

A duality result in locally convex cones

Amir Dastouri1 · Asghar Ranjbari[1](http://orcid.org/0000-0003-0789-4812)

Received: 11 July 2021 / Accepted: 29 July 2022 / Published online: 11 August 2022 © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022

Abstract

In this paper, we consider a locally convex cone $(\mathcal{P}, \mathcal{V})$ and verify the dual of $(Conv(\mathcal{P}), \overline{\mathcal{V}})$ the locally convex cone of the non-empty convex subsets of \mathcal{P} . Under some semilattice conditions, we characterize the dual of $Conv(\dots (Conv(\mathcal{P}))$.

n times

Keywords $\sqrt{}$ –semilattice cone \cdot Locally convex cone \cdot Convex set

Mathematics Subject Classification 46A03 · 46A20

1 Introduction

Duality theory is a powerfull technique to study a wide class of related problems in pure and applied mathematics. For example the Hahn-Banach extension and separation theorems studied by means of duals (see [\[8](#page-12-0)]). The collection of all non-empty convex subsets of a cone (or a vector space) is interesting in convexity and approximation theory (for example see [\[5\]](#page-12-1)). This collection is a cone. We consider the non-empty convex subsets of a cone P , denoted by $Conv(P)$, and verify the dual of it, when P is a locally convex cone. We note that some elements of the dual of *Con*v(*P*) have already been introduced (see [\[6\]](#page-12-2), I: Example 2.1(e) and Example 5.31 (b)). Firstly we review the structure of locally convex cones briefly:

A nonempty set P endowed with an addition and a scalar multiplication for nonnegative real numbers is called a *cone* whenever the addition is associative and commutative, there is a neutral element $0 \in \mathcal{P}$ and for the scalar multiplication the usual associative and distributive properties hold, that is $\alpha(\beta a) = (\alpha \beta)a$, $(\alpha + \beta)a = \alpha a + \beta a$,

 \boxtimes Asghar Ranjbari ranjbari@tabrizu.ac.ir

Amir Dastouri a.dastouri@tabrizu.ac.ir

¹ Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Tabriz, Tabriz, Iran

 $\alpha(a + b) = \alpha a + \alpha b$, $1a = a$ and $0a = 0$ for all $a, b \in \mathcal{P}$ and nonnegative reals α and β .

The theory of locally convex cones as introduced and developed by K. Keimel and W. Roth in [\[4\]](#page-12-3). It uses an order theoretical concept or a convex quasi-uniform structure on a cone. In this paper, we use the former. For some recent researches see $[1-3, 7]$ $[1-3, 7]$ $[1-3, 7]$ $[1-3, 7]$.

A (*preordered cone*) is a cone *P* endowed with a preorder (reflexive transitive relation) ≤ which is compatible with the addition and scalar multiplication, that is $x \leq y$ implies $x + z \leq y + z$ and $r \cdot x \leq r \cdot y$ for all $x, y, z \in \mathcal{P}$ and $r \in \mathcal{P}$ $\mathbb{R}_+ = \{r \in \mathbb{R} : r \geq 0\}$. Every ordered vector space is an ordered cone. The cones $\overline{\mathbb{R}} = \mathbb{R} \cup \{+\infty\}$ and $\overline{\mathbb{R}}_+ = \mathbb{R}_+ \cup \{+\infty\}$, with the usual order and algebraic operations (specially $0 \cdot (+\infty) = 0$), are ordered cones that are not embeddable in vector spaces.

A subset *V* of a preordered cone *P* is called an *(abstract) 0-neighborhood system*, if

 (v_1) $0 < v$ for all $v \in \mathcal{V}$;

(v₂) for all $u, v \in V$ there is a $w \in V$ with $w \le u$ and $w \le v$;

(*v*₃) $u + v \in V$ and $\alpha v \in V$ whenever $u, v \in V$ and $\alpha > 0$.

Let $a \in \mathcal{P}$ and $v \in \mathcal{V}$. We define $v(a) = \{b \in \mathcal{P} \mid b \le a + v\}$, resp. $(a)v =$ ${b \in \mathcal{P} \mid a \leq b + v}$, to be a neighborhood of *a* in the *upper*, resp. *lower* topologies on *P*. The common refinement of the upper and lower topologies is called *symmetric* topology. We denote the neighborhoods of *a* in the symmetric topology by $v(a)v$. The pair (*P*, *V*) is called a *full locally convex cone* if the elements of *P* are *bounded below*, i.e. for every $a \in \mathcal{P}$ and $v \in \mathcal{V}$ we have $0 \le a + \rho v$ for some $\rho > 0$. Each subcone of *P*, not necessarily containing *V*, is called a *locally convex cone*.

We note that if (Q, V) is a locally convex cone, $Q \oplus (V \cup \{0\})$ with the algebraic operation

$$
(a, v1) + (b, v2) = (a + b, v1 + v2),\alpha(a, v1) = (\alpha a, \alpha v1),
$$

and the preorder

⎧ $\sqrt{ }$ \mathbf{I} $(a, 0) \le (b, 0) \Leftrightarrow a \le b$ $(0, v_1) \leq (0, v_2) \Leftrightarrow v_1 \leq v_2$ $(a, 0) \le (b, v_1) \Leftrightarrow a \le b + v_1$,

for all $a, b \in \mathcal{Q}, v_1, v_2 \in \mathcal{V}$ and $\alpha \in \mathbb{R}^+$, $(\mathcal{Q} \oplus (\mathcal{V} \cup \{0\}), \mathcal{V})$ is a full locally convex cone which *Q* and *V* can be embedded in $Q \oplus (V \cup \{0\})$ by the mappings $a \rightarrow (a, 0)$ and $v \to (0, v)$ for all $a \in \mathcal{Q}$ and $v \in \mathcal{V}$.

For cones P and Q a mapping $t : \mathcal{P} \to \mathcal{Q}$ is called a *linear operator* if $t(a + b) =$ $t(a) + t(b)$ and $t(\alpha a) = \alpha t(a)$ hold for $a, b \in \mathcal{P}$ and $\alpha \geq 0$.

