1 Introduction

Duality theory is a powerfull technique to study a wide class of related problems in pure and applied mathematics. For example the Hahn-Banach extension and separation theorems studied by means of duals (see [8]). The collection of all non-empty convex subsets of a cone (or a vector space) is interesting in convexity and approximation theory (for example see [5]). This collection is a cone. We consider the non-empty convex subsets of a cone \({\mathcal {P}}\), denoted by \(Conv({\mathcal {P}})\), and verify the dual of it, when \({\mathcal {P}}\) is a locally convex cone. We note that some elements of the dual of \(Conv({\mathcal {P}})\) have already been introduced (see [6], I: Example 2.1(e) and Example 5.31 (b)). Firstly we review the structure of locally convex cones briefly:

A nonempty set \({\mathcal {P}}\) endowed with an addition and a scalar multiplication for nonnegative real numbers is called a cone whenever the addition is associative and commutative, there is a neutral element \(0 \in {\mathcal {P}}\) and for the scalar multiplication the usual associative and distributive properties hold, that is \(\alpha (\beta a) = (\alpha \beta )a\), \((\alpha + \beta )a = \alpha a + \beta a\), \(\alpha (a + b) = \alpha a + \alpha b\), \(1a = a\) and \(0a = 0\) for all \(a, b \in {\mathcal {P}}\) and nonnegative reals \(\alpha \) and \( \beta \).

The theory of locally convex cones as introduced and developed by K. Keimel and W. Roth in [4]. It uses an order theoretical concept or a convex quasi-uniform structure on a cone. In this paper, we use the former. For some recent researches see [1,2,3, 7].

A (preordered cone) is a cone \({\mathcal {P}}\) endowed with a preorder (reflexive transitive relation) \(\le \) which is compatible with the addition and scalar multiplication, that is \(x\le y\) implies \(x+z\le y+z\) and \(r\cdot x\le r\cdot y\) for all \(x,y,z\in {\mathcal {P}}\) and \(r\in {\mathbb {R}}_+=\{r\in {\mathbb {R}} \ : \ r\ge 0\}.\) Every ordered vector space is an ordered cone. The cones \({\overline{{\mathbb {R}}}}={\mathbb {R}}\cup \{+\infty \}\) and \({\overline{{\mathbb {R}}}}_+={\mathbb {R}}_+\cup \{+\infty \}\), with the usual order and algebraic operations (specially \(0\cdot (+\infty )=0\)), are ordered cones that are not embeddable in vector spaces.

A subset \({\mathcal {V}}\) of a preordered cone \({\mathcal {P}}\) is called an (abstract) 0-neighborhood system, if

\((v_1)\):

\(0<v\) for all \(v\in {\mathcal {V}}\);

\((v_2)\):

for all \(u,v\in {\mathcal {V}}\) there is a \(w\in {\mathcal {V}}\) with \(w\le u\) and \(w\le v\);

\((v_3)\):

\(u+v\in {\mathcal {V}}\) and \(\alpha v\in {\mathcal {V}}\) whenever \(u,v\in {\mathcal {V}}\) and \(\alpha >0 \).

Let \(a\in {\mathcal {P}}\) and \(v\in {\mathcal {V}}\). We define \(v(a)=\{b\in {\mathcal {P}}\ | \ b\le a+v\}\), resp. \((a)v=\{b\in {\mathcal {P}}\ | \ a\le b+v\},\) to be a neighborhood of a in the upper, resp. lower topologies on \({\mathcal {P}}\). The common refinement of the upper and lower topologies is called symmetric topology. We denote the neighborhoods of a in the symmetric topology by v(a)v. The pair \(({\mathcal {P}},{\mathcal {V}})\) is called a full locally convex cone if the elements of \({\mathcal {P}}\) are bounded below, i.e. for every \(a\in {\mathcal {P}}\) and \(v\in {\mathcal {V}}\) we have \(0\le a+\rho v\) for some \(\rho >0\). Each subcone of \({\mathcal {P}}\), not necessarily containing \({\mathcal {V}}\), is called a locally convex cone.

We note that if \(({\mathcal {Q}},{\mathcal {V}})\) is a locally convex cone, \({\mathcal {Q}}\oplus ({\mathcal {V}}\cup \{0\})\) with the algebraic operation

$$\begin{aligned} (a,v_1)+(b,v_2)= & {} (a+b,v_1+v_2), \\ \alpha (a,v_1)= & {} (\alpha a,\alpha v_1), \end{aligned}$$

and the preorder

$$\begin{aligned} \left\{ \begin{array}{c} (a,0)\le (b,0)\Leftrightarrow a\le b\\ (0,v_1)\le (0,v_2)\Leftrightarrow v_1\le v_2\\ (a,0)\le (b,v_1)\Leftrightarrow a\le b+v_1,\\ \end{array} \right. \end{aligned}$$

for all \(a,b\in {\mathcal {Q}}\), \(v_1,v_2\in {\mathcal {V}}\) and \(\alpha \in {\mathbb {R}}^+\), \(({\mathcal {Q}}\oplus ({\mathcal {V}}\cup \{0\}),{\mathcal {V}})\) is a full locally convex cone which \({\mathcal {Q}}\) and \({\mathcal {V}}\) can be embedded in \({\mathcal {Q}}\oplus ({\mathcal {V}}\cup \{0\})\) by the mappings \(a\rightarrow (a,0)\) and \(v\rightarrow (0,v)\) for all \(a\in {\mathcal {Q}}\) and \(v \in {\mathcal {V}}\).

For cones \({\mathcal {P}}\) and \({\mathcal {Q}}\) a mapping \(t:{\mathcal {P}}\rightarrow {\mathcal {Q}}\) is called a linear operator if \(t(a+b)=t(a)+t(b)\) and \(t(\alpha a)=\alpha t(a)\) hold for \(a,b\in {\mathcal {P}}\) and \(\alpha \ge 0\).

A linear functional on a cone \({\mathcal {P}}\) is a linear mapping \(\mu :{\mathcal {P}}\rightarrow {\overline{{\mathbb {R}}}}\).

Let \(({\mathcal {P}}, {\mathcal {V}})\) and \(({\mathcal {Q}},{\mathcal {W}})\) be two locally convex cones. The linear operator \(t:({\mathcal {P}}, {\mathcal {V}})\rightarrow ({\mathcal {Q}},{\mathcal {W}})\) is called uniformly continuous or simply u-continuous if for every \(w\in {\mathcal {W}}\) one can find a \(v\in {\mathcal {V}}\) such that \(a\le b+v\) implies \(t(a)\le t(b)+w\). It is easy to see that the u-continuity implies continuity with respect to the upper, lower and symmetric topologies on \({\mathcal {P}}\) and \({\mathcal {Q}}\).

