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Abstract
In this paper, we give singular value and norm inequalities involving convex functions of
positive semidefinitematrices.Our results generalize someknown inequalities for the spectral
norm and for the Schatten p-norms for p ≥ 1.
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1 Introduction

Let MnC) be the C∗-algebra of all n × n complex matrices. A matrix A ∈ Mn(C) is said
to be positive semidefinite if x∗Ax ≥ 0 for all x ∈ C

n . The absolute value of A ∈ Mn(C),
denoted by |A|, is the unique positive semidefinite square root of the matrix A∗A, that is,
|A| = (A∗A)1/2. The singular values of A ∈ Mn(C), denoted by s1 (A) , s2 (A) , . . . , sn (A),
are the eigenvalues of |A| arranged in decreasing order and repeated according tomultiplicity.
In fact, it can be seen that s j (A) = s j (|A|) = s j (A∗) for j = 1, 2, . . . , n.

The spectral norm, denoted by ‖·‖, is a matrix norm defined on Mn(C) by ‖A‖ =
max‖x‖=1

‖Ax‖ for A ∈ Mn(C). Moreover, for p ≥ 1, the Schatten p-norms, denoted by

‖A‖p , are also matrix norms defined on Mn(C) by ‖A‖p = (tr|A|p)1/p for A ∈ Mn(C),
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where tr(·) denotes the usual trace functional. In fact, it can be seen that ‖A‖ = s1 (A) and

‖A‖p =
(∑n

j=1 s
p
j (A)

)1/p
for A ∈ Mn(C).

A matrix norm ||| · ||| onMn(C) is said to be unitarily invariant if |||U AV ||| = |||A||| for
all A ∈ Mn(C) and for all unitary matrices U , V ∈ Mn(C). Typical examples of unitarily
invariant norms, that we are interested in, are the spectral norm and the Schatten p-norms
for p ≥ 1.

For A, B ∈ Mn(C), let A ⊕ B be the direct sum of A and B, that is, the matrix given by

A ⊕ B =
[
A 0
0 B

]
. Note that

∣∣∣∣
∣∣∣∣
∣∣∣∣
[

0 A
A∗ 0

]∣∣∣∣
∣∣∣∣
∣∣∣∣ = |||A ⊕ A∗||| = |||A ⊕ A|||, and that |||A||| ≤ |||B|||

is equivalent to |||A ⊕ A||| ≤ |||B ⊕ B||| for all unitarily invariant norms. By convenience, for
A ∈ Mn(C) and B ∈ M2n(C), by the inequality |||A||| ≤ |||B|||wemean that |||A ⊕ 0||| ≤ |||B|||.
It is evident that ‖A ⊕ B‖ =max (‖A‖ , ‖B‖) and ‖A ⊕ B‖p

p = ‖A‖p
p + ‖B‖p

p , for p ≥ 1,
s j (A ⊕ 0) = s j (A) for j = 1, . . . , n, and s j (A ⊕ 0) = 0 for j = n + 1, . . . , 2n. For other
basic properties of unitarily invariant norms and singular values, we refer to [6, 11].

In [1], Al-Natoor, Benzamia, and Kittaneh proved that if A, B ∈ Mn(C), then

‖AB − BA‖ ≤ ‖A‖ ‖B‖ + 1

2

∥∥A∗B − BA∗∥∥ , (1.1)

which refines the inequality

‖AB − BA‖ ≤ 2‖A‖‖B‖.
Related to inequality (1.1), Al-Natoor andKittaneh [4] have proved that if A, B,C ∈ Mn(C),

then

‖AB + BC‖ ≤ max (‖A‖ , ‖C‖) ‖B‖ + 1

2

∥∥A∗B + BC∗∥∥ .

In particular, letting C = A, we have

‖AB + BA‖ ≤ ‖A‖ ‖B‖ + 1

2

∥∥A∗B + BA∗∥∥ . (1.2)

In [15], Zhan proved that if A, B ∈ Mn(C) are positive semidefinite, then

|||A − B||| ≤ |||A ⊕ B||| (1.3)

for all unitarily invariant norms.
A generalization of inequality (1.3) was given byKittaneh [14]. This generalization asserts

that if A, B, X ∈ Mn(C) are such that A and B are positive semidefinite, then

|||AX − XB||| ≤ ‖X‖ |||A ⊕ B||| (1.4)

for all unitarily invariant norms.
In [3], Al-Natoor and Kittaneh gave a refinement of inequality (1.4). This refinement

asserts that if A, B, X ∈ Mn(C) are such that A and B are positive semidefinite, then

|||AX − XB||| ≤ √|||A ⊕ B||| |||(X∗AX) ⊕ (XBX∗)||| (1.5)

for all unitarily invariant norms.
Applying inequality (1.5) for the spectral norm and the Schatten p -norms, for p ≥ 1, we

have

‖AX − XB‖ ≤ √max (‖A‖ , ‖B‖) max (‖X∗AX‖ , ‖XBX∗‖) (1.6)
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206 A. Al-Natoor et al.