A *linear functional* on a cone P is a linear mapping $\mu : P \to \overline{\mathbb{R}}$.

Let $(\mathcal{P}, \mathcal{V})$ and $(\mathcal{Q}, \mathcal{W})$ be two locally convex cones. The linear operator t : $(\mathcal{P}, \mathcal{V}) \rightarrow (\mathcal{Q}, \mathcal{W})$ is called uniformly continuous or simply u-continuous if for every *w* ∈ *W* one can find a *v* ∈ *V* such that $a \leq b + v$ implies $t(a) \leq t(b) + w$. It is

easy to see that the u-continuity implies continuity with respect to the upper, lower and symmetric topologies on *P* and *Q*.

According to the definition of u-continuity, a linear functional μ on $(\mathcal{P}, \mathcal{V})$ is ucontinuous if there is a $v \in V$ such that $a \leq b + v$ implies $\mu(a) \leq \mu(b) + 1$. The u-continuous linear functionals on a locally convex cone $(\mathcal{P}, \mathcal{V})$ (into \mathbb{R}) form a cone with the usual addition and scalar multiplication of functions. This cone is called the *dual cone* of *P* and denoted by *P*∗.

For a locally convex cone $(\mathcal{P}, \mathcal{V})$, the polar v° of $v \in \mathcal{V}$ consists of all linear functionals μ on $\mathcal P$ satisfying $\mu(a) \leq \mu(b) + 1$ whenever $a \leq b + v$ for $a, b \in \mathcal P$. We have $\bigcup \{v^\circ : v \in \mathcal{V}\} = \mathcal{P}^*$. The cones $\overline{\mathbb{R}}$ and $\overline{\mathbb{R}}_+ = \{a \in \overline{\mathbb{R}} : a \geq 0\}$ with (abstract) 0-neighborhood $V = \{\varepsilon > 0 : \varepsilon \in \mathbb{R}\}\$ are locally convex cones. The dual cones of $ℝ$ and $ℝ_+$ under V consists of all nonnegative reals and the functional 0_{∞} such that $0_{\infty}(a) = 0$ for all $a \in \mathbb{R}$ and $0_{\infty}(+\infty) = +\infty$.

2 Dual of the cone of non-empty convex sets of a locally convex cone

A subset *A* of a cone P is said convex, if $\lambda a + (1 - \lambda)b \in A$, whenever $a, b \in P$ and $0 < \lambda < 1$. Let P be a preordered cone and $Conv(\mathcal{P})$ be the cone of all non-empty convex subsets of P , endowed with the usual addition and multiplication of sets by nonnegative scalars, that is $\alpha A = {\alpha a \mid a \in A}$ and $A + B = {a + b \mid a \in A \text{ and } b \in B}$ for $A, B \in Conv(\mathcal{P})$ and $\alpha \geq 0$. We consider the order on $Conv(\mathcal{P})$ by

$$
A \preceq B \quad \text{if} \quad A \subseteq \downarrow B,
$$

where \downarrow *B* = { $x \in \mathcal{P}|x \leq b$ for some $b \in B$ } is the decreasing hull of the set *B* in \mathcal{P} . Note that \downarrow *B* is again a convex subset of *P*. The requirements for a preordered cone are easily checked. The neighborhood system in $Conv(\mathcal{P})$ is $\overline{\mathcal{V}} := {\overline{v} = \{v\} \mid v \in \mathcal{V}\}\,$. that is

$$
A \preceq B + \overline{v} \quad if \quad A \subseteq \downarrow (B + \{v\})
$$

for $A, B \in Conv(\mathcal{P})$ and $\overline{v} \in \overline{\mathcal{V}}$. The cone $Conv(\mathcal{P})$ with (abstract) 0-neighborhood system \overline{V}) is a locally convex cone. Via the embedding $x \to \{x\} : \mathcal{P} \to Conv(\mathcal{P})$ the preordered cone P itself may be considered as a subcone of $Conv(P)$ (see [\[6\]](#page-12-2), I, Example 1.4 (c)).

Definition 1 We say that a preordered cone P is a \vee -semilattice cone if the order of *P* is antisymmetric and if

P is antisymmetric and if

(\setminus 1) every non-empty subset $A \subseteq P$ has a supremum sup $A \in P$ and sup($A + b$) = sup $A + b$ hold for all $b \in \mathcal{P}$.

Moreover, if P with an abstract neighborhood system V is a locally convex cone and

and $($ $\sqrt{2})$ for $\emptyset \neq A$ ⊆ \mathcal{P} , $b \in \mathcal{P}$ and $v \in V$ such that $a \leq b + v$ for all $a \in A$, we have $\sup A \leq b + v$,

then $(\mathcal{P}, \mathcal{V})$ is said a $\sqrt{\ }$ -semilattice locally convex cone.

In particular, every \vee -semilattice cone P contains a largest element, that is $+\infty =$ sup P , which can be adjoined as a maximal element to any $\sqrt{\ }$ -semilattice cone with the convention that $a + (+\infty) = +\infty$, $\alpha \cdot (+\infty) = +\infty$, $0 \cdot (+\infty) = 0$ and $a \leq +\infty$ for all $a \in \mathcal{P}$ and $\alpha > 0$.

Remark [1](#page-2-0) We note that the condition $(\sqrt{2})$ of definition 1 is necessary and the definition of supremum does not imply this condition in locally convex cones necessarily. We show this in the following example.

