1 Introduction

Let \(a_k(n)\) be the number of representations of n as \(\triangle _1+2k\triangle _2\) and \(b_k(n)\) be the number of representations of n as \(\triangle +k\square \). Then

$$\begin{aligned} \sum \limits _{n=0}^{\infty }a_k\left( n\right) q^n&=\psi (q)\psi (q^{2k}),\\ \sum \limits _{n=0}^{\infty }b_k(n)q^n&=\psi (q)\varphi (q^{k}). \end{aligned}$$

Hirschhorn and Sellers [3] used some interesting q-series identities to obtain results of congruences modulo 5 for 4-colored Frobenius partitions, and Hirschhorn [2] proved equivalent results of q-series identities that are used in [3]: If

$$\begin{aligned} \sum \limits _{n\ge 0}g(n)q^n=\dfrac{(q^2;q^2)_{\infty }^2(q^4;q^4)_{\infty }^3}{(q;q)_{\infty }}\;\; \text {and}\;\; \sum \limits _{n\ge 0}h(n)q^n=\dfrac{(q;q)_{\infty }^3(q^2;q^2)_{\infty }^2}{(q^4;q^4)_{\infty }}, \end{aligned}$$

where \((a;q)_\infty =\prod \limits _{n\ge 0}(1-aq^n)\), then

$$\begin{aligned} \sum \limits _{n\ge 0}g(5n)q^n=\sum \limits _{n\ge 0}h(n)q^n-5\sum \limits _{n\ge 0}g(n)q^{5n+3} \end{aligned}$$

and

$$\begin{aligned} \sum \limits _{n\ge 0}h(5n+3)q^n=16\sum \limits _{n\ge 0}g(n)q^n-5\sum \limits _{n\ge 0}h(n)q^{5n}. \end{aligned}$$

Motivated by these works, in Sect. 3, we establish arithmetic properties of representations of a number \(\triangle _1+2k\triangle _2\) and \(\triangle +k\square \). In addition, we also find certain congruences modulo powers of 2 for number of representations of a non-negative integer n as \(\triangle _1+4\triangle _2\) and \(\triangle +k\square \). We list our main results in the following theorems and corollaries.

Theorem 1.1

Let \(a_k(n)\) and \(b_k(n)\) be the number of representations of n as \(\triangle _1+2k\triangle _2\) and \(\triangle +k\square \), respectively. Then

$$\begin{aligned} \sum \limits _{n=0}^{\infty }a_k((2k+1)n)q^n&=\psi (q)\varphi (q^{k})-q^{\frac{k(k+1)}{2}}\psi (q^{2k+1})\psi (q^{2k(2k+1)}),\end{aligned}$$
(1.1)
$$\begin{aligned} \sum \limits _{n=0}^{\infty }b_1\left( 3n+1\right) q^n&=4\psi (q)\psi (q^2)-\psi (q^3)\varphi (q^3),\end{aligned}$$
(1.2)
$$\begin{aligned} \sum \limits _{n=0}^{\infty }b_2\left( 5n+3\right) q^n&=4\psi (q)\psi (q^{4})-\psi (q^{5})\varphi (q^{10}),\end{aligned}$$
(1.3)
$$\begin{aligned} \sum \limits _{n=0}^{\infty }b_3\left( 7n+6\right) q^n&=4\psi (q)\psi (q^{6})-\psi (q^{7})\varphi (q^{21}), \end{aligned}$$
(1.4)

where k is a positive integer so that \(2k+1\) is odd prime.

Theorem 1.2

Let \(a_2(n)\) and \(b_2(n)\) be the number of representations of n as \(\triangle _1+4\triangle _2\) and \(\triangle +2\square \), respectively. Then

$$\begin{aligned} a_2(625n+390)-2a_2(25n+15)+a_2(n)&=0,\end{aligned}$$
(1.5)
$$\begin{aligned} b_2(625n+78)-2b_2(25n+3)+b_2(n)&=0. \end{aligned}$$
(1.6)

The identities (1.5) and (1.6) are analogous to the Hirschhorn [2] identities

$$\begin{aligned} g(625n+390)-6g(25n+15)+25g(n)&=0,\\ h(625n+78)-6h(25n+3)+25h(n)&=0. \end{aligned}$$

Corollary 1.1

Let \(b_{k}(n)\) be the number of representations of n as \(\triangle +k\square \). Then for each n, \(\alpha \ge 0\),

$$\begin{aligned} \sum \limits _{n=0}^{\infty }b_1\left( 3^{2\alpha }n+\dfrac{3^{2\alpha }-1}{8}\right) q^n&\equiv 3^\alpha \psi (q)\varphi (q) \pmod {2^2},\end{aligned}$$
(1.7)
$$\begin{aligned} \sum \limits _{n=0}^{\infty }b_2\left( 5^{2\alpha }n+\dfrac{5^{2\alpha }-1}{8}\right) q^n&\equiv 3^\alpha \psi (q) \varphi (q^2) \pmod {2^2},\end{aligned}$$
(1.8)
$$\begin{aligned} \sum \limits _{n=0}^{\infty }b_3\left( 7^{2\alpha }n+\dfrac{7^{2\alpha }-1}{8}\right) q^n&\equiv 3^\alpha \psi (q) \varphi (q^3) \pmod {2^2}. \end{aligned}$$
(1.9)

Corollary 1.2

Let \(a_2(n)\) and \(b_2(n)\) be the number of representations of n as \(\triangle _1+4\triangle _2\) and \(\triangle +2\square \), respectively. Then for all n, \(\alpha \ge 0\),

$$\begin{aligned} a_2\left( 5^{4\alpha }n+\frac{5(5^{4\alpha }-1)}{8}\right)&\equiv a_2(n) \pmod {2},\end{aligned}$$
(1.10)
$$\begin{aligned} b_2\left( 5^{4\alpha }n+\dfrac{5^{4\alpha }-1}{8}\right)&\equiv b_2(n) \pmod {2}. \end{aligned}$$
(1.11)