and

‖AX − XB‖p ≤ 2p
√(‖A‖p

p + ‖B‖p
p
) (‖X∗AX‖p

p + ‖XBX∗‖p
p
)
. (1.7)

Also, in the same paper, Al-Natoor and Kittaneh gave a generalization of the inequality

|||A + B||| ≤ |||A ⊕ B||| + ∣∣∣∣∣∣(A1/2B1/2)⊕ (A1/2B1/2)∣∣∣∣∣∣
for all unitarily invariant norms, which is due to Kittaneh [13]. This generalization asserts
that if A, B, X ∈ Mn(C) are such that A and B are positive semidefinite, then

|||AX + XB||| ≤ ‖X‖ |||A ⊕ B||| + ∣∣∣∣∣∣(A1/2XB1/2)⊕ (A1/2XB1/2)∣∣∣∣∣∣ (1.8)

for all unitarily invariant norms.
Applying inequality (1.8) for the spectral norm and the Schatten p-norms, for p ≥ 1, we

have

‖AX + XB‖ ≤ ‖X‖max (‖A‖ , ‖B‖) + ∥∥A1/2XB1/2
∥∥ (1.9)

and

‖AX + XB‖p ≤ ‖X‖ (‖A‖p
p + ‖B‖p

p
)1/p + 21/p

∥∥A1/2XB1/2
∥∥
p . (1.10)

In Sect. 2 of this paper, we introduce singular value inequalities for functions of matrices,
and applications of our results are given. In Section 3, we give generalizations of inequalities
(1.1) and (1.5)–(1.10).

2 Singular value and norm inequalities for matrices

We start with the following theorem, which is based on three lemmas. The first lemma can
be found in [2], the second follows directly from the definition of convex functions, while
the third can be found in [12].

Lemma 2.1 If A, B, X ∈ Mn(C) are such that A and B are nonzero and X is positive
semidefinite, then

s j
(
AXB∗) ≤ 1

2

∥∥∥∥∥
|A|2
‖A‖2 + |B|2

‖B‖2
∥∥∥∥∥ ‖A‖ ‖B‖ s j (X)

for j = 1, 2, . . . , n.

Lemma 2.2 If f : [0,∞) → R is convex with f (0) = 0, then f (αa) ≤ α f (a) for all
a ≥ 0 and 0 ≤ α ≤ 1.

Lemma 2.3 If A, B,C, D ∈ Mn(C), then
∥∥∥∥
[
A B
C D

]∥∥∥∥ ≤
∥∥∥∥
[‖A‖ ‖B‖
‖C‖ ‖D‖

]∥∥∥∥ .

In our next results, I stands for the identity matrix in Mn(C).

Theorem 2.4 Let A, B,C, D, X , Y ∈ Mn(C) be such that A, B,C, and D are nonzero with
AA∗ +CC∗ ≤ I , BB∗ +DD∗ ≤ I , and X , Y are positive semidefinite. If f is a nonnegative
convex function on [0,∞) with f (0) = 0, then

s j
(
f
(∣∣AXB∗ + CY D∗∣∣)) ≤ 1

2
α
√
ab s j ( f (X) ⊕ f (Y )) (2.1)
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for j = 1, 2, . . . , n, where

α =

∥∥∥ |A|2
a + |B|2

b

∥∥∥+
∥∥∥ |C |2

a + |D|2
b

∥∥∥+
√(∥∥∥ |A|2

a + |B|2
b

∥∥∥−
∥∥∥ |C |2

a + |D|2
b

∥∥∥
)2 + 4

∥∥ A∗C
a + B∗D

b

∥∥2

2
,

a = ‖AA∗ + CC∗‖, and b = ‖BB∗ + DD∗‖. In particular,

s j
(
f
(∣∣AXB∗ + BY A∗∣∣))

≤ (∥∥|A|2 + |B|2∥∥+ ∥∥A∗B + B∗A
∥∥) s j ( f (X) ⊕ f (Y )) . (2.2)

Proof Let R =
[
A C
0 0

]
, S =

[
X 0
0 Y

]
, and T =

[
B D
0 0

]
. Then

s j
(
f
(∣∣AXB∗ + CY D∗∣∣))

= f
(
s j
(
AXB∗ + CY D∗))

= f
(
s j
(
RST ∗))

≤ f

(
1

2

∥∥∥∥∥
|R|2
‖R‖2 + |T |2

‖T ‖2
∥∥∥∥∥ ‖R‖ ‖T ‖ s j (S)

)
(by Lemma 2.1)

≤ 1

2

∥∥∥∥∥
|R|2
‖R‖2 + |T |2

‖T ‖2
∥∥∥∥∥ ‖R‖ ‖T ‖ f

(
s j (S)

)
(by Lemma 2.2)

= 1

2

∥∥∥∥∥
|R|2
‖R‖2 + |T |2

‖T ‖2
∥∥∥∥∥ ‖R‖ ‖T ‖ s j ( f (X ⊕ Y )) . (2.3)

Now,

‖R‖2 =
∥∥∥∥
[
A C
0 0

] [
A∗ 0
C∗ 0

]∥∥∥∥ = ∥∥AA∗ + CC∗∥∥ = a, (2.4)

