1 Introduction

Let \({\mathbb {M}}_{n} {\mathbb {C}})\) be the \({\mathcal {C}}^{*}\)-algebra of all \(n\times n\) complex matrices. A matrix \(A\in {\mathbb {M}}_{n}({\mathbb {C}})\) is said to be positive semidefinite if \(x^{*}Ax\ge 0\) for all \(x\in {\mathbb {C}} ^{n}\). The absolute value of \(A\in {\mathbb {M}} _{n}( {\mathbb {C}} )\), denoted by \(\left| A\right| \), is the unique positive semidefinite square root of the matrix \(A^{*}A\), that is, \(\left| A\right| =\left( A^{*}A\right) ^{1/2}\). The singular values of \(A\in {\mathbb {M}} _{n}( {\mathbb {C}} )\), denoted by \(s_{1}\left( A\right) ,\) \(s_{2}\left( A\right) ,\ldots ,\) \( s_{n}\left( A\right) \), are the eigenvalues of \(\left| A\right| \) arranged in decreasing order and repeated according to multiplicity. In fact, it can be seen that \(s_{j}\left( A\right) =s_{j}\left( \left| A\right| \right) =s_{j}\left( A^{*}\right) \) for \(j=1,2,\ldots ,n\).

The spectral norm, denoted by \(\left\| \cdot \right\| \), is a matrix norm defined on \( {\mathbb {M}} _{n}( {\mathbb {C}} )\) by \(\left\| A\right\| =\underset{\left\| x\right\| =1}{ \textrm{max}}\mathrm {\ }\left\| Ax\right\| \) for \(A\in {\mathbb {M}} _{n}( {\mathbb {C}} )\). Moreover, for \(p\ge 1,\) the Schatten p-norms, denoted by \(\left\| A\right\| _{p}\), are also matrix norms defined on \( {\mathbb {M}} _{n}( {\mathbb {C}} )\) by \(\left\| A\right\| _{p}=\) (tr\(|A|^{p})^{1/p}\) for \( A\in {\mathbb {M}} _{n}( {\mathbb {C}} )\), where tr\(\left( \cdot \right) \) denotes the usual trace functional. In fact, it can be seen that \(\left\| A\right\| =s_{1}\left( A\right) \) and \(\Vert A\Vert _{p}=\left( \sum _{j=1}^{n}s_{j}^{p}\left( A\right) \right) ^{1/p}\) for \(A\in {\mathbb {M}} _{n}( {\mathbb {C}} )\).

\(\text {A}\) matrix norm \(||| \cdot ||| \) on \( {\mathbb {M}} _{n}( {\mathbb {C}} )\) is said to be unitarily invariant if \(|||UAV|||=|||A|||\) for all \(A\in {\mathbb {M}} _{n}( {\mathbb {C}} )\) and for all unitary matrices \(U,V\in {\mathbb {M}} _{n}( {\mathbb {C}} )\). Typical examples of unitarily invariant norms, that we are interested in, are the spectral norm and the Schatten p-norms for \(p\ge 1\).

For \(A,B\in {\mathbb {M}} _{n}( {\mathbb {C}} )\), let \(A\oplus B\) be the direct sum of A and B, that is, the matrix given by \(A\oplus B=\left[ \begin{array}{cc} A &{} 0 \\ 0 &{} B \end{array} \right] \). Note that \(\left| \left| \left| \left[ \begin{array}{cc} 0 &{} A \\ A^{*} &{} 0 \end{array} \right] \right| \right| \right| =\left| \left| \left| A\oplus A^{*}\right| \right| \right| =\left| \left| \left| A\oplus A\right| \right| \right| \), and that \(\left| \left| \left| A\right| \right| \right| \le \left| \left| \left| B\right| \right| \right| \) is equivalent to \(\left| \left| \left| A\oplus A\right| \right| \right| \le \left| \left| \left| B\oplus B\right| \right| \right| \) for all unitarily invariant norms. By convenience, for \(A\in {\mathbb {M}} _{n}( {\mathbb {C}} )\) and \(B\in {\mathbb {M}} _{2n}( {\mathbb {C}} )\), by the inequality \(\left| \left| \left| A\right| \right| \right| \le \left| \left| \left| B\right| \right| \right| \) we mean that \(\left| \left| \left| A\oplus 0\right| \right| \right| \le \left| \left| \left| B\right| \right| \right| \). It is evident that \( \left\| A\oplus B\right\| =\)max \(\left( \left\| A\right\| ,\left\| B\right\| \right) \) and \(\left\| A\oplus B\right\| _{p}^{p}=\left\| A\right\| _{p}^{p}+\left\| B\right\| _{p}^{p}\), for \(p\ge 1\), \(s_{j}(A\oplus 0)=s_{j}(A)\) for \( j=1,\ldots ,n\), and \(s_{j}(A\oplus 0)=0\) for \(j=n+1,\ldots ,2n.\) For other basic properties of unitarily invariant norms and singular values, we refer to [6, 11].

In [1], Al-Natoor, Benzamia, and Kittaneh proved that if \(A,B\in {\mathbb {M}} _{n}( {\mathbb {C}} )\), then

$$\begin{aligned} \left\| AB-BA\right\| \le \left\| A\right\| \left\| B\right\| +\frac{1}{2}\left\| A^{*}B-BA^{*}\right\| , \end{aligned}$$
(1.1)

which refines the inequality

$$\begin{aligned} \Vert AB-BA\Vert \le 2\Vert A\Vert \Vert B\Vert . \end{aligned}$$

Related to inequality (1.1), Al-Natoor and Kittaneh [4] have proved that if \(A,B,C\in {\mathbb {M}} _{n}( {\mathbb {C}} ),\) then

$$\begin{aligned} \left\| AB+BC\right\| \le \mathrm {max\ }(\left\| A\right\| ,\left\| C\right\| )\left\| B\right\| +\frac{1}{2}\left\| A^{*}B+BC^{*}\right\| . \end{aligned}$$

In particular, letting \(C=A,\) we have

$$\begin{aligned} \left\| AB+BA\right\| \le \left\| A\right\| \left\| B\right\| +\frac{1}{2}\left\| A^{*}B+BA^{*}\right\| . \end{aligned}$$
(1.2)

In [15], Zhan proved that if A, B \(\in M_{n}( {\mathbb {C}} )\) are positive semidefinite, then

$$\begin{aligned} \left| \left| \left| A-B\right| \right| \right| \le \left| \left| \left| A\oplus B\right| \right| \right| \end{aligned}$$
(1.3)

for all unitarily invariant norms.

A generalization of inequality (1.3) was given by Kittaneh [14]. This generalization asserts that if A, B, \(X\in {\mathbb {M}} _{n}( {\mathbb {C}} )\) are such that A and B are positive semidefinite, then

$$\begin{aligned} \left| \left| \left| AX-XB\right| \right| \right| \le \left\| X \right\| \left| \left| \left| A\oplus B\right| \right| \right| \end{aligned}$$
(1.4)

for all unitarily invariant norms.

In [3], Al-Natoor and Kittaneh gave a refinement of inequality (1.4). This refinement asserts that if A, B, \(X\in {\mathbb {M}} _{n}( {\mathbb {C}} )\) are such that A and B are positive semidefinite, then

$$\begin{aligned} \left| \left| \left| AX-XB\right| \right| \right| \le \sqrt{\left| \left| \left| A\oplus B\right| \right| \right| \,\,\left| \left| \left| \left( X^{*}AX\right) \oplus \left( XBX^{*}\right) \right| \right| \right| } \end{aligned}$$
(1.5)

for all unitarily invariant norms.

