1 Introduction and Main Results

This paper concerns the existence and time decay rates of global in time classical solutions to the Cauchy problem of the Vlasov–Maxwell–Boltzmann system (called VMB for simplicity) near Maxwellians, which takes the form:

$$\begin{aligned} {\left\{ \begin{array}{ll} \partial _tF_++ v \cdot \nabla _xF_++(E+v\times B)\cdot \nabla _{ v }F_+=Q(F_+,F_+)+Q(F_+,F_-),\\ \partial _tF_-+ v \cdot \nabla _xF_--(E+v\times B)\cdot \nabla _{ v }F_-=Q(F_-,F_+)+Q(F_-,F_-),\\ \partial _tE-\nabla _x\times B=-\int _{\mathbb {R}^3}v(F_+-F_-)dv,\\ \partial _tB+\nabla _x\times E=0,\\ \nabla _x\cdot E=\int _{\mathbb {R}^3}(F_+-F_-)dv,\quad \nabla _x\cdot B=0. \end{array}\right. } \end{aligned}$$
(1.1)

with prescribed initial data

$$\begin{aligned} F_\pm (0,x,v)=F_{0,\pm }(v,x), \quad E(0,x)=E_0(x), \quad B(0,x)=B_0(x) \end{aligned}$$
(1.2)

which satisfy the compatibility conditions

$$\begin{aligned} \nabla _x\cdot E_0=\int _{\mathbb {R}^3}(F_{0,+}-F_{0,-})dv, \quad \nabla _x\cdot B_0=0. \end{aligned}$$

Here the unknown functions \(F_\pm = F_\pm (t,x, v) \ge 0\) are the number density functions for the ions (\(+\)) and electrons (\(-\)) with position \(x = (x_1, x_2, x_3)\in {\mathbb {R}}^3\), velocity \( v=( v_1, v_2, v_3) \in {\mathbb {R}}^3\) at time \(t\ge 0\), respectively. E(tx) and B(tx) denote the electro and magnetic fields, respectively. The Boltzmann collision operator Q is given by

$$\begin{aligned} Q(F,G)(v) =\int _{\mathbb {R}^3\times \mathbb {S}^2}{\mathbf B}(v-u,\sigma )\{F(v')G(u')-F(v)G(u)\} d\sigma du \end{aligned}$$

where in terms of velocities u and v before the collision, velocities \(v'\) and \(u'\) after the collision are defined by

$$\begin{aligned} v'=\frac{v+u}{2}+\frac{|v-u|}{2}\sigma ,\ \ \ \ u'=\frac{v+u}{2}-\frac{|v-u|}{2}\sigma . \end{aligned}$$

The Boltzmann collision kernel \({\mathbf B}(v-u,\sigma )\) depends only on the relative velocity \(|v-u|\) and on the deviation angle \(\theta \) given by \(\cos \theta =\langle \sigma ,\ (v-u)/{|v-u|}\rangle \), where \(\langle \cdot , \cdot \rangle \) is the usual dot product in \(\mathbb {R}^3\). As in [13, 7], we suppose that \({\mathbf B}(v-u,\sigma )\) is supported on \(\cos \theta \ge 0\). Notice also that all the physical parameters have been chosen to be unit for simplicity of presentation.

Throughout the paper, the collision kernel is further supposed to satisfy the following assumptions:

  1. (A1).

    \({\mathbf B}(v-u,\sigma )\) takes the product form in its argument as

    $$\begin{aligned} {\mathbf B}(v-u,\sigma )=\Phi (|v-u|){\mathbf b}(\cos \theta ) \end{aligned}$$

    with \(\Phi \) and \({\mathbf b}\) being non-negative functions;

  2. (A2).

    The angular function \(\sigma \rightarrow {\mathbf b}(\langle \sigma ,(v-u)/|v-u|\rangle )\) is not integrable on \({\mathbb {S}}^2\), i.e.

    $$\begin{aligned} \int _{{\mathbb {S}}^2}{\mathbf b}(\cos \theta )d\sigma =2\pi \int _0^{\pi /2}\sin \theta {\mathbf b}(\cos \theta )d\theta =\infty . \end{aligned}$$

    Moreover, there are two positive constants \(c_b>0, 0<s<1\) such that

    $$\begin{aligned} \frac{c_b}{\theta ^{1+2s}}\le \sin \theta {\mathbf b}(\cos \theta )\le \frac{1}{c_b\theta ^{1+2s}}; \end{aligned}$$
  3. (A3).

    The kinetic function \(z\rightarrow \Phi (|z|)\) satisfies

    $$\begin{aligned} \Phi (|z|)=C_\Phi |z|^\gamma \end{aligned}$$

    for some positive constant \(C_\Phi > 0.\) Here we should notice that the exponent \(\gamma >-3\) is determined by the intermolecular interactive mechanism.

It is convenient to call hard potentials when \(\gamma +2s\ge 0\) and soft potentials when \(-3<\gamma <-2s\) with \(0<s<1\). Interested readers may refer to the textbooks [12, 14, 20] for more details. The current work is restricted to the case of

$$\begin{aligned} \max \left\{ -3,-\frac{3}{2}-2s\right\} <\gamma <-2s, \ \ \frac{1}{2}\le s<1. \end{aligned}$$
(1.3)

Our goal of the paper is to study the Cauchy problem (1.1) around the following normalized global Maxwellian \( \mu =\mu (v)=(2\pi )^{-{3}/{2}}e^{-| v |^2/2}. \) For this purpose, we define the perturbation \(f_\pm =f_\pm (t,x, v)\) by \( F_\pm (t, x, v ) = \mu + \mu ^{1/2}f_\pm (t, x, v). \) Then, the VMB system (1.1) is reformulated as

$$\begin{aligned} {\left\{ \begin{array}{ll} \partial _tf_\pm + v \cdot \nabla _xf_\pm \pm (E+v\times B)\cdot \nabla _{ v }f_\pm \mp E \cdot v \mu ^{1/2}\mp \frac{1}{2} E\cdot v f_\pm +{ L}_\pm f={\Gamma }_\pm (f,f),\\ \partial _tE-\nabla _x\times B=-\int _{\mathbb {R}^3}v\mu ^{1/2}(f_+-f_-)dv,\\ \partial _tB+\nabla _x\times E=0,\\ \nabla _x\cdot E=\int _{\mathbb {R}^3}\mu ^{1/2}(f_+-f_-)dv,\quad \nabla _x\cdot B=0, \end{array}\right. } \end{aligned}$$
(1.4)

with initial data

$$\begin{aligned} f_\pm (0,x,v)=f_{0,\pm }(x,v), \quad E(0,x)=E_0(x), \quad B(0,x)=B_0(x), \end{aligned}$$
(1.5)

which satisfy the compatibility conditions

$$\begin{aligned} \nabla _x\cdot E_0=\int _{\mathbb {R}^3}\mu ^{1/2}(f_{0,+}-f_{0,-})dv, \quad \nabla _x\cdot B_0=0. \end{aligned}$$
(1.6)

If we denote \(f=\left[ f_+,f_-\right] \), then (1.4)_1 can be written as

$$\begin{aligned} \partial _t f+v\cdot \nabla _xf+q_0(E+v\times B)\cdot \nabla _v f-E\cdot v\mu ^{1/2}q_1+Lf=\frac{q_0}{2}E\cdot vf+\Gamma (f,f) \end{aligned}$$
(1.7)

where \(q_0=diag(1,-1)\), \(q_1=[1,-1]\), the linearized collision operator L and the nonlinear collision term \(\Gamma (f,f)\) are respectively defined by

$$\begin{aligned} Lf=[L_+f,L_-f],\quad \quad \quad \Gamma (f,g)=[\Gamma _+(f,g),\Gamma _-(f,g)] \end{aligned}$$

with

$$\begin{aligned} \begin{aligned} { L}_\pm f =&-{\varvec{\mu }}^{-1/2} \big \{{Q( \mu ,{\varvec{\mu }}^{1/2}(f_\pm +f_\mp ))+ 2Q( \mu ^{1/2}f_\pm , \mu )}\big \},\\ { \Gamma }_{\pm }(f,g) =&{\varvec{\mu }}^{-1/2}Q\big ({\varvec{\mu }}^{1/2}f_{\pm },{\varvec{\mu }}^{1/2}g_\pm \big )+{\varvec{\mu }}^{-1/2}Q\big ({\varvec{\mu }}^{1/2}f_{\pm },{\varvec{\mu }}^{1/2}g_\mp \big ). \end{aligned} \end{aligned}$$

For the linearized Boltzmann collision operator L, it is well known [9] that it is non-negative and the null space of L is given by

$$\begin{aligned} {\mathcal { N}}={\text {span}}\left\{ [1,0]\mu ^{1/2} , [0,1]\mu ^{1/2}, [v_i,v_i]{\mu }^{1/2} (1\le i\le 3),[|v|^2,|v|^2]{\varvec{\mu }}^{1/2}\right\} . \end{aligned}$$

If we define \({\mathbf P}\) as the orthogonal projection from \(L^2({\mathbb {R}}^3_ v)\times L^2({\mathbb {R}}^3_ v)\) to \(\mathcal {N}\), then for any given function \(f(t, x, v )\in L^2({\mathbb {R}}^3_ v)\), one has

$$\begin{aligned} {\mathbf P}f= & {} a_+(t, x)[1,0]\mu ^{1/2}+a_-(t, x)[0,1]\mu ^{1/2}+\sum _{i=1}^{3}b_i(t, x) [1,1]v_i{\mu }^{1/2}\\&+\,c(t, x)[1,1](| v|^2-3){\varvec{\mu }}^{1/2} \end{aligned}$$

with

$$\begin{aligned} a_\pm= & {} \int _{{\mathbb {R}}^3}{\varvec{\mu }}^{1/2}f_\pm d v,\quad b_i=\frac{1}{2}\int _{{\mathbb {R}}^3} v _i {\varvec{\mu }}^{1/2}(f_++f_-)d v,\\ c= & {} \frac{1}{6}\int _{{\mathbb {R}}^3}(| v|^2-3){\varvec{\mu }}^{1/2}(f_++f_-) d v. \end{aligned}$$

Therefore, we have the following macro-micro decomposition with respect to a given global Maxwellian which was introduced in [8, 10, 16]

$$\begin{aligned} f(t,x, v)={\mathbf P}f(t,x, v)+\{\mathbf{I}-\mathbf{P}\}f(t, x, v) \end{aligned}$$
(1.8)

where \(\mathbf{I}\) denotes the identity operator.

