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Abstract
In this paper, we consider a locally convex cone (P,V) and verify the dual of
(Conv(P),V) the locally convex cone of the non-empty convex subsets of P . Under
some semilattice conditions, we characterize the dual of Conv( · · ·

︸︷︷︸

n times

(Conv(P)).
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1 Introduction

Duality theory is a powerfull technique to study a wide class of related problems in
pure and appliedmathematics. For example theHahn-Banach extension and separation
theorems studied by means of duals (see [8]). The collection of all non-empty convex
subsets of a cone (or a vector space) is interesting in convexity and approximation
theory (for example see [5]). This collection is a cone. We consider the non-empty
convex subsets of a cone P , denoted by Conv(P), and verify the dual of it, when P
is a locally convex cone. We note that some elements of the dual of Conv(P) have
already been introduced (see [6], I: Example 2.1(e) and Example 5.31 (b)). Firstly we
review the structure of locally convex cones briefly:

Anonempty setP endowedwith an addition anda scalarmultiplication for nonnega-
tive real numbers is called a conewhenever the addition is associative and commutative,
there is a neutral element 0 ∈ P and for the scalar multiplication the usual associa-
tive and distributive properties hold, that is α(βa) = (αβ)a, (α + β)a = αa + βa,
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α(a + b) = αa + αb, 1a = a and 0a = 0 for all a, b ∈ P and nonnegative reals α

and β.
The theory of locally convex cones as introduced and developed by K. Keimel and

W. Roth in [4]. It uses an order theoretical concept or a convex quasi-uniform structure
on a cone. In this paper, we use the former. For some recent researches see [1–3, 7].

A (preordered cone) is a cone P endowed with a preorder (reflexive transitive
relation) ≤ which is compatible with the addition and scalar multiplication, that is
x ≤ y implies x + z ≤ y + z and r · x ≤ r · y for all x, y, z ∈ P and r ∈
R+ = {r ∈ R : r ≥ 0}. Every ordered vector space is an ordered cone. The cones
R = R∪{+∞} and R+ = R+ ∪{+∞}, with the usual order and algebraic operations
(specially 0 · (+∞) = 0), are ordered cones that are not embeddable in vector spaces.

A subset V of a preordered cone P is called an (abstract) 0-neighborhood system,
if

(v1) 0 < v for all v ∈ V;
(v2) for all u, v ∈ V there is a w ∈ V with w ≤ u and w ≤ v;
(v3) u + v ∈ V and αv ∈ V whenever u, v ∈ V and α > 0.

Let a ∈ P and v ∈ V . We define v(a) = {b ∈ P | b ≤ a + v}, resp. (a)v =
{b ∈ P | a ≤ b + v}, to be a neighborhood of a in the upper, resp. lower topologies
on P . The common refinement of the upper and lower topologies is called symmetric
topology. We denote the neighborhoods of a in the symmetric topology by v(a)v. The
pair (P,V) is called a full locally convex cone if the elements ofP are bounded below,
i.e. for every a ∈ P and v ∈ V we have 0 ≤ a + ρv for some ρ > 0. Each subcone
of P , not necessarily containing V , is called a locally convex cone.

We note that if (Q,V) is a locally convex cone, Q ⊕ (V ∪ {0}) with the algebraic
operation

(a, v1) + (b, v2) = (a + b, v1 + v2),

α(a, v1) = (αa, αv1),

and the preorder

⎧

⎨

⎩

(a, 0) ≤ (b, 0) ⇔ a ≤ b
(0, v1) ≤ (0, v2) ⇔ v1 ≤ v2
(a, 0) ≤ (b, v1) ⇔ a ≤ b + v1,

for all a, b ∈ Q, v1, v2 ∈ V and α ∈ R
+, (Q ⊕ (V ∪ {0}),V) is a full locally convex

cone whichQ and V can be embedded inQ⊕ (V ∪ {0}) by the mappings a → (a, 0)
and v → (0, v) for all a ∈ Q and v ∈ V .

For cones P andQ a mapping t : P → Q is called a linear operator if t(a+ b) =
t(a) + t(b) and t(αa) = αt(a) hold for a, b ∈ P and α ≥ 0.