Applying inequality (1.5) for the spectral norm and the Schatten p -norms, for \(p\ge 1\), we have

$$\begin{aligned} \left\| AX-XB\right\| \le \sqrt{\mathrm {max\ }\left( \left\| A\right\| ,\left\| B\right\| \right) \text { }\mathrm {max\ }\left( \left\| X^{*}AX\right\| ,\left\| XBX^{*}\right\| \right) } \end{aligned}$$
(1.6)

and

$$\begin{aligned} \left\| AX-XB\right\| _{p}\le \root 2p \of {\left( \left\| A\right\| _{p}^{p}+\left\| B\right\| _{p}^{p}\right) \text { }\left( \left\| X^{*}AX\right\| _{p}^{p}+\left\| XBX^{*}\right\| _{p}^{p}\right) }. \end{aligned}$$
(1.7)

Also, in the same paper, Al-Natoor and Kittaneh gave a generalization of the inequality

$$\begin{aligned} \left| \left| \left| A+B\right| \right| \right| \le \left| \left| \left| A\oplus B\right| \right| \right| +\left| \left| \left| \left( A^{1/2}B^{1/2}\right) \oplus \left( A^{1/2}B^{1/2}\right) \right| \right| \right| \end{aligned}$$

for all unitarily invariant norms, which is due to Kittaneh [13]. This generalization asserts that if \(A,B,X\in {\mathbb {M}} _{n}( {\mathbb {C}} )\) are such that A and B are positive semidefinite, then

$$\begin{aligned} \left| \left| \left| AX+XB\right| \right| \right| \le \left\| X\right\| \left| \left| \left| A\oplus B\right| \right| \right| +\left| \left| \left| \left( A^{1/2}XB^{1/2}\right) \oplus \left( A^{1/2}XB^{1/2}\right) \right| \right| \right| \end{aligned}$$
(1.8)

for all unitarily invariant norms.

Applying inequality (1.8) for the spectral norm and the Schatten p-norms, for \(p\ge 1\), we have

$$\begin{aligned} \left\| AX+XB\right\| \le \left\| X\right\| \mathrm {max\ } \left( \left\| A\right\| ,\left\| B\right\| \right) +\left\| A^{1/2}XB^{1/2}\right\| \end{aligned}$$
(1.9)

and

$$\begin{aligned} \left\| AX+XB\right\| _{p}\le \left\| X\right\| \left( \left\| A\right\| _{p}^{p}+\left\| B\right\| _{p}^{p}\right) ^{1/p}+2^{1/p}\left\| A^{1/2}XB^{1/2}\right\| _{p}. \end{aligned}$$
(1.10)

In Sect. 2 of this paper, we introduce singular value inequalities for functions of matrices, and applications of our results are given. In Section 3, we give generalizations of inequalities (1.1) and (1.5)–(1.10).

2 Singular value and norm inequalities for matrices

We start with the following theorem, which is based on three lemmas. The first lemma can be found in [2], the second follows directly from the definition of convex functions, while the third can be found in [12].

Lemma 2.1

If \(A,B,X\in {\mathbb {M}} _{n}( {\mathbb {C}} )\) are such that A and B are nonzero and X is positive semidefinite, then

$$\begin{aligned} s_{j}\left( AXB^{*}\right) \le \frac{1}{2}\left\| \frac{\left| A\right| ^{2}}{\left\| A\right\| ^{2}}+\frac{\left| B\right| ^{2}}{\left\| B\right\| ^{2}}\right\| \left\| A\right\| \left\| B\right\| s_{j}\left( X\right) \end{aligned}$$

for \(j=1,2,\ldots ,n\).

Lemma 2.2

If \(f:[0,\infty )\rightarrow {\mathbb {R}} \) is convex with \(f\left( 0\right) =0\), then \(f\left( \alpha a\right) \le \alpha f\left( a\right) \) for all \(a\ge 0\) and \(0\le \alpha \le 1\).

Lemma 2.3

If \(A,B,C,D\in {\mathbb {M}} _{n}( {\mathbb {C}} )\), then

$$\begin{aligned} \left\| \begin{bmatrix} A &{} B \\ C &{} D \end{bmatrix} \right\| \le \left\| \begin{bmatrix} \left\| A\right\| &{} \left\| B\right\| \\ \left\| C\right\| &{} \left\| D\right\| \end{bmatrix} \right\| . \end{aligned}$$

In our next results, I stands for the identity matrix in \( {\mathbb {M}} _{n}( {\mathbb {C}} )\).

Theorem 2.4

Let \(A,B,C,D,X,Y\in {\mathbb {M}} _{n}( {\mathbb {C}} )\) be such that ABC,  and D are nonzero with \(AA^{*}+CC^{*}\le I,\) \(BB^{*}+DD^{*}\le I\), and XY are positive semidefinite. If f is a nonnegative convex function on \([0,\infty )\) with \(f\left( 0\right) =0\), then

$$\begin{aligned} s_{j}\left( f\left( \left| AXB^{*}+CYD^{*}\right| \right) \right) \le \frac{1}{2}\alpha \sqrt{ab}\,\,s_{j}\left( f\left( X\right) \oplus f(Y)\right) \end{aligned}$$
(2.1)

for \(j=1,2,\ldots ,n,\) where

$$\begin{aligned} \alpha =\frac{\left\| \frac{\left| A\right| ^{2}}{a}+\frac{ \left| B\right| ^{2}}{b}\right\| +\left\| \frac{\left| C\right| ^{2}}{a}+\frac{\left| D\right| ^{2}}{b}\right\| + \sqrt{\left( \left\| \frac{\left| A\right| ^{2}}{a}+\frac{ \left| B\right| ^{2}}{b}\right\| -\left\| \frac{\left| C\right| ^{2}}{a}+\frac{\left| D\right| ^{2}}{b}\right\| \right) ^{2}+4\left\| \frac{A^{*}C}{a}+\frac{B^{*}D}{b} \right\| ^{2}}}{2}, \end{aligned}$$

\(a=\left\| AA^{*}+CC^{*}\right\| \), and \(b=\left\| BB^{*}+DD^{*}\right\| \). In particular,

$$\begin{aligned}{} & {} s_{j}\left( f\left( \left| AXB^{*}+BYA^{*}\right| \right) \right) \nonumber \\{} & {} \quad \le \left( \left\| \left| A\right| ^{2}+\left| B\right| ^{2}\right\| +\left\| A^{*}B+B^{*}A\right\| \right) \,\, s_{j}\left( f\left( X\right) \oplus f(Y)\right) . \end{aligned}$$
(2.2)

Proof

Let \(R= \begin{bmatrix} A &{} C \\ 0 &{} 0 \end{bmatrix},S= \begin{bmatrix} X &{} 0 \\ 0 &{} Y \end{bmatrix} \), and \(T= \begin{bmatrix} B &{} D \\ 0 &{} 0 \end{bmatrix} \). Then

$$\begin{aligned}{} & {} s_{j}\left( f\left( \left| AXB^{*}+CYD^{*}\right| \right) \right) \nonumber \\{} & {} \quad =f\left( s_{j}\left( AXB^{*}+CYD^{*}\right) \right) \nonumber \\{} & {} \quad =f\left( s_{j}\left( RST^{*}\right) \right) \nonumber \\{} & {} \quad \le f\left( \frac{1}{2}\left\| \frac{\left| R\right| ^{2}}{ \left\| R\right\| ^{2}}+\frac{\left| T\right| ^{2}}{\left\| T\right\| ^{2}}\right\| \left\| R\right\| \left\| T\right\| s_{j}\left( S\right) \right) (\text {by Lemma}\ 2.1)\nonumber \\{} & {} \quad \le \frac{1}{2}\left\| \frac{\left| R\right| ^{2}}{\left\| R\right\| ^{2}}+\frac{\left| T\right| ^{2}}{\left\| T\right\| ^{2}}\right\| \left\| R\right\| \left\| T\right\| f\left( s_{j}\left( S\right) \right) (\text {by Lemma}\ 2.2) \nonumber \\{} & {} \quad =\frac{1}{2}\left\| \frac{\left| R\right| ^{2}}{\left\| R\right\| ^{2}}+\frac{\left| T\right| ^{2}}{\left\| T\right\| ^{2}}\right\| \left\| R\right\| \left\| T\right\| s_{j}\left( f\left( X\oplus Y\right) \right) . \end{aligned}$$
(2.3)