Before stating our main results, we first introduce some notations used throughout the paper. C denotes some positive constant (generally large) and \(\kappa ,~\lambda \) denotes some positive constant (generally small), where C, \(\kappa \) and \(\lambda \) may take different values in different places. \(A\lesssim B\) means that there is a generic constant \(C> 0\) such that \(A \le CB\). \(A \sim B\) means \(A\lesssim B\) and \(B\lesssim A\). The multi-indices \( \alpha = [\alpha _1,\alpha _2, \alpha _3]\) and \(\beta = [\beta _1, \beta _2, \beta _3]\) will be used to record spatial and velocity derivatives, respectively. And \(\partial ^{\alpha }_{\beta }=\partial ^{\alpha _1}_{x_1}\partial ^{\alpha _2}_{x_2}\partial ^{\alpha _3}_{x_3} \partial ^{\beta _1}_{ v_1}\partial ^{\beta _2}_{ v_2}\partial ^{\beta _3}_{ v_3}\). Similarly, the notation \(\partial ^{\alpha }\) will be used when \(\beta =0\) and likewise for \(\partial _{\beta }\). The length of \(\alpha \) is denoted by \(|\alpha |=\alpha _1 +\alpha _2 +\alpha _3\). \(\alpha '\le \alpha \) means that no component of \(\alpha '\) is greater than the corresponding component of \(\alpha \), and \(\alpha '<\alpha \) means that \(\alpha '\le \alpha \) and \(|\alpha '|<|\alpha |\). And it is convenient to write \(\nabla _x^k=\partial ^{\alpha }\) with \(|\alpha |=k\). We also use \(\langle \cdot ,\cdot \rangle \) to denotes the \({L^2_{ v}}\) inner product in \({\mathbb { R}}^3_{ v}\), with the \({L^2}\) norm \(|\cdot |_{L^2}\). For notational simplicity, \((\cdot , \cdot )\) denotes the \({L^2}\) inner product either in \({\mathbb { R}}^3_{x}\times {\mathbb { R}}^3_{ v }\) or in \({\mathbb { R}}^3_{x}\) with the \({L^2_{ v }}\) norm \(\Vert \cdot \Vert \). \(B_C \subset \mathbb {R}^3\) denotes the ball of radius C centered at the origin, and \(L^2 (B_C)\) stands for the space \(L^2\) over \(B_C\) and likewise for other spaces.

As in [11], we introduce the operator \(\Lambda ^s\) with \(s\in \mathbb {R}\) by

$$\begin{aligned} \left( \Lambda ^sg\right) (t,x,v)=\int _{\mathbb {R}^3}|\xi |^{s}\hat{g}(t,\xi ,v)e^{2\pi ix\cdot \xi }d\xi =\int _{\mathbb {R}^3}|\xi |^{s}\mathcal {F}[g](t,\xi ,v)e^{2\pi ix\cdot \xi }d\xi \end{aligned}$$

with \(\hat{g}(t,\xi ,v)\equiv \mathcal {F}[g](t,\xi ,v)\) being the Fourier transform of g(txv) with respect to x. The homogeneous Sobolev space \(\dot{H}^s\) is the Banach space consisting of all g satisfying \(\Vert g\Vert _{\dot{H}}<+\infty \), where

$$\begin{aligned} \Vert g(t)\Vert _{\dot{H}^s}\equiv \left\| \left( \Lambda ^s g\right) (t,x,v)\right\| _{L^2_{x,v}}=\left\| |\xi |^s\hat{g}(t,\xi ,v)\right\| _{L^2_{\xi ,v}}. \end{aligned}$$

We now list series of notations introduced in [3]. Introduce

$$\begin{aligned} \begin{aligned} |f|_{D}^2\equiv&\int _{\mathbb {R}^6\times \mathbb {S}^2}{\mathbf B}(v-u,\sigma )\mu (u)(f'-f)^2dudvd\sigma \\&+\int _{\mathbb {R}^6\times \mathbb {S}^2}f(u)^2\big (\mu (u')^{1/2}-\mu (u)^{1/2}\big )^2dudvd\sigma . \end{aligned} \end{aligned}$$

For \(l\in \mathbb {R}\) , \(\langle v\rangle =\sqrt{1+| v|^2}\), \(L_l^2\) denotes the weighted space with norm \( |f|_{L^2_{l}}^2\equiv \int _{\mathbb {R}^3_v}|f(v)|^2\langle v\rangle ^{2l}dv. \) The weighted frictional Sobolev norm \(|f(v)|_{H^s_l}^2=|\langle v\rangle ^lf(v)|_{H^s}^2\) is given by

$$\begin{aligned} |f(v)|_{H^s_l}^2=|f|^2_{L^2_l}+\int _{\mathbb {R}^3}dv\int _{\mathbb {R}^3}dv' \frac{[\langle v\rangle ^lf(v)-\langle v'\rangle ^lf(v')]^2}{|v-v'|^{3+2s}}\chi _{|v-v'|\le 1}, \end{aligned}$$

where \(\chi _{\Omega }\) is the standard indicator function of the set \(\Omega \). Moreover, in \(\mathbb {R}^3_x\times \mathbb {R}^3_v\), \(\Vert \cdot \Vert _{H^s_\gamma }=\Vert |\cdot |_{H^s_\gamma }\Vert _{L^2_x}\) is used.

As in [5], we introduce the time-velocity weight function corresponding to the Boltzmann operator:

$$\begin{aligned} w_{\ell }(\alpha ,\beta )= & {} \langle v\rangle ^{-\gamma (\ell -|\alpha |-|\beta |)}e^{\frac{q\langle v\rangle }{(1+t)^{\vartheta }}}, \quad \max \bigg \{-3,-\frac{3}{2}-2s\bigg \}<\gamma <-2s, \nonumber \\&\quad \frac{1}{2}\le s<1,\quad 0<q \ll 1. \end{aligned}$$
(1.9)

with the parameter \(\vartheta \) being taken as

$$\begin{aligned} \left\{ \begin{array}{ll} 0<\vartheta \le \min \left\{ \frac{\varrho }{2}-\frac{1}{4},\frac{1}{3}\right\} , \quad &{} when\ \ \varrho \in (\frac{1}{2},\frac{3}{2})\ and\ N_0\ge 4,\\ 0<\vartheta \le \frac{\varrho }{2}-\frac{1}{2},\quad &{} when \ \ \varrho \in (1,\frac{3}{2})\ and\ N_0=3 . \end{array} \right. \end{aligned}$$
(1.10)

Moreover, for an integer \(N\ge 0\) and \(\ell \in \mathbb {R}\), we define the energy functional \(\mathcal {\bar{E}}_{N,\ell }(t)\) and the corresponding dissipation rate functional \(\mathcal {\bar{D}}_{N,\ell }(t)\) by

$$\begin{aligned} \mathcal {\bar{E}}_{N,\ell }(t)\sim {\mathcal {E}}_{N,\ell }(t)+\Vert \Lambda ^{-\varrho }(f,E,B)\Vert ^2 \end{aligned}$$
(1.11)

and

$$\begin{aligned} \mathcal {\bar{D}}_{N,\ell }(t)\sim {\mathcal {D}}_{N,\ell }(t)+\Vert \Lambda ^{1-\varrho }(a,b,c,E,B)\Vert ^2+\Vert \Lambda ^{-\varrho }(a_+-a_-,E)\Vert ^2 +\left\| \Lambda ^{-\varrho }\mathbf{\{I-P\}}f\right\| ^2_D \end{aligned}$$
(1.12)

respectively. Here

$$\begin{aligned} {\mathcal {E}}_{N,\ell }(t)\sim \sum _{|\alpha |+|\beta |\le N}\Vert w_{\ell }(\alpha ,\beta ) \partial ^{\alpha }_{\beta }f\Vert ^2+\Vert (E,B)\Vert _{H^{N}}^2, \end{aligned}$$
(1.13)
$$\begin{aligned} {\mathcal {D}}_{N,\ell }(t)\sim & {} \sum _{1\le |\alpha |\le N}\Vert \partial ^{\alpha }(a_{\pm },b,c)\Vert ^2+\sum _{|\alpha |+|\beta |\le N}\Vert w_{\ell }(\alpha ,\beta ) \partial ^{\alpha }_{\beta }\mathbf{\{I-P\}}f\Vert ^2_D +\Vert a_+-a_-\Vert ^2\nonumber \\&+\,\Vert E\Vert _{H^{N-1}}^2+\Vert \nabla _x B\Vert _{H^{N-2}}^2 +(1+t)^{-1-\vartheta }\nonumber \\&\times \sum _{|\alpha |+|\beta |\le N}\Vert \langle v\rangle ^{1/2} w_{\ell }(\alpha ,\beta ) \partial ^{\alpha }_{\beta }\mathbf{\{I-P\}}f\Vert ^2, \end{aligned}$$
(1.14)