According to the definition of u-continuity, a linear functional \(\mu \) on \(({\mathcal {P}}, {\mathcal {V}})\) is u-continuous if there is a \(v\in {\mathcal {V}}\) such that \(a\le b+v\) implies \(\mu (a)\le \mu (b)+1\). The u-continuous linear functionals on a locally convex cone \(({\mathcal {P}},{\mathcal {V}})\) (into \({\overline{{\mathbb {R}}}} \)) form a cone with the usual addition and scalar multiplication of functions. This cone is called the dual cone of \({\mathcal {P}}\) and denoted by \({\mathcal {P}}^*\).

For a locally convex cone \(({\mathcal {P}},{\mathcal {V}})\), the polar \(v^{\circ }\) of \(v\in {\mathcal {V}}\) consists of all linear functionals \(\mu \) on \({\mathcal {P}}\) satisfying \(\mu (a)\le \mu (b)+1\) whenever \(a\le b+v\) for \(a,b\in {\mathcal {P}}\). We have \(\cup \{v^{\circ }: v\in {\mathcal {V}}\}={\mathcal {P}}^*\). The cones \({\overline{{\mathbb {R}}}}\) and \({\overline{{\mathbb {R}}}}_{+}=\{a\in {\overline{{\mathbb {R}}}}:a\ge 0 \}\) with (abstract) 0-neighborhood \({\mathcal {V}}=\{\varepsilon >0:\varepsilon \in {\mathbb {R}}\}\) are locally convex cones. The dual cones of \({\overline{{\mathbb {R}}}}\) and \({\overline{{\mathbb {R}}}}_{+}\) under \({\mathcal {V}}\) consists of all nonnegative reals and the functional \(0_{\infty }\) such that \(0_{\infty }(a)=0\) for all \(a\in {\mathbb {R}}\) and \(0_{\infty } (+\infty )=+\infty \).

2 Dual of the cone of non-empty convex sets of a locally convex cone

A subset A of a cone \({\mathcal {P}}\) is said convex, if \(\lambda a+(1-\lambda ) b\in A\), whenever \(a,b\in {\mathcal {P}}\) and \(0\le \lambda \le 1\). Let \({\mathcal {P}}\) be a preordered cone and \(Conv({\mathcal {P}})\) be the cone of all non-empty convex subsets of \({\mathcal {P}}\), endowed with the usual addition and multiplication of sets by non-negative scalars, that is \(\alpha A = \{\alpha a\ |\ a \in A\} \) and \(A + B = \{a + b\ |\ a \in A \ and \ b \in B\}\) for \(A, B \in Conv({\mathcal {P}}) \) and \(\alpha \ge 0\). We consider the order on \(Conv({\mathcal {P}})\) by

$$\begin{aligned} A \preceq B \ \ \ if \ \ \ A \subseteq \downarrow {B}, \end{aligned}$$

where \( \downarrow B = \{x \in {\mathcal {P}}| x \le b \ \text{ for } \text{ some } \ b \in B\}\) is the decreasing hull of the set B in \({\mathcal {P}}\). Note that \( \downarrow B\) is again a convex subset of \({\mathcal {P}}\). The requirements for a preordered cone are easily checked. The neighborhood system in \(Conv({\mathcal {P}})\) is \({\overline{{\mathcal {V}}}}:=\{ {\overline{v}}=\{v\}\ |\ v\in {\mathcal {V}}\}\), that is

$$\begin{aligned} A \preceq B + {\overline{v}} \ \ \ if \ \ \ A \subseteq \downarrow (B + \{v\} ) \end{aligned}$$

for \(A, B \in Conv({\mathcal {P}})\) and \({\overline{v}} \in {\overline{{\mathcal {V}}}}\). The cone \(Conv({\mathcal {P}})\) with (abstract) 0-neighborhood system \({\overline{{\mathcal {V}}}})\) is a locally convex cone. Via the embedding \( x\rightarrow \{x\}: {\mathcal {P}}\rightarrow Conv({\mathcal {P}})\) the preordered cone \({\mathcal {P}}\) itself may be considered as a subcone of \(Conv({\mathcal {P}})\) (see [6], I, Example 1.4 (c)).

Definition 1

We say that a preordered cone \({\mathcal {P}}\) is a \(\bigvee \)-semilattice cone if the order of \({\mathcal {P}}\) is antisymmetric and if

\((\bigvee 1)\) every non-empty subset \(A\subseteq {\mathcal {P}}\) has a supremum \(\sup A\in {\mathcal {P}}\) and \(\sup (A+b)=\sup A+b\) hold for all \(b\in {\mathcal {P}}\).

Moreover, if \({\mathcal {P}}\) with an abstract neighborhood system \({\mathcal {V}}\) is a locally convex cone and

\((\bigvee 2)\) for \(\emptyset \ne A\subseteq {\mathcal {P}}\), \(b\in {\mathcal {P}}\) and \(v\in V\) such that \(a\le b+v \) for all \(a\in A\), we have \(\sup A\le b+v\),

then \(({\mathcal {P}}, {\mathcal {V}})\) is said a \(\bigvee \)-semilattice locally convex cone.

In particular, every \(\bigvee \)-semilattice cone \({\mathcal {P}}\) contains a largest element, that is \(+\infty =\sup {\mathcal {P}},\) which can be adjoined as a maximal element to any \(\bigvee \)-semilattice cone with the convention that \(a+(+\infty )=+\infty \), \(\alpha \cdot (+\infty )=+\infty \), \(0 \cdot (+\infty )=0\) and \(a\le +\infty \) for all \(a\in {\mathcal {P}}\) and \(\alpha > 0\).

Remark 1

We note that the condition \((\bigvee 2)\) of definition 1 is necessary and the definition of supremum does not imply this condition in locally convex cones necessarily. We show this in the following example.

Example 1

Let \({\mathbb {R}}\) be as a cone and \({\mathcal {V}}=\{{\bar{\epsilon }}=(-\infty ,\epsilon ) \ : \ \epsilon \in {\mathbb {R}}_{>0}\}\).