2 Preliminaries

For \(|ab|<1\), Ramanujan’s general theta function \(f\left( a,b\right) \) is defined by

$$\begin{aligned} f\left( a,b\right)&=\sum \limits _{n=-\infty }^{\infty }a^{n\left( n+1\right) /2}b^{n\left( n-1\right) /2}\end{aligned}$$
(2.1)
$$\begin{aligned}&=\left( -a;ab\right) _\infty \left( -b;ab\right) _\infty \left( ab;ab\right) _\infty . \end{aligned}$$
(2.2)

Important special cases of \(f\left( a,b\right) \) are

$$\begin{aligned} \varphi \left( q\right) :=f\left( q,q\right) =1+2\sum _{n=1}^{\infty }q^{n^2}=\sum \limits _{n=-\infty }^{\infty }q^{n^2}=(-q;q^2)^2_\infty (q^2;q^2)_\infty \end{aligned}$$
(2.3)

and

$$\begin{aligned} \psi \left( q\right) :=\dfrac{1}{2}f\left( 1,q\right) =f(q,q^3)=\sum \limits _{n=0}^{\infty }q^{(n^2+n)/2} =\sum \limits _{n=-\infty }^{\infty }q^{2n^2+n}=\dfrac{(q^2;q^2)_\infty }{(q;q^2)_\infty }. \end{aligned}$$
(2.4)

From (2.3) and (2.4), we can see that

$$\begin{aligned} \varphi (q)=\varphi (q^4)+2q\psi (q^8). \end{aligned}$$
(2.5)

3 Proofs of main results

Proof of Theorem 1.1

Let us write

$$\begin{aligned} E_k(q)=\psi (q)\psi (q^{2k}). \end{aligned}$$

Using (2.4) in \(E_k\left( q\right) \), we obtain

$$\begin{aligned} E_k\left( q\right) =\sum \limits _{m=-\infty }^{\infty }q^{2m^2+m}\sum \limits _{n=-\infty }^{\infty }q^{2k\left( 2n^2+n\right) }. \end{aligned}$$
(3.1)

Replacing q by \(q^8\) and then multiplying both sides of (3.1) by \(q^{2k+1}\), we find that

$$\begin{aligned} q^{2k+1}E_k(q^8)&=\sum \limits _{m,n=-\infty }^{\infty }q^{\left( 4m+1\right) ^2 +2k\left( 4n+1\right) ^2}\nonumber \\&=\sum \limits _{x,y\equiv 1\ (\text {mod}\ 4)}^{}q^{x^2+2ky^2}. \end{aligned}$$
(3.2)

If we write

$$\begin{aligned} E_k\left( q\right) =E^0_k\left( q\right) +E^1_k\left( q\right) +\cdots +E^{2k}_k\left( q\right) , \end{aligned}$$
(3.3)

where \(E^i_k\left( q\right) \) consists of all those terms in \(E_k\left( q\right) \) in which powers of q are congruent to i modulo \(2k+1\), then from (3.2) and (3.3), we see that

$$\begin{aligned} q^{2k+1}E^0_k(q^8)=\sum \limits _{x,y\equiv 1\ (\text {mod}\ 4)}q^{x^2+2ky^2}, \end{aligned}$$
(3.4)

where \(x^2+2ky^2\equiv 0\ (\text {mod}\ 2k+1)\). The solution of \(x^2+2ky^2\equiv 0\ (\text {mod}\ 2k+1)\) is \(x\equiv \pm y \ (\text {mod}\ 2k+1)\), and from (3.4) it follows that

$$\begin{aligned} q^{2k+1}E^0_k(q^8)=&\sum \limits _{\begin{array}{c} x\equiv y\equiv 1 \ (\text {mod}\ 4)\\ x\equiv y \ (\text {mod}\ 2k+1) \end{array}}q^{x^2+2ky^2} +\sum \limits _{\begin{array}{c} x\equiv y\equiv 1 \ (\text {mod}\ 4)\\ x\equiv -y \ (\text {mod}\ 2k+1) \end{array}}q^{x^2+2ky^2}\nonumber \\&-\sum \limits _{\begin{array}{c} x\equiv y\equiv 1 \ (\text {mod}\ 4)\\ x\equiv y\equiv 0 \ (\text {mod}\ 2k+1) \end{array}}q^{x^2+2ky^2}. \end{aligned}$$
(3.5)

In the first sum of (3.5), we have \(x\equiv y\ (\text {mod}\ 2k+1)\), \(4m+1\equiv 4n+1 \ (\text {mod}\ 2k+1)\), \(m-n\equiv 0 \ (\text {mod}\ 2k+1)\), \(m-n=(2k+1)u\), \(m+2kn=(2k+1)v\), \(m=2ku+v\), \(n=v-u\),

$$\begin{aligned} x=8ku+4v+1,\;\text {and}\;y=4v-4u+1. \end{aligned}$$
(3.6)

In the second sum of (3.5), \(x\equiv -y \ (\text {mod}\ 2k+1)\), \(4m+1\equiv -4n-1\ (\text {mod}\ 2k+1)\), \(4(m+n)\equiv -2 \ (\text {mod}\ 2k+1)\), \(4(m+n)\equiv -2+2(2k+1) \ (\text {mod}\ 2k+1)\), \(m+n\equiv k \ (\text {mod}\ 2k+1)\), \(m+n=(2k+1)v+k\), \(m-2kn=(2k+1)u+k\), \(m=u+2kv+k\), \(n=v-u\),

$$\begin{aligned} x=4u+8kv+4k+1,\;\text {and}\; y=4v-4u+1. \end{aligned}$$
(3.7)