Now,

$$\begin{aligned}{} & {} \left\| R\right\| ^{2}=\left\| \begin{bmatrix} A &{} C \\ 0 &{} 0 \end{bmatrix} \begin{bmatrix} A^{*} &{} 0 \\ C^{*} &{} 0 \end{bmatrix} \right\| =\left\| AA^{*}+CC^{*}\right\| =a\text {,} \end{aligned}$$
(2.4)
$$\begin{aligned}{} & {} \left\| T\right\| ^{2}=\left\| \begin{bmatrix} B &{} D \\ 0 &{} 0 \end{bmatrix} \begin{bmatrix} B^{*} &{} 0 \\ D^{*} &{} 0 \end{bmatrix} \right\| =\left\| BB^{*}+DD^{*}\right\| =b\text {,} \end{aligned}$$
(2.5)

and

$$\begin{aligned}{} & {} \left\| \frac{\left| R\right| ^{2}}{a}+\frac{\left| T\right| ^{2}}{b}\right\| \nonumber \\{} & {} \quad =\left\| \begin{bmatrix} \frac{\left| A\right| ^{2}}{a}+\frac{\left| B\right| ^{2}}{b} &{} \frac{A^{*}C}{a}+\frac{B^{*}D}{b} \\ \frac{C^{*}A}{a}+\frac{D^{*}B}{b} &{} \frac{\left| C\right| ^{2}}{a}+\frac{\left| D\right| ^{2}}{b} \end{bmatrix} \right\| \end{aligned}$$
(2.6)
$$\begin{aligned}{} & {} \le \left\| \begin{bmatrix} \left\| \frac{\left| A\right| ^{2}}{a}+\frac{\left| B\right| ^{2}}{b}\right\| &{} \left\| \frac{A^{*}C}{a}+\frac{ B^{*}D}{b}\right\| \\ \left\| \frac{A^{*}C}{a}+\frac{B^{*}D}{b}\right\| &{} \left\| \frac{\left| C\right| ^{2}}{a}+\frac{\left| D\right| ^{2}}{b} \right\| \end{bmatrix} \right\| (\text {by Lemma}\ 2.3) \nonumber \\{} & {} \quad =\frac{1}{2}\left\| \frac{\left| A\right| ^{2}}{a}+\frac{ \left| B\right| ^{2}}{b}\right\| +\frac{1}{2}\left\| \frac{ \left| C\right| ^{2}}{a}+\frac{\left| D\right| ^{2}}{b} \right\| \nonumber \\{} & {} \qquad +\frac{1}{2}\sqrt{\left( \left\| \frac{\left| A\right| ^{2}}{a}+ \frac{\left| B\right| ^{2}}{b}\right\| -\left\| \frac{ \left| C\right| ^{2}}{a}+\frac{\left| D\right| ^{2}}{b} \right\| \right) ^{2}+4\left\| \frac{A^{*}C}{a}+\frac{B^{*}D}{b }\right\| ^{2}}\text {.} \end{aligned}$$
(2.7)

Thus, inequality (2.1) follows from (2.3), (2.4), (2.5), and (2.7). Inequality (2.2) follows from (2.1) by replacing C and D by B and A, respectively. \(\square \)

To prove our next result, we need the following lemma. A more general form of this lemma can be found in [10].

Lemma 2.5

If \(X,Y,Z\in {\mathbb {M}} _{n}( {\mathbb {C}} )\) are such that the block matrix \( \begin{bmatrix} X &{} Z \\ Z^{*} &{} Y \end{bmatrix} \) is positive semidefinite, then

$$\begin{aligned} \left| \left| \begin{bmatrix} X &{} Z \\ Z^{*} &{} Y \end{bmatrix} \right| \right| \le \left| \left| X\right| \right| +\left| \left| Y\right| \right| \text {.} \end{aligned}$$

Based on equation (2.6) and Lemma 2.5, we have the following result.

Corollary 2.6

Let \(A,B,C,D,X,Y\in {\mathbb {M}} _{n}( {\mathbb {C}} )\) be such that ABC,  and D are nonzero with \(AA^{*}+CC^{*}\le I,BB^{*}+DD^{*}\le I\), and X,Y are positive semidefinite. If f is a nonnegative convex function on \([0,\infty )\) with \(f\left( 0\right) =0\), then

$$\begin{aligned} s_{j}\left( f\left( \left| AXB^{*}+CYD^{*}\right| \right) \right) \le \frac{1}{2}\beta \sqrt{ab}\,\,s_{j}\left( f\left( X\right) \oplus f\left( Y\right) \right) \end{aligned}$$

for \(j=1,2,\ldots ,n,\) where \(\beta =\left\| \frac{\left| A\right| ^{2}}{a}+\frac{\left| B\right| ^{2}}{b}\right\| +\left\| \frac{ \left| C\right| ^{2}}{a}+\frac{\left| D\right| ^{2}}{b} \right\| ,\) \(a=\left\| AA^{*}+CC^{*}\right\| \), and \( b=\left\| BB^{*}+DD^{*}\right\| .\) In particular, if \(C=B\) and \(D=A,\) we have

$$\begin{aligned} s_{j}\left( f\left( \left| AXB^{*}+BYA^{*}\right| \right) \right) \le \left\| AA^{*}+BB^{*}\right\| \,\,s_{j}\left( f\left( X\right) \oplus f\left( Y\right) \right) \end{aligned}$$

for \(j=1,2,\ldots ,n\).

Proof

By equation (2.6), we have

$$\begin{aligned}{} & {} \left\| \frac{\left| R\right| ^{2}}{a}+\frac{\left| T\right| ^{2}}{b}\right\| \nonumber \\{} & {} \quad =\left\| \begin{bmatrix} \frac{\left| A\right| ^{2}}{a}+\frac{\left| B\right| ^{2}}{b} &{} \frac{A^{*}C}{a}+\frac{B^{*}D}{b} \\ \frac{C^{*}A}{a}+\frac{D^{*}B}{b} &{} \frac{\left| C\right| ^{2}}{a}+\frac{\left| D\right| ^{2}}{b} \end{bmatrix} \right\| \nonumber \\{} & {} \quad \le \left\| \frac{\left| A\right| ^{2}}{a}+\frac{\left| B\right| ^{2}}{b}\right\| +\left\| \frac{\left| C\right| ^{2}}{a}+\frac{\left| D\right| ^{2}}{b}\right\| (\text {by Lemma}\ 2.5). \end{aligned}$$
(2.8)

Now, the result follows from (2.3), (2.4), (2.5 ), and (2.8). \(\square \)

To prove our next result, we need the following two lemmas; the first one is Theorem 2.6(a) in [2], while the second one can be found in [9].

Lemma 2.7

Let \(A,B,X\in {\mathbb {M}} _{n}( {\mathbb {C}} )\) be such that X is a positive semidefinite contraction. If \(f\ \)is a nonnegative convex function on \([0,\infty )\) with \(f\left( 0\right) =0\), then

$$\begin{aligned} s_{j}\left( f\left( \left| AXB^{*}\right| \right) \right) \le \left\| f\left( \frac{\left| A\right| ^{2}+\left| B\right| ^{2}}{2}\right) \right\| s_{j}\left( X\right) \end{aligned}$$

for \(j=1,2,\ldots ,n\).

Lemma 2.8

If \(A,B\in {\mathbb {M}} _{n}( {\mathbb {C}} )\) are normal, then

$$\begin{aligned} \left| \left| \left| \,\,\left| A+B\right| \,\, \right| \right| \right| \le \left| \left| \left| \,\,\left| A\right| +\left| B\right| \,\,\right| \right| \right| \end{aligned}$$

for all unitarily invariant norms.