Let

$$\begin{aligned} {\mathcal {P}}=\{(a,B) \ : \ a\in {\mathbb {R}} \ \text{ and } \ B\in {\mathcal {V}}\cup \{\{0\}\}\}. \end{aligned}$$

We define

$$\begin{aligned} (a,B)+(c+D)=(a+c,B+D), \end{aligned}$$

and

$$\begin{aligned} \lambda (a,B)=(\lambda a, \lambda B) \end{aligned}$$

for all \( (a,B), (c,D)\in {\mathcal {P}}\). Also, we define the preorder

$$\begin{aligned} (a,B)\le (c,D)\Leftrightarrow \left\{ \begin{array}{cc} a\le c &{} \text{ if } \ B=D=\{0\} \\ a+B\subseteq c+D &{} \ \text{ if } \ D\ne \{0\}\\ \end{array} \right. , \end{aligned}$$

for all \( (a,B), (c,D)\in {\mathcal {P}}\). Then \(({\mathcal {P}},{\mathcal {V}})\) is a full locally convex cone. Now, we can embedded \({\mathbb {R}}\) in \({\mathcal {P}}\) by \(a\rightarrow (a,\{0\})\) and we can consider \({\mathbb {R}}\) as a subcone of \({\mathcal {P}}\). We have

$$\begin{aligned} a\le b+{\bar{\epsilon }}\Leftrightarrow (a, \{0\})\le (b, (-\infty ,\epsilon ))\Leftrightarrow \{a\}\subseteq (-\infty ,b+\epsilon )\Leftrightarrow a\in (-\infty ,b+\epsilon ). \end{aligned}$$

Now, for the set \(A=(0,5)\subseteq {\mathbb {R}}\), by considering the embedding, we have \({\bar{A}}=\{(a,\{0\}) \ : \ a\in (0,5)\}\). Let \(b=4\) and \({\bar{1}}=(-\infty , 1)\in {\mathcal {V}}\). Then

$$\begin{aligned}&a\in (0,5) \Leftrightarrow a \in (0,4+1) \Rightarrow a \in (-\infty ,4 + 1)\\&\quad \Rightarrow (a,\{0\}) \le (4,\{0\}) + (0,(-\infty ,1)), \end{aligned}$$

for all \((a,\{0\})\in {\bar{A}}\), i.e.

$$\begin{aligned} a\le 4+{\bar{1}}, \end{aligned}$$

for all \(a\in A=(0,5)\). On the other hand, \(\sup A=5\) (in \({\mathbb {R}}\)) and we have

$$\begin{aligned} 5\not \in (-\infty ,5)=(-\infty ,4+1)\Rightarrow (5,\{0\})\not \le (4,\{0\})+(0,(-\infty ,1)), \end{aligned}$$

i.e. \(5\not \le 4+{\bar{1}}\). Although, \({\mathcal {P}}\) is not a \(\bigvee \)-semilattice cone, \({\mathbb {R}}\) is a \(\bigvee \)-semilattice cone. Also, the locally convex cone \(({\mathbb {R}},{\mathcal {V}})\) is not a \(\bigvee \)-semilattice locally convex cone.

Remark 2

We note that definition 1 is similar to the definition of “locally convex \(\bigvee \)-semilattice cone" in [6], I, 5.4. In this definition, the order do not coincide with the weak preorder necessarily.

We define \(Conv^n({\mathcal {P}}):=Conv(Conv^{n-1}({\mathcal {P}}))\) for \(n=2,3,\ldots \) and \(Conv^1({\mathcal {P}})=Conv({\mathcal {P}})\). Let

$$\begin{aligned} \{a\}^n:= \underbrace{\{\cdots \{}_{n\ times}a\underbrace{\}\cdots \}}_{n\ times} \end{aligned}$$
(1)

for all \(a\in {\mathcal {P}}\). It is easy to see that \(\{a\}^n \in Conv^n({\mathcal {P}})\) for all \(n\in {\mathbb {N}}\). This shows that \({\mathcal {P}}\) is embedded in \( Conv^n({\mathcal {P}})\) (the mapping \(a\longrightarrow \{a\}^n\) is the embedding). The cone \( Conv^n({\mathcal {P}})\) with the (abstract) 0-neighborhood system \({\overline{{\mathcal {V}}}}^n\) is a locally convex cone, where \({\overline{{\mathcal {V}}}}^n:=\{{\bar{v}}^n:= \{v\}^n\ |\ v\in {\mathcal {V}}\}\).

Example 2

For the cone \({\mathbb {R}}\), we have \(A^1=[0,1] \in {Conv}(\overline{{\mathbb {R}}})\) , \(A^2=\{ [0,a]\ |\ ,a \in [0,1] \} \) is an element of \( Conv^2({\mathbb {R}})\) and \(A^3=\{\{ [0,a]\ |\ ,a \in [0,b] \}\ |\ b \in [0,1] \}\) is an element of \( Conv^3({\mathbb {R}})\).

For the element \(A^n\) of \(Conv^n({\mathcal {P}})\) we define

$$\begin{aligned} sup ^s(A^n):=\sup \{sup^s(A^{n-1}) \ | \ A^{n-1}\in A^n\} \end{aligned}$$

for \(n=2,3, \ldots \) and \(sup^s(A^1)=\sup A\). It is easy to see that \(sup^s(A^n)\in {\mathcal {P}}\) for all \(n\in {\mathbb {N}}\).

The following lemma is an special case of Lemma 5.5 of [6].

Lemma 1

Let \({\mathcal {P}}\) be a \(\bigvee -\)semilattice cone and \(\{A_i\}_{i\in I}\) be a collection of non-empty subsets of \({\mathcal {P}}\). Then

$$\begin{aligned} \sup \left( \bigcup _{i \in I} A_i\right) =\sup \{\sup A_i \ | \ i \in I\}. \end{aligned}$$

Proof

Let \(a \in \bigcup _{i\in I} A_i\) be arbitrary. Then there exists \(i \in I\) such that \(a \in A_i\). We have \(a\le \sup A_i\) and so \(a\le \sup \{\sup A_i \ | \ i \in I\}\). Then

$$\begin{aligned} \sup \left( \bigcup _{i \in I} A_i\right) \le \sup \{\sup A_i \ | \ i \in I\}. \end{aligned}$$

On the other hand, \(\sup A_i\le \sup (\bigcup _{i \in I} A_i)\) for all \(i \in I\). This conclude that

$$\begin{aligned} \{\sup A_i \ | \ i \in I\}\le \sup \left( \bigcup _{i \in I} A_i\right) . \end{aligned}$$

\(\square \)