In the third sum of (3.5),

$$\begin{aligned} x=4(2k+1)u+2k+1\;\text {and}\;y=4(2k+1)v+2k+1. \end{aligned}$$
(3.8)

Employing (3.6), (3.7), and (3.8) in (3.5), we obtain

On simplification, the above equation reduces to

$$\begin{aligned} E^0_k(q)=&\sum \limits _{v=-\infty }^{\infty }q^{(2k+1)(2v^2+v)}\sum \limits _{u=-\infty }^{\infty }q^{4k(2k+1)u^2}\nonumber \\&+q^{k(2k+1)}\sum \limits _{u=-\infty }^{\infty }q^{(2k+1)(2u^2+u)} \sum \limits _{v=-\infty }^{\infty }q^{4k(2k+1)(v^2+v)}\nonumber \\&-q^{\frac{k(k+1)(2k+1)}{2}}\sum \limits _{u=-\infty }^{\infty }q^{(2k+1)^2(2u^2+u)}\sum \limits _{v=-\infty }^{\infty }q^{2k(2k+1)^2(2v^2+v)}. \end{aligned}$$
(3.9)

From (2.3), (2.4), and (3.9), we have

$$\begin{aligned} E^0_k(q)=&\,\psi (q^{2k+1})\left( \varphi (q^{4k(2k+1)}) +2q^{k(2k+1)}\psi (q^{8k(2k+1)})\right) \nonumber \\&-q^{\frac{k(k+1)(2k+1)}{2}}\psi (q^{(2k+1)^2})\psi (q^{2k(2k+1)^2}). \end{aligned}$$
(3.10)

From (2.5) and (3.10), we find that

$$\begin{aligned} E^0_k(q)=\psi (q^{2k+1})\varphi (q^{k(2k+1)})-q^{\frac{k(k+1)(2k+1)}{2}}\psi (q^{(2k+1)^2})\psi (q^{2k(2k+1)^2}). \end{aligned}$$
(3.11)

The identity (3.11) can be written as

$$\begin{aligned} \sum \limits _{n=0}^{\infty }a_k((2k+1)n)q^{(2k+1)n}&=\psi (q^{2k+1})\varphi (q^{k(2k+1)})\nonumber \\&\quad -q^{\frac{k(k+1)(2k+1)}{2}}\psi (q^{(2k+1)^2})\psi (q^{2k(2k+1)^2}). \end{aligned}$$
(3.12)

Now replacing \(q^{2k+1}\) by q in (3.12), we arrive at (1.1).

Let us write \(F_2(q)=\psi (q)\varphi (q)\), and using (2.5), we find that

$$\begin{aligned} F_2(q)&=\psi (q)\left( \varphi (q^{4})+2q\psi (q^{8})\right) \nonumber \\&=\sum \limits _{m,n=-\infty }^{\infty }q^{2m^2+m+4n^2}+q\sum \limits _{m,n=-\infty }^{\infty }q^{2m^2+m+4(n^2+n)}. \end{aligned}$$
(3.13)

Replacing q by \(q^8\) and then multiplying both sides of (3.13) by q, we obtain

$$\begin{aligned} qF_2(q^8)&=\sum \limits _{m,n=-\infty }^{\infty }q^{(4m+1)^2+2(4n)^2}+\sum \limits _{m,n=-\infty }^{\infty }q^{(4m+1)^2+2(4n+2)^2}\nonumber \\&=\sum \limits _{x\equiv 1,\;y\equiv 0 \ (\text {mod}\ 4)}q^{x^2+2y^2}+\sum \limits _{x\equiv 1,\;y\equiv 2 \ (\text {mod}\ 4)}q^{x^2+2y^2}. \end{aligned}$$
(3.14)

If we write

$$\begin{aligned} F_2(q)=F^0_2(q)+F^1_2(q)+F^2_2(q), \end{aligned}$$
(3.15)

where \(F^i_2(q)\) consists of all those terms in \(F_2(q)\) in which powers of q are congruent to i modulo 3, then from (3.14) and (3.15), we see that

$$\begin{aligned} qF^1_2(q^8)=\sum \limits _{x\equiv 1,\;y\equiv 0 \ (\text {mod}\ 4)}q^{x^2+2y^2}+\sum \limits _{x\equiv 1,\;y\equiv 2 \ (\text {mod}\ 4)}q^{x^2+2y^2}, \end{aligned}$$
(3.16)

where, in both sums, \(x^2+2y^2\equiv 0 \ (\text {mod}\ 3)\). The solution of \(x^2+2y^2\equiv 0 \ (\text {mod}\ 3)\) is \(x\equiv \pm y \ (\text {mod}\ 3)\), and from (3.16) it follows that

(3.17)

In the first sum of (3.17), we have \(4m+1\equiv 4n \ (\text {mod}\ 3)\), \(4(m-n)\equiv -1\ (\text {mod}\ 3)\), \(4(m-n)\equiv -1+9\ (\text {mod}\ 3)\), \(m-n\equiv 2 \ (\text {mod}\ 3)\), \(m-n\equiv -1 \ (\text {mod}\ 3)\), \(m+2n\equiv -1 \ (\text {mod}\ 3)\), \(m-n=-3u-1\), \(m+2n=-3v-1\), \(m=-v-2u-1\), \(n=u-v\),

$$\begin{aligned} x=-4v-8u-3,\;\text {and}\;y=4u-4v. \end{aligned}$$
(3.18)

