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Abstract The global in time classical solutions to the Cauchy problem of the Vlasov—
Maxwell-Boltzmann system near Maxwellians are obtained under the lower regularity index
assumption and the weaker smallness condition on the initial perturbation in comparison with
the work (Duan et al. in Kinet Relat Models 6(1):159-204, 2013). In particular, we show the
relation between time decay rates and spatial derivatives of solutions.Our analysis relies on
arefined energy estimates and the interpolation techniques between negative Sobolev norms
and positive Sobolev norms without linear decay analysis.
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1 Introduction and Main Results
This paper concerns the existence and time decay rates of global in time classical solutions to

the Cauchy problem of the Vlasov—Maxwell-Boltzmann system (called VMB for simplicity)
near Maxwellians, which takes the form:
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0Fr+v-ViFy +(E+vx B) - VyFy = Q(F4, Fi) + Q(Fy, F_),

WF_+v- Vi F_.—(E4+vxB) -V, F_=Q(F_,F )+ Q(F_, F_),

0E —Vy X B = —ng v(Fy — Fo)dv, (1.1)
B+ V, x E=0,

Vi E = [ys(Fy — F)dv, Vi B=0.

with prescribed initial data
F+(0,x,v) = Fo+(v,x), E(0,x) = Eo(x), B(0,x)= Bo(x) (1.2)

which satisfy the compatibility conditions
V, - Eg =/ (Fo,+ — Fo,—)dv, Vy-By=0.
R3

Here the unknown functions F+ = F4 (¢, x, v) > 0 are the number density functions for the
ions (+) and electrons (—) with position x = (x1, x2, X3) € R3, velocity v = (vy, v2, V3) €
R3 at time ¢ > 0, respectively. E(¢, x) and B(¢, x) denote the electro and magnetic fields,
respectively. The Boltzmann collision operator Q is given by

O(F. G)(v) = /

B(v—u,o){FOW)GW) — F)Gu)}dodu
R3 xS?

where in terms of velocities u and v before the collision, velocities v’ and u” after the collision

are defined by
, v4+u  |v—ul , v+u  |v—ul
= o, u = — o
2 2 2 2
The Boltzmann collision kernel B(v — u, o) depends only on the relative velocity |v — u|
and on the deviation angle 6 given by cos8 = (o, (v —u)/|v — ul), where (-, -) is the usual
dot product in R®. As in [1-3,7], we suppose that B(v — u, o) is supported on cos# > 0.
Notice also that all the physical parameters have been chosen to be unit for simplicity of
presentation.
Throughout the paper, the collision kernel is further supposed to satisfy the following
assumptions:

(Al). B(v — u, o) takes the product form in its argument as
B(v—u,0) = ®(|lv —ul)b(cosh)

with ® and b being non-negative functions;
(A2). The angular function 0 — b({(o, (v — u)/|v — ul)) is not integrable on S?, ie.

/2
/ b(cosO)do = 27r/ sin Ob(cos 0)df = oo.
s? 0

Moreover, there are two positive constants ¢, > 0,0 < s < 1 such that

cp )
< < - .
gl+zs =S Ob(cos0) = PRIEETE

(A3). The kinetic function z — ®(|z]|) satisfies
®(|z]) = Colz|”

for some positive constant Cg > 0. Here we should notice that the exponent y > —3
is determined by the intermolecular interactive mechanism.
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It is convenient to call hard potentials when y + 2s > 0 and soft potentials when —3 <
y < —2s with 0 < s < 1. Interested readers may refer to the textbooks [12,14,20] for more
details. The current work is restricted to the case of

3 1
max{—3,—§—2s]<y<—2s, §§s<1. (1.3)

Our goal of the paper is to study the Cauchy problem (1.1) around the following nor-
malized global Maxwellian u = p(v) = (271)_3/2(3_'”'2/2. For this purpose, we define the
perturbation fr = fu(f, x, v) by Fi(t, x, v) = u+u'/? fL(t, x, v). Then, the VMB system
(1.1) is reformulated as

fe+v - Vafet(E4+vxB) Vofe FE -vu'? ¥ JE vfs+ Lif =Tx(f. f),
WE — Vi x B=— [paop!2(fy — fo)dv,

3B+ V,xE=0,

Vi E = [pan!2(fy — f)dv, Vi-B=0,

(1.4)
with initial data
f+£0,x,v) = fo,£(x,v), E(0,x) = Eo(x), B(0,x)= Bo(x), (1.5)
which satisfy the compatibility conditions
Y, Eo= / W2 (fo s — fo)dv, Ve Bo=0. (1.6)
R

If we denote f = [ f4, f-]. then (1.4)_1 can be written as

0f+v-Vaf +a0(E+vxB)-Vof —E-vpPqi+Lf = DE o +T(£ ) (17)

where g0 = diag(1, —1), g1 = [1, —1], the linearized collision operator L and the nonlinear
collision term I'(f, f) are respectively defined by

Lf =[Lyf.L_fl,  T(f.9) =T+ (f8).T-(f 9]
with
Laf =—p {00 ' P(fe + f2) + 20 fr. )},
Fo(fg) =n 20 (u'? fuo, n'Pgs) + 720 (02 fr, ' ?g5).

For the linearized Boltzmann collision operator L, it is well known [9] that it is non-
negative and the null space of L is given by

N = span {[1,01"/%, [0, N2, [vg, il 2(1 < i < 3), [Iv)?, P12

If we define P as the orthogonal projection from Lz(Rz) X Lz(Rg) to V, then for any given
function f (¢, x,v) € Lz(Rg), one has

3
Pf=a(t. 00" +a (.00, Nu'?+ D" bt 01, '’

i=1

+c(t, X)L, 1(v* —3)p'/?
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with

1
at =/ n'? fedv, b = */ v 2(fr + fo)dv,
R3 2 R3

o
Il

1
6/ (0P = D 2(fs + fo)dv.
R3

Therefore, we have the following macro-micro decomposition with respect to a given global
Maxwellian which was introduced in [8,10,16]

f,x,v)y=Pf(t,x,v) +{I-P}f(t,x,v) (1.8)

where I denotes the identity operator.

Before stating our main results, we first introduce some notations used throughout the
paper. C denotes some positive constant (generally large) and x, A denotes some positive
constant (generally small), where C, x and X may take different values in different places.
A < B means that there is a generic constant C > Qsuchthat A < CB.A ~ Bmeans A < B
and B < A. The multi-indices o = [«1, @2, 3] and 8 = [B1, B2, B3] will be used to record
spatial and velocity derivatives, respectively. And 3§ = yy Ov2 Oys 85' 8522 8,’?33. Similarly, the
notation 0% will be used when f = 0 and likewise for dg. The length of « is denoted by
la| = a1 + a3 +a3. @’ < a means that no component of o’ is greater than the corresponding
component of &, and ¢’ < @ means that @’ < « and || < |a|. And it is convenient to write
Vfr‘ = 0% with |«| = k. We also use (-, -) to denotes the L% inner product in ]R%, with the L2
norm | - |,2. For notational simplicity, (-, -) denotes the L? inner product either in R} x R}
orin R? with the L2 norm || - ||. Bc C R? denotes the ball of radius C centered at the origin,
and L?(Bc¢) stands for the space L? over B¢ and likewise for other spaces.

As in [11], we introduce the operator A® with s € R by

(A%g) (1. x.v) = /R JEF8( & v dE = /}R JEFFLgl(r, &, v)e*™ ™ dg

with g(t, &, v) = F[gl(t, &, v) being the Fourier transform of g(z, x, v) with respect to
x. The homogeneous Sobolev space H* is the Banach space consisting of all g satisfying
llglly < —+oo, where

ls0) s = [(A°8) Gx.v) o, = (1818 & )] 2 -

‘We now list series of notations introduced in [3]. Introduce
|f|%) E/ B —u,o)u)(f' — f)*dudvdo
RO xS?
+/ F@? (p@hH"? = u@)'?)*dudvdo.
R6xS?