Remark 3

We note that \(A^2\in Conv^2({\mathcal {P}})\) but the elements of \(A^2\) belong to \(Conv^1({\mathcal {P}})= Conv({\mathcal {P}})\). This implies that the union of the elements of \(A^2\) (\(\bigcup _{A^1\in A^2} A^1\)) belongs to the power set of \({\mathcal {P}}\). Also, \(A^3\in Conv^3({\mathcal {P}})\) and the elements of \(A^3\) belong to \(Conv^2({\mathcal {P}})\). Then the union of the elements of \(A^3\) (\(\bigcup _{A^2\in A^3} A^2\)) belongs to the power set of \(Conv^2({\mathcal {P}})\) and the union of these sets (\(\bigcup _{A^2\in A^3}\bigcup _{A^1\in A^2} A^1\)) belongs again to the power set of \({\mathcal {P}}\). By continuing this process, we conclude that \(A^n\in Conv^n({\mathcal {P}})\) and the elements of \(A^n\) belong to \(Conv^{n-1}({\mathcal {P}})\). Then

$$\begin{aligned} \bigcup _{A^{n-1}\in A^n}\cdots \bigcup _{A^2\in A^3}\bigcup _{A^1\in A^2} A^1 \end{aligned}$$

belongs to the power set of \({\mathcal {P}}\). By Lemma 1, we have

$$\begin{aligned} sup^s(A^n)=\sup \left( \bigcup _{A^{n-1}\in A^n}\cdots \bigcup _{A^2\in A^3}\bigcup _{A^1\in A^2} A^1\right) . \end{aligned}$$

Let \({\mathcal {P}}\) be a cone and \(\mu :{\mathcal {P}}\rightarrow \overline{{\mathbb {R}}} \) be a functional. We define

$$\begin{aligned} {\overline{\mu }}(A):=\sup \{\mu (a)\ | \ a\in A \},\quad A\in Conv({\mathcal {P}}), \end{aligned}$$

moreover, if \({\mathcal {P}}\) is a \(\bigvee \)-semilattice cone, we define

$$\begin{aligned} \overline{{\overline{\mu }}}(A):=\mu (\sup A ), \quad A\in Conv({\mathcal {P}}). \end{aligned}$$

Lemma 2

Let \(({\mathcal {P}}, {\mathcal {V}})\) be a locally convex cone and \(\mu \in {\mathcal {P}}^*\). Then \({\overline{\mu }} \in Conv({\mathcal {P}})^*\). Moreover, if \(({\mathcal {P}}, {\mathcal {V}})\) is \(\bigvee \)-semilattice locally convex cone, then \(\overline{{\overline{\mu }}} \in Conv({\mathcal {P}})^*\).

Proof

We have

$$\begin{aligned} {\overline{\mu }}(\alpha A+B)&=\sup \{\mu (\alpha a+b)\ |\ a\in A, b\in B\}\\&=\sup \{\alpha \mu (a)+\mu (b)\ |\ a\in A, b\in B\}\\&=\alpha \sup \{\mu ( a)\ |\ a\in A\} +\sup \{\mu (b)\ |\ b\in B\}\\&=\alpha {\overline{\mu }}(A)+{\overline{\mu }}(B), \end{aligned}$$

for all \(A,B \in Conv({\mathcal {P}})\) and all \(\alpha \ge 0\). So \({\overline{\mu }}\) is linear.

Now, if \(({\mathcal {P}}, {\mathcal {V}})\) is \(\bigvee \)-semilattice locally convex cone, then

$$\begin{aligned} \sup (A+B)&=\sup \left( \bigcup _{b\in B}(A+b)\right) \\&=\sup \{\sup (A+b)\ |\ b\in B\}\quad \text{(by } \text{ Lemma }\, 1\mathrm{)}\\&=\sup \{\sup A+b \ |\ b\in B\}\\&=\sup (A)+\sup (B). \end{aligned}$$

This yields that \(\mu (\sup (A+B))=\mu (\sup (A))+\mu (\sup (B))\) and then \(\overline{{\overline{\mu }}}(A+B)=\overline{{\overline{\mu }}}(A)+\overline{{\overline{\mu }}}(B)\) for all \(A,B \in Conv({\mathcal {P}})\). Also,

$$\begin{aligned} \overline{{\overline{\mu }}}(\alpha A)=\mu (\sup (\alpha A))=\mu (\alpha \sup A )=\alpha \mu (\sup A )=\alpha \overline{{\overline{\mu }}}(A), \end{aligned}$$

for all \(\alpha \ge 0\) and \(A\in Conv({\mathcal {P}})\). Therefore \(\overline{{\overline{\mu }}}\) is linear.

Now, we show that \({\overline{\mu }}\) and \(\overline{{\overline{\mu }}}\) are u-continuous extensions of \(\mu \) to \(Conv({\mathcal {P}})\). Via of continuity of \(\mu \), there is a \(v\in {\mathcal {V}}\) such that \(a\le b+v\) implies \(\mu (a)\le \mu (b)+1\). Let \(A\preceq B+\{v\}\). Then, for each \(a\in A\) there exists \(b\in B\) such that \( a\le b+v\). We have

$$\begin{aligned} \mu (a)\le \mu (b)+1&\Rightarrow \mu (a)\le \sup \{\mu (b) \ | \ b\in B \}+1\\&\Rightarrow \sup \{\mu (a)\ | \ a\in A \}\le \sup \{\mu (b) \ | \ b\in B \}+1\\&\Rightarrow {\overline{\mu }}(A)\le {\overline{\mu }}(B)+1. \end{aligned}$$

This shows that \({\overline{\mu }}\) is u-continuous. Also if \(({\mathcal {P}}, {\mathcal {V}})\) is \(\bigvee \)-semilattice locally convex cone, we have

$$\begin{aligned} a\le \sup (B)+v&\Rightarrow \sup (A)\le \sup (B) +v \quad ( \text{ by } \bigvee 2)\\&\Rightarrow \mu (\sup (A))\le \mu (\sup (B)) +1\\&\Rightarrow \overline{{\overline{\mu }}}(A)\le \overline{{\overline{\mu }}}(B)+1. \end{aligned}$$

This yields that \(\overline{{\overline{\mu }}}\) is u-continuous.

\(\square \)

Proposition 1

Let \({\mathcal {P}}\) be a preordered cone, \(\mu \) be a monotone functional on \({\mathcal {P}}\) and \({\widetilde{\mu }}\) be a monotone extension of \(\mu \) on \(Conv({\mathcal {P}}) \). Then \({\overline{\mu }}\le {\widetilde{\mu }}\). Furthermore, if \({\mathcal {P}}\) is a \(\bigvee \)-semilattice cone, then

$$\begin{aligned} {\overline{\mu }}\le {\widetilde{\mu }}\le \overline{{\overline{\mu }}}. \end{aligned}$$
(2)

Proof

Let \({\overline{\mu }}\nleq {\widetilde{\mu }}\). Then there exists \(A\in Conv({\mathcal {P}})\) such that \({\overline{\mu }}(A)\nleq {\widetilde{\mu }}(A)\) i.e. \({\widetilde{\mu }}(A)< {\overline{\mu }}(A)=\sup \{\mu (a)\ | \ a\in A \}\). Then there exists \(a\in A\) such that \({\widetilde{\mu }}(A)<\mu (a)={\widetilde{\mu }}(\{a\})\) (by the supremum property). On the other hand, \(\{a\}\preceq A\) and so \({\widetilde{\mu }}(\{a\})\le {\widetilde{\mu }}(A)\). This contradiction yields that \({\overline{\mu }}\le {\widetilde{\mu }}\).