In the second sum of (3.17), \(4m+1\equiv -4n\ (\text {mod}\ 3)\), \(4(m+n)\equiv -1\ (\text {mod}\ 3)\), \(4(m+n)\equiv -1+9\ (\text {mod}\ 3)\), \(m+n\equiv 2\ (\text {mod}\ 3)\), \(m+n\equiv -1 \ (\text {mod}\ 3)\), \(m-2n\equiv -1 \ (\text {mod}\ 3)\), \(m+n=-3u-1\), \(m-2n=-3v-1\), \(m=-v-2u-1\), \(n=v-u\),

$$\begin{aligned} x=-4v-8u-3,\;\text {and}\;y=4v-4u. \end{aligned}$$
(3.19)

In the third sum of (3.17),

$$\begin{aligned} x=12u+3\;\text {and}\;y=12v. \end{aligned}$$
(3.20)

In the fourth sum of (3.17), \(4m+1\equiv 4n+2 \ (\text {mod}\ 3)\), \(4(m-n)\equiv 1\ (\text {mod}\ 3)\), \(m-n\equiv 1\ (\text {mod}\ 3)\), \(m+2n\equiv -2 \ (\text {mod}\ 3)\), \(m-n=3u+1\), \(m+2n=-3v-2\), \(m=2u-v\), \(n=-u-v-1\),

$$\begin{aligned} x=8u-4v+1,\;\text {and}\;y=-4u-4v-2. \end{aligned}$$
(3.21)

In the fifth sum of (3.17), \(4m+1\equiv -4n-2 \ (\text {mod}\ 3)\), \(4(m+n)\equiv -3\ (\text {mod}\ 3)\), \(m+n\equiv 0\ (\text {mod}\ 3)\), \(m-2n\equiv 0 \ (\text {mod}\ 3)\), \(m+n=3u\), \(m-2n=-3v\), \(m=2u-v\), \(n=u+v\),

$$\begin{aligned} x=8u-4v+1,\;\text {and}\;y=4u+4v+2. \end{aligned}$$
(3.22)

In the sixth sum of (3.17),

$$\begin{aligned} x=12u+3\;\text {and}\;y=12v+6. \end{aligned}$$
(3.23)

Invoking (3.18), (3.19), (3.20), (3.21), (3.22), and (3.23) in (3.17), we arrive at

$$\begin{aligned} qF^1_2(q^8)=&\sum \limits _{u,v=-\infty }^{\infty }q^{(-4v-8u-3)^2+2(4u-4v)^2} +\sum \limits _{u,v=-\infty }^{\infty }q^{(-4v-8u-3)^2+2(4v-4u)^2}\\ {}&-\sum \limits _{u,v=-\infty }^{\infty }q^{(12u+3)^2+2(12v)^2} +\sum \limits _{u,v=-\infty }^{\infty }q^{(8u-4v+1)^2+2(-4u-4v-2)^2}\\ {}&+\sum \limits _{u,v=-\infty }^{\infty }q^{(8u-4v+1)^2+2(4u+4v+2)^2} -\sum \limits _{u,v=-\infty }^{\infty }q^{(12u+3)^2+2(12v+6)^2}\\ =&\sum \limits _{u,v=-\infty }^{\infty }q^{48(2u^2+u)+24(2v^2+v)+9} +\sum \limits _{u,v=-\infty }^{\infty }q^{48(2u^2+u)+24(2v^2+v)+9}\\ {}&-\sum \limits _{u,v=-\infty }^{\infty }q^{72(2u^2+u)+288v^2+9} +\sum \limits _{u,v=-\infty }^{\infty }q^{48(2u^2+u)+24(2v^2+v)+9}\\&+\sum \limits _{u,v=-\infty }^{\infty }q^{48(2u^2+u)+24(2v^2+v)+9} -\sum \limits _{u,v=-\infty }^{\infty }q^{72(2u^2+u)+288(v^2+v)+81}. \end{aligned}$$

Dividing throughout by q, replacing \(q^8\) by q, and separating the terms of u and v in the above equation, we obtain

$$\begin{aligned} F^1_2(q)=&\,4q\sum \limits _{u=-\infty }^{\infty }q^{12 u^2+6u}\sum \limits _{v=-\infty }^{\infty }q^{6v^2+3v} -q\sum \limits _{u=-\infty }^{\infty }q^{18 u^2+9u}\sum \limits _{v=-\infty }^{\infty }q^{36v^2}\\ {}&-q^{10}\sum \limits _{u=-\infty }^{\infty }q^{18 u^2+9u}\sum \limits _{v=-\infty }^{\infty }q^{36v^2+36v}\\ =&\, 4q\psi (q^6)\psi (q^3)-q\psi (q^9)\varphi (q^{36}) -2q^{10}\psi (q^9)\psi (q^{72})\\ =&\, 4q\psi (q^6)\psi (q^3)-q\psi (q^9)\left( \varphi (q^{36}) +2q^{9}\psi (q^{72})\right) \\ =&\,4q\psi (q^6)\psi (q^3)-q\psi (q^9)\varphi (q^{9}). \end{aligned}$$

The above identity can be written as

$$\begin{aligned} \sum \limits _{n=0}^{\infty }b_1\left( 3n+1\right) q^{3n+1}=4q\psi (q^6)\psi (q^3)-q\psi (q^9)\varphi (q^{9}). \end{aligned}$$
(3.24)

Dividing throughout by q and then replacing \(q^3\) by q in (3.24), we obtain (1.2).