Theorem 2.9

Let \(A,B,C,D,X,Y\in {\mathbb {M}} _{n}( {\mathbb {C}} )\) be such that X and Y are positive semidefinite contractions. If f is a nonnegative convex function on \([0,\infty )\) with \(f\left( 0\right) =0\), then

$$\begin{aligned}{} & {} s_{j}\left( f\left( \left| AXB^{*}+CYD^{*}\right| \right) \right) \\{} & {} \quad \le \frac{\left( \mathrm {max\ }\left( \left\| f\left( \left| A\right| ^{2}+\left| B\right| ^{2}\right) \right\| ,\left\| f\left( \left| C\right| ^{2}+\left| D\right| ^{2}\right) \right\| \right) +\left\| f\left( \left| A^{*}C+B^{*}D\right| \right) \right\| \right) }{2}s_{j}\left( X\oplus Y\right) \end{aligned}$$

for \(j=1,2,\ldots ,n\). In particular, letting \(C=B\) and \(D=A,\) we have

$$\begin{aligned}{} & {} s_{j}\left( f\left( \left| AXB^{*}+BYA^{*}\right| \right) \right) \nonumber \\{} & {} \quad \le \frac{\left( \left\| f\left( \left| A\right| ^{2}\right) +f\left( \left| B\right| ^{2}\right) \right\| +\left\| f\left( \left| A^{*}B+B^{*}A\right| \right) \right\| \right) }{2} s_{j}\left( X\oplus Y\right) \end{aligned}$$
(2.9)

for \(j=1,2,\ldots ,n\).

Proof

Let \(R= \begin{bmatrix} A &{} C \\ 0 &{} 0 \end{bmatrix},S= \begin{bmatrix} X &{} 0 \\ 0 &{} Y \end{bmatrix} \), and \(T= \begin{bmatrix} B &{} D \\ 0 &{} 0 \end{bmatrix} \). Then

$$\begin{aligned} s_{j}\left( f\left( \left| AXB^{*}+CYD^{*}\right| \right) \right)= & {} \left( s_{j}(f\left( \left| RST^{*}\right| \right) \right) \nonumber \\\le & {} \left\| f\left( \frac{\left| R\right| ^{2}+\left| T\right| ^{2}}{2}\right) \right\| s_{j}\left( S\right) (\text {by Lemma}\ 2.7) \nonumber \\= & {} \left\| f\left( \frac{\left| R\right| ^{2}+\left| T\right| ^{2}}{2}\right) \right\| s_{j}\left( X\oplus Y\right) \text {. } \end{aligned}$$
(2.10)

Moreover,

$$\begin{aligned}{} & {} \left\| f\left( \frac{\left| R\right| ^{2}+\left| T\right| ^{2}}{2}\right) \right\| \nonumber \\{} & {} \quad =f\left( \left\| \frac{\left| R\right| ^{2}+\left| T\right| ^{2}}{2}\right\| \right) \nonumber \\{} & {} \quad =f\left( \left\| \begin{bmatrix} \frac{\left| A\right| ^{2}+\left| B\right| ^{2}}{2} &{} \frac{ A^{*}C+B^{*}D}{2} \\ \frac{C^{*}A+D^{*}B}{2} &{} \frac{\left| C\right| ^{2}+\left| D\right| ^{2}}{2} \end{bmatrix} \right\| \right) \nonumber \\{} & {} \quad \le f\left( \left\| \begin{bmatrix} \frac{\left\| \ \left| A\right| ^{2}+\left| B\right| ^{2}\right\| }{2} &{} \frac{\left\| A^{*}C+B^{*}D\right\| }{2} \\ \frac{\left\| A^{*}C+B^{*}D\right\| }{2} &{} \frac{\left\| \ \left| C\right| ^{2}+\left| D\right| ^{2}\right\| }{2} \end{bmatrix} \right\| \right) (\text {by Lemma}\ 2.3) \nonumber \\{} & {} \quad =f\left( \left\| \begin{bmatrix} \frac{\left\| \ \left| A\right| ^{2}+\left| B\right| ^{2}\right\| }{2} &{} 0 \\ 0 &{} \frac{\left\| \ \left| C\right| ^{2}+\left| D\right| ^{2}\right\| }{2} \end{bmatrix} + \begin{bmatrix} 0 &{} \frac{\left\| A^{*}C+B^{*}D\right\| }{2} \\ \frac{\left\| A^{*}C+B^{*}D\right\| }{2} &{} 0 \end{bmatrix} \right\| \right) \nonumber \\{} & {} \quad \le f\left( \left\| \begin{bmatrix} \frac{\left\| \ \left| A\right| ^{2}+\left| B\right| ^{2}\right\| }{2} &{} 0 \\ 0 &{} \frac{\left\| \ \left| C\right| ^{2}+\left| D\right| ^{2}\right\| }{2} \end{bmatrix} + \begin{bmatrix} \frac{\left\| A^{*}C+B^{*}D\right\| }{2} &{} 0 \\ 0 &{} \frac{\left\| A^{*}C+B^{*}D\right\| }{2} \end{bmatrix} \right\| \right) \nonumber \\{} & {} \quad \quad (\text {by Lemma}\ 2.8)\nonumber \\{} & {} =f\left( \left\| \begin{bmatrix} \frac{\left\| \ \left| A\right| ^{2}+\left| B\right| ^{2}\right\| }{2}+\frac{\left\| A^{*}C+B^{*}D\right\| }{2} &{} 0 \\ 0 &{} \frac{\left\| \ \left| C\right| ^{2}+\left| D\right| ^{2}\right\| }{2}+\frac{\left\| A^{*}C+B^{*}D\right\| }{2} \end{bmatrix} \right\| \right) \nonumber \\{} & {} \quad =\left\| f\left( \begin{bmatrix} \frac{\left\| \ \left| A\right| ^{2}+\left| B\right| ^{2}\right\| }{2}+\frac{\left\| A^{*}C+B^{*}D\right\| }{2} &{} 0 \\ 0 &{} \frac{\left\| \ \left| C\right| ^{2}+\left| D\right| ^{2}\right\| }{2}+\frac{\left\| A^{*}C+B^{*}D\right\| }{2} \end{bmatrix} \right) \right\| \nonumber \\{} & {} \quad =\left\| \begin{bmatrix} f\left( \frac{\left\| \ \left| A\right| ^{2}+\left| B\right| ^{2}\right\| }{2}+\frac{\left\| A^{*}C+B^{*}D\right\| }{2}\right) &{} 0 \\ 0 &{} f\left( \frac{\left\| \ \left| C\right| ^{2}+\left| D\right| ^{2}\right\| }{2}+\frac{\left\| A^{*}C+B^{*}D\right\| }{2}\right) \end{bmatrix} \right\| \nonumber \\{} & {} \quad \le \left\| \left[ \begin{array}{cc} \frac{f\left( \left\| \left| A\right| ^{2}+\left| B\right| ^{2}\right\| \right) +f\left( \left\| \left| A^{*}C+B^{*}D\right| \right\| \right) }{2} &{} 0 \\ 0 &{} \frac{f\left( \left\| \left| C\right| ^{2}+\left| D\right| ^{2}\right\| \right) +f\left( \left\| A^{*}C+B^{*}D\right\| \right) }{2} \end{array} \right] \right\| \nonumber \\{} & {} \quad =\left\| \left[ \begin{array}{cc} \frac{\left\| f\left( \left| A\right| ^{2}+\left| B\right| ^{2}\right) \right\| +\left\| f\left( \left| A^{*}C+B^{*}D\right| \right) \right\| }{2} &{} 0 \\ 0 &{} \frac{\left\| f\left( \left| C\right| ^{2}+\left| D\right| ^{2}\right) \right\| +\left\| f\left( \left| A^{*}C+B^{*}D\right| \right) \right\| }{2} \end{array} \right] \right\| \nonumber \\{} & {} \quad \le \left\| \left[ \begin{array}{cc} \frac{\left\| f\left( \left| A\right| ^{2}+\left| B\right| ^{2}\right) \right\| }{2} &{} 0 \\ 0 &{} \frac{\left\| f\left( \left| C\right| ^{2}+\left| D\right| ^{2}\right) \right\| }{2} \end{array} \right] \right\| +\left\| \left[ \begin{array}{cc} \frac{\left\| f\left( \left| A^{*}C+B^{*}D\right| \right) \right\| }{2} &{} 0 \\ 0 &{} \frac{\left\| f\left( \left| A^{*}C+B^{*}D\right| \right) \right\| }{2} \end{array} \right] \right\| \nonumber \\{} & {} \quad =\frac{1}{2}\mathrm {max\ }\left( \left\| f\left( \left| A\right| ^{2}+\left| B\right| ^{2}\right) \right\| ,\left\| f\left( \left| C\right| ^{2}+\left| D\right| ^{2}\right) \right\| \right) +\frac{1}{2}\left\| f\left( \left| A^{*}C+B^{*}D\right| \right) \right\| . \end{aligned}$$
(2.11)

Thus, the result follows from (2.10) and (2.11). \(\square \)

Corollary 2.10

If \(A,B,X,Y\in {\mathbb {M}} _{n}( {\mathbb {C}} )\) are such that X and Y are positive semidefinite contractions, then

$$\begin{aligned} \left| \left| \left| AXB^{*}+BYA^{*}\right| \right| \right| \le \left( \left\| A\right\| \left\| B\right\| +\frac{1}{2}\left\| A^{*}B+B^{*}A\right\| \right) \left| \left| \left| X\oplus Y\right| \right| \right| \end{aligned}$$

for all unitarily invariant norms.