Now, let \({\mathcal {P}}\) be a \(\bigvee \)-semilattice cone. Let \( A\in Conv({\mathcal {P}})\) be arbitrary. We have \(A\preceq \{\sup A\}\). Then \({\widetilde{\mu }}(A)\le {\widetilde{\mu }}(\{sup A\})=\mu (sup A)=\overline{{\overline{\mu }}}(A)\). \(\square \)

Let \({\mathcal {P}}\) be a \(\bigvee \)-semilattice cone. We denote

$$\begin{aligned} \Omega ({\mathcal {P}}):=\{\mu \in {\mathcal {L}}({\mathcal {P}}) \ | \ \mu \text{ is } \text{ monotone } \text{ and } {\overline{\mu }}(A)=\overline{{\overline{\mu }}}(A), \forall A\in Conv({\mathcal {P}})\}, \end{aligned}$$

where \({\mathcal {L}}({\mathcal {P}})\) is the cone of all linear functionals on \({\mathcal {P}}\).

Corollary 1

Let \({\mathcal {P}}\) be a \(\bigvee -\)semilattice cone. Then the elements of \(\Omega ({\mathcal {P}})\) have unique extensions to \({Conv}({\mathcal {P}})\).

By the assumptions of the Corollary 1, we conclude that the elements of \(\Omega ({\mathcal {P}})\) have unique extensions to \({Conv}^n({\mathcal {P}})\).

Proposition 2

Let \({\mathcal {P}}\) be a \(\bigvee -\)semilattice cone. Then

$$\begin{aligned} sup ^s(A^n)+sup ^s(B^n)=sup ^s(A^n+B^n), \end{aligned}$$

for all \(n\in {\mathbb {N}}\) and \(A^{n},B^{n}\in Conv^n({\mathcal {P}})\).

Proof

For \(n=1\), let \(A^1=A\) and \(B^1=B\) be elements of \(Conv^1({\mathcal {P}})=Conv({\mathcal {P}})\). We have

$$\begin{aligned} sup^s(A+B)&=\sup \left( \bigcup _{b\in B}(A+b)\right) \\&=\sup \{\sup (A+b)\ |\ b\in B\}\quad \text{(by } \text{ Lemma }\, 1\mathrm{)}\\&=\sup \{\sup A+b \ |\ b\in B\}\\&=sup^s(A)+sup^s(B). \end{aligned}$$

Now, let

$$\begin{aligned} sup ^s(A^{n-1})+sup ^s(B^{n-1})=sup ^s(A^{n-1}+B^{n-1}). \end{aligned}$$

Then

$$\begin{aligned} sup^s(A^{n}+B^{n})&=sup^s(\{A^{n-1}+B^{n-1}\ |\ A^{n-1}\in A^n ,\ B^{n-1}\in B^n \})\\&=\sup (\{sup^s(A^{n-1}+B^{n-1})\ |\ A^{n-1}\in A^n\ ,\ B^{n-1}\in B^n \})\\&=\sup (\{sup^s(A^{n-1})+sup^s(B^{n-1})\ |\ A^{n-1}\in A^n\ ,\ B^{n-1}\in B^n \})\\&=\sup (\{sup^s(A^{n-1})\ |\ A^{n-1}\in A^n \})\\&\quad +\sup (\{sup^s(B^{n-1})\ |\ B^{n-1}\in B^n \}) \\&=sup^s(A^{n})+sup^s(B^{n}). \end{aligned}$$

\(\square \)

Let coh(F) denote the convex hull of the set F, the smallest convex set containing F. We set

$$\begin{aligned} coh^s(A^n) :=coh(\{coh^s(A^{n-1}) \ | \ A^{n-1}\in A^n\}\cup \{sup^s(A^n)\}^n ) \end{aligned}$$

for \(n=2,3, \ldots \) and \(coh^s(A^1) =coh(A\cup \{sup(A)\})\).

Proposition 3

Let \({\mathcal {P}}\) be a \(\bigvee -\)semilattice cone. Then

$$\begin{aligned} \sup (coh^s(A^n))=\sup (A^n), \end{aligned}$$

all \(A^{n}\in Conv^n({\mathcal {P}})\) and \(n\in {\mathbb {N}}\).

Proof

First we show that \(\sup (coh^s(A^1))=\sup (A^1)\). Let \(x\in coh^s(A^1)\) be arbitrary. Then there are \(\lambda _1,\lambda _2,\ldots ,\lambda _k\ge 0\) and \(a_1,a_2,\ldots ,a_k\in A^1\cup \{\sup (A^1)\} \) such that \(\sum _{i=1}^k \lambda _i=1\) and \(x=\sum _{i=1}^k \lambda _i a_i\). On the other hand, \(\lambda _i a_i\le \lambda _i \sup (A^1)\) for all \(i=1,2,\ldots ,k\). We have

$$\begin{aligned} x=\sum _{i=1}^k \lambda _i a_i \le \sum _{i=1}^k\lambda _i \sup A^1=\sup (A^1). \end{aligned}$$

This yields that

$$\begin{aligned} \sup (coh^s(A^1))=\sup (A^1), \end{aligned}$$

since \(\sup (A^1)\in coh^s(A^1)\).