Let \(F_4(q)=\psi (q)\varphi (q^{2})\), and using (2.5), we find that

$$\begin{aligned} F_4(q)&=\psi (q)\left( \varphi (q^{8})+2q^{2}\psi (q^{16})\right) \nonumber \\&=\sum \limits _{m,n=-\infty }^{\infty }q^{2m^2+m+8n^2}+q^{2}\sum \limits _{m,n=-\infty }^{\infty }q^{2m^2+m+8(n^2+n)}. \end{aligned}$$
(3.25)

Replacing q by \(q^8\) and then multiplying throughout by q in the above equation, we obtain

$$\begin{aligned} qF_4(q^8)&=\sum \limits _{m,n=-\infty }^{\infty }q^{(4m+1)^2+4(4n)^2}+\sum \limits _{m,n=-\infty }^{\infty }q^{(4m+1)^2+4(4n+2)^2}\nonumber \\&=\sum \limits _{x\equiv 1,\;y\equiv 0 \ (\text {mod}\ 4)}q^{x^2+4y^2}+\sum \limits _{x\equiv 1,\;y\equiv 2 \ (\text {mod}\ 4)}q^{x^2+4y^2}. \end{aligned}$$
(3.26)

Let us write

$$\begin{aligned} F_4(q)=F^0_4(q)+F^1_4(q)+F^2_4(q)+F^3_4(q)+F^4_4(q), \end{aligned}$$
(3.27)

where \(F^i_4(q)\) consists of all those terms in \(F_4(q)\) in which powers of q are congruent to i modulo 5. From (3.26) and (3.27), we see that

$$\begin{aligned} qF^3_4(q^8)=\sum \limits _{x\equiv 1,\;y\equiv 0 \ (\text {mod}\ 4)}q^{x^2+4y^2}+\sum \limits _{x\equiv 1,\;y\equiv 2 \ (\text {mod}\ 4)}q^{x^2+4y^2}, \end{aligned}$$
(3.28)

where, in both sums, \(x^2+4y^2\equiv 0 \ (\text {mod}\ 5)\). The solution of \(x^2+4y^2\equiv 0 \ (\text {mod}\ 5)\) is \(x\equiv \pm y \ (\text {mod}\ 5),\) and it follows that

$$\begin{aligned}&qF^3_4(q^8)\nonumber \\&\quad =\sum \limits _{\begin{array}{c} x\equiv 1,\;y\equiv 0 \ (\text {mod}\ 4)\\ x\equiv y \ (\text {mod}\ 5) \end{array}}q^{x^2+4y^2} +\sum \limits _{\begin{array}{c} x\equiv 1,\;y\equiv 0 \ (\text {mod}\ 4)\\ x\equiv -y \ (\text {mod}\ 5) \end{array}}q^{x^2+4y^2}- \sum \limits _{\begin{array}{c} x\equiv 1,\;y\equiv 0 \ (\text {mod}\ 4)\\ x\equiv y\equiv 0 \ (\text {mod}\ 5) \end{array}}q^{x^2+4y^2}\nonumber \\&\qquad +\sum \limits _{\begin{array}{c} x\equiv 1,\;y\equiv 2 \ (\text {mod}\ 4)\\ x\equiv y \ (\text {mod}\ 5) \end{array}}q^{x^2+4y^2} +\sum \limits _{\begin{array}{c} x\equiv 1,\;y\equiv 2 \ (\text {mod}\ 4)\\ x\equiv -y \ (\text {mod}\ 5) \end{array}}q^{x^2+4y^2} -\sum \limits _{\begin{array}{c} x\equiv 1,\;y\equiv 2 \ (\text {mod}\ 4)\\ x\equiv y\equiv 0 \ (\text {mod}\ 5) \end{array}}q^{x^2+4y^2}. \end{aligned}$$
(3.29)

In the first sum of (3.29), we have \(x\equiv y \ (\text {mod}\ 5)\), \(4m+1\equiv 4n \ (\text {mod}\ 5)\), \(4(m-n)\equiv -1 \ (\text {mod}\ 5)\), \(m-n\equiv 1 \ (\text {mod}\ 5)\), \(m+4n\equiv 1 \ (\text {mod}\ 5)\), \(m-n=5u+1\), \(m+4n=5v+1\), \(m=4u+v+1\), \(n=v-u\),

$$\begin{aligned} x=16u+4v+5,\;\text {and}\;y=4v-4u. \end{aligned}$$
(3.30)

In the second sum of (3.29), \(4m+1\equiv -4n \ (\text {mod}\ 5)\), \(4(m+n)\equiv -1\ (\text {mod}\ 5)\), \(4(m+n)\equiv -1+5\ (\text {mod}\ 5)\), \(m+n\equiv 1 \ (\text {mod}\ 5)\), \(m-4n\equiv 1 \ (\text {mod}\ 5)\), \(m+n=5u+1\), \(m-4n=5v+1\), \(m=4u+v+1\), \(n=u-v\),

$$\begin{aligned} x=16u+4v+5,\;\text {and}\;y=4u-4v. \end{aligned}$$
(3.31)

In the third sum of (3.29),

$$\begin{aligned} x=20u+5\;\text {and}\;y=20v. \end{aligned}$$
(3.32)

In the fourth sum of (3.29), \(4m+1\equiv 4n+2 \ (\text {mod}\ 5)\), \(4(m-n)\equiv 1\ (\text {mod}\ 5)\), \(m-n\equiv -1\ (\text {mod}\ 5)\), \(m+4n\equiv -1\ (\text {mod}\ 5)\), \(m-n=-5u-1\), \(m+4n=5v-1\), \(m=v-4u-1\), \(n=u+v\),

$$\begin{aligned} x=4v-16u-3,\;\text {and}\;y=4u+4v+2. \end{aligned}$$
(3.33)