Proof

Since unitarily invariant norms are increasing functions of singular values, by inequality (2.9) with \(f(t)=t\), we have

$$\begin{aligned}{} & {} \left| \left| \left| AXB^{*}+BYA^{*}\right| \right| \right| \le \frac{1}{2}\left( \left\| \left| A\right| ^{2}+\left| B\right| ^{2}\right\| +\left\| A^{*}B+B^{*}A\right\| \right) \left| \left| \left| X\oplus Y\right| \right| \right| \\{} & {} \quad \le \frac{1}{2}\left( \left\| A\right\| ^{2}+\left\| B\right\| ^{2}+\left\| A^{*}B+B^{*}A\right\| \right) \left| \left| \left| X\oplus Y\right| \right| \right| . \end{aligned}$$

Now, for \(t>0\), replacing A by \(\sqrt{t}A\) and B by \(\frac{1}{\sqrt{t}}B\), and taking the minimum over \(t>0,\) we have

$$\begin{aligned} \left| \left| \left| AXB^{*}+BYA^{*}\right| \right| \right| \le \left( \left\| A\right\| \left\| B\right\| +\frac{1}{2}\left\| A^{*}B+B^{*}A\right\| \right) \left| \left| \left| X\oplus Y\right| \right| \right| , \end{aligned}$$

as required. \(\square \)

Remark 2.11

Specifying Corollary 2.10 for the spectral norm, we have

$$\begin{aligned} \left\| AXB^{*}+BYA^{*}\right\| \le \left( \left\| A\right\| \left\| B\right\| +\frac{1}{2}\left\| A^{*}B+B^{*}A\right\| \right) \mathrm {max\ }(\left\| X\right\| ,\left\| Y\right\| ). \end{aligned}$$

In particular, if \(X=Y=I,\) then

$$\begin{aligned} \left\| AB^{*}+BA^{*}\right\| \le \left\| A\right\| \left\| B\right\| +\frac{1}{2}\left\| A^{*}B+B^{*}A\right\| , \end{aligned}$$
(2.12)

which is related to inequality (1.2). Replacing B by \(B^{*}\) in inequality (2.12), we have the equivalent inequality

$$\begin{aligned} \left\| AB+B^{*}A^{*}\right\| \le \left\| A\right\| \left\| B\right\| +\frac{1}{2}\left\| A^{*}B^{*}+BA\right\| , \end{aligned}$$

i.e.,

$$\begin{aligned} 2\left\| \Re (AB)\right\| \le \left\| A\right\| \left\| B\right\| +\left\| \Re (BA)\right\| , \end{aligned}$$
(2.13)

where \( \Re (T)\) is the real part of T, that is, \( \Re (T)=\frac{T+T^{*}}{2}\). It follows from the triangle inequality and the submultiplicativity of the spectral norm that if \(A,B\in {\mathbb {M}} _{n}( {\mathbb {C}} ),\) then

$$\begin{aligned} \left\| \Re (AB)\right\| \le \left\| A\right\| \left\| B\right\| . \end{aligned}$$

By symmetry, it follows from inequality (2.13) that \(\left\| \Re (AB)\right\| =\left\| A\right\| \left\| B\right\| \) if and only if \(\left\| \Re (BA)\right\| =\left\| A\right\| \left\| B\right\| .\) It should be mentioned here that in this result the real part cannot be deleted. In fact, the inequality \(2\left\| AB\right\| \le \left\| A\right\| \left\| B\right\| +\left\| BA\right\| \) can be refuted by considering the following example: if \(A= \begin{bmatrix} 1 &{} 0 \\ 0 &{} 0 \end{bmatrix} \) and \(B= \begin{bmatrix} 0 &{} 1 \\ 0 &{} 0 \end{bmatrix},\) then \(\left\| AB\right\| =\left\| A\right\| \left\| B\right\| =1,\) while \(BA=0.\)

3 Generalizations of Inequalities (1.1) and (1.5)–(1.10)

We start this section with the following lemmas. For the first and second lemmas, see [7] and [5], respectively, while the third lemma is a well-known fact about Hermitian matrices.

Lemma 3.1

If \(A,B\in {\mathbb {M}} _{n}( {\mathbb {C}} )\), then

$$\begin{aligned} s_{j}\left( AB^{*}\right) \le s_{j}\left( \frac{\left| A\right| ^{2}+\left| B\right| ^{2}}{2}\right) \end{aligned}$$

for \(j=1,2,\ldots ,n\).

Lemma 3.2

If \(A,B\in {\mathbb {M}} _{n}( {\mathbb {C}} )\) are positive semidefinite, and f is a nonnegative convex function on \([0,\infty )\), then

$$\begin{aligned} \left| \left| \left| f\left( \frac{A+B}{2}\right) \right| \right| \right| \le \left| \left| \left| \frac{f(A)+f(B) }{2}\right| \right| \right| \end{aligned}$$

for all unitarily invariant norms.

Lemma 3.3

If \(A\in {\mathbb {M}} _{n}( {\mathbb {C}} )\) is Hermitian, then \(\pm A\le \left| A\right| \).

Now, we present our main result of this section.

Theorem 3.4

Let \(A,B,X,Y,Z\in {\mathbb {M}} _{n}( {\mathbb {C}} )\) be such that A and B are positive semidefinite and Z is a contraction. If f is a nonnegative convex function on \([0,\infty )\) with \( f\left( 0\right) =0\), then

$$\begin{aligned}{} & {} \left| \left| \left| f\left( \left| ZAX\pm YBZ\right| \right) \right| \right| \right| \\{} & {} \quad \le \frac{\left\| Z\right\| ^{2}}{4}\left| \left| \left| f\left( 2\left( A\oplus B\right) \right) \right| \right| \right| +\frac{1}{4}\left| \left| \left| f\left( 2A^{1/2}\left| X^{*}\right| ^{2}A^{1/2}\right) \oplus f\left( 2B^{1/2}\left| Y\right| ^{2}B^{1/2}\right) \right| \right| \right| \\{} & {} \qquad +\frac{1}{2}\left| \left| \left| f\left( \left| A^{1/2}(Z^{*}Y\pm XZ^{*})B^{1/2}\right| \right) \oplus f\left( \left| A^{1/2}(Z^{*}Y\pm XZ^{*})B^{1/2}\right| \right) \right| \right| \right| \end{aligned}$$

for all unitarily invariant norms.