Now, let \(\sup (coh^s(A^{n-1}))=\sup (A^{n-1})\) for all \(A^{n-1}\in Conv^{n-1}({\mathcal {P}})\). Consider \(A^{n}\in Conv^{n}({\mathcal {P}})\) and \({\mathcal {X}}\in coh^s(A^n)\). Then there are \(\lambda _1,\lambda _2,\ldots ,\lambda _k\ge 0\) and \(A^{n-1}_1,A^{n-1}_2,\ldots ,A^{n-1}_k\in A^n\cup \{\sup (A^n)\}^n \) such that \(\sum _{i=1}^k \lambda _i=1\) and \({\mathcal {X}}=\sum _{i=1}^k \lambda _i coh^s(A^{n-1}_i).\) On the other hand,

$$\begin{aligned} \lambda _i coh^s(A^{n-1}_i)\preceq \lambda _i \{sup^s (coh^s( A^{n-1}_i))\}^n=\{sup^s ( A^{n-1}_i)\}^n\preceq \lambda _i \{sup^s ( A^n)\}^n, \end{aligned}$$

for all \(i=1,2,\ldots ,k\). So

$$\begin{aligned} {\mathcal {X}}=\sum _{i=1}^k \lambda _i coh^s(A^{n-1}_i) \preceq \sum _{i=1}^k\lambda _i \{sup^s ( A^n)\}^n=\{sup^s ( A^n)\}^n, \end{aligned}$$

and so

$$\begin{aligned} sup^s({\mathcal {X}})\le sup^s ( A^n). \end{aligned}$$

Since \(\{sup^s ( A^n)\}^n\in coh^s(A^{n})\), we have

$$\begin{aligned} sup^s(coh^s(A^{n}))=sup^s(A^{n}). \end{aligned}$$

\(\square \)

Remark 4

By Proposition 3 and by considering the construction of \(coh^s(A^{n})\), we have

$$\begin{aligned} \{sup^s(coh^s(A^{n}))\}^n\in coh^s(A^{n}) \end{aligned}$$

for all \(n\in {\mathbb {N}}\).

Example 3

For the cone \(\overline{{\mathbb {R}}}\), we have \( \{0\},\{0,+\infty \} \in {Conv}(\overline{{\mathbb {R}}})\) and \(A^2=\{ \{0\},\{0,+\infty \} \} \) is an element of \( Conv^2(\overline{{\mathbb {R}}})\). We have \(sup ^s(A^2)=\sup \{0,+\infty \}=+\infty \) and \(coh^s(A^2)=\{\{0\},\{0,+\infty \} ,\{+\infty \} \}\).

For every positive integer n we introduce

$$\begin{aligned} {Conv_s}^n({\mathcal {P}}):= \{coh^s(A^n) \ | \ A^n\in Conv^n({\mathcal {P}})\}. \end{aligned}$$

Theorem 1

Let \({\mathcal {P}}\) be a \(\bigvee -\)semilattice cone. Then \({Conv_s}^n({\mathcal {P}})\) is a subcone of \({Conv}^n({\mathcal {P}})\) for all \(n\in {\mathbb {N}}\).

Proof

Let \({\mathcal {A}},{\mathcal {B}}\in {Conv_s}^1({\mathcal {P}})\). Then there exist \(A^1,B^1\in Canv({\mathcal {P}})\) such that

$$\begin{aligned} {\mathcal {A}}=coh^s(A^1) =coh(A^1\cup \{sup(A^1)\}) \end{aligned}$$

and

$$\begin{aligned} {\mathcal {B}}=coh^s(B^1) =coh(B^1\cup \{sup(B^1)\}). \end{aligned}$$

We conclude that \({\mathcal {A}},{\mathcal {B}} \in Canv({\mathcal {P}})\). Put \({\mathcal {A}}+{\mathcal {B}}={\mathcal {C}}\). We have

$$\begin{aligned} \sup ({\mathcal {A}})+\sup ({\mathcal {B}})= \sup ({\mathcal {A}}+{\mathcal {B}})=\sup ({\mathcal {C}}), \end{aligned}$$

by Proposition 2 (for case \(n=1\)). Since \({\mathcal {A}},{\mathcal {B}}\) contain their suprema, then \({\mathcal {C}}\) contains its supremum. Hence

$$\begin{aligned} {\mathcal {C}} =coh({\mathcal {C}}\cup \{\sup ({\mathcal {C}})\})=coh^s({\mathcal {C}}), \end{aligned}$$

which conclude that \({\mathcal {C}}\in {Conv_s}^1({\mathcal {P}})\). On the other hand, for each \(\alpha \ge 0\),

$$\begin{aligned} \alpha {\mathcal {A}}=\alpha coh^s(A^1)= coh^s(\alpha A^1) =coh( \alpha A^1\cup \{sup( \alpha A^1)\}), \end{aligned}$$

and so \(\alpha {\mathcal {A}}\in {Conv_s}^1({\mathcal {P}})\). Hence \( {Conv_s}^1({\mathcal {P}})\) is a subcone of \( {Conv}({\mathcal {P}})\). For completion of induction, first we show that \({Conv_s}^{n+1}({\mathcal {P}})\subseteq {Conv}^{n+1}({\mathcal {P}})\). For this, let \({\mathcal {A}}\in {Conv_s}^{n+1}({\mathcal {P}})\). There is \(A^{n+1}\in Canv^{n+1}({\mathcal {P}})\) such that \({\mathcal {A}}=coh^s(A^{n+1}) \) and so

$$\begin{aligned} {\mathcal {A}}=coh^s(A^{n+1}) =coh(\{coh^s(A^{n}) \ | \ A^{n}\in A^{n+1}\}\cup \{sup^s(A^{n+1})\}^{n} ). \end{aligned}$$

Let \({\mathcal {X}}\in {\mathcal {A}}\) be arbitrary. There exist \(\lambda _1,\lambda _2,\ldots ,\lambda _k\ge 0\) and \(A^{n}_1,A^{n}_2,\ldots ,A^{n}_k\in A^{n+1}\cup \{\sup (A^{n+1})\}^{n} \) such that \(\sum _{i=1}^k \lambda _i=1\) and \({\mathcal {X}}=\sum _{i=1}^k \lambda _i coh^s(A^{n}_i).\) On the other hand, \(\lambda _i coh^s(A^{n}_i)\in {Conv_s}^{n}({\mathcal {P}})\), for all \(i=1,2,\ldots ,k\). Hence

$$\begin{aligned} {\mathcal {X}}=\sum _{i=1}^k \lambda _i coh^s(A^{n}_i) \in {Conv_s}^{n}({\mathcal {P}}), \end{aligned}$$

and then \({\mathcal {A}}\in Canv^{n+1}({\mathcal {P}})\).