A linear functional on a cone P is a linear mapping μ : P → R.
Let (P,V) and (Q,W) be two locally convex cones. The linear operator t :

(P,V) → (Q,W) is called uniformly continuous or simply u-continuous if for every
w ∈ W one can find a v ∈ V such that a ≤ b + v implies t(a) ≤ t(b) + w. It is

123



A duality result in locally convex cones Page 3 of 13 73

easy to see that the u-continuity implies continuity with respect to the upper, lower
and symmetric topologies on P and Q.

According to the definition of u-continuity, a linear functional μ on (P,V) is u-
continuous if there is a v ∈ V such that a ≤ b + v implies μ(a) ≤ μ(b) + 1. The
u-continuous linear functionals on a locally convex cone (P,V) (into R) form a cone
with the usual addition and scalar multiplication of functions. This cone is called the
dual cone of P and denoted by P∗.

For a locally convex cone (P,V), the polar v◦ of v ∈ V consists of all linear
functionals μ on P satisfying μ(a) ≤ μ(b)+ 1 whenever a ≤ b+ v for a, b ∈ P . We
have ∪{v◦ : v ∈ V} = P∗. The cones R and R+ = {a ∈ R : a ≥ 0} with (abstract)
0-neighborhood V = {ε > 0 : ε ∈ R} are locally convex cones. The dual cones of
R and R+ under V consists of all nonnegative reals and the functional 0∞ such that
0∞(a) = 0 for all a ∈ R and 0∞(+∞) = +∞.

2 Dual of the cone of non-empty convex sets of a locally convex cone

A subset A of a cone P is said convex, if λa + (1− λ)b ∈ A, whenever a, b ∈ P and
0 ≤ λ ≤ 1. Let P be a preordered cone and Conv(P) be the cone of all non-empty
convex subsets ofP , endowedwith the usual addition andmultiplication of sets by non-
negative scalars, that is αA = {αa | a ∈ A} and A + B = {a + b | a ∈ A and b ∈ B}
for A, B ∈ Conv(P) and α ≥ 0. We consider the order on Conv(P) by

A � B i f A ⊆↓ B,

where ↓ B = {x ∈ P|x ≤ b for some b ∈ B} is the decreasing hull of the set B in P .
Note that ↓ B is again a convex subset of P . The requirements for a preordered cone
are easily checked. The neighborhood system in Conv(P) is V := {v = {v} | v ∈ V},
that is

A � B + v i f A ⊆↓ (B + {v})

for A, B ∈ Conv(P) and v ∈ V . The cone Conv(P) with (abstract) 0-neighborhood
system V) is a locally convex cone. Via the embedding x → {x} : P → Conv(P)

the preordered cone P itself may be considered as a subcone of Conv(P) (see [6], I,
Example 1.4 (c)).

Definition 1 We say that a preordered cone P is a
∨

-semilattice cone if the order of
P is antisymmetric and if
(
∨

1) every non-empty subset A ⊆ P has a supremum sup A ∈ P and sup(A + b) =
sup A + b hold for all b ∈ P .

Moreover, if P with an abstract neighborhood system V is a locally convex cone
and
(
∨

2) for ∅ �= A ⊆ P , b ∈ P and v ∈ V such that a ≤ b + v for all a ∈ A, we have
sup A ≤ b + v,
then (P,V) is said a

∨

-semilattice locally convex cone.
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In particular, every
∨

-semilattice cone P contains a largest element, that is +∞ =
supP, which can be adjoined as a maximal element to any

∨

-semilattice cone with
the convention that a+ (+∞) = +∞, α · (+∞) = +∞, 0 · (+∞) = 0 and a ≤ +∞
for all a ∈ P and α > 0.

Remark 1 We note that the condition (
∨

2) of definition 1 is necessary and the defi-
nition of supremum does not imply this condition in locally convex cones necessarily.
We show this in the following example.

Example 1 Let R be as a cone and V = {ε̄ = (−∞, ε) : ε ∈ R>0}.
Let

P = {(a, B) : a ∈ R and B ∈ V ∪ {{0}}}.

We define

(a, B) + (c + D) = (a + c, B + D),

and

λ(a, B) = (λa, λB)

for all (a, B), (c, D) ∈ P . Also, we define the preorder

(a, B) ≤ (c, D) ⇔
{

a ≤ c if B = D = {0}
a + B ⊆ c + D if D �= {0} ,

for all (a, B), (c, D) ∈ P . Then (P,V) is a full locally convex cone. Now, we can
embedded R inP by a → (a, {0}) and we can considerR as a subcone ofP . We have

a ≤ b + ε̄ ⇔ (a, {0}) ≤ (b, (−∞, ε)) ⇔ {a} ⊆ (−∞, b + ε) ⇔ a ∈ (−∞, b + ε).