Forl € R, (v) = 1+, le denotes the weighted space with norm |f|i2 =
1
ng | £ ()| (v)* dv. The weighted frictional Sobolev norm | f(v)|2Hi\- = () f(v)|% is given
by
1 AV N2
2 2 [(v) f(v) — (V) f)]
F@P =172 +/R3 d”/Rs av L e

where xgq is the standard indicator function of the set 2. Moreover, in R? x R%, - Nay =
I L& ll 2 is used.
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As in [5], we introduce the time-velocity weight function corresponding to the Boltzmann
operator:

q(v) 3
we (e, B) = (v) Y Elel=IBD asnT rnax‘ -3, 5~ 2s] <y < —2s,

1
§§s<1, 0<gx 1. (1.9)

with the parameter ¥ being taken as
0<? Smin{%— %,%}, when o € (%,é)andNo >4,

1.1
0<l95%—%, when ¢ € (1, 5) and Ny = 3. (1.10)

Moreover, for an integer N > 0 and £ € ]R_, we define the energy functional I3 ~,¢(t) and the
corresponding dissipation rate functional Dy ¢ (¢) by

Ene®) ~ Ene() + |ATC(f. E, B)|? (L.11)
and

= — - — 2
Div,e(t) ~ Do) + A8 (a. b.c, E.B)|P + A (ar —a—, B)*+ | A~ =P},

(1.12)
respectively. Here

Evem~ D llwele B FIP+ I(E. B (1.13)
lee|+IBI=N

Dye) ~ D 110%ax b, 01>+ D llwele, HIFIA—PYfIIH + llay —a|?

I=|al=N la|+1BI=N

HIE NGyt + Ve BIGn2 + (107177

DI [ORETCHOEI B dFI (1.14)
la[+|BI=N

In our analysis, we also need to define the energy functional without weight Ex (¢), the higher
order energy functional without weight 51]%0 (t), and the higher order energy functional with

weight £§ (1) as follows

N
En) ~ D IVNL E, B)IP, (1.15)
k=0
No
ENy @O ~ D I0Y(f E. B, (1.16)
|a|=k Y,
e~ D lwele BIFIP+ D 19%(E, B2, (1.17)
\Ot\|+\|ﬁ>%N, la|=k

and the corresponding energy dissipation rate functionals are given by

Dy ~ (E.ay —a)|*+ D I19*®f E, B)|?

I<|a|=N-1
+ D IPFIT+ D] 10— P13, (1.18)
loa|=N la|<N
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1064 Y. Fan, Y. Lei

Dy, ~ IVN(E,ar —a) I+ D [9°®Rf E, B)|

k+1<|a|<No—1
+ D0 NPLIP+ DL 19— PYfII. (1.19)
la|=No k<|a|<No

Dot () ~ IVNE, ay —a)IP+ > [0°Rf E, B
k+1<la|<No—1

+ D lwelen BIFIT=PIf I+ D, N*PFI>+ 1+

la|+|B=No, la|=No

loe|>k
x> W) Pwele, BIGIL— PYFI. (1.20)
lae|+|B=No,

lee| >k

respectively.
With the above preparation in hand, our main result concerning the Cauchy problem (1.4),
(1.5)1s

Theorem 1.1 Suppose that Fo(x,v) = p + J/ufo(x,v) > 0, % < o < % and

max {—3, —% — 23} <y < —2s with % <s < 1. Let

No=4,N =2Ny—1, when g€ (3, 1], (121)
No >3, N = 2Ny, when o € (1, 3), '
and take | > N and ly > max{l,] + } — % — No}. If
Yo= D lwigrr(@ B3 fol
ler|+1BI<No
+ > lwile, BIE foll + I(Eo, BO gy si—e + I foll - (1.22)
ler|+IBI<N

is sufficiently small where I* =1’ + 3(’/27% and l' will be specified in the proof for detail, the
Cauchy problem (1.4), (1.5) admits a unique global solution (f(t, x,v), E(t,x), B(t, x))
satisfying F(t,x,v) = u+ /pf(t, x,v) > 0.

Remark 1.2 Several remarks concerning Theorem 1.1 are listed below:

e For brevity, the precise value of the parameter I’ can be specified in the proofs of Theorem
1.1, cf. the proof of Lemma 4.1.

Our second result is concerned with the temporal decay estimates on the global solution
(f(t,x,v), E(t,x), B(t, x)) obtained in Theorem 1.1. For results in this direction, we have
from Theorem 1.1 that

Theorem 1.3 Under the assumptions of Theorem 1.1, we have the following results:
(1) Takingk =0,1,2,..., Ng — 2, it follows that

Eny @) S Y (L4 1)~@th), (1.23)
(2) Let0 <i <k < Ng—3 bean integer, if we take * in Theorem 1.1 asI* = 1"+ 3()’27;25) +

X No=4 (1 - %) (No — 4) and if we set lo,o = lo,1 = lo, lox +1+ 22/;1 = lo,xk—1 and
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lo,k-l-w > No for2 < k < No — 3, one has

ek (O SYgA T i =01, .k (1.24)

No,lo,kJr%fs
furthermore, when o € [1, %),

Moty 20 (D S VG (LD, (1.25)
540, 2y

(3) When No+ 1 < || < N — 1, we have

(N—laD(Ng—2+0)

10 fI> S Y340~ VM, (1.26)

Remark 1.4 In fact, compared with the results in [5], the main results obtained in this man-
uscript show that:

e The smallness of ||w¢ foll 1 and [|(Eo, Bo)|[;1 can be replaced by the weaker assumption
that ||(Eo, Bo)||i.1ﬂ + ||f0||§ﬁ (5 <s < 3)is small.

e The minimal regularity index 14 is reduced into N = 7 for s € (%, 1] and N = 6 for

3

NS (1, j)

e The restriction on ¥ = % isrelaxedto 0 < ¥ < % — %, o € (%, %) for No > 4 and
0<ﬁ§%—%,ge(l,%)forN0:3.

e The time decay rates of the higher-order spatial derivatives of solutions are obtained.

Let’s review some former results on the construction of global smooth solutions to the Vlasov—
Maxwell-Boltzmann system (1.1) near Maxwellians. Guo in [9] firstly constructed periodic
classical solutions near Maxwellian for the (non-relativistic) two-species Vlasov—Maxwell—
Boltzmann system for hard sphere, which was extended to the whole space ]Rfc by Strain
in [18]. The large-time behavior of classical solutions to the Vlasov—Maxwell-Boltzmann
system for hard sphere in the whole space was studied by Duan-Strain [6]. Recently, Duan-
Liu-Yang-Zhao in [5] deal with the Vlasov—Maxwell-Boltzmann system for non-cutoff soft
potentials in the whole space Ri.

As pointed out in [5], to overcome the mathematical difficulties, which are produced by the
velocity-growth of the nonlinear term with the velocity-growth rate |v| and the regularity-loss
of the electromagnetic field, the main arguments used in [5] are as follows:

e They introduce the exponential time-velocity weight wg (z, v) to generate the extra dis-
sipation corresponding to the last term in the energy dissipation rate functional ’[DNJ (t);

e Motivated by the argument developed in [13] to deduce the decay property of solutions to
nonlinear equations of regularity-loss type, a time-weighted energy estimate is designed
to close the analysis, which implies that although the L?-norm of terms with the highest
order derivative with respect to x of the solutions of the Vlasov—Maxwell-Boltamann
system may can only be bounded by some function of # which increases as time evolves,
the L?-norm of terms with lower order derivatives with respect to x still enjoy some
decay rates.

Based on the above arguments and combining the decay of solutions to the corresponding
linearized system with the Duhamel principle, Duan—Liu—Yang—Zhao [5] can indeed close
the analysis provided that the regularity index imposed on the initial perturbation is 14, i.e.
N > 14 and certain norms of the initial perturbation, especially || wy fol 71 and || (Eo, Bo)ll 1,
are assumed to be sufficiently small, meanwhile the choice of ¥ = % is critical in their proof.
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1066 Y. Fan, Y. Lei

Inspired by the work [11], the main purpose of our present manuscript is trying to study
such a problem by a different method, which does not rely on the decay analysis of the
corresponding linearized system and the Duhamel principle.