In our analysis, we also need to define the energy functional without weight \(\mathcal {E}_{N}(t)\), the higher order energy functional without weight \(\mathcal {E}_{N_0}^{k}(t)\), and the higher order energy functional with weight \(\mathcal {E}^k_{N_0,\ell }(t)\) as follows

$$\begin{aligned} \mathcal {E}_{N}(t)\sim \sum _{k=0}^{N}\Vert \nabla ^k(f,E,B)\Vert ^2, \end{aligned}$$
(1.15)
$$\begin{aligned} \mathcal {E}_{N_0}^{k}(t)\sim \sum _{|\alpha |=k}^{N_0}\Vert \partial ^\alpha (f,E,B)\Vert ^2, \end{aligned}$$
(1.16)
$$\begin{aligned} \mathcal {E}^k_{N_0,\ell }(t)\sim \sum _{\begin{array}{c} {|\alpha |+|\beta \le N,}\\ {|\alpha |\ge k} \end{array}} \Vert w_{\ell }(\alpha ,\beta )\partial ^\alpha _\beta f\Vert ^2+\sum _{|\alpha |=k}^{N_0}\Vert \partial ^\alpha (E,B)\Vert ^2, \end{aligned}$$
(1.17)

and the corresponding energy dissipation rate functionals are given by

$$\begin{aligned} \mathcal {D}_{N}(t)\sim & {} \Vert (E,a_+-a_-)\Vert ^2+\sum \limits _{1\le |\alpha |\le N-1}\Vert \partial ^\alpha ({\mathbf P}f,E,B)\Vert ^2 \nonumber \\&+\sum \limits _{|\alpha |=N}\Vert \partial ^\alpha {\mathbf P}f\Vert ^2+\sum \limits _{ |\alpha | \le N}\Vert \partial ^\alpha \mathbf{\{I-P\}}f\Vert ^2_{D},\end{aligned}$$
(1.18)
$$\begin{aligned} \mathcal {D}_{N_0}^{k}(t)\sim & {} \Vert \nabla ^{k}(E,a_+-a_-)\Vert ^2+\sum \limits _{k+1\le |\alpha |\le N_0-1}\Vert \partial ^\alpha ({\mathbf P}f,E,B)\Vert ^2 \nonumber \\&+\sum \limits _{|\alpha |=N_0}\Vert \partial ^\alpha {\mathbf P}f\Vert ^2+\sum \limits _{k\le |\alpha |\le N_0}\Vert \partial ^\alpha \mathbf{\{I-P\}}f\Vert ^2_D,\end{aligned}$$
(1.19)
$$\begin{aligned} \mathcal {D}_{N_0,\ell }^{k}(t)\sim & {} \Vert \nabla ^{k}(E,a_+-a_-)\Vert ^2+\sum \limits _{k+1\le |\alpha |\le N_0-1}\Vert \partial ^\alpha ({\mathbf P}f,E,B)\Vert ^2\nonumber \\&+\sum \limits _{\begin{array}{c} {|\alpha |+|\beta \le N_0},\\ {|\alpha |\ge k} \end{array}} \Vert w_{\ell }(\alpha ,\beta )\partial ^\alpha _\beta \mathbf{\{I-P\}}f\Vert ^2_D +\sum \limits _{|\alpha |=N_0}\Vert \partial ^\alpha {\mathbf P}f\Vert ^2+(1+t)^{-1-\vartheta }\nonumber \\&\times \sum \limits _{\begin{array}{c} {|\alpha |+|\beta \le N_0},\\ {|\alpha |\ge k} \end{array}}\Vert \langle v\rangle ^{1/2} w_{\ell }(\alpha ,\beta ) \partial ^{\alpha }_{\beta }\mathbf{\{I-P\}}f\Vert ^2. \end{aligned}$$
(1.20)

respectively.

With the above preparation in hand, our main result concerning the Cauchy problem (1.4), (1.5) is

Theorem 1.1

Suppose that \(F_0(x,v)=\mu +\sqrt{\mu }f_0(x,v)\ge 0\), \(\frac{1}{2}< \varrho <\frac{3}{2}\), and \(\max \left\{ -3,-\frac{3}{2}-2s\right\} <\gamma <-2s\) with \( \frac{1}{2}\le s<1\). Let

$$\begin{aligned} \left\{ \begin{array}{ll} N_0\ge 4, N=2N_0-1, &{}\quad when\ \ \varrho \in (\frac{1}{2},1],\\ N_0\ge 3, N=2N_0, &{}\quad when \ \ \varrho \in (1,\frac{3}{2}), \end{array} \right. \end{aligned}$$
(1.21)

and take \(l\ge N\) and \(l_0\ge \max \{l, l+\frac{1}{2}-\frac{1-s}{\gamma }-N_0\}\). If

$$\begin{aligned} Y_0= & {} \sum _{|\alpha |+|\beta |\le N_0}\Vert w_{l_0+l^*}(\alpha ,\beta )\partial ^\alpha _\beta f_0\Vert \nonumber \\&+\sum _{|\alpha |+|\beta |\le N}\Vert w_{l}(\alpha ,\beta )\partial ^\alpha _\beta f_0\Vert +\Vert (E_0,B_0)\Vert _{H^N\bigcap \dot{H}^{-\varrho }}+\Vert f_0\Vert _{\dot{H}^{-\varrho }} \end{aligned}$$
(1.22)

is sufficiently small where \(l^*=l'+\frac{3(\gamma +2s)}{2\gamma }\) and \(l'\) will be specified in the proof for detail, the Cauchy problem (1.4), (1.5) admits a unique global solution (f(txv),  E(tx),  B(tx)) satisfying \(F(t,x,v)=\mu +\sqrt{\mu }f(t,x,v)\ge 0\).

Remark 1.2

Several remarks concerning Theorem 1.1 are listed below:

  • For brevity, the precise value of the parameter \(l'\) can be specified in the proofs of Theorem 1.1, cf. the proof of Lemma 4.1.

Our second result is concerned with the temporal decay estimates on the global solution (f(txv),  E(tx),  B(tx)) obtained in Theorem 1.1. For results in this direction, we have from Theorem 1.1 that

Theorem 1.3

Under the assumptions of Theorem 1.1, we have the following results:

  1. (1)

    Taking \(k=0,1,2,\ldots , N_0-2\), it follows that

    $$\begin{aligned} \mathcal {E}^k_{N_0}(t)\lesssim Y^2_0(1+t)^{-(\varrho +k)}. \end{aligned}$$
    (1.23)
  2. (2)

    Let \(0\le i\le k\le N_0-3\) be an integer, if we take \(l^*\) in Theorem 1.1 as \(l^*=l'+\frac{3(\gamma +2s)}{2\gamma }+\chi _{N_0\ge 4}\left( 1-\frac{2s-1}{\gamma }\right) \left( N_0-4\right) \) and if we set \(l_{0,0}=l_{0,1}=l_0\), \(l_{0,k}+1+\frac{2s-1}{\gamma }= l_{0,k-1}\) and \(l_{0,k}+\frac{(\gamma +2s)(k+2)}{2}\ge N_0\) for \(2\le k\le N_0-3\), one has

    $$\begin{aligned} \mathcal {E}^k_{N_0,l_{0,k}+\frac{\gamma +2s}{2\gamma }i}(t) \lesssim Y^2_0(1+t)^{-k-\varrho +i}, \quad \quad i=0,1,\ldots ,k. \end{aligned}$$
    (1.24)

    furthermore, when \(\varrho \in [1,\frac{3}{2})\),

    $$\begin{aligned} \mathcal {E}^k_{N_0,l_{0,k}+\frac{(\gamma +2s)(k+1)}{2\gamma }}(t) \lesssim Y^2_0(1+t)^{1-\varrho }.\quad \quad \quad \quad \quad \quad \quad \end{aligned}$$
    (1.25)
  3. (3)

    When \(N_0+1\le |\alpha |\le N-1\), we have

    $$\begin{aligned} \Vert \partial ^\alpha f\Vert ^2 \lesssim Y^2_0(1+t)^{-\frac{(N-|\alpha |)(N_0-2+\varrho )}{N-N_0}}, \end{aligned}$$
    (1.26)

Remark 1.4

In fact, compared with the results in [5], the main results obtained in this manuscript show that:

  • The smallness of \(\Vert w_\ell f_0\Vert _{Z^1}\) and \(\Vert (E_0,B_0)\Vert _{L^1}\) can be replaced by the weaker assumption that \(\Vert (E_0,B_0)\Vert ^2_{\dot{H}^{-s}}+\Vert f_0\Vert ^2_{\dot{H}^{-s}}\) \((\frac{1}{2}<s<\frac{3}{2})\) is small.

  • The minimal regularity index 14 is reduced into \(N=7\) for \(s\in (\frac{1}{2},1]\) and \(N=6\) for \(s\in (1,\frac{3}{2})\).

  • The restriction on \(\vartheta =\frac{1}{4}\) is relaxed to \( 0<\vartheta \le \frac{\varrho }{2}-\frac{1}{4}\), \( \varrho \in (\frac{1}{2},\frac{3}{2})\) for \(N_0\ge 4\) and \( 0<\vartheta \le \frac{\varrho }{2}-\frac{1}{2}, \varrho \in (1,\frac{3}{2})\) for \(N_0=3 \).

  • The time decay rates of the higher-order spatial derivatives of solutions are obtained.

Let’s review some former results on the construction of global smooth solutions to the Vlasov–Maxwell–Boltzmann system (1.1) near Maxwellians. Guo in [9] firstly constructed periodic classical solutions near Maxwellian for the (non-relativistic) two-species Vlasov–Maxwell–Boltzmann system for hard sphere, which was extended to the whole space \(\mathbb {R}^3_x\) by Strain in [18]. The large-time behavior of classical solutions to the Vlasov–Maxwell–Boltzmann system for hard sphere in the whole space was studied by Duan-Strain [6]. Recently, Duan-Liu-Yang-Zhao in [5] deal with the Vlasov–Maxwell–Boltzmann system for non-cutoff soft potentials in the whole space \(\mathbb {R}^3_x\).

As pointed out in [5], to overcome the mathematical difficulties, which are produced by the velocity-growth of the nonlinear term with the velocity-growth rate |v| and the regularity-loss of the electromagnetic field, the main arguments used in [5] are as follows:

  • They introduce the exponential time-velocity weight \(w_\ell (t,v)\) to generate the extra dissipation corresponding to the last term in the energy dissipation rate functional \(\mathcal {\bar{D}}_{N,l}(t)\);

  • Motivated by the argument developed in [13] to deduce the decay property of solutions to nonlinear equations of regularity-loss type, a time-weighted energy estimate is designed to close the analysis, which implies that although the \(L^2\)-norm of terms with the highest order derivative with respect to x of the solutions of the Vlasov–Maxwell–Boltamann system may can only be bounded by some function of t which increases as time evolves, the \(L^2\)-norm of terms with lower order derivatives with respect to x still enjoy some decay rates.

Based on the above arguments and combining the decay of solutions to the corresponding linearized system with the Duhamel principle, Duan–Liu–Yang–Zhao [5] can indeed close the analysis provided that the regularity index imposed on the initial perturbation is 14, i.e. \(N\ge 14\) and certain norms of the initial perturbation, especially \(\Vert w_\ell f_0\Vert _{Z^1}\) and \(\Vert (E_0,B_0)\Vert _{L^1}\), are assumed to be sufficiently small, meanwhile the choice of \(\vartheta =\frac{1}{4}\) is critical in their proof.

Inspired by the work [11], the main purpose of our present manuscript is trying to study such a problem by a different method, which does not rely on the decay analysis of the corresponding linearized system and the Duhamel principle.