Now, for the set A = (0, 5) ⊆ R, by considering the embedding, we have Ā =
{(a, {0}) : a ∈ (0, 5)}. Let b = 4 and 1̄ = (−∞, 1) ∈ V . Then

a ∈ (0, 5) ⇔ a ∈ (0, 4 + 1) ⇒ a ∈ (−∞, 4 + 1)

⇒ (a, {0}) ≤ (4, {0}) + (0, (−∞, 1)),

for all (a, {0}) ∈ Ā, i.e.

a ≤ 4 + 1̄,

for all a ∈ A = (0, 5). On the other hand, sup A = 5 (in R) and we have

5 /∈ (−∞, 5) = (−∞, 4 + 1) ⇒ (5, {0}) �≤ (4, {0}) + (0, (−∞, 1)),

i.e. 5 �≤ 4 + 1̄. Although, P is not a
∨

-semilattice cone, R is a
∨

-semilattice cone.
Also, the locally convex cone (R,V) is not a

∨

-semilattice locally convex cone.
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Remark 2 We note that definition 1 is similar to the definition of “locally convex
∨

-
semilattice cone" in [6], I, 5.4. In this definition, the order do not coincide with the
weak preorder necessarily.

We define Convn(P) := Conv(Convn−1(P)) for n = 2, 3, . . . and Conv1(P) =
Conv(P). Let

{a}n := {· · · {
︸ ︷︷ ︸

n times

a } · · · }
︸ ︷︷ ︸

n times

(1)

for all a ∈ P . It is easy to see that {a}n ∈ Convn(P) for all n ∈ N. This shows that
P is embedded in Convn(P) (the mapping a −→ {a}n is the embedding). The cone
Convn(P) with the (abstract) 0-neighborhood system Vn

is a locally convex cone,
where Vn := {v̄n := {v}n | v ∈ V}.
Example 2 For the cone R, we have A1 = [0, 1] ∈ Conv(R) , A2 = {[0, a] | , a ∈
[0, 1]} is an element of Conv2(R) and A3 = {{[0, a] | , a ∈ [0, b]} | b ∈ [0, 1]} is an
element of Conv3(R).

For the element An of Convn(P) we define

sups(An) := sup{sups(An−1) | An−1 ∈ An}

for n = 2, 3, . . . and sups(A1) = sup A. It is easy to see that sups(An) ∈ P for all
n ∈ N.

The following lemma is an special case of Lemma 5.5 of [6].

Lemma 1 Let P be a
∨ −semilattice cone and {Ai }i∈I be a collection of non-empty

subsets of P . Then

sup

(

⋃

i∈I
Ai

)

= sup{sup Ai | i ∈ I }.

Proof Let a ∈ ⋃

i∈I Ai be arbitrary. Then there exists i ∈ I such that a ∈ Ai . We
have a ≤ sup Ai and so a ≤ sup{sup Ai | i ∈ I }. Then

sup

(

⋃

i∈I
Ai

)

≤ sup{sup Ai | i ∈ I }.

On the other hand, sup Ai ≤ sup(
⋃

i∈I Ai ) for all i ∈ I . This conclude that

{sup Ai | i ∈ I } ≤ sup

(

⋃

i∈I
Ai

)

.

��
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Remark 3 Wenote that A2 ∈ Conv2(P) but the elements of A2 belong toConv1(P) =
Conv(P). This implies that the union of the elements of A2 (

⋃

A1∈A2 A1) belongs
to the power set of P . Also, A3 ∈ Conv3(P) and the elements of A3 belong to
Conv2(P). Then the union of the elements of A3 (

⋃

A2∈A3 A2) belongs to the power
set of Conv2(P) and the union of these sets (

⋃

A2∈A3
⋃

A1∈A2 A1) belongs again to
the power set ofP . By continuing this process, we conclude that An ∈ Convn(P) and
the elements of An belong to Convn−1(P). Then

⋃

An−1∈An

· · ·
⋃

A2∈A3

⋃

A1∈A2

A1

belongs to the power set of P . By Lemma 1, we have

sups(An) = sup

⎛

⎝

⋃

An−1∈An

· · ·
⋃

A2∈A3

⋃

A1∈A2

A1

⎞

⎠ .