Now, let \({\mathcal {A}},{\mathcal {B}}\in {Conv_s}^{n+1}({\mathcal {P}})\). Then for all \( {\mathcal {X}}\in {\mathcal {A}}\subseteq Canv^{n}_s({\mathcal {P}})\) and \( {\mathcal {Y}}\in {\mathcal {B}}\subseteq Canv^{n}_s({\mathcal {P}})\), we have \({\mathcal {X}}+{\mathcal {Y}}\in Canv^{n}_s({\mathcal {P}})\). By Proposition 3 and Remark 4, we have \(\{\sup ^s({\mathcal {A}})\}^n\in {\mathcal {A}}\) and \(\{\sup ^s({\mathcal {B}})\}^n\in {\mathcal {B}}\). Also, by Proposition 2, we have

$$\begin{aligned} \{sup^s({\mathcal {A}}+{\mathcal {B}})\}^{n+1}\in {\mathcal {A}}+{\mathcal {B}}, \end{aligned}$$

and then

$$\begin{aligned} {\mathcal {A}}+{\mathcal {B}} =coh(\{coh^s({\mathcal {Z}}) \ | \ {\mathcal {Z}}\in {\mathcal {A}}+{\mathcal {B}} \}\cup \{sup^s({\mathcal {A}}+{\mathcal {B}})\}^{n+1} ). \end{aligned}$$

Now, by considering the properties of sup and coh (convex hull of a set), we have \(\alpha {\mathcal {A}}\in {Conv_s}^{n+1}({\mathcal {P}})\) for all \(\alpha \ge 0\) and \({\mathcal {A}}\in {Conv_s}^{n+1}({\mathcal {P}})\). \(\square \)

Now, we characterize the elements of \({Conv_s}^n({\mathcal {P}})^*\). First we recall a theorem.

Theorem 2

([4], II, 2.9) Let \({\mathcal {Q}}\) be subcone of the locally convex cone \(({\mathcal {P}}, {\mathcal {V}})\). Then every u-continuous linear functional on \({\mathcal {Q}}\) can be extended to a u-continuous linear functional on \({\mathcal {P}}\).

Theorem 3

If \(({\mathcal {P}},{\mathcal {V}})\) is a \(\bigvee \)-semilattice locally convex cone, then for all \(n\in {\mathbb {N}}\), \((Conv^n({\mathcal {P}}))^*\) and \({\mathcal {P}}^*\) coincide, in the sense that any vector of \({\mathcal {P}}^*\) has a unique extension to a vector of \((Conv^n({\mathcal {P}}))^*\) and conversely any vector \((Conv^n({\mathcal {P}}))^*\) can be restricted to a vector of \({\mathcal {P}}^*\).

Proof

By considering (1) we can embed \({\mathcal {P}}\) into \({Conv_s}^n({\mathcal {P}})\). It is easy to see that the restriction of each element of \({Conv_s}^n({\mathcal {P}})^*\) on \({\mathcal {P}}\) belongs to \({\mathcal {P}}^*\) and by Theorem 2, the extension of each element of \({\mathcal {P}}^*\) to \({Conv_s}^n({\mathcal {P}})\) is an element of \({Conv_s}^n({\mathcal {P}})^*\). So it is sufficient to show that each element of \({\mathcal {P}}^*\) has a unique extension in \({Conv_s}^n({\mathcal {P}})^*\). Let \( \mu \in {\mathcal {P}}^*\). Define \( ({\bar{\mu }})^n\) as follows:

$$\begin{aligned} ({\bar{\mu }})^1(A):={\bar{\mu }}(A)=\sup \{\mu (a)\ |\ a\in A \} \quad ( A\in Conv_s({\mathcal {P}})), \end{aligned}$$
(3)

and

$$\begin{aligned} \begin{aligned} ({\bar{\mu }})^n(A^n):=\sup \{({\bar{\mu }})^{n-1} (A^{n-1})\ |\ A^{n-1}\in A^n\} \quad (A^n\in {Conv_s}^n({\mathcal {P}})), \end{aligned} \end{aligned}$$
(4)

for \(n=2,3,\ldots \). By Lemma 2, the functional \(({\bar{\mu }})^1\) is u-continuous and by repeating this process \(({\bar{\mu }})^n\) is u-continuous too. We have \(({\bar{\mu }})^1(A)=\mu (sup^s(A))\) and \(({\bar{\mu }})^n(A^n)=({\bar{\mu }})^{n-1}(\{sup^s({A^n})\}^{n-1})\), since A contains \(\sup A\). By Remark 4 and Proposition 2 the mapping \(({\bar{\mu }})^n\) is an extension of \(\mu \) to \({Conv_s}^n({\mathcal {P}})\). Let \(\vartheta _n\) be another u-continuous extension of \(\mu \) to \({Conv_s}^n({\mathcal {P}})\) (which exists by Theorem 2). We show that \(\vartheta _n={\bar{\mu }}^n\).

Let \(A^n \in Conv^n_s ({\mathcal {P}})\). Since \(A^n\preceq \{ {sup^s(A^n)}\}^n\) and \(\{ {sup^s(A^n)}\}^n\preceq A^n\), then \(\vartheta _n(A^n)\le \vartheta _n(\{ {sup^s(A^n)}\}^n)\) and \(\vartheta _n(\{ {sup^s(A^n)}\}^n)\le \vartheta _n(A_n)\) and so

$$\begin{aligned} \vartheta _n(A^n)=\vartheta _n(\{ {sup^s(A^n)}\}^n)=\mu (\{ {sup^s(A^n)}\}^n)=({\bar{\mu }})^n(\{ {sup^s(A^n)}\}^n)=({\bar{\mu }})^n(A^n) . \end{aligned}$$

This completes the proof. \(\square \)

In the following example we consider the locally convex cone \(\overline{{\mathbb {R}}}\) and we characterize all elements of the dual of the locally convex cone \((Conv^n(\overline{{\mathbb {R}}}),{\overline{{\mathcal {V}}}}^n)\), where \({\mathcal {V}}=\{\epsilon >0\ |\ \epsilon \in {\mathbb {R}} \}\).

Example 4

We know that \(\overline{{\mathbb {R}}}\) is a \(\bigvee -\)semilattice locally convex cone. It is easy to see that

$$\begin{aligned} Conv_s(\overline{{\mathbb {R}}})&=\{[a,b],(c,d], (-\infty ,d], \{e\}, A\cup \{+\infty \} \ | \ A\in Conv({\mathbb {R}}),\\ {}&\ \ \ \ \ \ a,b,c,d,e \in \overline{{\mathbb {R}}} \text{ with } a<b \text{ and } c<d \}\\&=Conv(\overline{{\mathbb {R}}}){\setminus }\{(a,b), (-\infty ,b), [c,d) \ | \ a,b,c,d\in \overline{{\mathbb {R}}}\}. \end{aligned}$$

According to Theorem 3, \((Conv^n({\mathbb {R}}))^*\) and \({\mathbb {R}}^*\) coincide, in the sense that any vector of \({\mathbb {R}}^*\) has a unique extension to a vector of \((Conv^n({\mathbb {R}}))^*\) and conversely any vector \((Conv^n({\mathbb {R}}))^*\) can be restricted to a vector of \({\mathbb {R}}^*\) for all \(n\in {\mathbb {N}}\).

