Monozygotic twins exhibit numerous epigenetic differences: clues to twin discordance? Schizophr Bull 29:169–178

    Article  Google Scholar 

  18. Richards EJ (2006) Inherited epigenetic variation—revisiting soft inheritance. Nat Rev Genet 7:395–401

    Article  Google Scholar 

  19. Shimabukuro M, Sasaki T, Imamura A et al (2007) Global hypomethylation of peripheral leukocyte DNA in male patients with schizophrenia: a potential link between epigenetics and schizophrenia. J Psychiatr Res 41:1042–1046

    Article  Google Scholar 

  20. Melas PA, Rogdaki M, Osby U et al (2012) Epigenetic aberrations in leukocytes of patients with schizophrenia: association of global DNA methylation with antipsychotic drug treatment and disease onset. FASEB J 26:2712–2718

    Article  Google Scholar 

  21. Nishioka M, Bundo M, Koike S et al (2013) Comprehensive DNA methylation analysis of peripheral blood cells derived from patients with first-episode schizophrenia. J Hum Genet 58:91–97

    Article  Google Scholar 

  22. Kinoshita M, Numata S, Tajima A et al (2013) DNA methylation signatures of peripheral leukocytes in schizophrenia. Neuromol Med 15:95–101

    Article  Google Scholar 

  23. Kinoshita M, Numata S, Tajima A et al (2013) Plasma total homocysteine is associated with DNA methylation in patients with schizophrenia. Epigenetics 8:584–590

    Article  Google Scholar 

  24. Liu J, Chen J, Ehrlich S et al (2014) Methylation patterns in whole blood correlate with symptoms in schizophrenia patients. Schizophr Bull 40:769–776

    Article  Google Scholar 

  25. Bonsch D, Wunschel M, Lenz B et al (2012) Methylation matters? Decreased methylation status of genomic DNA in the blood of schizophrenic twins. Psychiatry Res 198:533–537

    Article  Google Scholar 

  26. Dempster EL, Mill J, Craig IW et al (2006) The quantification of COMT mRNA in post mortem cerebellum tissue: diagnosis, genotype, methylation and expression. BMC Med Genet 7:10

    Article  Google Scholar 

  27. Aberg KA, McClay JL, Nerella S et al (2014) Methylome-wide association study of schizophrenia: identifying blood biomarker signatures of environmental insults. JAMA Psychiatry 71:255–264

    Article  Google Scholar 

  28. Bromberg A, Levine J, Nemetz B et al (2008) No association between global leukocyte DNA methylation and homocysteine levels in schizophrenia patients. Schizophr Res 101:50–57

    Article  Google Scholar 

  29. Xiao Y, Camarillo C, Ping Y et al (2014) The DNA methylome and transcriptome of different brain regions in schizophrenia and bipolar disorder. PLoS One 9:e95875

    Article  Google Scholar 

  30. Wockner LF, Noble EP, Lawford BR et al (2014) Genome-wide DNA methylation analysis of human brain tissue from schizophrenia patients. Transl psychiatry 4:e339

    Article  Google Scholar 

  31. Mill J, Tang T, Kaminsky Z et al (2008) Epigenomic profiling reveals DNA-methylation changes associated with major psychosis. Am J Hum Genet 82:696–711

    Article  Google Scholar 

  32. Nishikawa S, Goto S, Yamada K et al (2003) Lack of reelin causes malpositioning of nigral dopaminergic neurons: evidence from comparison of normal and Reln(rl) mutant mice. J Comp Neurol 461:166–173

    Article  Google Scholar 

  33. Abdolmaleky HM, Cheng KH, Russo A et al (2005) Hypermethylation of the reelin (RELN) promoter in the brain of schizophrenic patients: a preliminary report. Am J Med Genet B Neuropsychiatr Genet 134B:60–66

    Article  Google Scholar 

  34. Grayson DR, Jia X, Chen Y et al (2005) Reelin promoter hypermethylation in schizophrenia. Proc Natl Acad Sci USA 102:9341–9346

    Article  Google Scholar 

  35. Tamura Y, Kunugi H, Ohashi J et al (2007) Epigenetic aberration of the human REELIN gene in psychiatric disorders. Mol Psychiatry 12:593–600

    Article  Google Scholar 

  36. Tochigi M, Iwamoto K, Bundo M et al (2008) Methylation status of the REELIN promoter region in the brain of schizophrenic patients. Biol Psychiatry 63:530–533

    Article  Google Scholar 

  37. Alelu-Paz R, Gonzalez-Corpas A, Ashour N et al (2014) DNA methylation pattern of gene promoters of major neurotransmitter systems in older patients with schizophrenia with severe and mild cognitive impairment. Int J Geriatr Psychiatry. doi:10.1002/gps.4182

  38. Lott SA, Burghardt PR, Burghardt KJ et al (2013) The influence of metabolic syndrome, physical activity and genotype on catechol-O-methyl transferase promoter-region methylation in schizophrenia. Pharmacogenomics J 13:264–271

    Article  Google Scholar 

  39. Murphy BC, O’Reilly RL, Singh SM (2005) Site-specific cytosine methylation in S-COMT promoter in 31 brain regions with implications for studies involving schizophrenia. Am J Med Genet B Neuropsychiatr Genet 133B:37–42