Let P be a cone and μ : P → R be a functional. We define

μ(A) := sup{μ(a) | a ∈ A}, A ∈ Conv(P),

moreover, if P is a
∨

-semilattice cone, we define

μ(A) := μ(sup A), A ∈ Conv(P).

Lemma 2 Let (P,V) be a locally convex cone and μ ∈ P∗. Then μ ∈ Conv(P)∗.
Moreover, if (P,V) is

∨

-semilattice locally convex cone, then μ ∈ Conv(P)∗.

Proof We have

μ(αA + B) = sup{μ(αa + b) | a ∈ A, b ∈ B}
= sup{αμ(a) + μ(b) | a ∈ A, b ∈ B}
= α sup{μ(a) | a ∈ A} + sup{μ(b) | b ∈ B}
= αμ(A) + μ(B),

for all A, B ∈ Conv(P) and all α ≥ 0. So μ is linear.
Now, if (P,V) is

∨

-semilattice locally convex cone, then

sup(A + B) = sup

(

⋃

b∈B
(A + b)

)

= sup{sup(A + b) | b ∈ B} (by Lemma 1)

= sup{sup A + b | b ∈ B}
= sup(A) + sup(B).
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This yields that μ(sup(A + B)) = μ(sup(A)) + μ(sup(B)) and then μ(A + B) =
μ(A) + μ(B) for all A, B ∈ Conv(P). Also,

μ(αA) = μ(sup(αA)) = μ(α sup A) = αμ(sup A) = αμ(A),

for all α ≥ 0 and A ∈ Conv(P). Therefore μ is linear.
Now, we show that μ and μ are u-continuous extensions of μ to Conv(P). Via of

continuity of μ, there is a v ∈ V such that a ≤ b + v implies μ(a) ≤ μ(b) + 1. Let
A � B + {v}. Then, for each a ∈ A there exists b ∈ B such that a ≤ b + v. We have

μ(a) ≤ μ(b) + 1 ⇒ μ(a) ≤ sup{μ(b) | b ∈ B} + 1

⇒ sup{μ(a) | a ∈ A} ≤ sup{μ(b) | b ∈ B} + 1

⇒ μ(A) ≤ μ(B) + 1.

This shows that μ is u-continuous. Also if (P,V) is
∨

-semilattice locally convex
cone, we have

a ≤ sup(B) + v ⇒ sup(A) ≤ sup(B) + v (by
∨

2)

⇒ μ(sup(A)) ≤ μ(sup(B)) + 1

⇒ μ(A) ≤ μ(B) + 1.

This yields that μ is u-continuous.
��

Proposition 1 Let P be a preordered cone, μ be a monotone functional on P and
μ̃ be a monotone extension of μ on Conv(P). Then μ ≤ μ̃. Furthermore, if P is a
∨

-semilattice cone, then

μ ≤ μ̃ ≤ μ. (2)

Proof Let μ � μ̃. Then there exists A ∈ Conv(P) such that μ(A) � μ̃(A) i.e.
μ̃(A) < μ(A) = sup{μ(a) | a ∈ A}. Then there exists a ∈ A such that μ̃(A) <

μ(a) = μ̃({a}) (by the supremum property). On the other hand, {a} � A and so
μ̃({a}) ≤ μ̃(A). This contradiction yields that μ ≤ μ̃.

Now, let P be a
∨

-semilattice cone. Let A ∈ Conv(P) be arbitrary. We have
A � {sup A}. Then μ̃(A) ≤ μ̃({supA}) = μ(supA) = μ(A). ��

Let P be a
∨

-semilattice cone. We denote

�(P) := {μ ∈ L(P) | μ is monotone and μ(A) = μ(A),∀A ∈ Conv(P)},

where L(P) is the cone of all linear functionals on P .

Corollary 1 Let P be a
∨ −semilattice cone. Then the elements of �(P) have unique

extensions to Conv(P).
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By the assumptions of the Corollary 1, we conclude that the elements of�(P) have
unique extensions to Convn(P).