In the fifth sum of (3.29), \(4m+1\equiv -4n-2 \ (\text {mod}\ 5)\), \(4(m+n)\equiv -3\ (\text {mod}\ 5)\), \(m+n\equiv -2\ (\text {mod}\ 5)\), \(m-4n\equiv 3\ (\text {mod}\ 5)\), \(m+n=-5u-2\), \(m-4n=5v+3\), \(m=v-4u-1\), \(n=-v-u-1\),

$$\begin{aligned} x=4v-16u-3,\;\text {and}\;y=-4u-4v-2. \end{aligned}$$
(3.34)

In the sixth sum of (3.29),

$$\begin{aligned} x=20u+5\;\text {and}\;y=20v+10. \end{aligned}$$
(3.35)

Employing (3.30), (3.31), (3.32), (3.33), (3.34), and (3.35) in (3.29), we obtain

$$\begin{aligned} qF^3_4(q^8)=&\sum \limits _{u,v=-\infty }^{\infty }q^{(16u+4v+5)^2+4(4v-4u)^2} +\sum \limits _{u,v=-\infty }^{\infty }q^{\left( 16u+4v+5\right) ^2+4(4u-4v)^2}\\&-\sum \limits _{u,v=-\infty }^{\infty }q^{\left( 20u+5\right) ^2+4\left( 20v\right) ^2} +\sum \limits _{u,v=-\infty }^{\infty }q^{\left( 4v-16u-3\right) ^2+4\left( 4v+4u+2\right) ^2}\\&+\sum \limits _{u,v=-\infty }^{\infty }q^{\left( 4v-16u-3\right) ^2+4\left( -4v-4u-2\right) ^2} -\sum \limits _{u,v=-\infty }^{\infty }q^{\left( 20u+5\right) ^2+4\left( 20v+10\right) ^2}\\ =&\sum \limits _{u,v=-\infty }^{\infty }q^{40(2v^2+v)+160(2u^2+u)+25} +\sum \limits _{u,v=-\infty }^{\infty }q^{40(2v^2+v)+160(2u^2+u)+25}\\&-\sum \limits _{u,v=-\infty }^{\infty }q^{200(2u^2+u)+1600v^2+25} +\sum \limits _{u,v=-\infty }^{\infty }q^{40(2v^2+v)+160(2u^2+u)+25}\\&+\sum \limits _{u,v=-\infty }^{\infty }q^{40(2v^2+v)+160(2u^2+u)+25} -\sum \limits _{u,v=-\infty }^{\infty }q^{200(2u^2+u)+1600(v^2+v)+425}. \end{aligned}$$

Dividing throughout by q, replacing \(q^8\) by q, and then separating the terms containing u and v in the above equation, we find that

$$\begin{aligned} F^3_4(q)=&\, 4q^{3}\sum \limits _{v=-\infty }^{\infty }q^{10v^2+5v}\sum \limits _{u=-\infty }^{\infty }q^{40u^2+20u} -q^{3}\sum \limits _{u=-\infty }^{\infty }q^{50u^2+25u}\sum \limits _{v=-\infty }^{\infty }q^{200v^2}\nonumber \\&-q^{53}\sum \limits _{u=-\infty }^{\infty }q^{50u^2+25u}\sum \limits _{v=-\infty }^{\infty }q^{200v^2+200v}. \end{aligned}$$
(3.36)

Using (2.3) and (2.4) in (3.36), we obtain

$$\begin{aligned} {\begin{matrix} F^3_4(q)= 4q^{3}\psi (q^5)\psi (q^{20}) -q^{3}\psi (q^{25})\left( \varphi (q^{200}) +2q^{50}\psi (q^{400})\right) . \end{matrix}}\end{aligned}$$
(3.37)

From (2.5) and (3.37), we see that

$$\begin{aligned} F^3_4(q)=4q^{3}\psi (q^{5})\psi (q^{20})-q^{3}\psi (q^{25})\varphi (q^{50}). \end{aligned}$$
(3.38)

From (3.38), it follows that

$$\begin{aligned} \sum \limits _{n=0}^{\infty }b_2\left( 5n+3\right) q^{5n+3}=4q^{3}\psi (q^{5})\psi (q^{20})-q^{3}\psi (q^{25})\varphi (q^{50}). \end{aligned}$$
(3.39)

Dividing throughout by \(q^3\) and then replacing \(q^5\) by q in (3.39), we arrive at (1.3).

Let \(F_6(q)=\psi \left( q\right) \varphi \left( q^3\right) \), and using (2.5), we find that

$$\begin{aligned} F_6(q)&=\psi (q)\left( \varphi (q^{12})+2q^3\psi (q^{24})\right) \nonumber \\&=\sum \limits _{m,n=-\infty }^{\infty }q^{2m^2+m+12n^2}+q\sum \limits _{m,n=-\infty }^{\infty }q^{2m^2+m+12(n^2+n)}. \end{aligned}$$
(3.40)

Replacing q by \(q^8\) and then multiplying both sides of (3.40) by q, we see that

$$\begin{aligned} qF_6(q^8)&=\sum \limits _{m,n=-\infty }^{\infty }q^{(4m+1)^2+6(4n)^2}+\sum \limits _{m,n=-\infty }^{\infty }q^{(4m+1)^2+6(4n+2)^2}\nonumber \\&=\sum \limits _{x\equiv 1,\;y\equiv 0 \ (\text {mod}\ 4)}q^{x^2+6y^2}+\sum \limits _{x\equiv 1,\;y\equiv 2 \ (\text {mod}\ 4)}q^{x^2+6y^2}. \end{aligned}$$
(3.41)