‖T ‖2 =
∥∥∥∥
[
B D
0 0

] [
B∗ 0
D∗ 0

]∥∥∥∥ = ∥∥BB∗ + DD∗∥∥ = b, (2.5)

and ∥∥∥∥∥
|R|2
a

+ |T |2
b

∥∥∥∥∥

=
∥∥∥∥∥

[ |A|2
a + |B|2

b
A∗C
a + B∗D

b
C∗A
a + D∗B

b
|C |2
a + |D|2

b

]∥∥∥∥∥ (2.6)

≤
∥∥∥∥∥∥

⎡
⎣
∥∥∥ |A|2

a + |B|2
b

∥∥∥
∥∥∥ A∗C

a + B∗D
b

∥∥∥∥∥∥ A∗C
a + B∗D

b

∥∥∥
∥∥∥ |C |2

a + |D|2
b

∥∥∥

⎤
⎦
∥∥∥∥∥∥

(by Lemma 2.3)

= 1

2

∥∥∥∥∥
|A|2
a

+ |B|2
b

∥∥∥∥∥+ 1

2

∥∥∥∥∥
|C |2
a

+ |D|2
b

∥∥∥∥∥

+1

2

√√√√
(∥∥∥∥∥

|A|2
a

+ |B|2
b

∥∥∥∥∥−
∥∥∥∥∥
|C |2
a

+ |D|2
b

∥∥∥∥∥

)2

+ 4

∥∥∥∥
A∗C
a

+ B∗D
b

∥∥∥∥
2

. (2.7)

Thus, inequality (2.1) follows from (2.3), (2.4), (2.5), and (2.7). Inequality (2.2) follows from
(2.1) by replacing C and D by B and A, respectively. ��
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208 A. Al-Natoor et al.

To prove our next result, we need the following lemma. Amore general form of this lemma
can be found in [10].

Lemma 2.5 If X , Y , Z ∈ Mn(C) are such that the block matrix

[
X Z
Z∗ Y

]
is positive semidef-

inite, then
∣∣∣∣
∣∣∣∣
[
X Z
Z∗ Y

]∣∣∣∣
∣∣∣∣ ≤ ||X || + ||Y || .

Based on equation (2.6) and Lemma 2.5, we have the following result.

Corollary 2.6 Let A, B,C, D, X , Y ∈ Mn(C) be such that A, B,C, and D are nonzero with
AA∗ +CC∗ ≤ I , BB∗ + DD∗ ≤ I , and X,Y are positive semidefinite. If f is a nonnegative
convex function on [0,∞) with f (0) = 0, then

s j
(
f
(∣∣AXB∗ + CY D∗∣∣)) ≤ 1

2
β
√
ab s j ( f (X) ⊕ f (Y ))

for j = 1, 2, . . . , n, where β =
∥∥∥ |A|2

a + |B|2
b

∥∥∥ +
∥∥∥ |C |2

a + |D|2
b

∥∥∥ , a = ‖AA∗ + CC∗‖, and
b = ‖BB∗ + DD∗‖ . In particular, if C = B and D = A, we have

s j
(
f
(∣∣AXB∗ + BY A∗∣∣)) ≤ ∥∥AA∗ + BB∗∥∥ s j ( f (X) ⊕ f (Y ))

for j = 1, 2, . . . , n.

Proof By equation (2.6), we have
∥∥∥∥∥
|R|2
a

+ |T |2
b

∥∥∥∥∥

=
∥∥∥∥∥

[ |A|2
a + |B|2

b
A∗C
a + B∗D

b
C∗A
a + D∗B

b
|C |2
a + |D|2

b

]∥∥∥∥∥

≤
∥∥∥∥∥
|A|2
a

+ |B|2
b

∥∥∥∥∥+
∥∥∥∥∥
|C |2
a

+ |D|2
b

∥∥∥∥∥ (by Lemma 2.5). (2.8)

Now, the result follows from (2.3), (2.4), (2.5 ), and (2.8). ��
To prove our next result, we need the following two lemmas; the first one is Theorem

2.6(a) in [2], while the second one can be found in [9].

Lemma 2.7 Let A, B, X ∈ Mn(C) be such that X is a positive semidefinite contraction. If
f is a nonnegative convex function on [0,∞) with f (0) = 0, then

s j
(
f
(∣∣AXB∗∣∣)) ≤

∥∥∥∥∥ f
(

|A|2 + |B|2
2

)∥∥∥∥∥ s j (X)

for j = 1, 2, . . . , n.

Lemma 2.8 If A, B ∈ Mn(C) are normal, then

||| |A + B| ||| ≤ ||| |A| + |B| |||
for all unitarily invariant norms.
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Singular value and norm inequalities for products… 209

Theorem 2.9 Let A, B,C, D, X , Y ∈ Mn(C) be such that X and Y are positive semidefinite
contractions. If f is a nonnegative convex function on [0,∞) with f (0) = 0, then

s j
(
f
(∣∣AXB∗ + CY D∗∣∣))

≤
(
max

(∥∥ f (|A|2 + |B|2)∥∥ ,
∥∥ f (|C |2 + |D|2)∥∥)+ ‖ f (|A∗C + B∗D|)‖)

2
s j (X ⊕ Y )

for j = 1, 2, . . . , n. In particular, letting C = B and D = A, we have

s j
(
f
(∣∣AXB∗ + BY A∗∣∣))

≤
(∥∥ f (|A|2)+ f

(|B|2)∥∥+ ‖ f (|A∗B + B∗A|)‖)
2

s j (X ⊕ Y ) (2.9)

for j = 1, 2, . . . , n.