Now we sketch the main ideas to deduce our main results:

e As in [5], we apply the exponential time-velocity weight wy (¢, v), which can deduce
the extra dissipation (1 + £)~1=7 || (v)2 wy (e, B35 {1 — P} f12, to control the term

| E|| o ||(v)%wg(oz, ,3)8;’{1 - P}f||2. The key point of the above argument rests with
the fact that the time decay rates of || E|| L~ is greater than 1 4 . Unlike the techniques
to obtain the time decay of ||E| z~ in [5], which heavily rely on linear analysis and
Duhamel principle, to deduce such a result, we hope that the following estimates

d
SO + D () <0, 0=k =< No—2, (1.27)
and 4
TGO+ Dy (S D IVEI, k=0,1, (1.28)

lae|=No

holdforO <t < T.

e In the proof of (1.27), the terms like (V¥ (v- EP f), VX f) and (V¥(v x B-V,Pf), VX f)
ask us to use the interpolation techniques between negative Sobolev norms i.e.
IA=€(f, E, B)|| and positive Sobolev norms i.e. VK — P} f| or ||Vk+1(Pf, E, B)|,
and when we deal with the terms such as (V¥ (v x BV, {I — P}f), VK{I — P} f), even
we have to apply the interpolation techniques with respect to velocity derivatives. In a
word, the terms including electric—-magnetic field (E,B) directly cause us to use the above
techniques, which is mainly different from what Guo in [11] used to get the estimates
like (1.27) with respect to Boltzmann equation (1.28) can be obtained in a similar way.

e With the help of the interpolation techniques between negative or the higher order Sobolev
norms and corresponding dissipation functions introduced by [11], we deduce from (1.27)
and (1.28) the time decay of 51@0 (¢) and gzlilo,z (¢). We notice that || E'|| .~ can be dominated
by 5,’;0 (t) fork = 0, 1, 2. Therefore, combing the time decay rates of || E|| .~ and 51{10,/& ()
with other energy estimates, we can then close the a priori assumption given in (3.1) and
then the global solvability result follows immediately from the continuation argument. It
is worth pointing out that (1.27) and (1.28) play an essential role in the proof of Theorem
1.1.

The rest of this paper is organized as follows. In Sect. 2, we list some basic lemmas for
the later proof. Section 3 is devoted to deducing the desired energy estimates for the energy
functionals and the proofs of Theorems 1.1 and 1.3 will be given in the end of Sect. 3. For
brevity, the detail proofs of some lemmas in Sect. 3 will be given in the Appendix.

2 Preliminary

In this section, we will cite some fundamental results for later use. The first lemma is con-
cerned with the estimates of the linear operator L.

Lemma 2.1 (cf.[3,5]) (i) It holds that

(Lg, ) = I —Plgll. Q.1
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(ii)Let L e R, L >0,0 <5 <1and -3 <y < —2s, it holds that

> (wiogLg, dpg) 2 lwedpglly, — Cligl?, 22)
IBI=N e

The second and third lemma concern the estimates on the nonlinear collision operator I".

Lemma 2.2 (cf.[3,5]) Forall) < s < 1, max{—3, —% —2s} <y <-25x1>0,>0
and for some % > 0, then one has

(BT (£, 8), wi (e, B)OGA)|
S Z[ w051

+ min“wz (v, ﬁ)ag;

2

%3
8132 8

an o
+ |ogze /Jwg(a,ﬂ)aﬂ]f‘[)]

s+y/2

o2 o2 o
2 98,8 19,8 12 “we(a’ﬂ)aﬂh‘l)
v/2

oo
a+n7 952
e Bﬁz g

2 \wua, o
L

we @, ﬁ)aﬂh‘

y/2+1/2 y/2+1/2

’wg(oz Bagh| |

+>a+n? ‘ g

—20 az
+3 40" \ LR

/2 +1 /2+s

o Jwete prag],

s
y/2+1

(2.3)
where the summation Y is taken over a1 + a2 < « and B1 + B2 < B. Furthermore, from

[31],

(s mIS{ifl, Iglo+gle | fl+min{iflzlelz, o lelialfle ikl
(2.4)

Lemma 2.3 (cf. [19]) Let ¢ >0, y > —3withy +2s > —5 ands S [2, 1), it holds that
lwel(f, Pz S lwefl32 wefl3, (2.5)
y/2+s y/2+s

The following lemma concerns the trillion estimates on the nonlinear term I"(f, f).

Lemma 2.4 For all % <s <1, max{ — 3, —% — 2s} <y < —2s, and assume £ > N,
0<v < %, one has the following estimates:

D 1@ T ). T =PLS)| S E32 5, (ODN (), (2:6)
le|<N
(W3O, 0T (f. ) A=PYf)| S AL +0) 2 (ke npsa®)} Do)
+EN NO(t)DN (@), 2.7)
> (Wi 03T (S, ). f)| S A+ 7 €k 1onosa®} D e @)
O<la|<No
+EN, No(t)DN (1), (2.8)

@ Springer



1068 Y. Fan, Y. Lei

and

> |(wke pagrcs . ogn-Pif)| S A+ T e nyaa®) Do)
\G\T/\S?IEINO.

+EN N (DN (D). 2.9)
Proof For brevity, we only prove (4.3),
| (3“T(f, f), we (e, 0)*0% f) |
S /R3 >, [Iwz(a, O)aouf|L3+w2 0% |, + |a‘”2f|L§+w2 |wg(a,0)8°‘1f}D]
x Jwe (@, 0)9% £ , dx
+/ min‘|wz(05,0)8“‘f|L2|8°‘2f’L2 ,
]R3 s+y/2

x [we(a, 0)0% 1, dx

+/RBZ

Ao (%) ‘ o] o
+/R3Z‘W*3 £\, lwete, 002 f’Li/ZH/Q]wg(a,O)a flp dx

v/2+1/2

sl 0|

Ao (v)
e (1+07 392 f

lwe (e, 008 f],2 |we(e, 0)0% f], dx
L2 v/2

-9 e o ’ o o
+/]R3 Z(1+z) "uma fL2|w€(O"0)a f|L5/2+1|w5(a,0)3 f|Li/z+xdx

-2 2 o) ‘ oy o
—i—/]RSZ(l—i-t) ‘wzxa fL2|wg(a,O)8 f|L$//2+l|wg(ot,O)8 f|L5/z+ldx

6
ZRi,
i=1

(2.10)
where we should notice the summation > is taken over o + o < «. We only prove the
last term on right hand of (2.10) since the estimates for the other terms on the right hand of
(2.10) are more simple than the last term. Since y < —2s and 1/2 < s < 1, we see that
y + 2 < 1. Therefore,

A+ 0~ @) 2 g (o, BYIFIT = PYfI* S D e (). (2.11)
When oy = o with |o| > Ny + 1, weuse L2 — L™ — L2,
—20 e o o
L0 w001z e, 00 ]2 d
—29y,,8
< A+ 0727100 fl welet, 09 Fllgyz w09 f ] 0 @12
13 1/2
S A+077 {Enpe-nps2®} Dy e (o).
When No + 1 < |aa| < |o| — 1 with || > Ny + 2, weuse L3 — L® — L2,
/ 1+~ ’M&a‘vf‘ |weer, 000 f| 2 |wele, 000 |2 dx
R3 L? ¥/2+1 y/2+1
S A+l f 1 wel, OVO* £l 2 wee, 008 f ]2 2.13)
y/2+1 y/2+1

1-30 12
S U407 {Engrnp2®) Dy e(0).
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Collecting the above estimates yields Rg < (1 + Z)%{5N0,4_N0+2(t)}]/ZDNVZ(I)

+ {ENo, N (D2 Dy 4 ().
For other terms R; ~ Rs, noticing that 0 < ¥ < %, we can obtain easily by the similar
way as Re

5

1-39 1/2
SRS U+1) 7 {Ek 1nys2 @} D t) + EN v (D).
i=1

Collecting the above estimates gives (4.3) for the case No + 1 < |o| < N. While for the case
la| < No, (4.3) can be obtained in a similar way. Thus we have completed the proof of this
lemma. O

In what follows, we will collect the analytic tools which will be used in this paper. The
Sobolev interpolation among the spatial regularity is

Lemma 2.5 (cf. [21]) Let2 < p < oo and k, £, m € R; then we have

IV Fllee S IVEFISNV™ £1150 (2.14)
where 0 < 0 < 1 and ¢ satisfy
l—fz(l—é)ojL(l—@)(l—a). 2.15)
p 3 \2 3 2 3
Also we have that
IV Fllzse S UVEFIS V™ £1,50 (2.16)
where 0 < 0 < 1 and ¢ satisfy
—fz(l—f)(ﬂ(l—ﬁ)(l—m, 2.17)
3-\2 3 2 3

here we require £ <k + 1 andm > k + 2.
In this paper, we should estimate ||A™¢ f||, we need the following L” inequality for A~¢.

Lemma 2.6 (cf. [11,17))Let0 <o <3, 1< p <q < 00, ;+9 = % then

IATC fliLe SN fllee- (2.18)

In many places, we will use Minkowski’s integral inequality to interchange the orders of
integration over x and v.