Now we sketch the main ideas to deduce our main results:

  • As in [5], we apply the exponential time-velocity weight \(w_\ell (t,v)\), which can deduce the extra dissipation \((1+t)^{-1-\vartheta }\Vert \langle v\rangle ^{\frac{1}{2}} w_\ell (\alpha ,\beta )\partial ^\alpha _\beta \{\mathbf{I-P}\}f\Vert ^2\), to control the term \(\Vert E\Vert _{L^\infty }\Vert \langle v\rangle ^{\frac{1}{2}} w_\ell (\alpha ,\beta )\partial ^\alpha _\beta \{\mathbf{I-P}\}f\Vert ^2\). The key point of the above argument rests with the fact that the time decay rates of \(\Vert E\Vert _{L^\infty }\) is greater than \(1+\vartheta \). Unlike the techniques to obtain the time decay of \(\Vert E\Vert _{L^\infty }\) in [5], which heavily rely on linear analysis and Duhamel principle, to deduce such a result, we hope that the following estimates

    (1.27)

    and

    (1.28)

    hold for \(0\le t<T\).

  • In the proof of (1.27), the terms like \((\nabla ^k(v\cdot E {\mathbf P}f),\nabla ^k f)\) and \((\nabla ^k(v\times B\cdot \nabla _v {\mathbf P}f),\nabla ^k f)\) ask us to use the interpolation techniques between negative Sobolev norms i.e. \(\Vert \Lambda ^{-\varrho }(f,E,B)\Vert \) and positive Sobolev norms i.e. \(\Vert \nabla ^k\{\mathbf{I-P}\}f\Vert \) or \(\Vert \nabla ^{k+1}({\mathbf P}f, E,B)\Vert \), and when we deal with the terms such as \((\nabla ^k(v\times B \nabla _v \{\mathbf{I- P}\}f),\nabla ^k \{\mathbf{I-P}\}f)\), even we have to apply the interpolation techniques with respect to velocity derivatives. In a word, the terms including electric–magnetic field (E,B) directly cause us to use the above techniques, which is mainly different from what Guo in [11] used to get the estimates like (1.27) with respect to Boltzmann equation (1.28) can be obtained in a similar way.

  • With the help of the interpolation techniques between negative or the higher order Sobolev norms and corresponding dissipation functions introduced by [11], we deduce from (1.27) and (1.28) the time decay of \(\mathcal {E}^k_{N_0}(t)\) and \(\mathcal {E}^k_{N_0,\ell }(t)\). We notice that \(\Vert E\Vert _{L^\infty }\) can be dominated by \(\mathcal {E}^k_{N_0}(t)\) for \(k=0,1,2\). Therefore, combing the time decay rates of \(\Vert E\Vert _{L^\infty }\) and \(\mathcal {E}^1_{N_0,\ell }(t)\) with other energy estimates, we can then close the a priori assumption given in (3.1) and then the global solvability result follows immediately from the continuation argument. It is worth pointing out that (1.27) and (1.28) play an essential role in the proof of Theorem 1.1.

The rest of this paper is organized as follows. In Sect. 2, we list some basic lemmas for the later proof. Section 3 is devoted to deducing the desired energy estimates for the energy functionals and the proofs of Theorems 1.1 and 1.3 will be given in the end of Sect. 3. For brevity, the detail proofs of some lemmas in Sect. 3 will be given in the Appendix.

2 Preliminary

In this section, we will cite some fundamental results for later use. The first lemma is concerned with the estimates of the linear operator L.

Lemma 2.1

(cf.[3, 5]) (i) It holds that

$$\begin{aligned} (Lg,g)\gtrsim \Vert \{{\mathbf {I}}-{\mathbf {P}}\}g\Vert _D^2. \end{aligned}$$
(2.1)

(ii) Let \(\ell \in \mathbb {R}\), \(\lambda \ge 0\), \(0<s<1\) and \(-3<\gamma <-2s\), it holds that

$$\begin{aligned} \sum _{|\beta |\le N}(w_{\ell }^{2}\partial _\beta Lg,\partial _\beta g)\gtrsim \Vert w_{\ell }\partial _\beta g\Vert _D^2-C\Vert g\Vert ^2_{L^2_{B_C}}. \end{aligned}$$
(2.2)

The second and third lemma concern the estimates on the nonlinear collision operator \(\Gamma \).

Lemma 2.2

(cf. [3, 5]) For all \(0<s<1\), \(\max \big \{-3,-\frac{3}{2}-2s\big \}<\gamma <-2s\), \(\lambda _0>0\) , \(\ell \ge 0\) and for some \(\bar{\lambda }>0\), then one has

$$\begin{aligned} \begin{aligned}&|\langle \partial _\beta ^\alpha \Gamma (f,g), w^2_{\ell }(\alpha ,\beta )\partial _\beta ^\alpha h\rangle |\\&\quad \lesssim \sum \left\{ \left| w_{\ell ,\lambda _0}\partial ^{\alpha _1}_{\beta _1}f\right| _{L^2_{s+\gamma /2}} \left| \partial ^{\alpha _2}_{\beta _2}g\right| _D+\left| \partial ^{\alpha _2}_{\beta _2}g\right| _{L^2_{s+\gamma /2}} \left| w_\ell (\alpha ,\beta )\partial ^{\alpha _1}_{\beta _1}f\right| _D\right\} \left| w_\ell (\alpha ,\beta )\partial ^{\alpha }_{\beta }h\right| _D\\&\qquad +\min \left\{ \left| w_\ell (\alpha ,\beta )\partial ^{\alpha _1}_{\beta _1}f\right| _{L^2} \left| \partial ^{\alpha _2}_{\beta _2}g\right| _{L^2_{s+\gamma /2}},\left| \partial ^{\alpha _2}_{\beta _2}g\right| _{L^2} \left| w_\ell (\alpha ,\beta )\partial ^{\alpha _1}_{\beta _1}f\right| _{L^2_{s+\gamma /2}}\right\} \left| w_\ell (\alpha ,\beta )\partial ^{\alpha }_{\beta }h\right| _D\\&\qquad +\sum \left| e^{\frac{\lambda _0\langle v\rangle }{(1+t)^{\vartheta }}}\partial ^{\alpha _2}_{\beta _2}g\right| _{L^2} \left| w_\ell (\alpha ,\beta )\partial ^{\alpha _1}_{\beta _1}f\right| _{L^2_{\gamma /2}} \left| w_\ell (\alpha ,\beta )\partial ^{\alpha }_{\beta }h\right| _D\\&\qquad +\sum \left| \mu ^{\frac{\bar{\lambda }}{128}}\partial ^{\alpha _2}_{\beta _2}g\right| _{L^2} \left| w_\ell (\alpha ,\beta )\partial ^{\alpha _1}_{\beta _1}f\right| _{L^2_{\gamma /2+1/2}} \left| w_\ell (\alpha ,\beta )\partial ^{\alpha }_{\beta }h\right| _{L^2_{\gamma /2+1/2}}\\&\qquad +\sum (1+t)^{-\vartheta }\left| \mu ^{\frac{\bar{\lambda }}{128}}\partial ^{\alpha _2}_{\beta _2}g\right| _{L^2} \left| w_\ell (\alpha ,\beta )\partial ^{\alpha _1}_{\beta _1}f\right| _{L^2_{\gamma /2+1}} \left| w_\ell (\alpha ,\beta )\partial ^{\alpha }_{\beta }h\right| _{L^2_{\gamma /2+s}}\\&\qquad +\sum (1+t)^{-2\vartheta }\left| \mu ^{\frac{\bar{\lambda }}{128}}\partial ^{\alpha _2}_{\beta _2}g\right| _{L^2} \left| w_\ell (\alpha ,\beta )\partial ^{\alpha _1}_{\beta _1}f\right| _{L^2_{\gamma /2+1}} \left| w_\ell (\alpha ,\beta )\partial ^{\alpha }_{\beta }h\right| _{L^2_{\gamma /2+1}}, \end{aligned} \end{aligned}$$
(2.3)

where the summation \(\sum \) is taken over \(\alpha _1+\alpha _2\le \alpha \) and \(\beta _1+\beta _2\le \beta \). Furthermore, from [3],

$$\begin{aligned} |\langle \Gamma (f,g), h\rangle |\lesssim \left\{ |f|_{L^2_{\gamma /2+s}}|g|_D+|g|_{L^2_{\gamma /2+s}}|f|_D+\min \left\{ |f|_{L^2}|g|_{L^2_{\gamma /2+s}},|g|_{L^2}|f|_{L^2_{\gamma /2+s}}\right\} \right\} |h|_D.\nonumber \\ \end{aligned}$$
(2.4)

Lemma 2.3

(cf. [19]) Let \(\ell >0\), \(\gamma >-3\) with \(\gamma +2s>-\frac{3}{2}\) and \(s\in [\frac{1}{2},1)\), it holds that

$$\begin{aligned} |w_\ell \Gamma (f,f)|_{L^2}\lesssim |w_\ell f|^2_{L^2_{\gamma /2+s}}|w_\ell f|^2_{H^2_{\gamma /2+s}}. \end{aligned}$$
(2.5)

The following lemma concerns the trillion estimates on the nonlinear term \(\Gamma (f,f)\).