Proposition 2 Let P be a
∨ −semilattice cone. Then

sups(An) + sups(Bn) = sups(An + Bn),

for all n ∈ N and An, Bn ∈ Convn(P).

Proof For n = 1, let A1 = A and B1 = B be elements of Conv1(P) = Conv(P).
We have

sups(A + B) = sup

(

⋃

b∈B
(A + b)

)

= sup{sup(A + b) | b ∈ B} (by Lemma 1)

= sup{sup A + b | b ∈ B}
= sups(A) + sups(B).

Now, let

sups(An−1) + sups(Bn−1) = sups(An−1 + Bn−1).

Then

sups(An + Bn) = sups({An−1 + Bn−1 | An−1 ∈ An, Bn−1 ∈ Bn})
= sup({sups(An−1 + Bn−1) | An−1 ∈ An , Bn−1 ∈ Bn})
= sup({sups(An−1) + sups(Bn−1) | An−1 ∈ An , Bn−1 ∈ Bn})
= sup({sups(An−1) | An−1 ∈ An})

+ sup({sups(Bn−1) | Bn−1 ∈ Bn})
= sups(An) + sups(Bn).

��
Let coh(F) denote the convex hull of the set F , the smallest convex set containing

F . We set

cohs(An) := coh({cohs(An−1) | An−1 ∈ An} ∪ {sups(An)}n)

for n = 2, 3, . . . and cohs(A1) = coh(A ∪ {sup(A)}).
Proposition 3 Let P be a

∨ −semilattice cone. Then

sup(cohs(An)) = sup(An),

all An ∈ Convn(P) and n ∈ N.
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Proof First we show that sup(cohs(A1)) = sup(A1). Let x ∈ cohs(A1) be arbitrary.
Then there are λ1, λ2, . . . , λk ≥ 0 and a1, a2, . . . , ak ∈ A1 ∪ {sup(A1)} such that
∑k

i=1 λi = 1 and x = ∑k
i=1 λi ai . On the other hand, λi ai ≤ λi sup(A1) for all

i = 1, 2, . . . , k. We have

x =
k

∑

i=1

λi ai ≤
k

∑

i=1

λi sup A1 = sup(A1).

This yields that

sup(cohs(A1)) = sup(A1),

since sup(A1) ∈ cohs(A1).
Now, let sup(cohs(An−1)) = sup(An−1) for all An−1 ∈ Convn−1(P). Con-

sider An ∈ Convn(P) and X ∈ cohs(An). Then there are λ1, λ2, . . . , λk ≥ 0
and An−1

1 , An−1
2 , . . . , An−1

k ∈ An ∪ {sup(An)}n such that
∑k

i=1 λi = 1 and X =
∑k

i=1 λi cohs(A
n−1
i ). On the other hand,

λi coh
s(An−1

i ) � λi {sups(cohs(An−1
i ))}n = {sups(An−1

i )}n � λi {sups(An)}n,

for all i = 1, 2, . . . , k. So

X =
k

∑

i=1

λi coh
s(An−1

i ) �
k

∑

i=1

λi {sups(An)}n = {sups(An)}n,

and so

sups(X ) ≤ sups(An).

Since {sups(An)}n ∈ cohs(An), we have

sups(cohs(An)) = sups(An).

��
Remark 4 By Proposition 3 and by considering the construction of cohs(An), we have

{sups(cohs(An))}n ∈ cohs(An)

for all n ∈ N.

Example 3 For the cone R, we have {0}, {0,+∞} ∈ Conv(R) and A2 =
{{0}, {0,+∞}} is an element ofConv2(R).We have sups(A2) = sup{0,+∞} = +∞
and cohs(A2) = {{0}, {0,+∞}, {+∞}}.
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For every positive integer n we introduce

Convs
n(P) := {cohs(An) | An ∈ Convn(P)}.

Theorem 1 Let P be a
∨ −semilattice cone. Then Convs

n(P) is a subcone of
Convn(P) for all n ∈ N.

Proof Let A,B ∈ Convs
1(P). Then there exist A1, B1 ∈ Canv(P) such that

A = cohs(A1) = coh(A1 ∪ {sup(A1)})

and

B = cohs(B1) = coh(B1 ∪ {sup(B1)}).