Lemma 2.7 (cf. [21]) For 1 < p < g < 0o, we have

1 lzere <1 Nppps (2.19)

3 The Proofs of Our Main Results

This section is devoted to proving our main results based on the continuation argument. For
this purpose, suppose that the Cauchy problem (1.4) and (1.5) admits a unique local solution
f(t, x,v) defined on the time interval 0 < ¢ < T for some 0 < T < oo and the solution
f(t, x, v) satisfies the a priori assumption

X(t) = sup [ENO,ZO-H*(T) +Ev(@ +ENv—1i (D) + (1 + T)_H-%EN,Z(T)] <M, 3.1

0<t<t
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where the parameters Ny, N, [, [y, and [* are given in Theorem 1.1 and M is a sufficiently
small positive constant. Then use the continuation argument to extend such a solution step by
step to a global one, one only need to deduce certain uniform-in-time energy type estimates
on f (¢, x, v) such that the a priori assumption (3.1) can be closed.

For this purpose, we first deduce the temporal decay of the energy functional 5';,0 (t) in
the following lemma.

Lemma 3.1 Let No and N satisfy (1.21), n > $No — 3, and take k = 0,1,2,..., No — 2,
then one has

d
SO T DY) =0, 01 =T (3.2)

provided that

(Hy) max[ Sup ENgn (), sup En—1,n—1(T), sup Ep,, N0+l’(77)]

0<t<T 0<t<T 0<t<T

is sufficiently small.

Furthermore, as a consequence of (3.2), we can get that

SNBSS max{ sup Ey sz (D), sup 5N0+k+g(z)] (14 1)~ k+o) (3.3)

0<t<t 0<t<t
holds for0 <t <T.

Proof Under the smallness assumption (H7), one can deduce that

d
ZrEN O + D, () <0,

which is a immediately consequence of Lemma 4.1 and Lemma 4.2 whose proofs are post-
poned to the next section for simplicity, where we used the fact that 77 of Lemma 4.1 is less
orequal to N — 1.

To get (3.3), for the macroscopic component P f (¢, x, v) and the electromagnetic field
[E(t, x), B(t, x)] one has by Lemma 2.5 that

HVk(Pf B)H Hka(Pf B) k+g+1 HA °(Pf, B)” k+@+1
and
HVNO(E B)H HVNO g, BT [wotke g, gy TR
while for the microscopic component {I — P} f (¢, x, v), employing the Holder inequality
gives
kto 1
25) (k-+0)
D L Y I L L O T e el i
k<la|=No
FrorT

=l =Py |

Y

Thus, we have
1

. ki-gil kto+1
£k (1) < {D (t)} max { sup Ey v (0. SUD ENyikeo (D) ,
0<t<t 0<t<t
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which combing with (3.2) yields that

s N
4 g (t) + {max { sup & 2 (1), sup & (1) {5k (;)}Hk“’ <0
dr o OSTI;t NU!N()*% ’ogrgt Noite No -

Solving the above inequality directly gives

Ex, @ SmaX[ Sup €y rzz (1), sup 5N0+k+g(r)} (141~ "0,
’ Y

0<t<t O<t=<t

This completes the proof of Lemma 3.1. O

Lemma 3.2 Let £ > Ny, n > %No — % and suppose that

(H») max[ sup Eng4n(T), sup ENO,g(r)] is sufficiently small

0<t<t O<t=<t

with Tbeing given in Lemma 3.1,

d k k 2 ! 2
EENO,z<r>+DNU,g<z>5HZN 16| iz l;k | 0.8
a|=No <l|la'|=k—1,
lee]+[B]=No (3.4)

x| @)= et —of, o+ e - P}f”2

forany 0 <t < T, where k = 0,1, ..., No — 3. Furthermore, based on (3.4), if we set
loo=lo1 = lox+ 1+ 21 =lo sy and log + P22 > Ny for2 <k < No -3,
we can deduce

gk NORP (O +oyTket i =0,1,...k, (3.5)

No,l()JH»%yzs
while for ¢ € [1,3/2),

k 1—
£ s oz () S X O 40!, (3.6)

2y

Proof Since the proof of (3.4) is nearly same to (3.2), we only point out the main difference
between the proof of (3.4) and (3.2). For instance, when |a| = Ny, one has

(v x 34 BO*~¢ V,{I — P} f, we(a, 0)29%{I — P} f)
S IVBIE e lwe (e, 0004V, (T — P} £ ()25 + e|we (o, BT — P} £

(3.7)
which will be included on the right hand side of (3.4) for k > 2.
For k = 0, 1, multiplying (3.4) with £ = [y + %}/zsi by (1 + p)kte—i+e gives
d k+o—i+e ok k+o—i+eyk
" [(1 +1) Epinerrzz O] A+ Dt 12 ® s

5 z (1+t)k+Q—i+E||a(1E”2+(1+t)/(+g—i—1+€g//i/0 lOk+L2s[(t)v
la|=No e
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where € is taken as a sufficiently small positive constant. When o € (1/2, 1), we take
¢ =lox + 2D in (3.4), it holds that

d .k

EgNo lox +(y+2\)(k+l) ®H+D o.do. +(y+2\)(k+l) ® s Z ||aaE||2- 3.9

la|=No

Using the relation between the energy functional 8]@0’ ¢(t) and its dissipation rate D];vo, (D),
the proper linear combination of (3.8) and (3.9) yields

k
d
EZ[C Ay TOTTEL gz O F Con€y RS (r)]

No,lo,
k
+(Z(1 +nfter I+GD]1(V o 2 ) + +(V+2S)(k+l)(t)) (3.10)
D A+ E | 4+ (1 + nf e VR @ £ E, B
lee|=No

Lemma 3.1 tells us that

D A+ E|P 4 (14 e VE® S E, B P S X (01 + 07

lee|=No
(3.11)

Plugging (3.11) into (3.10) and taking the time integration, it follows that
Z(l + 1)kte- z+egk +%2“'i(t) + 51’;0 I o 2D ()
i3 e Y

t
—I—/O (;(1 + t)k+Q t+eDk +y+2x () +D +(V+2‘)<H,) (‘L’))d‘[ < XA+

(3.12)
Using this, it follows that

oo perg, O XA+ —k=e+  i_0.1.... .k 3.13)

When ¢ € [1, 3/2), multiplying (3.4) with £ = lo ; + %ﬁ"“) by (1 + )2~ 7€ gives

d
“ o—l+eck
o [(1 +1) SN "

—l4€mk
+(y+2§)y(k+1) (I)] + A+ GDNOJOYPL(HZ;);HI) (1) i
2 Q0T TYO B + A+ 00 EL e (O
lee|=No v

we take £ = I + Y222 in (3.4), it holds that

d

0t N 2052 W+D (e (O % >IYEIR. (315

lee|=No
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As in the case o € (%, 1), the proper linear combination of (3.8), (3.14) and (3.14) yields

+
d k+o—i+e€ ck X
a g(; [C (141 & +y2sl.(t) + Ck+26/\’0,lo,k+%)y("+2> ()

No,lo,
k+1
+(Z(1+z)k+g z+eD’;V o +y+2£ )+ D +(y+25)(,<+2) (t)) (3.16)
> A+ O E|P + (1 4+ ot vE® L E, B
lee|=No

By the same way as (3.5), it follows that

k+1
2D TOTEL o OFEL i ©)

 [k+1
k k
+/0 (iz(}(l etk gz D+ D o (‘L'))d‘[ < X1+~

(3.17)
Combining (3.12) and (3.17) yields (3.5) and (3.6).
When k > 2, we letly o = lp,1 = £, by using the principle of mathematical induction, we
can get that

51"% stz (DS X (O +o7ket o e (1/2,3/2)  i=0,1,...,k (3.18)
»L0, 2y

especially, when o € [1, 3/2),

k 1—
gNo,lo,k+(”2§>V("+” O SXB(A+1)7°, (3.19)

231

where lp x + 1 + = lp k—1. This completes the proof of Lemma 3.2. ]

Bases on the time decay estimates on 51@0 (¢) and 5]@0’ (1), and suppose max {SuP05ng
ENo.No (1), SUpo<, <7 EN (t)} is sufficiently small, we will have the following three lemmas
for En (1), En (), En—1,(t) and E'NOJOH* () respectively:

Lemma 3.3 Let No, N and ¥ satisfy (1.21) and (1.10) respectively, under the assumptions
of Lemma 3.1 andl > N, ly > N — Ng + % — ly;s, we can deduce that

d $
N O FDNO S g D@ + En (OEN 1, (D) (3.20)

holds forall 0 <t <T.
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Proof First of all, it is straightforward to establish the energy identities

1d o o
s 2 (lrP+leEnlP)+ X (wotrey)
Not+1<|a|<N No+1<|a|<N
= > ((BEwr) )= X (0" @E+vx B)-Vaf). o)
No+1<|a|<N No+1<|e|<N
J1 J2
+ > (T 0. (3.21)
No+1<|a|<N
J3

For the 0% derivative term related to (E, B) with No + 1 < |a| < N, i.e., the estimates
on J; and J,, one has

IS HEN e ()20 £ [y 2a% £
+ > 9ME] e [ Pe e f] s [ )20 F

I=]ai|=No—1
+ 2 [ EN @ 2omm f] ) 207 1 |
los[=No 3.22)

X E | I A

leer [>=No+1,01 #a

+ Joe] | =E g o,
S(IElL> + |VZE| yng-2) Dna(t) + En(DEN, 1, (1) + D (0).