Lemma 2.4

For all \(\frac{1}{2}\le s<1\), \(\max \big \{-3,-\frac{3}{2}-2s\big \}<\gamma <-2s\), and assume \(\ell \ge N\), \(0<\vartheta \le \frac{1}{3}\), one has the following estimates:

$$\begin{aligned} \sum _{|\alpha |\le N}\left| \left( \partial ^\alpha \Gamma (f,f), \partial ^\alpha \mathbf{\{I-P\}}f\right) \right|\lesssim & {} \mathcal {E}^{1/2}_{N_0,N_0}(t)\mathcal {D}_{N}(t),\end{aligned}$$
(2.6)
$$\begin{aligned} \left| \left( w^2_\ell (0,0)\Gamma (f,f), \mathbf{\{I-P\}}f\right) \right|\lesssim & {} (1+t)^{\frac{1-3\vartheta }{2}}\big \{\mathcal {E}^1_{N_0,\ell -N_0+2}(t)\big \}^{1/2}\mathcal {D}_{N,\ell }(t)\nonumber \\&+\,\mathcal {E}^{1/2}_{N_0,N_0}(t)\mathcal {D}_{N,\ell }(t),\end{aligned}$$
(2.7)
$$\begin{aligned} \sum _{0<|\alpha |\le N_0}\left| \left( w^2_\ell (\alpha ,0)\partial ^\alpha \Gamma (f,f), \partial ^\alpha f\right) \right|\lesssim & {} (1+t)^{\frac{1-3\vartheta }{2}}\big \{\mathcal {E}^1_{N_0,\ell -N_0+2}(t)\big \}^{1/2}\mathcal {D}_{N,\ell }(t)\nonumber \\&+\,\mathcal {E}^{1/2}_{N_0,N_0}(t)\mathcal {D}_{N,\ell }(t), \end{aligned}$$
(2.8)

and

$$\begin{aligned} \sum _{\begin{array}{c} {|\alpha |+|\beta |\le N_0},\\ {|\beta |\ge 1} \end{array}}\left| \left( w^2_\ell (\alpha ,\beta )\partial ^\alpha _\beta \Gamma (f,f), \partial ^\alpha _\beta \mathbf{\{I-P\}}f\right) \right|\lesssim & {} (1+t)^{\frac{1-3\vartheta }{2}}\big \{\mathcal {E}^1_{N_0,\ell -N_0+2}(t)\big \}^{1/2}\mathcal {D}_{N,\ell }(t)\nonumber \\&+\,\mathcal {E}^{1/2}_{N_0,N_0}(t)\mathcal {D}_{N,\ell }(t). \end{aligned}$$
(2.9)

Proof

For brevity, we only prove (4.3),

$$\begin{aligned} \begin{aligned}&|\left( \partial ^\alpha \Gamma (f,f), w_\ell (\alpha ,0)^2\partial ^\alpha f\right) |\\&\quad \lesssim \int _{\mathbb {R}^3}\sum \left\{ \left| w_\ell (\alpha ,0)\partial ^{\alpha _1}f\right| _{L^2_{s+\gamma /2}} \left| \partial ^{\alpha _2}f\right| _D+\left| \partial ^{\alpha _2}f\right| _{L^2_{s+\gamma /2}} \left| w_\ell (\alpha ,0)\partial ^{\alpha _1}f\right| _D\right\} \\&\qquad \times \left| w_\ell (\alpha ,0)\partial ^{\alpha }f\right| _D dx\\&\qquad +\int _{\mathbb {R}^3}\min \left\{ \left| w_\ell (\alpha ,0)\partial ^{\alpha _1}f\right| _{L^2} \left| \partial ^{\alpha _2}f\right| _{L^2_{s+\gamma /2}},\left| \partial ^{\alpha _2}f\right| _{L^2} \left| w_\ell (\alpha ,0)\partial ^{\alpha _1}f\right| _{L^2_{s+\gamma /2}}\right\} \\&\qquad \times \left| w_\ell (\alpha ,0)\partial ^{\alpha }f\right| _Ddx\\&\qquad +\int _{\mathbb {R}^3}\sum \left| e^{\frac{\lambda _0\langle v\rangle }{(1+t)^{\vartheta }}}\partial ^{\alpha _2}f\right| _{L^2} \left| w_\ell (\alpha ,0)\partial ^{\alpha _1}f\right| _{L^2_{\gamma /2}} \left| w_\ell (\alpha ,0)\partial ^{\alpha }f\right| _Ddx\\&\qquad +\int _{\mathbb {R}^3}\sum \left| \mu ^{\frac{\bar{\lambda }}{128}}\partial ^{\alpha _2}f\right| _{L^2} \left| w_\ell (\alpha ,0)\partial ^{\alpha _1}f\right| _{L^2_{\gamma /2+1/2}} \left| w_\ell (\alpha ,0)\partial ^{\alpha }f\right| _{L^2_{\gamma /2+1/2}}dx\\&\qquad +\int _{\mathbb {R}^3}\sum (1+t)^{-\vartheta }\left| \mu ^{\frac{\bar{\lambda }}{128}}\partial ^{\alpha _2}f\right| _{L^2} \left| w_\ell (\alpha ,0)\partial ^{\alpha _1}f\right| _{L^2_{\gamma /2+1}} \left| w_\ell (\alpha ,0)\partial ^{\alpha }f\right| _{L^2_{\gamma /2+s}}dx\\&\qquad +\int _{\mathbb {R}^3}\sum (1+t)^{-2\vartheta }\left| \mu ^{\frac{\bar{\lambda }}{128}}\partial ^{\alpha _2}f\right| _{L^2} \left| w_\ell (\alpha ,0)\partial ^{\alpha _1}f\right| _{L^2_{\gamma /2+1}} \left| w_\ell (\alpha ,0)\partial ^{\alpha }f\right| _{L^2_{\gamma /2+1}}dx\\&\qquad \equiv \sum _{i=1}^6R_i, \end{aligned} \end{aligned}$$
(2.10)

where we should notice the summation \(\sum \) is taken over \(\alpha _1+\alpha _2\le \alpha \). We only prove the last term on right hand of (2.10) since the estimates for the other terms on the right hand of (2.10) are more simple than the last term. Since \(\gamma \le -2s\) and \(1/2\le s<1\), we see that \(\gamma +2\le 1\). Therefore,

$$\begin{aligned} (1+t)^{-(1+\vartheta )}\Vert \langle v\rangle ^{\gamma /2+1}w_\ell (\alpha ,\beta )\partial ^\alpha _\beta \mathbf{\{I-P\}}f\Vert ^2\lesssim \mathcal {D}_{N,\ell }(t). \end{aligned}$$
(2.11)

When \(\alpha _2=\alpha \) with \(|\alpha |\ge N_0+1\), we use \(L^2-L^\infty -L^2\),

$$\begin{aligned} \begin{aligned}&\int _{\mathbb {R}^3}(1+t)^{-2\vartheta }\left| \mu ^{\frac{\bar{\lambda }}{128}}\partial ^{\alpha }f\right| _{L^2} \left| w_\ell (\alpha ,0)f\right| _{L^2_{\gamma /2+1}} \left| w_\ell (\alpha ,0)\partial ^{\alpha }f\right| _{L^2_{\gamma /2+1}}dx\\&\quad \lesssim \,(1+t)^{-2\vartheta }\Vert \mu ^\delta \partial ^{\alpha }f\Vert \left\| w_\ell (\alpha ,0)\nabla f\right\| _{H^1_xL^2_{\gamma /2+1}}\left\| w_\ell (\alpha ,0)\partial ^{\alpha }f\right\| _{L^2_{\gamma /2+1}}\\&\quad \lesssim \,(1+t)^{\frac{1-3\vartheta }{2}}\big \{\mathcal {E}_{N_0,\ell -N_0+2}(t)\big \}^{1/2}\mathcal {D}_{N,\ell }(t). \end{aligned} \end{aligned}$$
(2.12)

When \(N_0+1\le |\alpha _2|\le |\alpha |-1 \) with \(|\alpha |\ge N_0+2\), we use \(L^3-L^6-L^2\),

$$\begin{aligned} \begin{aligned}&\int _{\mathbb {R}^3}(1+t)^{-2\vartheta }\left| \mu ^{\frac{\bar{\lambda }}{128}}\partial ^{\alpha _2}f\right| _{L^2} \left| w_\ell (\alpha ,0)\partial ^{\alpha _1}f\right| _{L^2_{\gamma /2+1}} \left| w_\ell (\alpha ,0)\partial ^{\alpha }f\right| _{L^2_{\gamma /2+1}}dx\\&\quad \lesssim \,(1+t)^{-2\vartheta }\Vert \mu ^\delta \partial ^{\alpha _2}f\Vert \left\| w_\ell (\alpha ,0)\nabla \partial ^{\alpha _1}f\right\| _{L^2_{\gamma /2+1}}\left\| w_\ell (\alpha ,0)\partial ^{\alpha }f\right\| _{L^2_{\gamma /2+1}}\\&\quad \lesssim \,(1+t)^{\frac{1-3\vartheta }{2}}\big \{\mathcal {E}_{N_0,\ell -N_0+2}(t)\big \}^{1/2}\mathcal {D}_{N,\ell }(t). \end{aligned} \end{aligned}$$
(2.13)

Collecting the above estimates yields \( R_6\lesssim (1+t)^{\frac{1-3\vartheta }{2}}\{\mathcal {E}_{N_0,\ell -N_0+2}(t)\}^{1/2} \mathcal {D}_{N,\ell }(t)+\{\mathcal {E}_{N_0,N_0}(t)\}^{1/2}\mathcal {D}_{N,\ell }(t).\)

For other terms \(R_1\sim R_5\), noticing that \(0<\vartheta \le \frac{1}{3}\), we can obtain easily by the similar way as \(R_6\)

$$\begin{aligned} \begin{aligned} \sum _{i=1}^{5}R_i\lesssim (1+t)^{\frac{1-3\vartheta }{2}}\big \{\mathcal {E}^1_{N_0,\ell -N_0+2}(t)\big \}^{1/2}\mathcal {D}_{N,\ell }(t) +\mathcal {E}^{1/2}_{N_0,N_0}(t)\mathcal {D}_{N,\ell }(t). \end{aligned} \end{aligned}$$

Collecting the above estimates gives (4.3) for the case \(N_0+1\le |\alpha |\le N\). While for the case \(|\alpha |\le N_0\), (4.3) can be obtained in a similar way. Thus we have completed the proof of this lemma. \(\square \)

In what follows, we will collect the analytic tools which will be used in this paper. The Sobolev interpolation among the spatial regularity is

Lemma 2.5

(cf. [21]) Let \(2\le p<\infty \) and \(k,\ell , m\in \mathbb {R}\); then we have

$$\begin{aligned} \Vert \nabla ^k f\Vert _{L^p}\lesssim \Vert \nabla ^\ell f\Vert ^{\theta }_{L^2}\Vert \nabla ^m f\Vert ^{1-\theta }_{L^2}. \end{aligned}$$
(2.14)

where \(0\le \theta \le 1\) and \(\ell \) satisfy

$$\begin{aligned} \frac{1}{p}-\frac{k}{3}=\left( \frac{1}{2}-\frac{\ell }{3}\right) \theta +\left( \frac{1}{2}-\frac{m}{3}\right) (1-\theta ). \end{aligned}$$
(2.15)

Also we have that

$$\begin{aligned} \Vert \nabla ^k f\Vert _{L^\infty }\lesssim \Vert \nabla ^\ell f\Vert ^{\theta }_{L^2}\Vert \nabla ^m f\Vert ^{1-\theta }_{L^2}. \end{aligned}$$
(2.16)

where \(0\le \theta \le 1\) and \(\ell \) satisfy

$$\begin{aligned} -\frac{k}{3}=\left( \frac{1}{2}-\frac{\ell }{3}\right) \theta +\left( \frac{1}{2}-\frac{m}{3}\right) (1-\theta ), \end{aligned}$$
(2.17)

here we require \(\ell \le k+1\) and \(m\ge k+2\).