Example 1 Let $\mathbb R$ be as a cone and $\mathcal V = \{\bar{\epsilon} = (-\infty, \epsilon) : \epsilon \in \mathbb R_{>0}\}.$ Let

$$
\mathcal{P} = \{(a, B) : a \in \mathbb{R} \text{ and } B \in \mathcal{V} \cup \{\{0\}\}\}.
$$

We define

$$
(a, B) + (c + D) = (a + c, B + D),
$$

and

$$
\lambda(a, B) = (\lambda a, \lambda B)
$$

for all (a, B) , $(c, D) \in \mathcal{P}$. Also, we define the preorder

$$
(a, B) \le (c, D) \Leftrightarrow \begin{cases} a \le c & \text{if } B = D = \{0\} \\ a + B \subseteq c + D & \text{if } D \neq \{0\} \end{cases},
$$

for all $(a, B), (c, D) \in \mathcal{P}$. Then (\mathcal{P}, V) is a full locally convex cone. Now, we can embedded $\mathbb R$ in $\mathcal P$ by $a \to (a, \{0\})$ and we can consider $\mathbb R$ as a subcone of $\mathcal P$. We have

$$
a \le b + \bar{\epsilon} \Leftrightarrow (a, \{0\}) \le (b, (-\infty, \epsilon)) \Leftrightarrow \{a\} \subseteq (-\infty, b + \epsilon) \Leftrightarrow a \in (-\infty, b + \epsilon).
$$

Now, for the set $A = (0, 5) \subseteq \mathbb{R}$, by considering the embedding, we have $\overline{A} =$ ${(a, {0}) : a \in (0, 5)}$. Let $b = 4$ and $1 = (-\infty, 1) \in V$. Then

$$
a \in (0, 5) \Leftrightarrow a \in (0, 4 + 1) \Rightarrow a \in (-\infty, 4 + 1)
$$

\n $\Rightarrow (a, \{0\}) \le (4, \{0\}) + (0, (-\infty, 1)),$

for all $(a, \{0\}) \in \overline{A}$, i.e.

$$
a\leq 4+\bar{1},
$$

for all $a \in A = (0, 5)$. On the other hand, sup $A = 5$ (in R) and we have

$$
5 \notin (-\infty, 5) = (-\infty, 4+1) \Rightarrow (5, \{0\}) \not\leq (4, \{0\}) + (0, (-\infty, 1)),
$$

i.e. $5 \nleq 4 + \overline{1}$. Although, P is not a \vee -semilattice cone, R is a \vee -semilattice cone. Also, the locally convex cone (\mathbb{R}, V) is not a $\sqrt{\ }$ -semilattice locally convex cone.

Remark 2 We note that definition [1](#page-2-0) is similar to the definition of "locally convex \setminus semilattice cone" in [\[6\]](#page-12-2), I, 5.4. In this definition, the order do not coincide with the weak preorder necessarily.

We define $Conv^n(\mathcal{P}) := Conv(Conv^{n-1}(\mathcal{P}))$ for $n = 2, 3, ...$ and $Conv^1(\mathcal{P}) =$ *Con*v(*P*). Let

$$
\{a\}^n := \underbrace{\{\cdots\{a\}\cdots}_{n \text{ times}} a \cdot \cdots}_{n \text{ times}} \tag{1}
$$

for all $a \in \mathcal{P}$. It is easy to see that $\{a\}^n \in Conv^n(\mathcal{P})$ for all $n \in \mathbb{N}$. This shows that *P* is embedded in $Conv^n(P)$ (the mapping $a \rightarrow \{a\}^n$ is the embedding). The cone *Convⁿ*(*P*) with the (abstract) 0-neighborhood system \overline{V}^n is a locally convex cone, where $\overline{\mathcal{V}}^n := {\overline{v}}^n := {v}^n \mid v \in \mathcal{V}$.

Example 2 For the cone R, we have $A^1 = [0, 1] \in Conv(\overline{\mathbb{R}})$, $A^2 = \{[0, a] \mid a \in \mathbb{R} \}$ [0, 1] is an element of *Conv*²(\mathbb{R}) and $A^3 = \{([0, a] \mid a \in [0, b]\} | b \in [0, 1]\}$ is an element of $Conv^3(\mathbb{R})$.

For the element A^n of $Conv^n(\mathcal{P})$ we define

$$
sups(An) := sup\{sups(An-1) | An-1 \in An\}
$$

for $n = 2, 3, \ldots$ and $sup^s(A^1) = \sup A$. It is easy to see that $sup^s(A^n) \in \mathcal{P}$ for all $n \in \mathbb{N}$.

The following lemma is an special case of Lemma 5.5 of [\[6](#page-12-2)].

Lemma 1 *Let* $\mathcal P$ *be a* \setminus −*semilattice cone and* $\{A_i\}_{i \in I}$ *be a collection of non-empty subsets of P. Then*

$$
\sup \left(\bigcup_{i \in I} A_i \right) = \sup \{ \sup A_i \mid i \in I \}.
$$

Proof Let *a* ∈ $\bigcup_{i \in I} A_i$ be arbitrary. Then there exists *i* ∈ *I* such that *a* ∈ *A_i*. We have $a \leq \sup A_i$ and so $a \leq \sup \{ \sup A_i \mid i \in I \}$. Then

$$
\sup \left(\bigcup_{i \in I} A_i\right) \leq \sup \{ \sup A_i \mid i \in I \}.
$$

On the other hand, $\sup A_i \leq \sup (\bigcup_{i \in I} A_i)$ for all $i \in I$. This conclude that

$$
\{\sup A_i \mid i \in I\} \leq \sup \left(\bigcup_{i \in I} A_i\right).
$$

 \Box

Remark 3 We note that $A^2 \in Conv^2(\mathcal{P})$ but the elements of A^2 belong to $Conv^1(\mathcal{P}) =$ *Conv*(*P*). This implies that the union of the elements of A^2 ($\bigcup_{A^1 \in A^2} A^1$) belongs to the power set of *P*. Also, $A^3 \in Conv^3(\mathcal{P})$ and the elements of A^3 belong to *Conv*²(*P*). Then the union of the elements of A^3 ($\bigcup_{A^2 \in A^3} A^2$) belongs to the power $Conv^2(P)$. Then the union of the elements of A^3 ($\bigcup_{A^2 \in A^3} A^2$) belongs to the power
set of $Conv^2(P)$ and the union of these sets ($\bigcup_{A^2 \in A^3} \bigcup_{A^1 \in A^2} A^1$) belongs again to Set of *Conv* (*P*) and the union of these sets $\left(\bigcup_{A^2 \in A^3} \bigcup_{A^1 \in A^2} A^1\right)$ belongs again to the power set of *P*. By continuing this process, we conclude that $A^n \in Conv^n(\mathcal{P})$ and the elements of A^n belong to $Conv^{n-1}(\mathcal{P})$. Then

$$
\bigcup_{A^{n-1}\in A^n} \cdots \bigcup_{A^2\in A^3} \bigcup_{A^1\in A^2} A^1
$$

belongs to the power set of P . By Lemma [1,](#page-4-0) we have

$$
sups(An) = sup \left(\bigcup_{An-1 \in An} \cdots \bigcup_{A2 \in A3} \bigcup_{A1 \in A2} A1 \right).
$$