If we write

$$\begin{aligned} F_6(q)=F^0_6(q)+F^1_6(q)+\cdots +F^6_6(q), \end{aligned}$$
(3.42)

where \(F^i_6(q)\) consists of all those terms in \(F_6(q)\) in which powers of q are congruent to i modulo 7, then from (3.41) and (3.42), we find that

$$\begin{aligned} qF^6_6(q^8)=\sum \limits _{x\equiv 1,\;y\equiv 0 \ (\text {mod}\ 4)}q^{x^2+6y^2}+\sum \limits _{x\equiv 1,\;y\equiv 2 \ (\text {mod}\ 4)}q^{x^2+6y^2}, \end{aligned}$$
(3.43)

where, in both sums, \(x^2+6y^2\equiv 0 \ (\text {mod}\ 7)\). The solution of \(x^2+6y^2\equiv 0 \ (\text {mod}\ 7)\) is \(x\equiv \pm y \ (\text {mod}\ 7),\) and from (3.43), it follows that

$$\begin{aligned}&qF^6_6(q^8)\nonumber \\&=\sum \limits _{\begin{array}{c} x\equiv 1,\;y\equiv 0 \ (\text {mod}\ 4)\\ x\equiv y \ (\text {mod}\ 7) \end{array}}q^{x^2+6y^2} +\sum \limits _{\begin{array}{c} x\equiv 1,\;y\equiv 0 \ (\text {mod}\ 4)\\ x\equiv -y \ (\text {mod}\ 7) \end{array}}q^{x^2+6y^2}- \sum \limits _{\begin{array}{c} x\equiv 1,\;y\equiv 0 \ (\text {mod}\ 4)\\ x\equiv y\equiv 0 \ (\text {mod}\ 7) \end{array}}q^{x^2+6y^2}\nonumber \\&+\sum \limits _{\begin{array}{c} x\equiv 1,\;y\equiv 2 \ (\text {mod}\ 4)\\ x\equiv y \ (\text {mod}\ 7) \end{array}}q^{x^2+6y^2} +\sum \limits _{\begin{array}{c} x\equiv 1,\;y\equiv 2 \ (\text {mod}\ 4)\\ x\equiv -y \ (\text {mod}\ 7) \end{array}}q^{x^2+6y^2} -\sum \limits _{\begin{array}{c} x\equiv 1,\;y\equiv 2 \ (\text {mod}\ 4)\\ x\equiv y\equiv 0 \ (\text {mod}\ 7) \end{array}}q^{x^2+6y^2}. \end{aligned}$$
(3.44)

In the first sum of (3.44), we have \(4m+1\equiv 4n \ (\text {mod}\ 7)\), \(4(m-n)\equiv -1\ (\text {mod}\ 7)\), \(4(m-n)\equiv -8\ (\text {mod}\ 7)\), \( m-n\equiv -2\ (\text {mod}\ 7)\), \(m+6n\equiv -2\ (\text {mod}\ 7)\), \(m-n=-7v-2\), \(m+6n=-7u-2\), \(m=-u-6v-2\), \(n=v-u\),

$$\begin{aligned} x=-4u-24v-7,\;\text {and}\;y=4v-4u. \end{aligned}$$
(3.45)

In the second sum of (3.44), \(4m+1\equiv -4n \ (\text {mod}\ 7)\), \(4(m+n)\equiv -1\ (\text {mod}\ 7)\), \(4(m+n)\equiv -8\ (\text {mod}\ 7)\), \(m+n\equiv -2\ (\text {mod}\ 7)\), \(m-6n\equiv -2\ (\text {mod}\ 7)\), \(m+n=-7v-2\), \(m-6n=-7u-2\), \(m=-6v-u-2\), \(n=u-v\),

$$\begin{aligned} x=-24v-4u-7,\;\text {and}\;y=4u-4v. \end{aligned}$$
(3.46)

In the third sum of (3.44),

$$\begin{aligned} x=28u+7\;\text {and}\;y=28v. \end{aligned}$$
(3.47)

In the fourth sum of (3.44), \(4m+1\equiv 4n+2 \ (\text {mod}\ 7)\), \(4(m-n)\equiv 1\ (\text {mod}\ 7)\), \(m-n\equiv 2\ (\text {mod}\ 7)\), \(m+6n\equiv -5\ (\text {mod}\ 7)\), \(m-n=7v+2\), \(m+6n=-7u-5\), \(m=6v-u+1\), \(n=-v-u-1\),

$$\begin{aligned} x=24v-4u+5,\;\text {and}\;y=-4u-4v-2. \end{aligned}$$
(3.48)

In the fifth sum of (3.44), \(4m+1\equiv -4n-2 \ (\text {mod}\ 7)\), \(4(m+n)\equiv -3\ (\text {mod}\ 7)\), \(m+n\equiv 1\ (\text {mod}\ 7)\), \(m-6n\equiv 1\ (\text {mod}\ 7)\), \(m+n=7v+1\), \(m-6n=-7u+1\), \(m=6v-u+1\), \(n=u+v\),

$$\begin{aligned} x=24v-4u+5,\;\text {and}\;y=4u+4v+2. \end{aligned}$$
(3.49)

In the sixth sum of (3.44),

$$\begin{aligned} x=28u+7\;\text {and}\;y=28v+14. \end{aligned}$$
(3.50)