In this paper, we should estimate \(\Vert \Lambda ^{-\varrho }f\Vert \), we need the following \(L^p\) inequality for \(\Lambda ^{-\varrho }\).

Lemma 2.6

(cf. [11, 17]) Let \(0<\varrho <3\), \(1<p<q<\infty \), \(\frac{1}{q}+\frac{\varrho }{3}=\frac{1}{p}\), then

$$\begin{aligned} \Vert \Lambda ^{-\varrho }f\Vert _{L^q}\lesssim \Vert f\Vert _{L^p}. \end{aligned}$$
(2.18)

In many places, we will use Minkowski’s integral inequality to interchange the orders of integration over x and v.

Lemma 2.7

(cf. [21]) For \(1\le p\le q\le \infty \), we have

$$\begin{aligned} \Vert f\Vert _{L^q_zL^p_y}\le \Vert f\Vert _{L^p_yL^q_z}. \end{aligned}$$
(2.19)

3 The Proofs of Our Main Results

This section is devoted to proving our main results based on the continuation argument. For this purpose, suppose that the Cauchy problem (1.4) and (1.5) admits a unique local solution f(txv) defined on the time interval \( 0\le t\le T\) for some \(0<T<\infty \) and the solution f(txv) satisfies the a priori assumption

$$\begin{aligned} \begin{aligned} X(t)=\sup _{0\le \tau \le t}\left\{ \bar{\mathcal {E}}_{N_0,l_0+l^*}(\tau )+\mathcal {E}_{N}(\tau )+\mathcal {E}_{N-1,l}(\tau )+(1+\tau )^{-\frac{1+\epsilon _0}{2}}\mathcal {E}_{N,l}(\tau )\right\} \le M, \end{aligned} \end{aligned}$$
(3.1)

where the parameters \(N_0,N,l, l_0,\) and \(l^*\) are given in Theorem 1.1 and M is a sufficiently small positive constant. Then use the continuation argument to extend such a solution step by step to a global one, one only need to deduce certain uniform-in-time energy type estimates on f(txv) such that the a priori assumption (3.1) can be closed.

For this purpose, we first deduce the temporal decay of the energy functional \(\mathcal {E}^k_{N_0}(t)\) in the following lemma.

Lemma 3.1

Let \(N_0\) and N satisfy (1.21), \(n\ge \frac{2}{3} N_0-\frac{5}{3}\), and take \(k=0,1,2,\ldots , N_0-2\), then one has

(3.2)

provided that

$$\begin{aligned} (H_1) \quad \quad&\max \left\{ \displaystyle \sup _{0\le \tau \le T}\mathcal {E}_{N_0+n}(\tau ), \sup _{0\le \tau \le T}\mathcal {E}_{N-1,N-1}(\tau ), \sup _{0\le \tau \le T}\mathcal {\overline{E}}_{N_0,N_0+l'}(\tau )\right\} \\&\quad \ is\ \ sufficiently\ \ small. \end{aligned}$$

Furthermore, as a consequence of (3.2), we can get that

$$\begin{aligned} \mathcal {E}^k_{N_0}(t)\lesssim \max \left\{ \sup _{0\le \tau \le t}\mathcal {\overline{E}}_{N_0,N_0+\frac{\gamma +2s}{2\gamma }}(\tau ),\sup _{0\le \tau \le t}\mathcal {E}_{N_0+k+\varrho }(\tau )\right\} (1+t)^{-(k+\varrho )} \end{aligned}$$
(3.3)

holds for \(0\le t\le T\).

Proof

Under the smallness assumption \((H_1)\), one can deduce that

which is a immediately consequence of Lemma 4.1 and Lemma 4.2 whose proofs are postponed to the next section for simplicity, where we used the fact that \(\overline{m}\) of Lemma 4.1 is less or equal to \(N-1\).

To get (3.3), for the macroscopic component \({\mathbf P}f(t,x,v)\) and the electromagnetic field [E(tx), B(tx)] one has by Lemma 2.5 that

$$\begin{aligned} \begin{aligned} \left\| \nabla ^k({\mathbf P}f,B)\right\| \le \left\| \nabla ^{k+1}({\mathbf P}f,B)\right\| ^{\frac{k+\varrho }{k+\varrho +1}}\left\| \Lambda ^{-\varrho }({\mathbf P}f,B)\right\| ^{\frac{1}{k+\varrho +1}} \end{aligned} \end{aligned}$$

and

$$\begin{aligned} \left\| \nabla ^{N_0}(E,B)\right\| \lesssim \left\| \nabla ^{N_0-1}(E,B)\right\| ^\frac{k+\varrho }{k+\varrho +1} \left\| \nabla ^{N_0+k+\varrho }(E,B)\right\| ^\frac{1}{k+\varrho +1}, \end{aligned}$$

while for the microscopic component \(\{\mathbf{I}-\mathbf{P}\}f(t,x,v)\), employing the Hölder inequality gives

$$\begin{aligned} \begin{aligned} \sum _{k\le |\alpha |\le N_0}\left\| \partial ^\alpha \mathbf{\{I-P\}}f\right\| \le&\left\| \partial ^\alpha \mathbf{\{I-P\}}f\langle v\rangle ^{\frac{\gamma +2s}{2}}\right\| ^{\frac{k+\varrho }{k+\varrho +1}} \left\| \partial ^\alpha \mathbf{\{I-P\}}f\langle v\rangle ^{-\frac{{(\gamma +2s)}(k+\varrho )}{2}}\right\| ^{\frac{1}{k+\varrho +1}}\\ \le&\left\| \partial ^\alpha \mathbf{\{I-P\}}f\right\| _\nu ^{\frac{k+\varrho }{k+\varrho +1}} \left\| w_{|\alpha |+\frac{\gamma +2s}{2\gamma }}\partial ^\alpha \mathbf{\{I-P\}}f\right\| ^{\frac{1}{k+\varrho +1}}. \end{aligned} \end{aligned}$$

Thus, we have

$$\begin{aligned} \begin{aligned} \mathcal {E}^k_{N_0}(t)\le \left\{ \mathcal {D}^k_{N_0}(t)\right\} ^\frac{k+\varrho }{k+\varrho +1}\left\{ \max \left\{ \sup _{0\le \tau \le t}\mathcal {\overline{E}}_{N_0,N_0+\frac{\gamma +2s}{2\gamma }}(\tau ),\sup _{0\le \tau \le t}\mathcal {E}_{N_0+k+\varrho }(\tau )\right\} \right\} ^\frac{1}{k+\varrho +1}, \end{aligned} \end{aligned}$$

which combing with (3.2) yields that

Solving the above inequality directly gives

$$\begin{aligned} \mathcal {E}^k_{N_0}(t)\lesssim \max \left\{ \sup _{0\le \tau \le t}\mathcal {\overline{E}}_{N_0,N_0+\frac{\gamma +2s}{2\gamma }}(\tau ),\sup _{0\le \tau \le t}\mathcal {E}_{N_0+k+\varrho }(\tau )\right\} (1+t)^{-(k+\varrho )}. \end{aligned}$$

This completes the proof of Lemma 3.1. \(\square \)

Lemma 3.2

Let \(\ell \ge N_0\), \(n\ge \frac{2}{3} N_0-\frac{5}{3}\) and suppose that

$$\begin{aligned} (H_2) \quad \quad \max \left\{ \sup \limits _{0\le \tau \le t}\mathcal {E}_{N_0+n}(\tau ), \sup \limits _{0\le \tau \le t}\mathcal {E}_{N_0,\ell }(\tau )\right\} \ \ is\ \ sufficiently\ \ small \end{aligned}$$

with \(\widetilde{l}\) being given in Lemma 3.1,

(3.4)

for any \(0\le t\le T\), where \(k=0,1,\ldots ,N_0-3\). Furthermore, based on (3.4), if we set \(l_{0,0}=l_{0,1}=\ell \), \(l_{0,k}+1+\frac{2s-1}{\gamma }= l_{0,k-1}\) and \(l_{0,k}+\frac{(\gamma +2s)(k+2)}{2}\ge N_0\) for \(2\le k\le N_0-3\), we can deduce

$$\begin{aligned} \mathcal {E}^k_{N_0,l_{0,k}+\frac{\gamma +2s}{2\gamma }i}(t) \lesssim X(t)(1+t)^{-k-\varrho +i}, \quad \quad i=0,1,\ldots ,k, \end{aligned}$$
(3.5)

while for \(\varrho \in [1,3/2)\),

$$\begin{aligned} \mathcal {E}^k_{N_0,l_{0,k}+\frac{(\gamma +2s)(k+1)}{2\gamma }}(t) \lesssim X(t)(1+t)^{1-\varrho }, \end{aligned}$$
(3.6)

Proof

Since the proof of (3.4) is nearly same to (3.2), we only point out the main difference between the proof of (3.4) and (3.2). For instance, when \(|\alpha |= N_0\), one has

$$\begin{aligned} \begin{aligned}&(v\times \partial ^{e_i}B \partial ^{\alpha -e_i}\nabla _v\{\mathbf{I-P}\}f, w_\ell (\alpha ,0)^2 \partial ^{\alpha }\{\mathbf{I-P}\}f)\\&\quad \lesssim \Vert \nabla B\Vert ^2_{L^\infty }\Vert w_\ell (\alpha ,0)\partial ^{\alpha -e_i}\nabla _v\{\mathbf{I-P}\}f\langle v\rangle ^{1-\frac{\gamma }{2}-s}\Vert ^2+\varepsilon \Vert w_\ell (\alpha ,\beta )\partial ^{\alpha }\{\mathbf{I-P}\}f\Vert _D^2 \end{aligned} \end{aligned}$$
(3.7)

which will be included on the right hand side of (3.4) for \(k\ge 2\).