We conclude that A,B ∈ Canv(P). Put A + B = C. We have

sup(A) + sup(B) = sup(A + B) = sup(C),

by Proposition 2 (for case n = 1). Since A,B contain their suprema, then C contains
its supremum. Hence

C = coh(C ∪ {sup(C)}) = cohs(C),

which conclude that C ∈ Convs
1(P). On the other hand, for each α ≥ 0,

αA = αcohs(A1) = cohs(αA1) = coh(αA1 ∪ {sup(αA1)}),

and soαA ∈ Convs
1(P). HenceConvs

1(P) is a subcone ofConv(P). For completion
of induction, first we show that Convs

n+1(P) ⊆ Convn+1(P). For this, let A ∈
Convs

n+1(P). There is An+1 ∈ Canvn+1(P) such that A = cohs(An+1) and so

A = cohs(An+1) = coh({cohs(An) | An ∈ An+1} ∪ {sups(An+1)}n).

Let X ∈ A be arbitrary. There exist λ1, λ2, . . . , λk ≥ 0 and An
1, A

n
2, . . . , A

n
k ∈

An+1 ∪ {sup(An+1)}n such that
∑k

i=1 λi = 1 and X = ∑k
i=1 λi cohs(An

i ). On the
other hand, λi cohs(An

i ) ∈ Convs
n(P), for all i = 1, 2, . . . , k. Hence

X =
k

∑

i=1

λi coh
s(An

i ) ∈ Convs
n(P),

and then A ∈ Canvn+1(P).
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Now, let A,B ∈ Convs
n+1(P). Then for all X ∈ A ⊆ Canvns (P) and Y ∈ B ⊆

Canvns (P), we have X + Y ∈ Canvns (P). By Proposition 3 and Remark 4, we have
{sups(A)}n ∈ A and {sups(B)}n ∈ B. Also, by Proposition 2, we have

{sups(A + B)}n+1 ∈ A + B,

and then

A + B = coh({cohs(Z) | Z ∈ A + B} ∪ {sups(A + B)}n+1).

Now, by considering the properties of sup and coh (convex hull of a set), we have
αA ∈ Convs

n+1(P) for all α ≥ 0 and A ∈ Convs
n+1(P). ��

Now, we characterize the elements of Convs
n(P)∗. First we recall a theorem.

Theorem 2 ([4], II, 2.9) Let Q be subcone of the locally convex cone (P,V). Then
every u-continuous linear functional on Q can be extended to a u-continuous linear
functional on P .

Theorem 3 If (P,V) is a
∨

-semilattice locally convex cone, then for all n ∈ N,
(Convn(P))∗ and P∗ coincide, in the sense that any vector of P∗ has a unique
extension to a vector of (Convn(P))∗ and conversely any vector (Convn(P))∗ can
be restricted to a vector of P∗.

Proof By considering (1) we can embed P into Convs
n(P). It is easy to see that the

restriction of each element of Convs
n(P)∗ onP belongs toP∗ and by Theorem 2, the

extension of each element of P∗ to Convs
n(P) is an element of Convs

n(P)∗. So it
is sufficient to show that each element of P∗ has a unique extension in Convs

n(P)∗.
Let μ ∈ P∗. Define (μ̄)n as follows:

(μ̄)1(A) := μ̄(A) = sup{μ(a) | a ∈ A} (A ∈ Convs(P)), (3)

and

(μ̄)n(An) := sup{(μ̄)n−1(An−1) | An−1 ∈ An} (An ∈ Convs
n(P)), (4)

for n = 2, 3, . . .. By Lemma 2, the functional (μ̄)1 is u-continuous and by repeat-
ing this process (μ̄)n is u-continuous too. We have (μ̄)1(A) = μ(sups(A)) and
(μ̄)n(An) = (μ̄)n−1({sups(An)}n−1), since A contains sup A. By Remark 4 and
Proposition 2 the mapping (μ̄)n is an extension of μ to Convs

n(P). Let ϑn be another
u-continuous extension of μ to Convs

n(P) (which exists by Theorem 2). We show
that ϑn = μ̄n .

Let An ∈ Convns (P). Since An � {sups(An)}n and {sups(An)}n � An , then
ϑn(An) ≤ ϑn({sups(An)}n) and ϑn({sups(An)}n) ≤ ϑn(An) and so

ϑn(A
n) = ϑn({sups(An)}n) = μ({sups(An)}n) = (μ̄)n({sups(An)}n) = (μ̄)n(An).