For J,, due to ((E +v x B) - 9%V, f, 9% f) = 0, we can deduce by employing the same
argument to deal with J; that

D S| VAE, B)|| g2 Dna(t) + En(DEN, 1, (1) + Dy (1).

Here we choose [o > N — Ny + % — IV;S and N < 2Nj. It follows from Lemma 2.2 that
J3 S (En() +e)Dn(1).
Plugging the estimates of J1, J,, J3 into (3.21) yields

d
72 (e nlP)+ X la-psl,
No+1=<|a|=N No+1=|a|=N
S (1EN> + | V2(E, B)| jng-2) Dn.i(t) + EnDEY, 1, () + En (1) + &)Dy (1),
(3.23)
which combining with (3.2) and (4.35) give the proof of (3.20) under the assumptions (1.10).
m}

Lemma 3.4 Let Ny, N and v satisfy (1.21) and (1.10) respectively,, we can deduce that

d
JLENID) + Dy () £ 1+ 0 2 e v ®) P Dva ) + > 19 ENllIkb0° £
lo|=N
(3.24)
holds forall 0 <t <T.
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Proof The proof of this lemma is divided into two steps. The first step is to deduce the
desired energy type estimates on the derivatives of f (¢, x, v) with respect to the x-variable
only. For this purpose, the standard energy estimate on % f with 1 < |a| < N weighted by
the time-velocity dependent function w; (o, 0) = wy (e, 0)(¢, v) gives

d o o Uq «
%?.SN it 02 f“2+15|az@ Joner 0% £, + e w0977
S X lerl+ X leEl e s+ X | (09 - v w0007 f)|
1<Ial<N 1<Ial<N 1<lal<N
Ja
+ > )(a“[(E+ux B)-va],wlz(a,O)Bo‘f)‘-i— > ((a“r(f, f),w%(a,O)a“f)(.
1<|a|<N 1<|e|<N
Js Jo

(3.25)
As to the estimates on Jy, Js, and Jg, we can deduce by following exactly the argument used
above to control Ji, J, and J3 that

Ja+Js SA+D"7 (IEl = + | VE(E, B)| yng—2) Dni(t) + EnDEN, 1, (1) + Dy (D),
(3.26)

and using Lemma 2.2 gives

1-390 1/2
Jo S (L4077 E 1-ngsa POy + EN2 3 (VDN (1), (3.27)
Here we choose that o > [ + % - ]V;Y — Ng and N < 2N in the estimates on the term Jy
and Js . Collecting the above estimates gives the desired weighted energy type estimates on
the derivatives of f (¢, x, v) with respect to the x-variables only as follows

d " vq
w0 w0 F 1P+ D (e 0 £ 117+ ey 1) P (e, 009 £
dt 1+t
I<|a|<N I<la|=N
< D0 IR+ D IBYENM £l + EN y, (0D (1)
I<|a|=N I<la|=N

1-39

: gli/é%l—NO_o_z([)DN,l(l)-
(3.28)

Next, by applying the microscopic projection {I — P} to the first equation of (1.4), we can

get that

+ L+ (I(E, Bl + IVE(E, B)ll yyvo-2)Dn i () +(1 + 1)

WI—-P)f+v-Vi(I-P}f— E-vu'?qi + Lf ={1-Plg+P@-V,f) —v-V,Pf.
(3.29)

From (3.29) , one has the weighted energy estimate on {I — P} f

d q
J 100, 0T =P} £ + [lwi 0, 0){T — P}f||%+mn () 2wi (0, 0){1 - P} £
SII=PYfIS + IEIP + 1V £ 13 + EV ODN (1) + (1 + 0P [(E, B)[| 1D (1)

(3.30)
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By the similar way, for the weighted energy estimate on {I — P}Bg f with |a|+|B8] < N and
|B] > 1, we have

d N
2.0 20wl HOFI=PL P +x D [lwile, I PG,

m=1 |Bl=m, la|+|BI=N,
lae|+|BI=N [B1=1
q 1/2 2
+ m”(v) wi (e, BIG{L —PLf|| ]
S D lwie, 09I =PYfI5 + D, (IVLPFI> + 10%EN)
loe|<N le|<N—1

+ A+ 0" (E, Bl + IVE(E, B)ll yno-—2)D 1(t)

1/2 1=30 172
FE N ODNI) + L+ 1) 2 E% 0 (ODw (o).
(3.3D
Here we used the fact that ((v X B) - 9V, {1~ P} f, w}_ 4,051 — P} f) — 0. In addition,
the estimate on the term (Bg (v - {I-P}f), Bg‘{l — P} f) can be seen [5], that is why we

restrict % < s < 1. The above other estimates are similar as (3.28), we omit it. Therefore, a
proper linear combination of (4.35), (3.28), (3.30) and (3.31) implies (3.24). ]

Similar with Lemma 3.4, we also have

Lemma 3.5 It holds that

d
TENLIO) + D110 S Eyy OO+ > [E| [kl ] (3.32)
la|=N—1

forall0 <t <T.
The following lemma is concerned with the weighted energy estimates on £ No,e ().

Lemma 3.6 Forany £ with € = o +1* with * = I' + 252 4y (% - %) (No — 4)

with I being given in Lemma 4.1, if the assumptions of Lemma 3.1 hold, we have

d - _
B+ Do) S D elldEN. (3.33)
la|=No
Furthermore,
t
sup Eng (1) < Y02+8/ IVME|ds. (3.34)
OS‘[St 0

Proof From the completely same procedure to obtain the energy inequality (3.24) for Ey (),
we notice the derivatives of the electromagnetic field of order up to Ny decays in time, and use
the Cauchy inequality, the weighted estimate on the highest order Ny for the term E - vu'/2
can be dominated by

D EYE-vp' P wi@ 009 f) S D (l%EN* + Celln’d® £1),

lee]=No la|=No
it follows that J
o 2
EsNo,w)wx,e(r)s»sl .ZN 8% E||°. (3.35)
a|=No
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The proper linear combination of (5.1) ,(5.6), (5.8) and (3.35) gives (3.33), therefore (3.34)
follows by the time integration of (3.33). This completes the proof of Lemma 3.6. O

Now we are ready to obtain the closed estimates on Ey (¢) and Ey ; (¢) of the time-weighted
energy norm X (¢) in the following:

Lemma 3.7 It holds that

_liq ! >
sup [SN(S)—i-(l—I—s) : gN,I(r)]Jr/O Dy(s)ds < YE. (3.36)

0<s<t

Proof Multiplying (3.20) by (1 4 1)™€° gives

%{(1 + 0 VEND} + o1+ 07 TEN @) + (1 + D) TODy (1)

s (3.37)
S Tanmars Dwi 0 + A+ 07 ENOE R, 1, ().
Multiplying (3.24) by (1 4 1)~(1+€)/2 yields that
%{a 0 e+ L0 e 00+ (1075 Dy (1)
S+ t)*ﬁfw(t)s}vo,,o(z) A+ 0" YV EVY £ (3.38)

_cot! 11—
SU+07 7 ENDEN ;O + L+ DT OIVVE + VN 2.