Proof Let R =
[
A C
0 0

]
, S =

[
X 0
0 Y

]
, and T =

[
B D
0 0

]
. Then

s j
(
f
(∣∣AXB∗ + CY D∗∣∣)) = (

s j ( f
(∣∣RST ∗∣∣))

≤
∥∥∥∥∥ f
(

|R|2 + |T |2
2

)∥∥∥∥∥ s j (S) (by Lemma 2.7)

=
∥∥∥∥∥ f
(

|R|2 + |T |2
2

)∥∥∥∥∥ s j (X ⊕ Y ) . (2.10)

Moreover,
∥∥∥∥∥ f
(

|R|2 + |T |2
2

)∥∥∥∥∥

= f

(∥∥∥∥∥
|R|2 + |T |2

2

∥∥∥∥∥

)

= f

(∥∥∥∥∥

[ |A|2+|B|2
2

A∗C+B∗D
2

C∗A+D∗B
2

|C |2+|D|2
2

]∥∥∥∥∥

)

≤ f

(∥∥∥∥∥

[ ∥∥ |A|2+|B|2∥∥
2

‖A∗C+B∗D‖
2‖A∗C+B∗D‖

2

∥∥ |C |2+|D|2∥∥
2

]∥∥∥∥∥

)
(by Lemma 2.3)

= f

(∥∥∥∥∥

[∥∥ |A|2+|B|2∥∥
2 0

0
∥∥ |C |2+|D|2∥∥

2

]
+
[

0 ‖A∗C+B∗D‖
2‖A∗C+B∗D‖

2 0

]∥∥∥∥∥

)

≤ f

(∥∥∥∥∥

[∥∥ |A|2+|B|2∥∥
2 0

0
∥∥ |C |2+|D|2∥∥

2

]
+
[‖A∗C+B∗D‖

2 0

0 ‖A∗C+B∗D‖
2

]∥∥∥∥∥

)

(by Lemma 2.8)

= f

(∥∥∥∥∥

[∥∥ |A|2+|B|2∥∥
2 + ‖A∗C+B∗D‖

2 0

0
∥∥ |C |2+|D|2∥∥

2 + ‖A∗C+B∗D‖
2

]∥∥∥∥∥

)

=
∥∥∥∥∥ f
([∥∥ |A|2+|B|2∥∥

2 + ‖A∗C+B∗D‖
2 0

0
∥∥ |C |2+|D|2∥∥

2 + ‖A∗C+B∗D‖
2

])∥∥∥∥∥
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210 A. Al-Natoor et al.

=

∥∥∥∥∥∥∥∥

⎡
⎢⎢⎣
f

(∥∥ |A|2+|B|2∥∥
2 + ‖A∗C+B∗D‖

2

)
0

0 f

(∥∥ |C |2+|D|2∥∥
2 + ‖A∗C+B∗D‖

2

)

⎤
⎥⎥⎦

∥∥∥∥∥∥∥∥

≤
∥∥∥∥∥

[
f
(∥∥|A|2+|B|2∥∥)+ f (‖|A∗C+B∗D|‖)

2 0

0
f
(∥∥|C |2+|D|2∥∥)+ f (‖A∗C+B∗D‖)

2

]∥∥∥∥∥

=
∥∥∥∥∥

[ ∥∥ f (|A|2+|B|2)∥∥+‖ f (|A∗C+B∗D|)‖
2 0

0
∥∥ f (|C |2+|D|2)∥∥+‖ f (|A∗C+B∗D|)‖

2

]∥∥∥∥∥

≤
∥∥∥∥∥

[ ∥∥ f (|A|2+|B|2)∥∥
2 0

0
∥∥ f (|C |2+|D|2)∥∥

2

]∥∥∥∥∥+
∥∥∥∥∥

[ ‖ f (|A∗C+B∗D|)‖
2 0

0 ‖ f (|A∗C+B∗D|)‖
2

]∥∥∥∥∥

= 1

2
max

(∥∥ f (|A|2 + |B|2)∥∥ ,
∥∥ f (|C |2 + |D|2)∥∥)+ 1

2

∥∥ f (∣∣A∗C + B∗D
∣∣)∥∥ .(2.11)

Thus, the result follows from (2.10) and (2.11). ��
Corollary 2.10 If A, B, X , Y ∈ Mn(C) are such that X and Y are positive semidefinite
contractions, then

∣∣∣∣∣∣AXB∗ + BY A∗∣∣∣∣∣∣ ≤
(

‖A‖ ‖B‖ + 1

2

∥∥A∗B + B∗A
∥∥
)

|||X ⊕ Y |||

for all unitarily invariant norms.