Invoking (3.45), (3.46), (3.47), (3.48), (3.49), and (3.50) in (3.44), we find that

$$\begin{aligned} qF^6_6(q^8)=&\sum \limits _{u,v=-\infty }^{\infty }q^{(-4u-24v-7)^2+6(4v-4u)^2} +\sum \limits _{u,v=-\infty }^{\infty }q^{(-24v-4u-7)^2+6(4u-4v)^2}\nonumber \\ {}&\nonumber -\sum \limits _{u,v=-\infty }^{\infty }q^{(28u+7)^2+6(28v)^2} +\sum \limits _{u,v=-\infty }^{\infty }q^{(24v-4u+5)^2+6(-4u-4v-2)^2}\nonumber \\ {}&+\sum \limits _{u,v=-\infty }^{\infty }q^{(24v-4u+5)^2+6(4u+4v+2)^2} -\sum \limits _{u,v=-\infty }^{\infty }q^{(28u+7)^2+6(28v+14)^2}. \end{aligned}$$
(3.51)

After simplification of (3.51), we obtain

$$\begin{aligned} qF^6_6(q^8)=&\sum \limits _{u,v=-\infty }^{\infty }q^{56(2u^2+u)+336(2v^2+v)+49} +\sum \limits _{u,v=-\infty }^{\infty }q^{56(2u^2+u)+336(2v^2+v)+49}\nonumber \\ {}&\nonumber -\sum \limits _{u,v=-\infty }^{\infty }q^{392(2u^2+u)+4704v^2+49} +\sum \limits _{u,v=-\infty }^{\infty }q^{56(2u^2+u)+336(2v^2+v)+49}\nonumber \\&+\sum \limits _{u,v=-\infty }^{\infty }q^{56(2u^2+u)+336(2v^2+v)+49} -\sum \limits _{u,v=-\infty }^{\infty }q^{392(2u^2+u)+4704(v^2+v)+1225}. \end{aligned}$$
(3.52)

Dividing throughout by q, replacing \(q^8\) by q, and separating the terms of u and v in (3.52), we obtain

$$\begin{aligned} F^6_6(q)=&\,4q^6\sum \limits _{u=-\infty }^{\infty }q^{14u^2+7u}\sum \limits _{v=-\infty }^{\infty }q^{84v^2+42v} -q^6\sum \limits _{u=-\infty }^{\infty }q^{98u^2+49u}\sum \limits _{v=-\infty }^{\infty }q^{588v^2}\nonumber \\ {}&-q^{153}\sum \limits _{u=-\infty }^{\infty }q^{98u^2+49u}\sum \limits _{v=-\infty }^{\infty }q^{588v^2+588v}. \end{aligned}$$
(3.53)

From (2.3), (2.4), and (3.53), we see that

$$\begin{aligned} F^6_6(q)=4q^6\psi (q^7)\psi (q^{42})-q^6\psi (q^{49})\left( \varphi (q^{588}) +2q^{147}\psi (q^{1176})\right) . \end{aligned}$$
(3.54)

From (2.5) and (3.54), we obtain

$$\begin{aligned} F^6_6(q)=4q^6\psi (q^7)\psi (q^{42})-q^6\psi (q^{49})\varphi (q^{147}). \end{aligned}$$
(3.55)

The above equation can be written as

$$\begin{aligned} \sum \limits _{n=0}^{\infty }b_3\left( 7n+6\right) q^{7n+6}=4q^6\psi (q^7)\psi (q^{42})-q^6\psi (q^{49})\varphi (q^{147}). \end{aligned}$$
(3.56)

Dividing throughout by \(q^6\) and then replacing \(q^7\) by q in (3.56), we arrive at (1.4). This completes the proof. \(\square \)

Proof of Theorem 1.2

Put \(k=2\) in (1.1), we find that

$$\begin{aligned} \sum \limits _{n=0}^{\infty }a_2(5n)q^{n}=\sum \limits _{n=0}^{\infty }b_2(n)q^{n}-\sum \limits _{n=0}^{\infty }a_2(n)q^{5n+3}, \end{aligned}$$
(3.57)

which yields

$$\begin{aligned} a_2(n)+a_2(25n+15)=b_2(5n+3). \end{aligned}$$
(3.58)

From (1.3), it follows that

$$\begin{aligned} \sum \limits _{n=0}^{\infty }b_2(5n+3)q^{n}=4\sum \limits _{n=0}^{\infty }a_2(n)q^{n}-\sum \limits _{n=0}^{\infty }b_2(n)q^{5n}. \end{aligned}$$
(3.59)

Equating coefficients of \(q^{5n}\) in (3.59), we obtain

$$\begin{aligned} b_2\left( n\right) +b_2\left( 25n+3\right) =4a_2\left( 5n\right) . \end{aligned}$$
(3.60)

Equations (1.5) and (1.6) follow from (3.58) and (3.60). This completes the proof. \(\square \)

Proof of Corollary 1.1

From Eq. (1.2), we see that

$$\begin{aligned} \sum \limits _{n=0}^{\infty }b_1(3n+1)q^n\equiv 3\psi (q^3)\varphi (q^3) \pmod {4}. \end{aligned}$$
(3.61)

Equating coefficients of \(q^{3n}\) on both sides of (3.61), we find that

$$\begin{aligned} \sum \limits _{n=0}^{\infty }b_1(9n+1)q^n\equiv 3\psi (q)\varphi (q) \pmod {4}. \end{aligned}$$
(3.62)

From (3.62) and by mathematical induction, we arrive at (1.7). Similarly, we obtain (1.8) and (1.9) from (1.3) and (1.4), respectively. This completes the proof. \(\square \)

Proof of Corollary 1.2

In view of Eq. (1.5), we see that

$$\begin{aligned} a_2\left( 625n+390\right) \equiv a_2(n) \ (\text {mod}\ 2). \end{aligned}$$
(3.63)

By mathematical induction on n in (3.63), we arrive at (1.10). Similarly, we obtain (1.11) from (1.6). This completes the proof. \(\square \)