Let *P* be a cone and μ : $\mathcal{P} \rightarrow \overline{\mathbb{R}}$ be a functional. We define

$$
\overline{\mu}(A) := \sup \{ \mu(a) \mid a \in A \}, \quad A \in Conv(\mathcal{P}),
$$

moreover, if P is a \vee -semilattice cone, we define

$$
\overline{\overline{\mu}}(A) := \mu(\sup A), \quad A \in Conv(\mathcal{P}).
$$

Lemma 2 *Let* (P, V) *be a locally convex cone and* $\mu \in P^*$ *. Then* $\overline{\mu} \in Conv(P)^*$ *. Moreover, if* $(\mathcal{P}, \mathcal{V})$ *is* \bigvee -semilattice locally convex cone, then $\overline{\overline{\mu}} \in Conv(\mathcal{P})^*$.

Proof We have

$$
\overline{\mu}(\alpha A + B) = \sup \{ \mu(\alpha a + b) \mid a \in A, b \in B \}
$$

\n
$$
= \sup \{ \alpha \mu(a) + \mu(b) \mid a \in A, b \in B \}
$$

\n
$$
= \alpha \sup \{ \mu(a) \mid a \in A \} + \sup \{ \mu(b) \mid b \in B \}
$$

\n
$$
= \alpha \overline{\mu}(A) + \overline{\mu}(B),
$$

for all $A, B \in Conv(\mathcal{P})$ and all $\alpha \geq 0$. So $\overline{\mu}$ is linear.

Now, if (P, V) is \setminus -semilattice locally convex cone, then

$$
\sup(A + B) = \sup \left(\bigcup_{b \in B} (A + b) \right)
$$

=
$$
\sup \{ \sup(A + b) \mid b \in B \} \quad \text{(by Lemma 1)}
$$

=
$$
\sup \{ \sup A + b \mid b \in B \}
$$

=
$$
\sup(A) + \sup(B).
$$

 $\textcircled{2}$ Springer

This yields that $\mu(\sup(A + B)) = \mu(\sup(A)) + \mu(\sup(B))$ and then $\overline{A}(A + B) =$ $\overline{\overline{\mu}}(A) + \overline{\overline{\mu}}(B)$ for all $A, B \in Conv(\mathcal{P})$. Also,

$$
\overline{\overline{\mu}}(\alpha A) = \mu(\sup(\alpha A)) = \mu(\alpha \sup A) = \alpha \mu(\sup A) = \alpha \overline{\overline{\mu}}(A),
$$

for all $\alpha > 0$ and $A \in Conv(\mathcal{P})$. Therefore \overline{u} is linear.

Now, we show that $\overline{\mu}$ and $\overline{\overline{\mu}}$ are u-continuous extensions of μ to $Conv(\mathcal{P})$. Via of continuity of μ , there is a $v \in V$ such that $a \leq b + v$ implies $\mu(a) \leq \mu(b) + 1$. Let $A \leq B + \{v\}$. Then, for each $a \in A$ there exists $b \in B$ such that $a \leq b + v$. We have

$$
\mu(a) \le \mu(b) + 1 \Rightarrow \mu(a) \le \sup\{\mu(b) \mid b \in B\} + 1
$$

\n
$$
\Rightarrow \sup\{\mu(a) \mid a \in A\} \le \sup\{\mu(b) \mid b \in B\} + 1
$$

\n
$$
\Rightarrow \overline{\mu}(A) \le \overline{\mu}(B) + 1.
$$

This shows that $\overline{\mu}$ is u-continuous. Also if $(\mathcal{P}, \mathcal{V})$ is \setminus -semilattice locally convex cone, we have

$$
a \le \sup(B) + v \Rightarrow \sup(A) \le \sup(B) + v \quad \text{(by } \bigvee 2)
$$

$$
\Rightarrow \mu(\sup(A)) \le \mu(\sup(B)) + 1
$$

$$
\Rightarrow \overline{\overline{\mu}}(A) \le \overline{\overline{\mu}}(B) + 1.
$$

This yields that \overline{u} is u-continuous.

Proposition 1 *Let ^P be a preordered cone,* ^μ *be a monotone functional on ^P and* $\widetilde{\mu}$ be a monotone extension of μ on $Conv(\mathcal{P})$. Then $\overline{\mu} \leq \widetilde{\mu}$. Furthermore, if $\mathcal P$ is a *-semilattice cone, then*

$$
\overline{\mu} \le \widetilde{\mu} \le \overline{\overline{\mu}}.\tag{2}
$$

Proof Let $\overline{\mu} \nleq \tilde{\mu}$. Then there exists $A \in Conv(\mathcal{P})$ such that $\overline{\mu}(A) \nleq \tilde{\mu}(A)$ i.e. $\widetilde{\mu}(A) < \overline{\mu}(A) = \sup \{ \mu(a) \mid a \in A \}.$ Then there exists $a \in A$ such that $\widetilde{\mu}(A) <$ $\mu(a) = \tilde{\mu}(\{a\})$ (by the supremum property). On the other hand, $\{a\} \leq A$ and so $\widetilde{\mu}(\{a\}) \leq \widetilde{\mu}(A)$. This contradiction yields that $\overline{\mu} \leq \widetilde{\mu}$.

Now, let *P* be a \setminus -semilattice cone. Let *A* ∈ *Conv*(*P*) be arbitrary. We have \prec {sun *A*}. Then $\tilde{u}(A) \leq \tilde{u}(\{sup A\}) = u(\sup A) = \overline{u}(A)$. $A \preceq$ {sup *A*}. Then $\widetilde{\mu}(A) \preceq \widetilde{\mu}(\{sup A\}) = \mu(sup A) = \overline{\overline{\mu}}(A)$.