The proper linear combination of (3.20), (3.37) and (3.38) and taking the time integration
yield

e t
Ex(t) + (1 + 0~ 5 En () +/ [(1 457179y (s5) + D ()} ds
0
t €0+3 co+1
+/ {(1+s)*°T”5N,,(s)+(1+s)*%DN,,(s)}ds < ¥R
0

Here we used the fact that if o € (%, 1], we have taken Iy = lp,; = lp 0 such that
ENgte ) = ENgio, ) S (L +D7172X (@),
while for the case of ¢ € (1, 3), we have taken [y = loo such that
ENpte D) S ERo 1o @ S (L +D7OX ().
This completes the proof of Lemma 3.7. O

3.1 The Proof of Theorem 1.1

Recall X(t)-norm, combining Lemma 3.6 with Lemma 3.7 yields that
X(1) S Y3

The global existence follows further from the local existence and the continuity argument in
the usual way. This completes the proof of Theorem 1.1.
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3.2 The Proof of Theorem 1.3

Based on Theorem 1.1, it follows from Lemma 3.1 that
Eny SYgA 4+ %0 k=0,1,2,....Ng—2
which gives (1.23). From Lemma 3.2, let 0 < i < k < Ny — 3 be an integer, it holds that
ek (O SYgA+nTe =01,k

No,lo_k-k%yz:
Furthermore, when o € [1, 3/2),

k ( 2 l—g
. HSYy(41) ¢,
Noylo,k+7<y+2‘2)y(k+l) 0

(1.24) and (1.25) follow from the above two inequalities. To prove (1.26), by using the
interpolation method, when Ng + 1 < |a| < N — 1, combining the time decay of INACHT
and the bound of |V || gives

o 2 N la|=Ng N N—|o| 5 _ (N—le)(Ng—2+0)
19 £1I7 SHVEfIN=No VT fIIV=Ro < Yy (1 +1) N=No

Thus we have completed the proof of Theorem 1.3.
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Appendix 1: The Proof of (3.2)

To obtain the temporal decay estimates on the energy functional £ ’,ﬁ,o (t), we need the following
two lemmas:

Lemma 4.1 Let Ny > 3 and % <o < % then there exist positive constants ' and m which
depend only on Ny, s, and y such that the following estimates hold:

(1) Fork =0,1, ..., No — 2, it holds that
d
E(IIV"fIIZ + IVKE, B)|H) + VI =P} 13,

< max {Emm (1), Eng—1,Ng—142 (1)}

k+1 2 k 2 k+1 22 @D
X(IIV (E,B)I”+ IV{I=P}fllp +1IV f”D)

+e (IVHI=PLfIR + 1944 £13)

where 1 < j <k.
(2) If k = Ngo — 1, it holds that

d _ _ _
E(IIVNO LA + IV~ LE, B + IVV I - Py £13)

< max {5 1,1 0. Emn(0). Eng- 10100

x (IVV=NE, B2 + VNI = PY I, + VY7L £13) + el VYL r)13,.
4.2)
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(3) Fork = No > 3, if we take n > %No — %, one has

d
E(IIVNOfIIZ +IVV(E, B)|I?) + V(I - P} £|13,
< max {Enggn (1), Emam (1), Eng, No+1 (D)}

x (IVNT B2 4 VY72 = LIS + 1907 FIG + 1920 £ 1)

2
v Mo H )
+]ores],

4.3)

t+e [||VN°’IB||2 + |72 -

— 2045 0 6 No—2+0 1, s=1 I
Here m = max{zg+3 m,?)—l—wf)nﬂ} and !’ > max{j ‘7,7—}/}
where [ = max {f b, . 119} where I; will be specified in the proofs of Lemma 4.1.

Proof For the case k = 0, multiplying (1.4) by f and integrating the resulting identity with
respect to x and v over Ri X Rg, we have that

d
E(Ilfll2 +IE. BP) + L =PYfIIH S |- Ef. HI+ T HAL=PY)], 44
For the first term on the right hand of (4.4), we have

[(v-Ef, f)
SIw-Ef,PHI+ |- Ef.{T-P}f)

SIEN2 0 Fllzasa 1 Flzora + IEN s I0) ™ =T = PY fll a2
1) L= P} fll 22

SIENE 2z’ Fllzis + 1EN 26l (0) 2 I =Py fll 23 1T = P} £l

<IAS IV EI A} AU I I £l + IV E @) 51T = P £l
X =P}/

€134+ OUVLEIP + 1V fIlp) + eV f I + L= PLF1ID).

The other term can be estimated as follows

[(C(f. ) AT =PLf)]
SeMU=PH L + 1 f 12, 112 1P+ 012l Sz, 1P

S eMU=PL G + 115 1 F e S €T =PLAID + £ N7 IV F 11D

Collecting the above estimates gives

d
E(Ilfll2 +IE B+ I{T-P}fI} < & 34 (t)(IIV EI>+ Ve fID) +ellVe flI5
4.5)
which gives (4.1) with £k = 0.
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Fork = 1,2, ..., No—2, applying V¥ to (1.4), multiplying the resulting identity by VX f,
and then integrating the final result with respect to x and v over Ri X R%, we have that

i ([l [ ) + [ -

< |(VE@- BN VR )|+ (Ve 9. V)|

- - 4.6)

+’(Vku)xl?~va),ka)‘+’(Vkr(j;f),ka)‘

Iz Iy
By applying the macro-micro decomposition, one can deduce that
L< ‘(Vk(v CEf), Vka)‘ + ‘(Vk(v -EPf), VHI - P}f)‘
I 11>
+KvaEu—PVLWu—PUN. @.7)
I

Applying Lemma 2.5, 11 and I; » can be dominated by
i (,U/sf)’ Vk+l (Maf) H

LILG

213 2%+3 — ( 5f) 21<+3 Vk'H( gf) 2k+3

‘Vk-i-lE

<3 |wte
j 1

<k
% Hvk+1 (Maf)H

o 2 k+1 2 k+1 2
oo (|7 + |97 ) e o]

For I 3, it holds from the Cauchy inequality and Holder inequalities that

1_ y+2v y+2s

ha s |V EVTa-Pifw)
Jj<k

[V -pyrow

. . 5 |12 2
o Rt
Jj<k

1131

To deal with I; 3,1, when j = 0, we have from Lemma 2.5 that

k 1_y+2: 2
a5 (1Bl [v'a-Prro )

2
< (IIA‘QEII o R AT St ol B A e St )
Sikwﬂﬂw“ﬂ-ﬂwﬂ—“W)

Here 0 = z(kjrrlig) and ll — 17)/672x + y4£2.v — 2(1—y 324:v)(gk+l+g) + y+2v

@ Springer



Global Solutions and Time Decay of the Non-cutoff Vlasov... 1081

While for the case j # 0, we can deduce from Lemma 2.5 that

2
L%Li)

_yH+2s
1 2

J k=i —
hars Y (Hv E|  [va-rrrw)
1<j<k *

. y+2s lfaj
2 (IIA“’EH“"’ | a-Phfw)! =%
1<j<k
)/+2r i\ 2
x [V -pys )
—o0 |17 2y
< > (laeg] I—P)f(v
1<j<k
~ —A: 42 . aj 2
x (”Vk{I—P}f(v)ZZJ P =y oy ﬂ) )
0. y42s || 1—o; ~oaj(1=85)
<2 (||A’QEH1 Py VHI = P} £ (v)
1<j<k
k 2=y L \*
x | VH =Py ) )

s (7 [a-mr).

Here we can deduce from Lemma 2.5 that §; = ﬂfi; , o= Zk_22kj+1 , %23 “Bj+l;(1—

Bj) =1— Y12 Ifweseta;f; = 1 — 6;, then we can get that /p; = YE2 4 12725

-8,
)’+2s —y—25)(2k=2j+1)(k+1+0) T . T
+ (Zk 34D KT r0)—2k (=) and we take [ = max<j<x {lzj}.

Consequently

2 2 2 2
c k+1 k+1 k k+1
CEEARO] (Lot (8 oty M L T W R (L B

via—pys

#|va-rr).

For I3 on the right-hand side of (4.6), we can get
s> ((vaJB v, vk £, ka)‘

1<]<
-3 ‘(v X V/B . V,V*IP, V"f)‘
15j<k
I3

+ > ‘(v x VIB .V, Vi1 — P} f, Vka)’ (4.8)

1<j<k

I3

+ > ‘(v><VfB-Vka_j{I—P}f,Vk{I—P}f)’.