Proof

Let \(K_{1}=\left[ \begin{array}{cc} ZA^{1/2} &{} YB^{1/2} \\ 0 &{} 0 \end{array} \right] ,\) \(K_{2}=\left[ \begin{array}{cc} X^{*}A^{1/2} &{} -Z^{*}B^{1/2} \\ 0 &{} 0 \end{array} \right] .\) Observe that

$$\begin{aligned}{} & {} \left| K_{1}\right| ^{2}+\left| K_{2}\right| ^{2}\nonumber \\{} & {} \quad =\left[ \begin{array}{cc} A^{1/2}\left| Z\right| ^{2}A^{1/2} &{} A^{1/2}Z^{*}YB^{1/2} \\ B^{1/2}Y^{*}ZA^{1/2} &{} B^{1/2}\left| Y\right| ^{2}B^{1/2} \end{array} \right] +\left[ \begin{array}{cc} A^{1/2}\left| X^{*}\right| ^{2}A^{1/2} &{} -A^{1/2}XZ^{*}B^{1/2} \\ -B^{1/2}ZX^{*}A^{1/2} &{} B^{1/2}\left| Z^{*}\right| ^{2}B^{1/2} \end{array} \right] \nonumber \\{} & {} \quad =\left( A^{1/2}\left| Z\right| ^{2}A^{1/2}\oplus B^{1/2}\left| Z^{*}\right| ^{2}B^{1/2}\right) +\left( A^{1/2}\left| X^{*}\right| ^{2}A^{1/2}\oplus B^{1/2}\left| Y\right| ^{2}B^{1/2}\right) \nonumber \\{} & {} \qquad +\left[ \begin{array}{cc} 0 &{} A^{1/2}(Z^{*}Y-XZ^{*})B^{1/2} \\ B^{1/2}(Y^{*}Z-ZX^{*})A^{1/2} &{} 0 \end{array} \right] \nonumber \\{} & {} \quad \le \left\| Z\right\| ^{2}\left( A\oplus B\right) +\left( A^{1/2}\left| X^{*}\right| ^{2}A^{1/2}\oplus B^{1/2}\left| Y\right| ^{2}B^{1/2}\right) \nonumber \\{} & {} \qquad +\left[ \begin{array}{cc} 0 &{} A^{1/2}(Z^{*}Y-XZ^{*})B^{1/2} \\ B^{1/2}(Y^{*}Z-ZX^{*})A^{1/2} &{} 0 \end{array} \right] \nonumber \\{} & {} \quad \le \left\| Z\right\| ^{2}\left( A\oplus B\right) +\left( A^{1/2}\left| X^{*}\right| ^{2}A^{1/2}\oplus B^{1/2}\left| Y\right| ^{2}B^{1/2}\right) \nonumber \\{} & {} \qquad +\left( \left| A^{1/2}(Z^{*}Y-XZ^{*})B^{1/2}\right| \oplus \left| B^{1/2}(Y^{*}Z-ZX^{*})A^{1/2}\right| \right) (\text {by Lemma}\ 3.3).\nonumber \\ \end{aligned}$$
(3.1)

So,

$$\begin{aligned}{} & {} s_{j}\left( f\left( \left| ZAX-YBZ\right| \right) \right) \nonumber \\{} & {} \quad =s_{j}\left( f\left( \left| K_{1}K_{2}^{*}\right| \right) \right) \nonumber \\{} & {} \quad =f\left( s_{j}\left( K_{1}K_{2}^{*}\right) \right) \nonumber \\{} & {} \quad \le f\left( s_{j}\left( \frac{\left| K_{1}\right| ^{2}+\left| K_{2}\right| ^{2}}{2}\right) \right) (\text {by Lemma}\ 3.1) \nonumber \\{} & {} \quad \le f\left( \frac{1}{2}s_{j}\left( \begin{array}{c} \left\| Z\right\| ^{2}\left( A\oplus B\right) +\left( A^{1/2}\left| X^{*}\right| ^{2}A^{1/2}\oplus B^{1/2}\left| Y\right| ^{2}B^{1/2}\right) \\ +\left| A^{1/2}(Z^{*}Y-XZ^{*})B^{1/2}\right| \oplus \left| B^{1/2}(Y^{*}Z-ZX^{*})A^{1/2}\right| \end{array} \right) \right) \nonumber \\{} & {} \quad \quad (\text {by inequality} (3.1)) \nonumber \\{} & {} =s_{j}\left( f\left( \frac{1}{2}\left( \begin{array}{c} \left\| Z\right\| ^{2}\left( A\oplus B\right) +\left( A^{1/2}\left| X^{*}\right| ^{2}A^{1/2}\oplus B^{1/2}\left| Y\right| ^{2}B^{1/2}\right) \\ +\left| A^{1/2}(Z^{*}Y-XZ^{*})B^{1/2}\right| \oplus \left| B^{1/2}(Y^{*}Z-ZX^{*})A^{1/2}\right| \end{array} \right) \right) \right) \text {.} \end{aligned}$$
(3.2)

It follows from inequality (3.2) that

$$\begin{aligned}{} & {} \left| \left| \left| f\left( \left| ZAX-YBZ\right| \right) \right| \right| \right| \nonumber \\{} & {} \quad \le \left| \left| \left| f\left( \frac{1}{2}\left( \begin{array}{c} \left\| Z\right\| ^{2}\left( A\oplus B\right) +\left( A^{1/2}\left| X^{*}\right| ^{2}A^{1/2}\oplus B^{1/2}\left| Y\right| ^{2}B^{1/2}\right) \\ +\left| A^{1/2}(Z^{*}Y-XZ^{*})B^{1/2}\right| \oplus \left| B^{1/2}(Y^{*}Z-ZX^{*})A^{1/2}\right| \end{array} \right) \right) \right| \right| \right| \text {.} \end{aligned}$$
(3.3)

Now,

$$\begin{aligned}{} & {} \left| \left| \left| f\left( \frac{1}{2}\left( \begin{array}{c} \left\| Z\right\| ^{2}\left( A\oplus B\right) +\left( A^{1/2}\left| X^{*}\right| ^{2}A^{1/2}\oplus B^{1/2}\left| Y\right| ^{2}B^{1/2}\right) \\ +\left| A^{1/2}(Z^{*}Y-XZ^{*})B^{1/2}\right| \oplus \left| B^{1/2}(Y^{*}Z-ZX^{*})A^{1/2}\right| \end{array} \right) \right) \right| \right| \right| \nonumber \\{} & {} \quad \le \left| \left| \left| \begin{array}{c} \frac{1}{2}f\left( \left\| Z\right\| ^{2}\left( A\oplus B\right) +\left( A^{1/2}\left| X^{*}\right| ^{2}A^{1/2}\oplus B^{1/2}\left| Y\right| ^{2}B^{1/2}\right) \right) \\ +\frac{1}{2}f\left( (\left| A^{1/2}(Z^{*}Y-XZ^{*})B^{1/2}\right| )\oplus (\left| B^{1/2}(Y^{*}Z-ZX^{*})A^{1/2}\right| )\right) \end{array} \right| \right| \right| \nonumber \\{} & {} \quad \quad (\text {by Lemma}\ 3.2) \nonumber \\{} & {} \le \frac{1}{2}\left| \left| \left| f\left( \frac{2\left\| Z\right\| ^{2}\left( A\oplus B\right) +2\left( A^{1/2}\left| X^{*}\right| ^{2}A^{1/2}\oplus B^{1/2}\left| Y\right| ^{2}B^{1/2}\right) }{2}\right) \right| \right| \right| \nonumber \\{} & {} \qquad +\frac{1}{2}\left| \left| \left| f\left( \left| A^{1/2}(Z^{*}Y-XZ^{*})B^{1/2}\right| \right) \oplus f\left( \left| B^{1/2}(Y^{*}Z-ZX^{*})A^{1/2}\right| \right) \right| \right| \right| \nonumber \\{} & {} \quad \quad \text {(by the triangle inequality)} \nonumber \\{} & {} \le \frac{1}{4}\left| \left| \left| f\left( 2\left\| Z\right\| ^{2}\left( A\oplus B\right) \right) +f\left( 2\left( A^{1/2}\left| X^{*}\right| ^{2}A^{1/2}\oplus B^{1/2}\left| Y\right| ^{2}B^{1/2}\right) \right) \right| \right| \right| \nonumber \\{} & {} \qquad +\frac{1}{2}\left| \left| \left| f\left( \left| A^{1/2}(Z^{*}Y-XZ^{*})B^{1/2}\right| \right) \oplus f\left( \left| A^{1/2}(Z^{*}Y-XZ^{*})B^{1/2}\right| \right) \right| \right| \right| \nonumber \\{} & {} \quad \quad (\text {by Lemma}\ 3.2) \nonumber \\{} & {} \quad \le \frac{\left\| Z\right\| ^{2}}{4}\left| \left| \left| f\left( 2\left( A\oplus B\right) \right) \right| \right| \right| +\frac{1}{4}\left| \left| \left| f\left( 2A^{1/2}\left| X^{*}\right| ^{2}A^{1/2}\right) \oplus f\left( 2B^{1/2}\left| Y\right| ^{2}B^{1/2}\right) \right| \right| \right| \nonumber \\{} & {} \qquad +\frac{1}{2}\left| \left| \left| f\left( \left| A^{1/2}(Z^{*}Y-XZ^{*})B^{1/2}\right| \right) \oplus f\left( \left| A^{1/2}(Z^{*}Y-XZ^{*})B^{1/2}\right| \right) \right| \right| \right| \nonumber \\{} & {} \quad \quad (\text {by the triangle inequality and Lemma}\ 2.2). \end{aligned}$$
(3.4)