Since \(\Omega (\overline{{\mathbb {R}}})=\overline{{\mathbb {R}}}^* {\setminus } \{0_\infty \}={\mathbb {R}}^*\), every element of \({\mathbb {R}}^*\) has a unique extension in \((Conv^n(\overline{{\mathbb {R}}}))^*\) by Corollary 1. The element \(0_\infty \) violates the \( \Omega \) condition at just one point \(+\infty \). So two different extensions \( \overline{ 0_\infty }(A)\) and \(\overline{\overline{0_\infty }}\) can be written for it in \( Conv (\overline{{\mathbb {R}}})^* \) as the following:

$$\begin{aligned} \overline{ 0_\infty }(A)&=\sup \{0_\infty (a)|a\in A\}=0,\\ \overline{\overline{0_\infty }}(A)&= 0_\infty (\sup A)=0, \end{aligned}$$

for all \( A \in Conv(\overline{{\mathbb {R}}})\) which \(\sup (A)\ne +\infty \),

$$\begin{aligned} \overline{ 0_\infty }(A)&=\sup \{0_\infty (a)|a\in A\}=+\infty ,\\ \overline{\overline{0_\infty }}(A)&= 0_\infty (\sup A)=+\infty , \end{aligned}$$

for \( A\in Conv(\overline{{\mathbb {R}}})\) with \(+\infty \in A\) and

$$\begin{aligned}&\overline{0_\infty }(A)=\sup \{0_\infty (a)|a\in A\}=0,\\&\overline{\overline{0_\infty }}(A)=0_\infty (\sup A)=0_\infty (\infty )=+\infty , \end{aligned}$$

for all \(A\in {\mathcal {Q}}\), where \({\mathcal {Q}}:=\{ A\in Conv(\overline{{\mathbb {R}}}) \ | \ \sup (A)= +\infty \text{ and } +\infty \notin A\}\). Let \(\gamma \) be another extension of \(0_\infty \) to \(Conv(\overline{{\mathbb {R}}})\). Then \(\gamma (A)=\overline{ 0_\infty }(A)=\overline{\overline{0_\infty }}(A)=0\) for all \( A \in Conv(\overline{{\mathbb {R}}})\) which \(\sup (A)\ne +\infty \) and \(\gamma (A)=\overline{ 0_\infty }(A)=\overline{\overline{0_\infty }}(A)=+\infty \) for \( A\in Conv(\overline{{\mathbb {R}}})\) with \(+\infty \in A\), by Theorem 3. Now, let \(A,B\in {\mathcal {Q}}\). It is easy to see that \(A\preceq B\) and \(B\preceq A\) and then \(\gamma (A)=\gamma (B)\). In particular, \(\gamma (A)=\gamma (\alpha A)=\alpha \gamma (A) \) since \( \alpha A\in {\mathcal {Q}}\) for all positive reals \(\alpha \). By the above consideration \(\gamma =\overline{ 0_\infty }=0\) or \(\gamma =\overline{\overline{0_\infty }} =+\infty \) on \({\mathcal {Q}}\). Therefore \( \overline{ 0_\infty }\) and \(\overline{\overline{0_\infty }}\) are only extensions of \(0_\infty \) on \(Conv (\overline{{\mathbb {R}}})\). This yields that \((Conv (\overline{{\mathbb {R}}}))^*{\setminus } \{\overline{ 0_\infty },\overline{\overline{0_\infty }}\} \) and \(\overline{{\mathbb {R}}}^*\) coincide.

Now, we show that the extensions of the mappings \( \overline{ 0_\infty }\) and \(\overline{\overline{0_\infty }}\) to the cone \(Conv^n(\overline{{\mathbb {R}}})\) are unique: Let \( \overline{ 0_\infty }^n\) and \(\overline{\overline{0_\infty }}^n\) be the extensions of \( \overline{ 0_\infty }\) and \(\overline{\overline{0_\infty }}\) on \(Conv^n(\overline{{\mathbb {R}}})\), respectively. Let \(A\in Conv^n(\overline{{\mathbb {R}}}){\setminus } Conv^n({{\mathbb {R}}}) \). Then \(\{+\infty \}^n \preceq A\) and \(A \preceq \{+\infty \}^n\). These yield that

$$\begin{aligned} \overline{ 0_\infty }^n(A)= & {} \overline{ 0_\infty }^n(\{\infty \}^n)= 0_\infty (+\infty )=+\infty ,\\ \overline{\overline{0_\infty }}^n(A)= & {} \overline{\overline{0_\infty }}^n(\{+\infty \}^n)= 0_\infty (+\infty )=+\infty . \end{aligned}$$

On the other hand, if \(A\in Conv^n({{\mathbb {R}}}) \), then \(A\preceq \{(0,+\infty )\}^{n-1}\) and so \(\overline{ 0_\infty }^n(A)\le 0\). Also there exists \(a\in \mathbb {R}\) such that \(\{a\}^n\preceq A\). Then \(0=\overline{ 0_\infty }^n(\{a\}^n)\le \overline{ 0_\infty }^n(A)\). We conclude that \(\overline{ 0_\infty }^n(A)=0\) for all \(A\in Conv^n({{\mathbb {R}}})\).

If there is \(b\in \mathbb {R}\) such that \(A\preceq \{b\}^n \), then \(\overline{\overline{0_\infty }}(A)\le 0\) and so \(\overline{\overline{0_\infty }}(A)= 0\) by the similar way which applied for \(\overline{ 0_\infty }^n(A)\). Otherwise \(\{b\}^n\preceq A\) for all \(b\in {\mathbb {R}}\). Then \(\{(0,+\infty )\}^{n-1}\preceq A\) and so \(+\infty =\overline{\overline{0_\infty }}(\{(0,+\infty )\}^{n-1})\le \overline{\overline{0_\infty }}(A)\). This yields that \(\overline{\overline{0_\infty }}(A)= + \infty \). We conclude that the elements of \((Conv^n(\overline{{\mathbb {R}}}))^*\) are all non-negative reals, \(\overline{ 0_\infty }^n\) and \( \overline{\overline{0_\infty }}^n\) for all \(n\in {\mathbb {N}}\). Also we have showed that the cones \((Conv(\overline{{\mathbb {R}}}))^*\) and \((Conv^n(\overline{{\mathbb {R}}}))^*\) coincide.

We conclude that \((Conv^n (\overline{{\mathbb {R}}}))^*{\setminus } \{\overline{ 0_\infty }^n,\overline{\overline{0_\infty }}^n\} \) and \(\overline{{\mathbb {R}}}^*\) coincide.