Let P be a \setminus -semilattice cone. We denote

 $\Omega(\mathcal{P}) := \{ \mu \in \mathcal{L}(\mathcal{P}) \mid \mu \text{ is monotone and } \overline{\mu}(A) = \overline{\mu}(A), \forall A \in Conv(\mathcal{P}) \},\$

where $\mathcal{L}(\mathcal{P})$ is the cone of all linear functionals on \mathcal{P} .

Corollary 1 *Let* P *be a* \bigvee –*semilattice cone. Then the elements of* Ω (P) *have unique extensions to Con*v(*P*)*.*

 \Box

By the assumptions of the Corollary [1,](#page-6-0) we conclude that the elements of $\Omega(\mathcal{P})$ have unique extensions to $Conv^n(\mathcal{P})$.

Proposition 2 *Let* P *be a* \setminus –*semilattice cone. Then*

$$
sups(An) + sups(Bn) = sups(An + Bn),
$$

for all $n \in \mathbb{N}$ *and* A^n , $B^n \in Conv^n(\mathcal{P})$ *.*

Proof For $n = 1$, let $A^1 = A$ and $B^1 = B$ be elements of $Conv^1(\mathcal{P}) = Conv(\mathcal{P})$. We have

$$
sups(A + B) = sup\left(\bigcup_{b \in B} (A + b)\right)
$$

= sup{sup $(A + b) | b \in B$ } (by Lemma 1)
= sup{sup $A + b | b \in B$ }
= sup ^{s} (A) + sup ^{s} (B).

Now, let

$$
sups(An-1) + sups(Bn-1) = sups(An-1 + Bn-1).
$$

Then

$$
sups(An + Bn) = sups({An-1 + Bn-1 | An-1 \in An, Bn-1 \in Bn})
$$

= sup({sup^s(Aⁿ⁻¹ + Bⁿ⁻¹) | Aⁿ⁻¹ \in Aⁿ, Bⁿ⁻¹ \in Bⁿ})
= sup({sup^s(Aⁿ⁻¹) + sup^s(Bⁿ⁻¹) | Aⁿ⁻¹ \in Aⁿ, Bⁿ⁻¹ \in Bⁿ})
= sup({sup^s(Aⁿ⁻¹) | Aⁿ⁻¹ \in Aⁿ})
+ sup({sup^s(Bⁿ⁻¹) | Bⁿ⁻¹ \in Bⁿ})
= sup^s(Aⁿ) + sup^s(Bⁿ).

 \Box

Let $coh(F)$ denote the convex hull of the set F , the smallest convex set containing *F*. We set

$$
coh^{s}(A^{n}) := coh(\{coh^{s}(A^{n-1}) \mid A^{n-1} \in A^{n}\} \cup \{sup^{s}(A^{n})\}^{n})
$$

for $n = 2, 3, ...$ and $coh^s(A^1) = coh(A \cup \{sup(A)\}).$

Proposition 3 *Let* P *be* $a \vee$ –*semilattice cone. Then*

$$
\sup(coh^s(A^n)) = \sup(A^n),
$$

all $A^n \in Conv^n(\mathcal{P})$ *and* $n \in \mathbb{N}$ *.*

Proof First we show that $\sup(coh^s(A^1)) = \sup(A^1)$. Let $x \in coh^s(A^1)$ be arbitrary. Then there are $\lambda_1, \lambda_2, ..., \lambda_k \ge 0$ and $a_1, a_2, ..., a_k \in A^1 \cup \{ \sup(A^1) \}$ such that $\sum_{i=1}^k \lambda_i = 1$ and $x = \sum_{i=1}^k \lambda_i a_i$. On the other hand, $\lambda_i a_i \le \lambda_i \sup(A^1)$ for all $\vec{i} = 1, 2, ..., k$. We have

$$
x = \sum_{i=1}^k \lambda_i a_i \le \sum_{i=1}^k \lambda_i \sup A^1 = \sup (A^1).
$$

This yields that

$$
\sup(coh^s(A^1)) = \sup(A^1),
$$

since $\sup(A^1) \in \text{coh}^s(A^1)$.

Now, let $\sup(coh^s(A^{n-1})) = \sup(A^{n-1})$ for all $A^{n-1} \in Conv^{n-1}(\mathcal{P})$. Consider $A^n \in Conv^n(\mathcal{P})$ and $\mathcal{X} \in coh^s(A^n)$. Then there are $\lambda_1, \lambda_2, \ldots, \lambda_k \geq 0$ sider $A^n \in Conv^n(P)$ and $\mathcal{X} \in con^n(A^n)$. Ihen there are $\lambda_1, \lambda_2, ..., \lambda_k \ge 0$
and $A_1^{n-1}, A_2^{n-1}, ..., A_k^{n-1} \in A^n \cup \{ \sup(A^n) \}^n$ such that $\sum_{i=1}^k \lambda_i = 1$ and $\mathcal{X} =$
 $\sum_{i=1}^k \lambda_i$ \geq Ω $\mathcal{X} \neq \emptyset$ $\sum_{i=1}^{k} \lambda_i \text{coh}^s(A_i^{n-1})$. On the other hand,

$$
\lambda_i \cosh^s(A_i^{n-1}) \leq \lambda_i \{ \sup^s(\cosh^s(A_i^{n-1})) \}^n = \{ \sup^s(A_i^{n-1}) \}^n \leq \lambda_i \{ \sup^s(A^n) \}^n,
$$

for all $i = 1, 2, ..., k$. So

$$
\mathcal{X} = \sum_{i=1}^k \lambda_i \cosh^s(A_i^{n-1}) \le \sum_{i=1}^k \lambda_i \{ \sup^s(A^n) \}^n = \{ \sup^s(A^n) \}^n,
$$

and so

$$
sups(\mathcal{X}) \leq sups(An).
$$

Since $\{ \sup^s (A^n) \}^n \in \text{coh}^s(A^n)$, we have

$$
sups(cohs(An)) = sups(An).
$$

 \Box

Remark 4 By Proposition [3](#page-7-0) and by considering the construction of $coh^s(Aⁿ)$, we have

$$
\{sup^s(coh^s(A^n))\}^n \in coh^s(A^n)
$$

for all $n \in \mathbb{N}$.