This completes the proof. ��
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In the following examplewe consider the locally convex coneR andwe characterize
all elements of the dual of the locally convex cone (Convn(R),Vn

), where V = {ε >

0 | ε ∈ R}.
Example 4 We know that R is a

∨ −semilattice locally convex cone. It is easy to see
that

Convs(R) = {[a, b], (c, d], (−∞, d], {e}, A ∪ {+∞} | A ∈ Conv(R),

a, b, c, d, e ∈ R with a < b and c < d}
= Conv(R)\{(a, b), (−∞, b), [c, d) | a, b, c, d ∈ R}.

According to Theorem 3, (Convn(R))∗ and R
∗ coincide, in the sense that any vector

of R
∗ has a unique extension to a vector of (Convn(R))∗ and conversely any vector

(Convn(R))∗ can be restricted to a vector of R
∗ for all n ∈ N.

Since �(R) = R
∗\{0∞} = R

∗, every element of R
∗ has a unique extension

in (Convn(R))∗ by Corollary 1. The element 0∞ violates the � condition at just

one point +∞. So two different extensions 0∞(A) and 0∞ can be written for it in
Conv(R)∗ as the following:

0∞(A) = sup{0∞(a)|a ∈ A} = 0,

0∞(A) = 0∞(sup A) = 0,

for all A ∈ Conv(R) which sup(A) �= +∞,

0∞(A) = sup{0∞(a)|a ∈ A} = +∞,

0∞(A) = 0∞(sup A) = +∞,

for A ∈ Conv(R) with +∞ ∈ A and

0∞(A) = sup{0∞(a)|a ∈ A} = 0,

0∞(A) = 0∞(sup A) = 0∞(∞) = +∞,

for all A ∈ Q, where Q := {A ∈ Conv(R) | sup(A) = +∞ and + ∞ /∈ A}. Let
γ be another extension of 0∞ to Conv(R). Then γ (A) = 0∞(A) = 0∞(A) = 0 for

all A ∈ Conv(R) which sup(A) �= +∞ and γ (A) = 0∞(A) = 0∞(A) = +∞ for
A ∈ Conv(R) with +∞ ∈ A, by Theorem 3. Now, let A, B ∈ Q. It is easy to see that
A � B and B � A and then γ (A) = γ (B). In particular, γ (A) = γ (αA) = αγ (A)

since αA ∈ Q for all positive reals α. By the above consideration γ = 0∞ = 0 or

γ = 0∞ = +∞ onQ. Therefore 0∞ and 0∞ are only extensions of 0∞ on Conv(R).

This yields that (Conv(R))∗\{0∞, 0∞} and R
∗
coincide.

123



A duality result in locally convex cones Page 13 of 13 73

Now,we show that the extensions of themappings 0∞ and 0∞ to the coneConvn(R)

are unique: Let 0∞
n
and 0∞

n
be the extensions of 0∞ and 0∞ on Convn(R), respec-

tively. Let A ∈ Convn(R)\Convn(R). Then {+∞}n � A and A � {+∞}n . These
yield that

0∞
n
(A) = 0∞

n
({∞}n) = 0∞(+∞) = +∞,

0∞
n
(A) = 0∞

n
({+∞}n) = 0∞(+∞) = +∞.

On the other hand, if A ∈ Convn(R), then A � {(0,+∞)}n−1 and so 0∞
n
(A) ≤ 0.

Also there exists a ∈ R such that {a}n � A. Then 0 = 0∞
n
({a}n) ≤ 0∞

n
(A). We

conclude that 0∞
n
(A) = 0 for all A ∈ Convn(R).

If there is b ∈ R such that A � {b}n , then 0∞(A) ≤ 0 and so 0∞(A) = 0 by
the similar way which applied for 0∞

n
(A). Otherwise {b}n � A for all b ∈ R. Then

{(0,+∞)}n−1 � A and so +∞ = 0∞({(0,+∞)}n−1) ≤ 0∞(A). This yields that

0∞(A) = +∞. We conclude that the elements of (Convn(R))∗ are all non-negative

reals, 0∞
n
and 0∞

n
for all n ∈ N. Also we have showed that the cones (Conv(R))∗

and (Convn(R))∗ coincide.

We conclude that (Convn(R))∗\{0∞
n
, 0∞

n} and R
∗
coincide.
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