Proof Since unitarily invariant norms are increasing functions of singular values, by inequal-
ity (2.9) with f (t) = t , we have

∣∣∣∣∣∣AXB∗ + BY A∗∣∣∣∣∣∣ ≤ 1

2

(∥∥|A|2 + |B|2∥∥+ ∥∥A∗B + B∗A
∥∥) |||X ⊕ Y |||

≤ 1

2

(‖A‖2 + ‖B‖2 + ∥∥A∗B + B∗A
∥∥) |||X ⊕ Y ||| .

Now, for t > 0, replacing A by
√
t A and B by 1√

t
B, and taking the minimum over t > 0,

we have
∣∣∣∣∣∣AXB∗ + BY A∗∣∣∣∣∣∣ ≤

(
‖A‖ ‖B‖ + 1

2

∥∥A∗B + B∗A
∥∥
)

|||X ⊕ Y ||| ,

as required. ��
Remark 2.11 Specifying Corollary 2.10 for the spectral norm, we have

∥∥AXB∗ + BY A∗∥∥ ≤
(

‖A‖ ‖B‖ + 1

2

∥∥A∗B + B∗A
∥∥
)
max (‖X‖ , ‖Y‖).

In particular, if X = Y = I , then

∥∥AB∗ + BA∗∥∥ ≤ ‖A‖ ‖B‖ + 1

2

∥∥A∗B + B∗A
∥∥ , (2.12)

which is related to inequality (1.2). Replacing B by B∗ in inequality (2.12), we have the
equivalent inequality

∥∥AB + B∗A∗∥∥ ≤ ‖A‖ ‖B‖ + 1

2

∥∥A∗B∗ + BA
∥∥ ,
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Singular value and norm inequalities for products… 211

i.e.,

2 ‖(AB)‖ ≤ ‖A‖ ‖B‖ + ‖(BA)‖ , (2.13)

where(T ) is the real part of T , that is,(T ) = T+T ∗
2 . It follows from the triangle inequality

and the submultiplicativity of the spectral norm that if A, B ∈ Mn(C), then

‖(AB)‖ ≤ ‖A‖ ‖B‖ .

By symmetry, it follows from inequality (2.13) that ‖(AB)‖ = ‖A‖ ‖B‖ if and only if
‖(BA)‖ = ‖A‖ ‖B‖ . It should be mentioned here that in this result the real part cannot be
deleted. In fact, the inequality 2 ‖AB‖ ≤ ‖A‖ ‖B‖ + ‖BA‖ can be refuted by considering

the following example: if A =
[
1 0
0 0

]
and B =

[
0 1
0 0

]
, then ‖AB‖ = ‖A‖ ‖B‖ = 1, while

BA = 0.

3 Generalizations of Inequalities (1.1) and (1.5)–(1.10)

We start this section with the following lemmas. For the first and second lemmas, see [7] and
[5], respectively, while the third lemma is a well-known fact about Hermitian matrices.

Lemma 3.1 If A, B ∈ Mn(C), then

s j
(
AB∗) ≤ s j

(
|A|2 + |B|2

2

)

for j = 1, 2, . . . , n.

Lemma 3.2 If A, B ∈ Mn(C) are positive semidefinite, and f is a nonnegative convex
function on [0,∞), then

∣∣∣∣
∣∣∣∣
∣∣∣∣ f
(
A + B

2

)∣∣∣∣
∣∣∣∣
∣∣∣∣ ≤

∣∣∣∣
∣∣∣∣
∣∣∣∣
f (A) + f (B)

2

∣∣∣∣
∣∣∣∣
∣∣∣∣

for all unitarily invariant norms.

Lemma 3.3 If A ∈ Mn(C) is Hermitian, then ±A ≤ |A|.

Now, we present our main result of this section.

Theorem 3.4 Let A, B, X , Y , Z ∈ Mn(C) be such that A and B are positive semidefinite
and Z is a contraction. If f is a nonnegative convex function on [0,∞) with f (0) = 0, then
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||| f (|Z AX ± Y BZ |)|||
≤ ‖Z‖2

4
||| f (2 (A ⊕ B))||| + 1

4

∣∣∣
∣∣∣
∣∣∣ f
(
2A1/2

∣∣X∗∣∣2 A1/2
)

⊕ f
(
2B1/2 |Y |2 B1/2)∣∣∣

∣∣∣
∣∣∣

+1

2

∣∣∣∣∣∣ f (∣∣A1/2(Z∗Y ± X Z∗)B1/2
∣∣)⊕ f

(∣∣A1/2(Z∗Y ± X Z∗)B1/2
∣∣)∣∣∣∣∣∣

for all unitarily invariant norms.