Example 3 For the cone $\overline{\mathbb{R}}$, we have $\{0\}$, $\{0, +\infty\}$ $\in Conv(\overline{\mathbb{R}})$ and A^2 = $\{\{0\}, \{0, +\infty\}\}\$ is an element of $Conv^2(\overline{\mathbb{R}})$. We have $sup^s(A^2) = \sup\{0, +\infty\} = +\infty$ and $coh^s(A^2) = \{\{0\}, \{0, +\infty\}, \{+\infty\}\}.$

 \mathcal{D} Springer

For every positive integer *n* we introduce

$$
Convsn(P) := \{cohs(An) | An \in Convn(P) \}.
$$

Theorem 1 *Let* P *be a* $\sqrt{}$ –*semilattice cone. Then* $Conv_s^n(P)$ *is a subcone of Convⁿ*(P) *for all* $n \in \mathbb{N}$ *.*

Proof Let $A, B \in Conv_s¹(P)$. Then there exist $A¹, B¹ \in Conv(P)$ such that

$$
\mathcal{A} = \operatorname{coh}^s(A^1) = \operatorname{coh}(A^1 \cup \{\operatorname{sup}(A^1)\})
$$

and

$$
\mathcal{B} = \operatorname{coh}^s(B^1) = \operatorname{coh}(B^1 \cup \{\operatorname{sup}(B^1)\}).
$$

We conclude that $A, B \in Canv(\mathcal{P})$. Put $A + B = C$. We have

$$
\sup(\mathcal{A}) + \sup(\mathcal{B}) = \sup(\mathcal{A} + \mathcal{B}) = \sup(\mathcal{C}),
$$

by Proposition [2](#page-7-1) (for case $n = 1$). Since A, B contain their suprema, then C contains its supremum. Hence

$$
C = coh(C \cup \{ \sup(C) \}) = coh^{s}(C),
$$

which conclude that $C \in Conv_s¹(P)$. On the other hand, for each $\alpha \ge 0$,

$$
\alpha \mathcal{A} = \alpha \cosh^{s}(A^{1}) = \cosh^{s}(\alpha A^{1}) = \cosh(\alpha A^{1} \cup \{ \sup(\alpha A^{1}) \}),
$$

and so $\alpha A \in Conv_s^{-1}(\mathcal{P})$. Hence $Conv_s^{-1}(\mathcal{P})$ is a subcone of $Conv(\mathcal{P})$. For completion of induction, first we show that $Conv_s^{n+1}(\mathcal{P}) \subseteq Conv^{n+1}(\mathcal{P})$. For this, let $\mathcal{A} \in$ $Conv_s^{n+1}(\mathcal{P})$. There is $A^{n+1} \in Canv^{n+1}(\mathcal{P})$ such that $\mathcal{A} = coh^s(A^{n+1})$ and so

$$
\mathcal{A} = \text{coh}^s(A^{n+1}) = \text{coh}(\{\text{coh}^s(A^n) \mid A^n \in A^{n+1}\} \cup \{\text{sup}^s(A^{n+1})\}^n).
$$

Let $\mathcal{X} \in \mathcal{A}$ be arbitrary. There exist $\lambda_1, \lambda_2, ..., \lambda_k \geq 0$ and $A_1^n, A_2^n, ..., A_k^n \in$ $A^{n+1} \cup \{\sup(A^{n+1})\}^n$ such that $\sum_{i=1}^k \lambda_i = 1$ and $\mathcal{X} = \sum_{i=1}^k \lambda_i \text{co}h^s(A_i^n)$. On the other hand, $\lambda_i \text{coh}^s(A_i^n) \in \text{Conv}_s^{\overline{n}}(\mathcal{P})$, for all $i = 1, 2, ..., k$. Hence

$$
\mathcal{X} = \sum_{i=1}^{k} \lambda_i \text{coh}^s(A_i^n) \in \text{Conv}_s^n(\mathcal{P}),
$$

and then $A \in Canv^{n+1}(\mathcal{P})$.

 $\textcircled{2}$ Springer

Now, let $A, B \in Conv_s^{n+1}(\mathcal{P})$. Then for all $\mathcal{X} \in \mathcal{A} \subseteq Conv_s^n(\mathcal{P})$ and $\mathcal{Y} \in \mathcal{B} \subseteq$ *Canv_s*^{*n*}(*P*), we have $X + Y \in Canv_s^n(P)$. By Proposition [3](#page-7-0) and Remark [4,](#page-8-0) we have $\{\sup^s(A)\}^n \in \mathcal{A}$ and $\{\sup^s(B)\}^n \in \mathcal{B}$. Also, by Proposition [2,](#page-7-1) we have

$$
{\left\{sup^{s}(\mathcal{A}+\mathcal{B})\right\}}^{n+1}\in\mathcal{A}+\mathcal{B},
$$

and then

$$
\mathcal{A} + \mathcal{B} = \operatorname{coh}(\{\operatorname{coh}^s(\mathcal{Z}) \mid \mathcal{Z} \in \mathcal{A} + \mathcal{B}\} \cup \{\operatorname{sup}^s(\mathcal{A} + \mathcal{B})\}^{n+1}).
$$

Now, by considering the properties of *sup* and *coh* (convex hull of a set), we have $\alpha A \in Conv_s^{n+1}(\mathcal{P})$ for all $\alpha \geq 0$ and $A \in Conv_s^{n+1}(\mathcal{P})$.

Now, we characterize the elements of $Conv_sⁿ(P)[*]$. First we recall a theorem.