Inequalities (3.3) and (3.4) imply

$$\begin{aligned}{} & {} \left| \left| \left| f\left( \left| ZAX-YBZ\right| \right) \right| \right| \right| \nonumber \\{} & {} \quad \le \frac{\left\| Z\right\| ^{2}}{4}\left| \left| \left| f\left( 2\left( A\oplus B\right) \right) \right| \right| \right| +\frac{1}{4}\left| \left| \left| f\left( 2A^{1/2}\left| X^{*}\right| ^{2}A^{1/2}\right) \oplus f\left( 2B^{1/2}\left| Y\right| ^{2}B^{1/2}\right) \right| \right| \right| \nonumber \\{} & {} \qquad +\frac{1}{2}\left| \left| \left| f\left( \left| A^{1/2}(Z^{*}Y-XZ^{*})B^{1/2}\right| \right) \oplus f\left( \left| A^{1/2}(Z^{*}Y-XZ^{*})B^{1/2}\right| \right) \right| \right| \right| . \end{aligned}$$
(3.5)

On the other hand, from (3.5), replacing Y by \(-Y\), we obtain

$$\begin{aligned}{} & {} \left| \left| \left| f\left( \left| ZAX+YBZ\right| \right) \right| \right| \right| \nonumber \\{} & {} \quad \le \frac{\left\| Z\right\| ^{2}}{4}\left| \left| \left| f\left( 2\left( A\oplus B\right) \right) \right| \right| \right| +\frac{1}{4}\left| \left| \left| f\left( 2A^{1/2}\left| X^{*}\right| ^{2}A^{1/2}\right) \oplus f\left( 2B^{1/2}\left| Y\right| ^{2}B^{1/2}\right) \right| \right| \right| \nonumber \\{} & {} \qquad +\frac{1}{2}\left| \left| \left| f\left( \left| A^{1/2}(Z^{*}Y+XZ^{*})B^{1/2}\right| \right) \oplus f\left( \left| A^{1/2}(Z^{*}Y+XZ^{*})B^{1/2}\right| \right) \right| \right| \right| . \end{aligned}$$
(3.6)

Now, the result follows from (3.5) and (3.6). \(\square \)

It can be easily seen that when specializing Theorem 3.4 for the function \(f\left( t\right) =t\) the contractive condition that is imposed on the matrix Z can be dropped. A stronger version of this special case can be seen in the following result.

Corollary 3.5

If \(A,B,X,Y,Z\in {\mathbb {M}} _{n}( {\mathbb {C}} )\) are such that A and B are positive semidefinite, then

$$\begin{aligned}{} & {} \left| \left| \left| ZAX\pm YBZ\right| \right| \right| \nonumber \\{} & {} \quad \le \left\| Z\right\| \sqrt{\left| \left| \left| A\oplus B\right| \right| \right| \left| \left| \left| \left( X^{*}AX\right) \oplus \left( YBY^{*}\right) \right| \right| \right| } \nonumber \\{} & {} \qquad +\frac{1}{2}\left| \left| \left| (A^{1/2}\left( Z^{*}Y\pm XZ^{*}\right) B^{1/2})\oplus (A^{1/2}\left( Z^{*}Y\pm XZ^{*}\right) B^{1/2})\right| \right| \right| \end{aligned}$$
(3.7)

for all unitarily invariant norms. In particular, we have

$$\begin{aligned} \left| \left| \left| ZX\pm XZ\right| \right| \right|\le & {} \left\| Z\right\| \sqrt{\left| \left| \left| I\oplus I\right| \right| \right| \,\,\left| \left| \left| (X^{*}X)\oplus (X^{*}X)\right| \right| \right| } \nonumber \\{} & {} +\frac{1}{2}\left| \left| \left| \left( Z^{*}X\pm XZ^{*}\right) \oplus \left( Z^{*}X\pm XZ^{*}\right) \right| \right| \right| \end{aligned}$$
(3.8)

and

$$\begin{aligned} \left| \left| \left| AX\pm YB\right| \right| \right|\le & {} \sqrt{\left| \left| \left| A\oplus B\right| \right| \right| \,\,\left| \left| \left| \left( X^{*}AX\right) \oplus \left( YBY^{*}\right) \right| \right| \right| } \nonumber \\{} & {} +\frac{1}{2}\left| \left| \left| (A^{1/2}\left( Y\pm X\right) B^{1/2})\oplus (A^{1/2}\left( Y\pm X\right) B^{1/2})\right| \right| \right| \text {.} \end{aligned}$$
(3.9)

Proof

We only prove (3.7), the other inequalities are special cases of this. In Theorem 3.4, letting \(f\left( t\right) =t\), we get

$$\begin{aligned}{} & {} \left| \left| \left| ZAX\pm YBZ\right| \right| \right| \nonumber \\{} & {} \quad \le \frac{\left\| Z\right\| ^{2}}{2}\left| \left| \left| A\oplus B\right| \right| \right| +\frac{1}{2} \left| \left| \left| \left( A^{1/2}\left| X^{*}\right| ^{2}A^{1/2}\right) \oplus \left( B^{1/2}\left| Y\right| ^{2}B^{1/2}\right) \right| \right| \right| \nonumber \\{} & {} \qquad +\frac{1}{2}\left| \left| \left| \left( A^{1/2}(Z^{*}Y\pm XZ^{*})B^{1/2}\right) \oplus \left( A^{1/2}(Z^{*}Y\pm XZ^{*})B^{1/2}\right) \right| \right| \right| \text {.} \end{aligned}$$
(3.10)

From (3.10), replacing \(A,B,X,Y\,\ \)by \(tA,tB,\frac{1}{t}X, \frac{1}{t}Y\) (\(t>0\)), respectively, we get

$$\begin{aligned}{} & {} \left| \left| \left| ZAX\pm YBZ\right| \right| \right| \\{} & {} \quad \le \frac{\left\| Z\right\| ^{2}t}{2}\left| \left| \left| A\oplus B\quad \right| \right| \right| +\frac{1}{2t} \left| \left| \left| \left( A^{1/2}\left| X^{*}\right| ^{2}A^{1/2}\right) \oplus \left( B^{1/2}\left| Y\right| ^{2}B^{1/2}\right) \right| \right| \right| \\{} & {} \qquad +\frac{1}{2}\left| \left| \left| \left( A^{1/2}(Z^{*}Y\pm XZ^{*})B^{1/2}\right) \oplus \left( A^{1/2}(Z^{*}Y\pm XZ^{*})B^{1/2}\right) \right| \right| \right| \text {,} \end{aligned}$$

and so

$$\begin{aligned}{} & {} \left| \left| \left| ZAX\pm YBZ\right| \right| \right| \\{} & {} \quad \le \underset{t>0}{\textrm{min}}\ \left( \frac{\left\| Z\right\| ^{2}t}{2}\left| \left| \left| A\oplus B\right| \right| \right| +\frac{1}{2t}\left| \left| \left| A^{1/2}\left| X^{*}\right| ^{2}A^{1/2}\oplus B^{1/2}\left| Y\right| ^{2}B^{1/2}\right| \right| \right| \right) \\{} & {} \qquad +\frac{1}{2}\left| \left| \left| \left( A^{1/2}(Z^{*}Y\pm XZ^{*})B^{1/2}\right) \oplus \left( A^{1/2}(Z^{*}Y\pm XZ^{*})B^{1/2}\right) \right| \right| \right| \\{} & {} \quad =\left\| Z\right\| \sqrt{\left| \left| \left| A\oplus B\right| \right| \right| \,\,\left| \left| \left| \left( X^{*}AX\right) \oplus \left( YBY^{*}\right) \right| \right| \right| } \\{} & {} \qquad +\frac{1}{2}\left| \left| \left| \left( A^{1/2}(Z^{*}Y\pm XZ^{*})B^{1/2}\right) \oplus \left( A^{1/2}(Z^{*}Y\pm XZ^{*})B^{1/2}\right) \right| \right| \right| \text {,} \end{aligned}$$

as required. \(\square \)