Proof Let K1 =
[
Z A1/2 Y B1/2

0 0

]
, K2 =

[
X∗A1/2 −Z∗B1/2

0 0

]
. Observe that

|K1|2 + |K2|2

=
[
A1/2 |Z |2 A1/2 A1/2Z∗Y B1/2

B1/2Y ∗Z A1/2 B1/2 |Y |2 B1/2

]
+
[
A1/2 |X∗|2 A1/2 −A1/2X Z∗B1/2

−B1/2Z X∗A1/2 B1/2 |Z∗|2 B1/2

]

=
(
A1/2 |Z |2 A1/2 ⊕ B1/2

∣∣Z∗∣∣2 B1/2
)

+
(
A1/2

∣∣X∗∣∣2 A1/2 ⊕ B1/2 |Y |2 B1/2
)

+
[

0 A1/2(Z∗Y − X Z∗)B1/2

B1/2(Y ∗Z − Z X∗)A1/2 0

]

≤ ‖Z‖2 (A ⊕ B) +
(
A1/2

∣∣X∗∣∣2 A1/2 ⊕ B1/2 |Y |2 B1/2
)

+
[

0 A1/2(Z∗Y − X Z∗)B1/2

B1/2(Y ∗Z − Z X∗)A1/2 0

]

≤ ‖Z‖2 (A ⊕ B) +
(
A1/2

∣∣X∗∣∣2 A1/2 ⊕ B1/2 |Y |2 B1/2
)

+ (∣∣A1/2(Z∗Y − X Z∗)B1/2
∣∣⊕ ∣∣B1/2(Y ∗Z − Z X∗)A1/2

∣∣) (by Lemma 3.3).

(3.1)

So,

s j ( f (|Z AX − Y BZ |))
= s j

(
f
(∣∣K1K

∗
2

∣∣))

= f
(
s j
(
K1K

∗
2

))

≤ f

(
s j

(
|K1|2 + |K2|2

2

))
(by Lemma 3.1)

≤ f

(
1

2
s j

(
‖Z‖2 (A ⊕ B) +

(
A1/2 |X∗|2 A1/2 ⊕ B1/2 |Y |2 B1/2

)

+ ∣∣A1/2(Z∗Y − X Z∗)B1/2
∣∣⊕ ∣∣B1/2(Y ∗Z − Z X∗)A1/2

∣∣

))

(by inequality(3.1))

= s j

(
f

(
1

2

(
‖Z‖2 (A ⊕ B) +

(
A1/2 |X∗|2 A1/2 ⊕ B1/2 |Y |2 B1/2

)

+ ∣∣A1/2(Z∗Y − X Z∗)B1/2
∣∣⊕ ∣∣B1/2(Y ∗Z − Z X∗)A1/2

∣∣

)))
. (3.2)

It follows from inequality (3.2) that

||| f (|Z AX − Y BZ |)|||

≤
∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣ f
(
1

2

(
‖Z‖2 (A ⊕ B) +

(
A1/2 |X∗|2 A1/2 ⊕ B1/2 |Y |2 B1/2

)

+ ∣∣A1/2(Z∗Y − X Z∗)B1/2
∣∣⊕ ∣∣B1/2(Y ∗Z − Z X∗)A1/2

∣∣

))∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣ . (3.3)
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Now,
∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣ f
(
1

2

(
‖Z‖2 (A ⊕ B) +

(
A1/2 |X∗|2 A1/2 ⊕ B1/2 |Y |2 B1/2

)

+ ∣∣A1/2(Z∗Y − X Z∗)B1/2
∣∣⊕ ∣∣B1/2(Y ∗Z − Z X∗)A1/2

∣∣

))∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣

≤
∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
1
2 f
(
‖Z‖2 (A ⊕ B) +

(
A1/2 |X∗|2 A1/2 ⊕ B1/2 |Y |2 B1/2

))

+ 1
2 f
(
(
∣∣A1/2(Z∗Y − X Z∗)B1/2

∣∣) ⊕ (
∣∣B1/2(Y ∗Z − Z X∗)A1/2

∣∣))
∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
(by Lemma 3.2)

≤ 1

2

∣∣∣∣∣∣

∣∣∣∣∣∣

∣∣∣∣∣∣
f

⎛
⎝2 ‖Z‖2 (A ⊕ B) + 2

(
A1/2 |X∗|2 A1/2 ⊕ B1/2 |Y |2 B1/2

)

2

⎞
⎠
∣∣∣∣∣∣

∣∣∣∣∣∣

∣∣∣∣∣∣

+1

2

∣∣∣∣∣∣ f (∣∣A1/2(Z∗Y − X Z∗)B1/2
∣∣)⊕ f

(∣∣B1/2(Y ∗Z − Z X∗)A1/2
∣∣)∣∣∣∣∣∣

(by the triangle inequality)

≤ 1

4

∣∣∣
∣∣∣
∣∣∣ f (2 ‖Z‖2 (A ⊕ B)

)+ f
(
2
(
A1/2

∣∣X∗∣∣2 A1/2 ⊕ B1/2 |Y |2 B1/2
))∣∣∣
∣∣∣
∣∣∣

+1

2

∣∣∣∣∣∣ f (∣∣A1/2(Z∗Y − X Z∗)B1/2
∣∣)⊕ f

(∣∣A1/2(Z∗Y − X Z∗)B1/2
∣∣)∣∣∣∣∣∣

(by Lemma 3.2)