For \(k=0,1\), multiplying (3.4) with \(\ell =l_0+\frac{\gamma +2s}{2\gamma }i\) by \((1+t)^{k+\varrho -i+\epsilon }\) gives

(3.8)

where \(\epsilon \) is taken as a sufficiently small positive constant. When \(\varrho \in (1/2,1)\), we take \(\ell =l_{0,k}+\frac{(\gamma +2s)(k+1)}{2\gamma }\) in (3.4), it holds that

(3.9)

Using the relation between the energy functional \(\mathcal {E}^k_{N_0,\ell }(t)\) and its dissipation rate \(\mathcal {D}^k_{N_0,\ell }(t)\), the proper linear combination of (3.8) and (3.9) yields

(3.10)

Lemma 3.1 tells us that

$$\begin{aligned} \begin{aligned} \sum _{|\alpha |=N_0}(1+t)^{k+\varrho +\epsilon }\Vert \partial ^\alpha E\Vert ^2\,+\,&(1+t)^{k+\varrho -1+\epsilon }\Vert \nabla ^k({\mathbf P}f,E,B)\Vert ^2\lesssim X(t)(1+t)^{-1+\epsilon }. \end{aligned} \end{aligned}$$
(3.11)

Plugging (3.11) into (3.10) and taking the time integration, it follows that

$$\begin{aligned} \begin{aligned}&\sum _{i=0}^k(1+t)^{k+\varrho -i+\epsilon }\mathcal {E}^k_{N_0,l_{0,k}+\frac{\gamma +2s}{2\gamma }i}(t)+\mathcal {E}^k_{N_0,l_{0,k}+\frac{(\gamma +2s)(k+1)}{2\gamma }}(t)\\&\quad +\int _0^t\left( \sum _{i=0}^k(1+t)^{k+\varrho -i+\epsilon }\mathcal {D}^k_{N_0,l_{0,k}+\frac{\gamma +2s}{2\gamma }i}(\tau )+\mathcal {D}^k_{N_0,l_{0,k}+\frac{(\gamma +2s)(k+1)}{2\gamma }}(\tau )\right) d\tau \lesssim X(t)(1+t)^{\epsilon }. \end{aligned} \end{aligned}$$
(3.12)

Using this, it follows that

$$\begin{aligned} \mathcal {E}^k_{N_0,l_{0,k}+\frac{\gamma +2s}{2\gamma }i}(t) \lesssim X(t)(1+t)^{-k-\varrho +i}, \quad \quad i=0,1,\ldots ,k. \end{aligned}$$
(3.13)

When \(\varrho \in [1,3/2)\), multiplying (3.4) with \(\ell =l_{0,k}+\frac{(\gamma +2s)(k+1)}{2\gamma }\) by \((1+t)^{\varrho -1+\epsilon }\) gives

(3.14)

we take \(\ell =l_{0,k}+\frac{(\gamma +2s)(k+2)}{2\gamma }\) in (3.4), it holds that

(3.15)

As in the case \(\varrho \in (\frac{1}{2},1)\), the proper linear combination of (3.8), (3.14) and (3.14) yields

(3.16)

By the same way as (3.5), it follows that

$$\begin{aligned} \begin{aligned}&\sum _{i=0}^{k+1}(1+t)^{k+\varrho -i+\epsilon }\mathcal {E}^k_{N_0,l_{0,k}+\frac{\gamma +2s}{2\gamma }i}(t)+\mathcal {E}^k_{N_0,l_{0,k}+\frac{(\gamma +2s)(k+2)}{2\gamma }}(t)\\&\quad +\int _0^t\left( \sum _{i=0}^{k+1}(1+t)^{k+\varrho -i+\epsilon }\mathcal {D}^k_{N_0,l_{0,k}+\frac{\gamma +2s}{2\gamma }i}(\tau )+\mathcal {D}^k_{N_0,l_{0,k}+\frac{(\gamma +2s)(k+2)}{2\gamma }}(\tau )\right) d\tau \lesssim X(t)(1+t)^{\epsilon }. \end{aligned} \end{aligned}$$
(3.17)

Combining (3.12) and (3.17) yields (3.5) and (3.6).

When \(k\ge 2\), we let \(l_{0,0}=l_{0,1}=\ell \), by using the principle of mathematical induction, we can get that

$$\begin{aligned} \mathcal {E}^k_{N_0,l_{0,k}+\frac{\gamma +2s}{2\gamma }i}(t) \lesssim X(t)(1+t)^{-k-\varrho +i}, \quad \quad \varrho \in \left( 1/2,3/2\right) \quad \quad i=0,1,\ldots ,k. \end{aligned}$$
(3.18)

especially, when \(\varrho \in [1,3/2)\),

$$\begin{aligned} \mathcal {E}^k_{N_0,l_{0,k}+\frac{(\gamma +2s)(k+1)}{2\gamma }}(t) \lesssim X(t)(1+t)^{1-\varrho },\quad \quad \quad \quad \end{aligned}$$
(3.19)

where \(l_{0,k}+1+\frac{2s-1}{\gamma }=l_{0,k-1}\). This completes the proof of Lemma 3.2. \(\square \)

Bases on the time decay estimates on \(\mathcal {E}^k_{N_0}(t)\) and \(\mathcal {E}^k_{N_0,\ell }(t)\), and suppose \(\displaystyle \max \left\{ \sup \nolimits _{0\le t\le T}\mathcal {E}_{N_0,N_0}(t),\sup \nolimits _{0\le t\le T}\mathcal {E}_{N}(t)\right\} \) is sufficiently small, we will have the following three lemmas for \(\mathcal {E}_{N}(t),\mathcal {E}_{N,l}(t),\mathcal {E}_{N-1,l}(t)\) and \(\mathcal {\bar{E}}_{N_0,l_0+l*}(t)\) respectively:

Lemma 3.3

Let \(N_0, N\) and \(\vartheta \) satisfy (1.21) and (1.10) respectively, under the assumptions of Lemma 3.1 and \(l\ge N\), \(l_0\ge N-N_0+\frac{1}{2}-\frac{1-s}{\gamma }\), we can deduce that

(3.20)

holds for all \(0\le t\le T\).

Proof

First of all, it is straightforward to establish the energy identities

$$\begin{aligned}&\frac{1}{2}\frac{d}{dt}\sum \limits _{N_0+1\le |\alpha |\le N}\left( \left\| \partial ^\alpha f\right\| ^2+ \left\| \partial ^\alpha (E,B)\right\| ^2\right) +\sum \limits _{N_0+1\le |\alpha |\le N}\left( L\partial ^\alpha f,\partial ^\alpha f\right) \nonumber \\&\quad =\underbrace{\sum \limits _{N_0+1\le |\alpha |\le N}\left( \partial ^\alpha \left( \frac{q_0}{2}E\cdot vf\right) ,\partial ^\alpha f\right) }_{J_1}-\underbrace{\sum \limits _{N_0+1\le |\alpha |\le N}\left( \partial ^\alpha \left( q_0(E+v\times B)\cdot \nabla _vf\right) ,\partial ^\alpha f\right) }_{J_2}\nonumber \\&\quad +\underbrace{\sum \limits _{N_0+1\le |\alpha |\le N}\left( \partial ^\alpha \Gamma (f,f),\partial ^\alpha f\right) }_{J_3}. \end{aligned}$$
(3.21)

For the \(\partial ^\alpha \) derivative term related to (EB) with \(N_0+1\le |\alpha |\le N\), i.e., the estimates on \(J_1\) and \(J_2\), one has

$$\begin{aligned} \begin{aligned} J_1&\lesssim \Vert E\Vert _{L^\infty } \left\| \langle v\rangle ^{1/2}\partial ^{\alpha }f\right\| \left\| \langle v\rangle ^{1/2}\partial ^\alpha f\right\| \\&\quad +\sum _{1\le |\alpha _1|\le N_0-1}\left\| \partial ^{\alpha _1}E\right\| _{L^6} \left\| \langle v\rangle ^{1/2}\partial ^{\alpha -\alpha _1}f\right\| _{L^3} \left\| \langle v\rangle ^{1/2}\partial ^\alpha f\right\| \\&\quad +\sum _{|\alpha _1|= N_0}\left\| \partial ^{\alpha _1}E\right\| \left\| \langle v\rangle ^{1/2}\partial ^{\alpha -\alpha _1}f\right\| _{L^\infty } \left\| \langle v\rangle ^{1/2}\partial ^\alpha f\right\| \\&\quad +\sum _{|\alpha _1|\ge N_0+1,\alpha _1\ne \alpha }\left\| \partial ^{\alpha _1}E\right\| _{L^6} \left\| \langle v\rangle ^{1-s-\frac{\gamma }{2}}\partial ^{\alpha -\alpha _1}f\right\| _{L^3} \left\| \partial ^\alpha f\right\| _D\\&\quad +\left\| \partial ^{\alpha }E\right\| \left\| \langle v\rangle ^{1-s-\frac{\gamma }{2}}f\right\| _{L^\infty } \left\| \partial ^\alpha f\right\| _D\\ \lesssim&\left( \Vert E\Vert _{L^{\infty }}+\left\| \nabla ^2E\right\| _{H^{ N_0-2}}\right) \mathcal {D}_{N,l}(t) +\mathcal {E}_N(t)\mathcal {E}^1_{N_0,l_0}(t)+\varepsilon \mathcal {D}_{N}(t). \end{aligned} \end{aligned}$$
(3.22)

For \(J_2\), due to \(\left( (E+v\times B)\cdot \partial ^\alpha \nabla _vf,\partial ^\alpha f\right) =0,\) we can deduce by employing the same argument to deal with \(J_1\) that

$$\begin{aligned} J_2\lesssim \left\| \nabla ^2(E,B)\right\| _{H^{ N_0-2}}\mathcal {D}_{N,l}(t) +\mathcal {E}_N(t)\mathcal {E}^1_{N_0,l_0}(t) +\varepsilon \mathcal {D}_{N}(t). \end{aligned}$$

Here we choose \(l_0\ge N-N_0+\frac{1}{2}-\frac{1-s}{\gamma }\) and \(N\le 2N_0\). It follows from Lemma 2.2 that \( J_3\lesssim (\mathcal {E}_N(t)+\varepsilon )\mathcal {D}_N(t). \)

Plugging the estimates of \(J_1,\ J_2,\ J_3\) into (3.21) yields

(3.23)

which combining with (3.2) and (4.35) give the proof of (3.20) under the assumptions (1.10). \(\square \)

Lemma 3.4

Let \(N_0, N\) and \(\vartheta \) satisfy (1.21) and (1.10) respectively,, we can deduce that

(3.24)

holds for all \(0\le t\le T\).