Theorem 2 ([\[4](#page-12-3)], II, 2.9) Let Q be subcone of the locally convex cone (P, V) . Then *every u-continuous linear functional on Q can be extended to a u-continuous linear functional on P.*

Theorem 3 *If* $(\mathcal{P}, \mathcal{V})$ *is a* \setminus -semilattice locally convex cone, then for all $n \in \mathbb{N}$, (*Con*v*n*(*P*))[∗] *and ^P*[∗] *coincide, in the sense that any vector of ^P*[∗] *has a unique extension to a vector of* (*Con*v*n*(*P*))[∗] *and conversely any vector* (*Con*v*n*(*P*))[∗] *can be restricted to a vector of P*∗*.*

Proof By considering [\(1\)](#page-4-1) we can embed P into $Conv_s^n(P)$. It is easy to see that the restriction of each element of $Conv_s^n(P)^*$ on P belongs to P^* and by Theorem [2,](#page-10-0) the extension of each element of \mathcal{P}^* to $Conv_s^n(\mathcal{P})$ is an element of $Conv_s^n(\mathcal{P})^*$. So it is sufficient to show that each element of \mathcal{P}^* has a unique extension in $Conv_s^n(\mathcal{P})^*$. Let $\mu \in \mathcal{P}^*$. Define $(\bar{\mu})^n$ as follows:

$$
(\bar{\mu})^1(A) := \bar{\mu}(A) = \sup \{ \mu(a) \mid a \in A \} \quad (A \in Conv_s(\mathcal{P})), \tag{3}
$$

and

$$
(\bar{\mu})^n(A^n) := \sup \{ (\bar{\mu})^{n-1}(A^{n-1}) \mid A^{n-1} \in A^n \} \quad (A^n \in Conv_s^n(\mathcal{P})), \tag{4}
$$

for $n = 2, 3, \ldots$ $n = 2, 3, \ldots$ $n = 2, 3, \ldots$ By Lemma 2, the functional $(\bar{\mu})^1$ is u-continuous and by repeating this process $(\bar{\mu})^n$ is u-continuous too. We have $(\bar{\mu})^1(A) = \mu(sup^s(A))$ and $(\bar{\mu})^n (A^n) = (\bar{\mu})^{n-1} (\{ \sup^s (A^n) \}^{n-1}),$ since *A* contains sup *A*. By Remark [4](#page-8-0) and Proposition [2](#page-7-1) the mapping $(\bar{\mu})^n$ is an extension of μ to $Conv_s^n(\mathcal{P})$. Let ϑ_n be another u-continuous extension of μ to $Conv_s^n(\mathcal{P})$ (which exists by Theorem [2\)](#page-10-0). We show that $\vartheta_n = \bar{\mu}^n$.

Let $A^n \in Conv_s^n(\mathcal{P})$. Since $A^n \leq \{sup_s^s(A^n)\}^n$ and $\{sup_s^s(A^n)\}^n \leq A^n$, then $\vartheta_n(A^n) \leq \vartheta_n({\lbrace \sup^s (A^n) \rbrace^n})$ and $\vartheta_n({\lbrace \sup^s (A^n) \rbrace^n}) \leq \vartheta_n(A_n)$ and so

$$
\vartheta_n(A^n) = \vartheta_n(\{ \sup^s (A^n) \}^n) = \mu(\{ \sup^s (A^n) \}^n) = (\bar{\mu})^n(\{ \sup^s (A^n) \}^n) = (\bar{\mu})^n(A^n).
$$

This completes the proof.

In the following example we consider the locally convex cone $\overline{\mathbb{R}}$ and we characterize all elements of the dual of the locally convex cone $(Conv^n(\overline{\mathbb{R}}), \overline{V}^n)$, where $V = \{\epsilon >$ $0 \mid \epsilon \in \mathbb{R}$.

Example 4 We know that $\overline{\mathbb{R}}$ is a \setminus –semilattice locally convex cone. It is easy to see that

$$
Conv_s(\overline{\mathbb{R}}) = \{ [a, b], (c, d], (-\infty, d], \{e\}, A \cup \{+\infty\} \mid A \in Conv(\mathbb{R}),
$$

$$
a, b, c, d, e \in \overline{\mathbb{R}} \text{ with } a < b \text{ and } c < d \}
$$

$$
= Conv(\overline{\mathbb{R}}) \setminus \{ (a, b), (-\infty, b), [c, d) \mid a, b, c, d \in \overline{\mathbb{R}} \}.
$$

According to Theorem [3,](#page-10-1) (*Con*v*n*(R))[∗] and R[∗] coincide, in the sense that any vector of R[∗] has a unique extension to a vector of (*Con*v*n*(R))[∗] and conversely any vector $(Convⁿ(\mathbb{R}))^*$ can be restricted to a vector of \mathbb{R}^* for all $n \in \mathbb{N}$.

Since $\Omega(\overline{\mathbb{R}}) = \overline{\mathbb{R}}^* \setminus \{0_\infty\} = \mathbb{R}^*$, every element of \mathbb{R}^* has a unique extension in $(Conv^n(\overline{\mathbb{R}}))^*$ by Corollary [1.](#page-6-0) The element 0_{∞} violates the Ω condition at just one point $+\infty$. So two different extensions $\overline{0_{\infty}}(A)$ and $\overline{0_{\infty}}$ can be written for it in $Conv(\overline{\mathbb{R}})^*$ as the following:

$$
\overline{0_{\infty}}(A) = \sup\{0_{\infty}(a) | a \in A\} = 0,
$$

$$
\overline{0_{\infty}}(A) = 0_{\infty}(\sup A) = 0,
$$

for all $A \in Conv(\overline{\mathbb{R}})$ which $sup(A) \neq +\infty$,

$$
\overline{0_{\infty}}(A) = \sup\{0_{\infty}(a)|a \in A\} = +\infty,
$$

$$
\overline{0_{\infty}}(A) = 0_{\infty}(\sup A) = +\infty,
$$

for $A \in Conv(\overline{\mathbb{R}})$ with $+\infty \in A$ and

$$
\overline{0_{\infty}}(A) = \sup\{0_{\infty}(a) | a \in A\} = 0,
$$

$$
\overline{0_{\infty}}(A) = 0_{\infty}(\sup A) = 0_{\infty}(\infty) = +\infty,
$$