≤ ‖Z‖2
4

||| f (2 (A ⊕ B))||| + 1

4

∣∣∣
∣∣∣
∣∣∣ f
(
2A1/2

∣∣X∗∣∣2 A1/2
)

⊕ f
(
2B1/2 |Y |2 B1/2)∣∣∣

∣∣∣
∣∣∣

+1

2

∣∣∣∣∣∣ f (∣∣A1/2(Z∗Y − X Z∗)B1/2
∣∣)⊕ f

(∣∣A1/2(Z∗Y − X Z∗)B1/2
∣∣)∣∣∣∣∣∣

(by the triangle inequality and Lemma 2.2). (3.4)

Inequalities (3.3) and (3.4) imply

||| f (|Z AX − Y BZ |)|||
≤ ‖Z‖2

4
||| f (2 (A ⊕ B))||| + 1

4

∣∣∣
∣∣∣
∣∣∣ f
(
2A1/2

∣∣X∗∣∣2 A1/2
)

⊕ f
(
2B1/2 |Y |2 B1/2)∣∣∣

∣∣∣
∣∣∣

+1

2

∣∣∣∣∣∣ f (∣∣A1/2(Z∗Y − X Z∗)B1/2
∣∣)⊕ f

(∣∣A1/2(Z∗Y − X Z∗)B1/2
∣∣)∣∣∣∣∣∣ . (3.5)

On the other hand, from (3.5), replacing Y by −Y , we obtain

||| f (|Z AX + Y BZ |)|||
≤ ‖Z‖2

4
||| f (2 (A ⊕ B))||| + 1

4

∣∣∣
∣∣∣
∣∣∣ f
(
2A1/2

∣∣X∗∣∣2 A1/2
)

⊕ f
(
2B1/2 |Y |2 B1/2)∣∣∣

∣∣∣
∣∣∣

+1

2

∣∣∣∣∣∣ f (∣∣A1/2(Z∗Y + X Z∗)B1/2
∣∣)⊕ f

(∣∣A1/2(Z∗Y + X Z∗)B1/2
∣∣)∣∣∣∣∣∣ . (3.6)

Now, the result follows from (3.5) and (3.6). ��

It can be easily seen that when specializing Theorem 3.4 for the function f (t) = t the
contractive condition that is imposed on the matrix Z can be dropped. A stronger version of
this special case can be seen in the following result.

Corollary 3.5 If A, B, X , Y , Z ∈ Mn(C) are such that A and B are positive semidefinite,
then
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|||Z AX ± Y BZ |||
≤ ‖Z‖√|||A ⊕ B||| |||(X∗AX) ⊕ (Y BY ∗)|||

+1

2

∣∣∣∣∣∣(A1/2 (Z∗Y ± X Z∗) B1/2) ⊕ (A1/2 (Z∗Y ± X Z∗) B1/2)
∣∣∣∣∣∣ (3.7)

for all unitarily invariant norms. In particular, we have

|||Z X ± X Z ||| ≤ ‖Z‖√|||I ⊕ I ||| |||(X∗X) ⊕ (X∗X)|||
+1

2

∣∣∣∣∣∣(Z∗X ± X Z∗)⊕ (Z∗X ± X Z∗)∣∣∣∣∣∣ (3.8)

and

|||AX ± Y B||| ≤ √|||A ⊕ B||| |||(X∗AX) ⊕ (Y BY ∗)|||
+1

2

∣∣∣∣∣∣(A1/2 (Y ± X) B1/2) ⊕ (A1/2 (Y ± X) B1/2)
∣∣∣∣∣∣ . (3.9)

Proof We only prove (3.7), the other inequalities are special cases of this. In Theorem 3.4,
letting f (t) = t , we get

|||Z AX ± Y BZ |||
≤ ‖Z‖2

2
|||A ⊕ B||| + 1

2

∣∣∣
∣∣∣
∣∣∣
(
A1/2

∣∣X∗∣∣2 A1/2
)

⊕ (B1/2 |Y |2 B1/2)∣∣∣
∣∣∣
∣∣∣

+1

2

∣∣∣∣∣∣(A1/2(Z∗Y ± X Z∗)B1/2)⊕ (A1/2(Z∗Y ± X Z∗)B1/2)∣∣∣∣∣∣ . (3.10)

From (3.10), replacing A, B, X , Y by t A, t B, 1
t X , 1

t Y (t > 0), respectively, we get

|||Z AX ± Y BZ |||
≤ ‖Z‖2 t

2
|||A ⊕ B ||| + 1

2t

∣∣∣
∣∣∣
∣∣∣
(
A1/2

∣∣X∗∣∣2 A1/2
)

⊕ (B1/2 |Y |2 B1/2)∣∣∣
∣∣∣
∣∣∣

+1

2

∣∣∣∣∣∣(A1/2(Z∗Y ± X Z∗)B1/2)⊕ (A1/2(Z∗Y ± X Z∗)B1/2)∣∣∣∣∣∣ ,

and so

|||Z AX ± Y BZ |||

≤ min
t>0

(
‖Z‖2 t

2
|||A ⊕ B||| + 1

2t

∣∣∣
∣∣∣
∣∣∣A1/2

∣∣X∗∣∣2 A1/2 ⊕ B1/2 |Y |2 B1/2
∣∣∣
∣∣∣
∣∣∣
)