Proof

The proof of this lemma is divided into two steps. The first step is to deduce the desired energy type estimates on the derivatives of f(txv) with respect to the x-variable only. For this purpose, the standard energy estimate on \(\partial ^\alpha f\) with \(1\le |\alpha |\le N\) weighted by the time-velocity dependent function \(w_{l}(\alpha ,0)=w_l(\alpha ,0)(t,v)\) gives

(3.25)

As to the estimates on \(J_4\), \(J_5\), and \(J_6\), we can deduce by following exactly the argument used above to control \(J_1\), \(J_2\), and \(J_3\) that

$$\begin{aligned} \begin{aligned} J_4+J_5\lesssim&(1+t)^{1+\vartheta }\left( \Vert E\Vert _{L^{\infty }} +\left\| \nabla ^2_x(E,B)\right\| _{H^{ N_0-2}}\right) \mathcal {D}_{N,l}(t) +\mathcal {E}_N(t)\mathcal {E}^1_{N_0,l_0}(t)+\varepsilon \mathcal {D}_{N,l}(t), \end{aligned} \end{aligned}$$
(3.26)

and using Lemma 2.2 gives

$$\begin{aligned} \begin{aligned}&J_6\lesssim (1+t)^{\frac{1-3\vartheta }{2}}\mathcal {E}^1_{N_0,l-N_0+2}(t)^{1/2}\mathcal {D}_{N,l}(t) +\mathcal {E}^{1/2}_{N_0,N_0}(t)\mathcal {D}_{N,l}(t), \end{aligned} \end{aligned}$$
(3.27)

Here we choose that \(l_0\ge l+\frac{1}{2}-\frac{1-s}{\gamma }-N_0\) and \(N\le 2N_0\) in the estimates on the term \(J_4\) and \(J_5\) . Collecting the above estimates gives the desired weighted energy type estimates on the derivatives of f(txv) with respect to the x-variables only as follows

(3.28)

Next, by applying the microscopic projection \(\{\mathbf{I-P}\}\) to the first equation of (1.4), we can get that

$$\begin{aligned} \partial _t\{\mathbf{I-P}\}f+v\cdot \nabla _x\{\mathbf{I-P}\}f-&E\cdot v\mu ^{1/2}q_1+Lf =\{\mathbf{I-P}\}g+{\mathbf P}(v\cdot \nabla _x f)-v\cdot \nabla _x{\mathbf P}f.\nonumber \\ \end{aligned}$$
(3.29)

From (3.29) , one has the weighted energy estimate on \(\{\mathbf{I-P}\}f\)

(3.30)

By the similar way, for the weighted energy estimate on \(\{\mathbf{I-P}\}\partial ^\alpha _\beta f\) with \(|\alpha |+|\beta |\le N\) and \(|\beta |\ge 1\), we have

(3.31)

Here we used the fact that \(\left( (v\times B)\cdot \partial ^\alpha _\beta \nabla _v \{\mathbf{I-P} \}f,w^2_{l-|\beta |}\partial _\beta ^\alpha \{\mathbf{I-P} \}f\right) =0.\) In addition, the estimate on the term \((\partial ^\alpha _\beta (v\cdot \{\mathbf{I-P}\}f),\partial ^\alpha _\beta \{\mathbf{I-P}\}f)\) can be seen [5], that is why we restrict \(\frac{1}{2}\le s\le 1\). The above other estimates are similar as (3.28), we omit it. Therefore, a proper linear combination of (4.35), (3.28), (3.30) and (3.31) implies (3.24). \(\square \)

Similar with Lemma 3.4, we also have

Lemma 3.5

It holds that

(3.32)

for all \(0\le t\le T\).

The following lemma is concerned with the weighted energy estimates on \(\mathcal {\bar{E}}_{N_0,\ell }(t)\).

Lemma 3.6

For any \(\ell \) with \(\ell =l_0+l^*\) with \(l^*=l'+\frac{3(\gamma +2s) }{2\gamma }+\chi _{N_0\ge 4}\left( \frac{1}{2}-\frac{1-s}{\gamma }\right) \left( N_0-4\right) \) with \(l'\) being given in Lemma 4.1, if the assumptions of Lemma 3.1 hold, we have

(3.33)

Furthermore,

$$\begin{aligned} \sup _{0\le \tau \le t}\mathcal {\bar{E}}_{N_0,l_0+l^*}(\tau )\lesssim Y^2_0+\varepsilon \int _{0}^t\Vert \nabla ^{N_0}E\Vert ^2ds. \end{aligned}$$
(3.34)

Proof

From the completely same procedure to obtain the energy inequality (3.24) for \(\mathcal {E}_{N,l}(t)\), we notice the derivatives of the electromagnetic field of order up to \(N_0\) decays in time, and use the Cauchy inequality, the weighted estimate on the highest order \(N_0\) for the term \(E\cdot v\mu ^{1/2}\) can be dominated by

$$\begin{aligned} \sum _{|\alpha |=N_0}(\partial ^{\alpha }E\cdot v\mu ^{1/2}, w^2_{\ell }(\alpha ,0)\partial ^\alpha f)\lesssim \sum _{|\alpha |=N_0}(\varepsilon \Vert \partial ^\alpha E\Vert ^2+C_\varepsilon \Vert \mu ^\delta \partial ^\alpha f\Vert ), \end{aligned}$$

it follows that

(3.35)

The proper linear combination of (5.1) ,(5.6), (5.8) and (3.35) gives (3.33), therefore (3.34) follows by the time integration of (3.33). This completes the proof of Lemma 3.6. \(\square \)

Now we are ready to obtain the closed estimates on \(\mathcal {E}_N(t)\) and \(\mathcal {E}_{N,l}(t)\) of the time-weighted energy norm X(t) in the following:

Lemma 3.7

It holds that

$$\begin{aligned} \sup _{0\le s\le t}\left\{ \mathcal {E}_{N}(s)+(1+s)^{-\frac{1+\epsilon _0}{2}}\mathcal {E}_{N,l}(t) \right\} +\int _{0}^t\mathcal {D}_N(s)ds\lesssim Y^2_0. \end{aligned}$$
(3.36)

Proof

Multiplying (3.20) by \((1+t)^{-\epsilon _0}\) gives

(3.37)

Multiplying (3.24) by \((1+t)^{-(1+\epsilon _0)/2}\) yields that

(3.38)

The proper linear combination of (3.20), (3.37) and (3.38) and taking the time integration yield

$$\begin{aligned} \begin{aligned}&\mathcal {E}_N(t)+(1+t)^{-\frac{\epsilon _0+1}{2}}\mathcal {E}_{N,l}(t)+\int ^t_0\left\{ (1+s)^{-1-\epsilon _0}\mathcal {E}_N(s)+\mathcal {D}_N(s)\right\} ds\\&\quad +\int ^t_0\left\{ (1+s)^{-\frac{\epsilon _0+3}{2}}\mathcal {E}_{N,l}(s)+(1+s)^{-\frac{\epsilon _0+1}{2}}\mathcal {D}_{N,l}(s)\right\} ds \lesssim Y_0^2. \end{aligned} \end{aligned}$$

Here we used the fact that if \(\varrho \in (\frac{1}{2},1]\), we have taken \(l_0=l_{0,1}= l_{0,0}\) such that

$$\begin{aligned} \mathcal {E}^1_{N_0,l_0}(t)=\mathcal {E}^1_{N_0,l_{0,1}}(t)\lesssim (1+t)^{-1-\varrho }X(t), \end{aligned}$$

while for the case of \(\varrho \in \left( 1,\frac{3}{2}\right) \), we have taken \(l_0=l_{0,0}\) such that

$$\begin{aligned} \mathcal {E}^1_{N_0,l_0}(t)\lesssim \mathcal {E}^0_{N_0,l_{0,0}}(t)\lesssim (1+t)^{-\varrho }X(t). \end{aligned}$$

This completes the proof of Lemma 3.7. \(\square \)

3.1 The Proof of Theorem 1.1

Recall X(t)-norm, combining Lemma 3.6 with Lemma 3.7 yields that

$$\begin{aligned} X(t)\lesssim Y_0^2. \end{aligned}$$

The global existence follows further from the local existence and the continuity argument in the usual way. This completes the proof of Theorem 1.1.

3.2 The Proof of Theorem 1.3

Based on Theorem 1.1, it follows from Lemma 3.1 that

$$\begin{aligned} \mathcal {E}^k_{N_0}(t)\lesssim Y^2_0(1+t)^{-(k+\varrho )},\ \ k=0,1,2,\ldots , N_0-2 \end{aligned}$$

which gives (1.23). From Lemma 3.2, let \(0\le i\le k\le N_0-3\) be an integer, it holds that

$$\begin{aligned} \mathcal {E}^k_{N_0,l_{0,k}+\frac{\gamma +2s}{2\gamma }i}(t) \lesssim Y^2_0(1+t)^{-k-\varrho +i}, \quad \quad i=0,1,\ldots ,k. \end{aligned}$$

Furthermore, when \(\varrho \in [1,3/2)\),

$$\begin{aligned} \mathcal {E}^k_{N_0,l_{0,k}+\frac{(\gamma +2s)(k+1)}{2\gamma }}(t) \lesssim Y^2_0(1+t)^{1-\varrho }.\quad \quad \quad \quad \quad \quad \quad \end{aligned}$$

(1.24) and (1.25) follow from the above two inequalities. To prove (1.26), by using the interpolation method, when \(N_0+1\le |\alpha |\le N-1\), combining the time decay of \(\Vert \nabla ^{N_0}f\Vert \) and the bound of \(\Vert \nabla ^{N}f\Vert \) gives

$$\begin{aligned} \begin{aligned} \Vert \partial ^\alpha f\Vert ^2\lesssim&\Vert \nabla ^Nf\Vert ^{\frac{|\alpha |-N_0}{N-N_0}}\Vert \nabla ^{N_0}f\Vert ^{\frac{N-|\alpha |}{N-N_0}} \lesssim Y^2_0(1+t)^{-\frac{(N-|\alpha |)(N_0-2+\varrho )}{N-N_0}}. \end{aligned} \end{aligned}$$

Thus we have completed the proof of Theorem 1.3.