Remark 3.6

Corollary 3.5 presents a generalization inequalities (1.1) and (1.5)–(1.8). This can be seen as follows:

  1. (1)

    Inequality (1.1) can be retained by applying (3.8) for the spectral norm, that is,

    $$\begin{aligned} \left\| ZX-XZ\right\|\le & {} \left\| Z\right\| \sqrt{\left\| I\oplus I\right\| \left\| (XX^{*})\oplus (XX^{*})\right\| }\\{} & {} +\frac{1}{2}\left\| \left( Z^{*}X-XZ^{*}\right) \oplus \left( Z^{*}X-XZ^{*}\right) \right\| , \end{aligned}$$

    which is equivalent to saying that

    $$\begin{aligned} \left\| ZX-XZ\right\| \le \left\| Z\right\| \left\| X\right\| +\frac{1}{2}\left\| Z^{*}X-XZ^{*}\right\| . \end{aligned}$$
  2. (2)

    Inequality (1.5) can be retained directly from (3.9) by taking \(Y=X\). Consequently, (1.6) and (1.7) can also be retained by applying (3.9) for the spectral norm and the Schatten p-norms, for \(p\ge 1\), and taking \(Y=X\).

  3. (3)

    Inequality (1.8) can be retained from (3.9) as follows: as a consequence of (3.9), by letting \(Y=X\), we have

    $$\begin{aligned} \left| \left| \left| AX+XB\right| \right| \right|\le & {} \sqrt{\left| \left| \left| A\oplus B\right| \right| \right| \,\,\left| \left| \left| \left( X^{*}AX\right) \oplus \left( XBX^{*}\right) \right| \right| \right| } \\{} & {} +\left| \left| \left| \left( A^{1/2}XB^{1/2}\right) \oplus \left( A^{1/2}XB^{1/2}\right) \right| \right| \right| \text {.} \end{aligned}$$

    This inequality, together with the fact that

    $$\begin{aligned} \left| \left| \left| \left( X^{*}AX\right) \oplus \left( XBX^{*}\right) \right| \right| \right| \le \left\| X\right\| ^{2}\left| \left| \left| A\oplus B\right| \right| \right| \text {,} \end{aligned}$$

    enables us to get (1.8). Since (1.9) and (1.10) are particular cases of (1.8), they also can be retained by applying (3.9) for the spectral norm and the Schatten p-norms, for \(p\ge 1\), and taking \(Y=X\).

Now, we need the following lemma from [8].

Lemma 3.7

If \(A,B\in {\mathbb {M}} _{n}( {\mathbb {C}} )\) are positive semidefinite, then for \(r\ge 0\)

$$\begin{aligned} \left| \left| \left| A^{1/2}\left( A+B\right) ^{r}B^{1/2}\right| \right| \right| \le \frac{1}{2}\left| \left| \left| \left( A+B\right) ^{r+1}\right| \right| \right| \end{aligned}$$

for all unitarily invariant norms.

An application of inequality (3.9) can be stated as follows.

Corollary 3.8

If \(A,B\in {\mathbb {M}} _{n}( {\mathbb {C}} )\) are positive semidefinite, then

$$\begin{aligned} \left| \left| \left| AB\right| \right| \right| \le \frac{1}{2}\mathrm {max\ }(\left\| A\right\| ,\left\| B\right\| )\left| \left| \left| A\oplus B\right| \right| \right| +\frac{1}{8}\left| \left| \left| \left( A+B\right) ^{2}\oplus \left( A+B\right) ^{2}\right| \right| \right| \end{aligned}$$

for all unitarily invariant norms.

Proof

From (3.9), letting \(X=B\) and \(Y=A\), we obtain

$$\begin{aligned} 2\left| \left| \left| AB\right| \right| \right|\le & {} \sqrt{\left| \left| \left| A\oplus B\right| \right| \right| \,\,\left| \left| \left| (BAB)\oplus (ABA)\right| \right| \right| } \nonumber \\{} & {} +\frac{1}{2}\left| \left| \left| \left( A^{1/2}\left( A+B\right) B^{1/2}\right) \oplus \left( A^{1/2}\left( A+B\right) B^{1/2}\right) \right| \right| \right| \text {.} \end{aligned}$$
(3.11)

Observe that

$$\begin{aligned} \left| \left| \left| \left( BAB\right) \oplus \left( ABA\right) \right| \right| \right|\le & {} \left| \left| \left| (\left\| B\right\| ^{2}A)\oplus (\left\| A\right\| ^{2}B)\right| \right| \right| \nonumber \\\le & {} \mathrm {max\ }(\left\| A\right\| ^{2},\left\| B\right\| ^{2})\left| \left| \left| A\oplus B\right| \right| \right| \text {.} \end{aligned}$$
(3.12)

Also,

$$\begin{aligned}{} & {} \left| \left| \left| (A^{1/2}\left( A+B\right) B^{1/2})\oplus (A^{1/2}\left( A+B\right) B^{1/2})\right| \right| \right| \nonumber \\{} & {} \quad =\left| \left| \left| \left[ \begin{array}{cc} A &{} 0 \\ 0 &{} A \end{array} \right] ^{1/2}\left( \left[ \begin{array}{cc} A &{} 0 \\ 0 &{} A \end{array} \right] +\left[ \begin{array}{cc} B &{} 0 \\ 0 &{} B \end{array} \right] \right) \left[ \begin{array}{cc} B &{} 0 \\ 0 &{} B \end{array} \right] ^{1/2}\right| \right| \right| \nonumber \\{} & {} \quad \le \frac{1}{2}\left| \left| \left| \left( \left[ \begin{array}{cc} A &{} 0 \\ 0 &{} A \end{array} \right] +\left[ \begin{array}{cc} B &{} 0 \\ 0 &{} B \end{array} \right] \right) ^{2}\right| \right| \right| (\text {by Lemma}\ 3.7) \nonumber \\{} & {} \quad =\frac{1}{2}\left| \left| \left| \left( A+B\right) ^{2}\oplus \left( A+B\right) ^{2}\right| \right| \right| \text {.} \end{aligned}$$
(3.13)

Now, the result follows from (3.11), (3.12), and (3.13). \(\square \)

Specializing Corollary 3.8 for the spectral norm and for Schatten p-norms, for \(p\ge 1\), we obtain the following result.

Corollary 3.9

If \(A,B\in {\mathbb {M}} _{n}( {\mathbb {C}} )\) are positive semidefinite, then

$$\begin{aligned} \left\| AB\right\| \le \frac{1}{2}\mathrm {max\ }(\left\| A\right\| ^{2},\left\| B\right\| ^{2})+\frac{1}{8}\left\| A+B\right\| ^{2} \end{aligned}$$

and

$$\begin{aligned} \left\| AB\right\| _{p}\le \frac{1}{2}\mathrm {max\ }(\left\| A\right\| ,\left\| B\right\| )\left( \left\| A\right\| _{p}^{p}+\left\| B\right\| _{p}^{p}\right) ^{1/p}+2^{1/p-3}\left\| \left( A+B\right) ^{2}\right\| _{p} \end{aligned}$$

for \(p\ge 1\).