    Article  Google Scholar 

  40. Abdolmaleky HM, Cheng KH, Faraone SV et al (2006) Hypomethylation of MB-COMT promoter is a major risk factor for schizophrenia and bipolar disorder. Hum Mol Genet 15:3132–3145

    Article  Google Scholar 

  41. Nohesara S, Ghadirivasfi M, Mostafavi S et al (2011) DNA hypomethylation of MB-COMT promoter in the DNA derived from saliva in schizophrenia and bipolar disorder. J Psychiatr Res 45:1432–1438

    Article  Google Scholar 

  42. Zhang AP, Yu J, Liu JX et al (2007) The DNA methylation profile within the 5′-regulatory region of DRD2 in discordant sib pairs with schizophrenia. Schizophr Res 90:97–103

    Article  Google Scholar 

  43. Ikegame T, Bundo M, Sunaga F et al (2013) DNA methylation analysis of BDNF gene promoters in peripheral blood cells of schizophrenia patients. Neurosci Res 77:208–214

    Article  Google Scholar 

  44. Burghardt KJ, Pilsner JR, Bly MJ et al (2012) DNA methylation in schizophrenia subjects: gender and MTHFR 677C/T genotype differences. Epigenomics 4:261–268

    Article  Google Scholar 

  45. Carrard A, Salzmann A, Malafosse A et al (2011) Increased DNA methylation status of the serotonin receptor 5HTR1A gene promoter in schizophrenia and bipolar disorder. J Affect Disord 132:450–453

    Article  Google Scholar 

  46. Xu H, Wang B, Su D et al (2012) The DNA methylation profile of PLA2G4C gene promoter in schizophrenia. Psychiatry Res 200:1079–1081

    Article  Google Scholar 

  47. Naserbakht M, Ahmadkhaniha HR, Mokri B et al (2011) Advanced paternal age is a risk factor for schizophrenia in iranians. Ann Gen Psychiatry 10:15

    Article  Google Scholar 

  48. Haidemenos A, Kontis D, Gazi A et al (2007) Plasma homocysteine, folate and B12 in chronic schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 31:1289–1296

    Article  Google Scholar 

  49. Petronijevic ND, Radonjic NV, Ivkovic MD et al (2008) Plasma homocysteine levels in young male patients in the exacerbation and remission phase of schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 32:1921–1926

    Article  Google Scholar 

  50. Wahlberg KE, Wynne LC, Hakko H et al (2004) Interaction of genetic risk and adoptive parent communication deviance: longitudinal prediction of adoptee psychiatric disorders. Psychol Med 34:1531–1541

    Article  Google Scholar 

  51. McGowan PO, Sasaki A, D’Alessio AC et al (2009) Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nat Neurosci 12:342–348

    Article  Google Scholar 

  52. Guidotti A, Dong E, Gavin DP et al (2013) DNA methylation/demethylation network expression in psychotic patients with a history of alcohol abuse. Alcohol Clin Exp Res 37:417–424

    Article  Google Scholar 

  53. Davies MN, Volta M, Pidsley R et al (2012) Functional annotation of the human brain methylome identifies tissue-specific epigenetic variation across brain and blood. Genome Biol 13:R43

    Article  Google Scholar 

  54. Ruzicka WB, Zhubi A, Veldic M et al (2007) Selective epigenetic alteration of layer I gabaergic neurons isolated from prefrontal cortex of schizophrenia patients using laser-assisted microdissection. Mol Psychiatry 12:385–397

    Article  Google Scholar 

  55. Tremolizzo L, Doueiri MS, Dong E et al (2005) Valproate corrects the schizophrenia-like epigenetic behavioral modifications induced by methionine in mice. Biol Psychiatry 57:500–509

    Article  Google Scholar 

  56. Tremolizzo L, Carboni G, Ruzicka WB et al (2002) An epigenetic mouse model for molecular and behavioral neuropathologies related to schizophrenia vulnerability. Proc Natl Acad Sci USA 99:17095–17100

    Article  Google Scholar 

  57. Laird PW (2010) Principles and challenges of genomewide DNA methylation analysis. Nat Rev Genet 11:191–203

    Article  Google Scholar 

  58. Davies MN, Volta M, Pidsley R et al (2012) Functional annotation of the human brain methylome identifies tissue-specific epigenetic variation across brain and blood. Genome Biol 13:R43

    Article  Google Scholar 

  59. Harris RA, Wang T, Coarfa C et al (2010) Comparison of sequencing-based methods to profile DNA methylation and identification of monoallelic epigenetic modifications. Nat Biotechnol 28:1097–1105

    Article  Google Scholar 

  60. Harrison A, Parle-McDermott A (2011) DNA methylation: a timeline of methods and applications. Front Genet 2:74

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (81271484 and 81471361 to X.C, 30900486 and 81371480 to J.T) and the National Key Basic Research and Development Program (2012CB517904 to X.C).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaogang Chen or Jinsong Tang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 546 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zong, X., Hu, M., Li, Z. et al. DNA methylation in schizophrenia: progress and challenges. Sci. Bull. 60, 149–155 (2015). https://doi.org/10.1007/s11434-014-0690-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-014-0690-y

Keywords

Navigation