+1

2

∣∣∣∣∣∣(A1/2(Z∗Y ± X Z∗)B1/2)⊕ (A1/2(Z∗Y ± X Z∗)B1/2)∣∣∣∣∣∣

= ‖Z‖√|||A ⊕ B||| |||(X∗AX) ⊕ (Y BY ∗)|||
+1

2

∣∣∣∣∣∣(A1/2(Z∗Y ± X Z∗)B1/2)⊕ (A1/2(Z∗Y ± X Z∗)B1/2)∣∣∣∣∣∣ ,

as required. ��
Remark 3.6 Corollary 3.5 presents a generalization inequalities (1.1) and (1.5)–(1.8). This
can be seen as follows:

(1) Inequality (1.1) can be retained by applying (3.8) for the spectral norm, that is,
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‖Z X − X Z‖ ≤ ‖Z‖√‖I ⊕ I‖ ‖(XX∗) ⊕ (XX∗)‖
+1

2

∥∥(Z∗X − X Z∗)⊕ (Z∗X − X Z∗)∥∥ ,

which is equivalent to saying that

‖Z X − X Z‖ ≤ ‖Z‖ ‖X‖ + 1

2

∥∥Z∗X − X Z∗∥∥ .

(2) Inequality (1.5) can be retained directly from (3.9) by taking Y = X . Consequently, (1.6)
and (1.7) can also be retained by applying (3.9) for the spectral norm and the Schatten
p-norms, for p ≥ 1, and taking Y = X .

(3) Inequality (1.8) can be retained from (3.9) as follows: as a consequence of (3.9), by
letting Y = X , we have

|||AX + XB||| ≤ √|||A ⊕ B||| |||(X∗AX) ⊕ (XBX∗)|||
+ ∣∣∣∣∣∣(A1/2XB1/2)⊕ (A1/2XB1/2)∣∣∣∣∣∣ .

This inequality, together with the fact that
∣∣∣∣∣∣(X∗AX

)⊕ (XBX∗)∣∣∣∣∣∣ ≤ ‖X‖2 |||A ⊕ B||| ,
enables us to get (1.8). Since (1.9) and (1.10) are particular cases of (1.8), they also can
be retained by applying (3.9) for the spectral norm and the Schatten p-norms, for p ≥ 1,
and taking Y = X .

Now, we need the following lemma from [8].

Lemma 3.7 If A, B ∈ Mn(C) are positive semidefinite, then for r ≥ 0

∣∣∣∣∣∣A1/2 (A + B)r B1/2
∣∣∣∣∣∣ ≤ 1

2

∣∣∣∣∣∣(A + B)r+1
∣∣∣∣∣∣

for all unitarily invariant norms.

An application of inequality (3.9) can be stated as follows.

Corollary 3.8 If A, B ∈ Mn(C) are positive semidefinite, then

|||AB||| ≤ 1

2
max (‖A‖ , ‖B‖) |||A ⊕ B||| + 1

8

∣∣∣∣∣∣(A + B)2 ⊕ (A + B)2
∣∣∣∣∣∣

for all unitarily invariant norms.

Proof From (3.9), letting X = B and Y = A, we obtain

2 |||AB||| ≤ √|||A ⊕ B||| |||(BAB) ⊕ (ABA)|||
+1

2

∣∣∣∣∣∣(A1/2 (A + B) B1/2)⊕ (A1/2 (A + B) B1/2)∣∣∣∣∣∣ . (3.11)

Observe that

|||(BAB) ⊕ (ABA)||| ≤ ∣∣∣∣∣∣(‖B‖2 A) ⊕ (‖A‖2 B)
∣∣∣∣∣∣

≤ max (‖A‖2 , ‖B‖2) |||A ⊕ B||| . (3.12)
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Also,
∣∣∣∣∣∣(A1/2 (A + B) B1/2) ⊕ (A1/2 (A + B) B1/2)

∣∣∣∣∣∣

=
∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
[
A 0
0 A

]1/2 ([
A 0
0 A

]
+
[
B 0
0 B

])[
B 0
0 B

]1/2∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣

≤ 1

2

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
([

A 0
0 A

]
+
[
B 0
0 B

])2
∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣ (by Lemma 3.7)

= 1

2

∣∣∣∣∣∣(A + B)2 ⊕ (A + B)2
∣∣∣∣∣∣ . (3.13)

Now, the result follows from (3.11), (3.12), and (3.13). ��
Specializing Corollary 3.8 for the spectral norm and for Schatten p-norms, for p ≥ 1, we

obtain the following result.

Corollary 3.9 If A, B ∈ Mn(C) are positive semidefinite, then

‖AB‖ ≤ 1

2
max (‖A‖2 , ‖B‖2) + 1

8
‖A + B‖2

and

‖AB‖p ≤ 1

2
max (‖A‖ , ‖B‖) (‖A‖p

p + ‖B‖p
p
)1/p + 21/p−3

∥∥(A + B)2
∥∥
p

for p ≥ 1.
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