for all $A \in \mathcal{Q}$, where $\mathcal{Q} := \{A \in Conv(\overline{\mathbb{R}}) \mid \text{sup}(A) = +\infty \text{ and } +\infty \notin A\}$. Let *γ* be another extension of 0_∞ to *Conv*($\overline{\mathbb{R}}$). Then $\gamma(A) = \overline{0_{\infty}}(A) = \overline{0_{\infty}}(A) = 0$ for all $A \in Conv(\overline{\mathbb{R}})$ which $sup(A) \neq +\infty$ and $\gamma(A) = \overline{0_{\infty}}(A) = \overline{0_{\infty}}(A) = +\infty$ for *A* ∈ *Conv*($\overline{\mathbb{R}}$) with $+\infty \in A$, by Theorem [3.](#page-10-1) Now, let *A*, *B* ∈ *Q*. It is easy to see that $A \leq B$ and $B \leq A$ and then $\gamma(A) = \gamma(B)$. In particular, $\gamma(A) = \gamma(\alpha A) = \alpha \gamma(A)$ since $\alpha A \in \mathcal{Q}$ for all positive reals α . By the above consideration $\gamma = \overline{0_{\infty}} = 0$ or $\gamma = \overline{\overline{0_{\infty}}} = +\infty$ on *Q*. Therefore $\overline{0_{\infty}}$ and $\overline{\overline{0_{\infty}}}$ are only extensions of 0_{∞} on $Conv(\overline{\mathbb{R}})$. This yields that $(Conv(\overline{\mathbb{R}}))^* \setminus {\overline{0_{\infty}}}, \overline{\overline{0_{\infty}}}$ and $\overline{\mathbb{R}}^*$ coincide.

 $\textcircled{2}$ Springer

Now, we show that the extensions of the mappings $\overline{0_{\infty}}$ and $\overline{0_{\infty}}$ to the cone $Conv^n(\overline{\mathbb{R}})$ are unique: Let $\overline{0_{\infty}}^n$ and $\overline{\overline{0_{\infty}}}^n$ be the extensions of $\overline{0_{\infty}}$ and $\overline{\overline{0_{\infty}}}$ on $Conv^n(\overline{\mathbb{R}})$, respectively. Let $A \in Conv^n(\overline{\mathbb{R}}) \setminus Conv^n(\mathbb{R})$. Then $\{\pm \infty\}^n \prec A$ and $A \prec \{\pm \infty\}^n$. These yield that

$$
\overline{0_{\infty}}^{n}(A) = \overline{0_{\infty}}^{n}(\{\infty\}^{n}) = 0_{\infty}(+\infty) = +\infty,
$$

$$
\overline{0_{\infty}}^{n}(A) = \overline{0_{\infty}}^{n}(\{\infty\}^{n}) = 0_{\infty}(+\infty) = +\infty.
$$

On the other hand, if $A \in Conv^n(\mathbb{R})$, then $A \preceq \{(0, +\infty)\}_{n=0}^{n-1}$ and so $\overline{0\}_{n=0}^{n}(A) \preceq 0$. Also there exists $a \in \mathbb{R}$ such that $\{a\}^n \leq A$. Then $0 = \frac{\partial}{\partial \infty}^n (\{a\}^n) \leq \frac{\partial}{\partial \infty}^n (A)$. We conclude that $\overline{0_{\infty}}^{n}(A) = 0$ for all $A \in Conv^{n}(\mathbb{R})$.

If there is $b \in \mathbb{R}$ such that $A \preceq \{b\}^n$, then $\overline{\phi_{\infty}}(A) \preceq 0$ and so $\overline{\phi_{\infty}}(A) = 0$ by the similar way which applied for $\overline{\overline{0_{\infty}^n}(A)}$. Otherwise $\{b\}^n \leq A$ for all $b \in \mathbb{R}$. Then $\{(0, +\infty)\}^{n-1} \leq A$ and so $+\infty = \overline{\overline{0_{\infty}}} (\{(0, +\infty)\}^{n-1}) \leq \overline{\overline{0_{\infty}}} (A)$. This yields that $\overline{\overline{\mathbb{O}_{\infty}}}(A) = +\infty$. We conclude that the elements of $(Conv^n(\overline{\mathbb{R}}))^*$ are all non-negative reals, $\overline{0_{\infty}}^n$ and $\overline{0_{\infty}}^n$ for all $n \in \mathbb{N}$. Also we have showed that the cones $(Conv(\overline{\mathbb{R}}))^*$ and $(Conv^n(\overline{\mathbb{R}}))^*$ coincide.

We conclude that $(Conv^n(\overline{\mathbb{R}}))^* \setminus {\{\overline{0_\infty}^n, \overline{0_\infty}^n\}}$ and $\overline{\mathbb{R}}^*$ coincide.

References

- 1. Ayaseh, D., Ranjbari, A.: Order bornological locally convex lattice cones. Vladikavkaz Math. J. **19**(3), 21–30 (2017)
- 2. Ayaseh, D., Ranjbari, A.: Bornological Convergence in Locally Convex Cones. Mediterr. J. Math. **13**(4), 1921–1931 (2016)
- 3. Dastouri, A., Ranjbari, A.: Some Notes on Barreledness in Locally Convex Cones, Bull. Iran. Math. Soc. <https://doi.org/10.1007/s41980-020-00519-x>
- 4. Keimel, K., Roth, W.: Ordered cones and approximation. Lecture Notes in Mathematics, vol. 1517. Springer-Verlag, Berlin (1992)
- 5. Keimel, K., Roth, W.: A Korovkin type approximation theorem for set-valued functions. Proc. Amer. Math. Soc. **104**, 819–824 (1988)
- 6. Roth, W.: Operator-valued measures and integrals for cone-valued functions. Lecture Notes in Mathematics, vol. 1964. Springer-Verlag, Berlin (2009)
- 7. Roth, W.: Korovkin theory for cone-valued functions. Positivity **21**(3), 449–472 (2017)
- 8. Roth, W.: Hahn-Banach type theorems for locally convex cones. J. Austral. Math. Soc. Ser. A **68**(1), 104–125 (2000)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.