15j<k

33
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1082 Y. Fan, Y. Lei

Applying the same trick as the estimate on I 1, [3,1 and I3 » can be bounded by
& k+1p|? k1 42 k1 42
oo ([v4+18] [, ) we o],

For I3 3, when j =k,

_,_ Y
O T Sy o Tt
1-%—s k+1 k
<[ vv{I—P}f]Lsz Vi | v -pr| 4.9)
S R e e
Y
While forthecase 1 < j <k —1,
Bas 3 |9 v f{I-P}fH [V u-p]
1<j<
_2j— 1
< Y |aen|E [virip o vk |
1<j<k—1
) ”11]'
o3 Kl LS 3V KRR ORI B OF
2k—2j—1 2j+2043 1 . 1
< Z |A—¢B| & 17a ‘Vk-HB 2FFTFO) ‘V;nlﬁ viip —pyf|| "
1<j<k—1
my;j M1j(k*j’+g>
X | AL — Py p| T ‘V"{I—P}f D ) gk - Py £
i 1
< z ”Angszfk%lﬁr;) ’VkHB 2(k+1+g) ’Vm“—HVk’j{I—P}f iy (4.10)
1<j<k—1

myjk—j+o)B;
(myj+Dk+0)

Mg 2
X | AT — Py £ | T | ) 5 VL - P f
myj(k=j+0)(1-p;)

H l‘éjvk{l P}f”W H(U)%ZSV]‘{I_

x|t ok —py |
: 5 k12 k 2
Smax {&cemom 0.€_, @ (| V18] + |[Ha-prr|
v
. 2
te ”V {I—P}fH
D
Here we have used the fact that there exists a positive constant 8; € (0, 1) such that

2j4+20+3 mijtk—j+0)pB;

2k+1+0)  (mi; +Dk+o) Th=2
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holds for 1 < j < k — 1. A necessary and sufficient condition to guarantee the existence of
such a g is

2j+20+3 (k—j
Jj+20+ myjk—j+0) F1s2 l<j<k-1,
20k +1+0) (myj+ Dk+o)

2 B T A A, P
from which one can deduce that m;; > 2k +20k=2jk—k=2j0=0 5]4q

2ko+3k+207+30-2] forl <j=<k-1
Noticing that % <0< % it is easy to see that we can take

2k 20 -3 2k? 4 20k — 3k — 30
mp=_max mjj = + > 3 .
1<j<k-1 2043  20+3 2ko+3k+20°-+30-2

Consequently, k —j+1+m;; <k+m; = %g—igk—i-@ < 2é’—"'SNO—ZQ"'B

2053 = 2043 2043 With No > 4.

Moreover, since f3j and f4j satisfy szs Bij +i3j(1 —pj) =0and 42

2B+l (1-B)) = 1
with 0 < B; < 1 respectively, one can deduce that /3; = ngs — 2(}/1335_,.) and ly; =
VZZ‘Y — g:{zfﬁ_] %, from which we can see that /s i > I ; Where

8 4k +1+20—2j)(my; + 1)k + 0)
J

T (k+2+20)(k + 0 + 2kmy; + 2om1; — jmij)
Here we take f4 = max|<j<k—1 {f4j}.
Consequently,
I3 < max [g_k+m],l+m|(t)s gk,—%(t)’ 5_2’%_,_%(1‘)]
k+1p? k 2 K+ o2
o (T S Y e

+e (IVF =Py I3, + 1V £13)

By the same way as the estimate on /3, the term /> containing E on the right-hand side of
(4.6) can be bounded by

I, < max [g_k+m|,1+m1 ), gk,—%(tL 52%_"_%([)]

“ (HVHIEH2 + Hvk{l — P}f”j) + ||V"+‘f||%)

+e (IVF =Py I3, + 1V 713)
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1084 Y. Fan, Y. Lei

For the last term I4 on the right-hand side of (4.6), it follows that

Ly STV £V 1), VHI =Py f)|

J=k
<Z/ IV f Iz, VS + IV LIV f D
J=<k
+min {97 71,2197 £l ,|V’H’f|Lz|vff|L5H/2}}|{l—P}f|Ddx
4.11
<Z/ V7P £1,21957 £ (L= P) fIpdx @.11)
Jj<k
141
+Z/ 97 (1= P} £1,2V5 fIpl{L— P} flpdx
Jj<k
Iy
The first term /4,1 on the right-hand side of (4.11) can be estimated as follows:
Iy S IVPFllarel V7 fllpa 2 IV =P fllp
J=<k
SOV RAITOIVEIR AL A IV A VR =Ry fll . (412)
J=k

<Smax {Eny—1 (1), EL1O IV FID + eI VI =Py £115,.
From Lemma 2.5, we can obtain

2j+1 L k41
= —, m =
20k + 1) T 2j+1

<k+1<Ny—1.

When j < k — 1, the second term /4 > on the right-hand side of (4.11) can be bounded by

LS D IVIE=PY IV flla IV =P flip

Jj<k—1

< S -y vt -yt ||f||2(k+”IIV"“fIIZ(k“)IIV"{I—P}fIID
j<k—1

S S ML=y TE VM= Py f ) AR - By f o) O
j<k—1

2j+1

x | flp" ||V"+‘f||2“‘+“ IVKI =P} flip

<max{&
No—1,No—1—

fim,sl,lm] IV £ + el V= P £

. . 4.13)
Here X2 . g, +15;(1 — ,Bj) = 0. If we set 21, = 271 then we can get that /s; =

2(k+1)°
y+2s —y —2s +Zs —y=25)(k+1D)(j+1) 7. — . Ie .
+ B = + 2(k+l)(j+l) TEIEa)) and we take /s = max;<x [5;.
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When j =k,
L2 S D IVHE=P) fllz 2l fll g e IVF =P fllp
Jj=k
<SS IVHI =Py £ ) R IOIVRI P ) I A VA £ 1L IV - PY £l
Jj=k
< max [ENHNWF%@), 51,1@)} (IVEFL 13 + IVEE = PYFIR) + el VEE = P £,

Here 6 = 22(24__1) 7';25 -0 4 lg(1 — 0) = 0 from Lemma 2.5 which deduce that [ =

_ @Ck=D(y+2s)
5 .

Consequently,
Iy < max [6 maxtis Jg) () 51,1<r>] IVFELEIS, + IVHI =Py FI13,
Nofl,Noflf# ( )
+ | VK = P £ 115, 4.14)

Collecting the above estimate gives (4.1). When k = No — 1 > 2, (4.6) tells us that
d 2 2 2
& (vt e vt ml) + [ve-ta-ry]
o

N ‘(VNO—I(E -vf), vNO—lf)’ + ‘(VNo—l(E Vo f), VN0—1f)‘

4.15)
Is Ie
+ (V0w x BV ), V)[4 (VNI ), v )
I7 Iy
To estimate Is, due to
Is < '(E vl g VNO*lf)‘ + ’(VNO’IE f, VNO’lf)’
15,1 15,2
; ; 4.16
3 |(EaTe ) o
1<j<No—
Is3
From Lemma 2.5, using L — L? — L2 Soblev inequality implies that
_ _y+2:
I51 S 1E VY~ ) =57 | |
5 1[1-6
<Az oot vt va ELCIE B Mty
2
<€ e [ ) oot ]
~5N01N01’7(’)(HV E| 4 | VN ) e |Vt
where 6 = 72(1\2:219+Q) and [7 = —sz‘y + 717);9’25 = 71’*22‘? + —Z(No—l-gi)z(;—y—%)’

Iy SIVNTYEN £ )25 e |V £l
S &, 54t OIVITIE 42 VYL FIG,
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1086 Y. Fan, Y. Lei

Applying L® — L3 — L? Soblev inequality yields that

Isas D IV/EN eIV f o)y 2ot s vhort g

1<j<No—2

S DL MATCET VN E O N0 (o) Ty 2T f (o) 2
1<j<No—2

< [V fllp
S DT NATCE TN B G v Nt s 1B v N0 ) T B e
1<j<Np—2

S PG et Rl A 4 )
S DL IATCENT oy Ry v N f s e Mot
1<j<No—2

x |V £ o) T b v N

SE i O (VYT B+ VY71 ) el v f,
0—1,N0—l—7
' ' 4.17)
Here 0; = 1&5(::@14:@ and o; = 221\(/%5)/ by using Lemma 2.5. Meanwhile, we set «j; =

1 —6;and fgj satisfies

y +2s
2

B+l (1= =—F =5 +1,

it is easy to obtain that Is; = % + V’Ezs where 8; = Wm We take

[3 = maxj<j<ny—2 {lgj}.
Consequently,

] No—1 112 No—1 ¢2
Is 5 max [62,%% Oy 1_mstoiy (r)] (I~ B2 + 1Y £13)
+el VTl FIg, (4.18)
The third term /7 on the right-hand side of (4.15) can be estimated as follows:

I Sl x VY B v, £, VIOl ) (0 x VM2 B VLY, £, VN )|

I7.1 I72

+ > (WVE-VNTly, £ vt py) (@.19)
1<j<No—3

I73

17,1 and I7 > on the right-hand side of (4.19) can be bounded by
B+ B S [V )72 [ 90t vt |
D
(4.20)
<& 7, (D) HVNO_lBHZ +e HVNO_lfHZ
~ Tt D’
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I7 3 on the right-hand side of (4.19) can be bounded by

nis S ‘(v X VIiB.vN-1-iy py VNO‘lf)‘
1=/<No-3

+ 3 |(ex VBV - py v )|

1<j<No-3

_ 2 2 2
s ([vots] e [ore ) veveal,

MNI%MHNI' ﬁ
+ Z ”A—QB” 2Ng—1+0) ‘V o—1p 0 ‘Vv Iy No=l=iyy —py | "
1<j<No-3
n72j
x| v =i = ey T |yt |
o No—1 2 No—1 2 No—1 2
< oot (|70 8 o[ ) e HV 1,
2Ng—2j-5 S2it20H3 . T
+ Z ||A—QB|| Ng—1T0) ‘VNO—IB 2(No l+g> ‘szﬂrlvNo—l—j{I_P}f 21
1<j<No—
—l+0—))
”A eI —P}f ('"2,+1)<N0 T+o) ‘VN(] - P}f (’"21“)“"0 +o) ‘(U)VN()—lfH
<o (|9t s [t ) ol
2Ng—2j-5 2j+20+43 . ) L
£ AT Nt p T gyt py |
1<j<No-3
mj i A mpj(No—1+0-j)(1-B;)
X HA*Q{I_P}f (mp j+D)(No—T+0) (v)lgij()fl{ P}fH (mpj+D(Ng—1+0)
n12j(N071+Q*j)ﬁj R - . B
o 55N 1y | T | st g | ) ot )
S max (53’%+%(l‘), gN()*lerz,mzH(t)v gNofl,NoflfiITO(t)]
2 2 2
A S LA R A
(4.21)

Here we have used the fact that there exists a positive constant 8; € (0, 1) such that

2j+20+3 mzj(N()—l-i-Q—j)ﬂj
2(No—1+0) (maj +1)(No—1+0)

+B;j=2

holds for 1 < j < Np — 3. A necessary and sufficient condition to guarantee the existence
of such a g is

2j4+20+3 maj(No—1+0—j)
2(No—1+0) (m2; + D(No—1+0)

+1>2, 1=<j=No—3,
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from which one can deduce that m; > % holds for 1 < j < Ny — 3. Noticing that
é <o < % it is easy to see that we can take
2Ng—5-2j

2Ny 6
20+3

mpy = max ma; = — > max
1<j<k—1 2043 2043  1<j=k-1

S2E2No — 5.5 with No > 4.

Consequently, No — j +m2; < No+mp = e
LEB By 4 loj(1— B) = 0 and K52 B + D15 (1 —

_ y+2s y+2s
=5 T 0= and

Moreover, since fg j and 1A10 j satisfy
Bj) = 1 with 0 < B; < 1 respectively, one can deduce that /o
ile = VZZ‘Y — g:ﬁyﬁ_j, from which we can see that iloj > fgj where

g = (maj +1)(4No+20—2j —=7)
7T 2(No—14+0+ma @No—2+20— )’

Here we take ilO = Max|<j<Ny—3 {lﬂloj}‘ Consequently,
c No—1 2 No—1 2
Iy < max [6N071+m2,m2+1<r>, E oyl (t)] (Hv E| +]v fHD)

2
yNo—1 H .
eyt

Applying the same trick as I7 by replacing v x B with E, one can obtain

3 No—1 p? No—1 ¢||?
Is < max [5N071+m2,m2+1(t), SN(),NO[IVO(I)] (HV BH + ”V fHD)

2
yNo—1 H .
+e|voris]
For the last term I3 on the right hand side of (4.15), as (4.11), one has
Ig S IO (f, VN vN Ly (vt g ), v )
+ DV f, VN2 1) VNl )| 4 (D (VN2 £, v ), VIO )
D R [ XAZN A AR O N A R Y (4.22)

2<j<No-3
VO 2E = PLFI, + 1907 £ + el v £

S ENg—1,Ng—141 () (

Collecting the above estimates gives (4.2). Now we turn to the last case k = Ny > 3, we
have i
UV FI2 IV E, BYIP) + IV =PI,

< (V& up, V) |+ (Ve v ), 9 )|
(4.23)

Lo

Iy
+ ‘(VNO(U < BV, [), VNOf))+ ‘(VNOF(f, 2} VNOf)‘-
Iz

I
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For the first term Iy on the right hand of the above inequality,

Iy S I(E - vV £, VN ) 4 [(VE - vVt £ 9N fy | (VN E v f, vV )

Iy Iy Iy 3

+I(VVE - vf, VO 4 > (VVE vV £ v f))
2<j<Nop—2

Iy 4

Iy s

(4.24)
Iy,1 and Iy > can be bounded by

_Y_ _ _Y
Io1+190 S NE NIV £ )2 VN £l p+IVEN 3 IV £ o) "2 1 s IV £l

_ _ _ 7 Y _
SHATCEN v E N7 vNo £y v ™o (o) 2051120 v o £

5 - 2
<€ iy OUVNTLER 4 VN £113) + eI VY £,
No,No—~~
Here we can deduce that 6 = % from Lemma 2.5, and fll satisfies the followin,
2No—1+0) ! &
equation 110 + Y£2(1 — @) = —% — 5 + 1 which deduces that [;; = ¥+ — r+2=1 _
q 2 2 2 0
y+2s  2(No—1+0)(y+2s—1)
2 3420

Using L2 — L>® — L? gives
— _Y_
I3 SIVNTENIVF@) 25 e VY £l
SE 7 OV + 2|V £,

Applying the similar method as (4.17), the last term Ig 5 on the right-hand side of (4.24) can
be dominated by

A o
IsS > IVIElsIVY ™ £ )= 7 s v £lip
2<j<No—2
_ —0; — . _ _Y_ . _rY_ —o
S D MNATCENTE VN T E S VN p o) T f (o) T e
2<j<No—2
< VM £l
_ —0: _ . _ Jin: —B: _ )4 . .
<DL NATCE VN B v Nt p () | 1R N () 2 P
2<j=No-2
_r_ —:
< | f )y 2 v f
<DL NATCEN T f ()T T e oo ppylies ety v Mo g
2<j<No—2

s VN0~ gy T4 @i v o £

<€, i OUVNOTLE + VM7 IG) + e VY £,
071,N07177
‘ _ (4.25)
Here 0; = I\J,(:r_l;rfg and o = 2]2\/((}\7072_]# by using Lemma 2.5. Meanwhile, we set «;8; =

1 —6; and flzj satisfies

y +2s
2

2 14
-ﬂj+112j(1—,3j)=—§—s+1,
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1090 Y. Fan, Y. Lei

Y=l | ys 2(No—2—j)(No—1)

it is easy to obtain that flg_/ =—"125, 5— where 8; = AN D No=T10)" Here we

take ilz = Max2<;j<Ny—2 i12j~
For the most important term /g 4, if n > %No — %, we have from Lemma 2.5 that

No—1 1 No+n || = —L—s+1 % B L el
Iog S IV E T VAT 2T [ (0) 2 SR [ () 72 2TV ]2

x VY £lip

No—1 1 -2 1o N 1 fsoNo—1 ppy1— 1E2 N1 s
SV E T v T [ (o) v p ) T v @] M

Y o4l 2Ng—5 N
— 5= INo—2
x ()27 Mo=2 v £l
1 y+2s _ 3 ~ _ 3(1-w)
S VN B Nt | o) 2 VO 2072 o) v Mot g 2602

Y g1 2Np-5 N
—5—= IN)—2
x )"z ARz v £l
n_ 1 y42s _ P 7 _ 3d-a)
S VN E | VN0t | (v) T2 v £ 202 | ) 3w No =T 202
Y st s o N
—5—8 2Ny —2
x ()~ 275 M2 v £

_ n_ 1 y+2s _ 1 i _ 3d-a)
S VN E | VN | v) T2 VN f e (o) v N £ 2=

S R (e I ¥
X |[(v) "2 FIFNo=2 [V £lip

S max(Enpen®. £, OF (190 ER £ 19N ) 4 e 9 1,
’ 14

(4.26)
Here we require that % = nlﬁ which deduces that o = g(Nn‘gz) We set # s+
~ y . . ~ 1—%—5—%2‘?-0( y+2s 1—y—2s
l13(1 —a) = 1 — 5 — s which yields that /|13 = ———*— = 5 + =, =
y+2s | 30—y -29)(nt)
2 3n—2Nop+1

Consequently, one has
Iy < max [53,%,1%:(1), ENg4n (1), gNO_LNO_max(ill);flz.i13) (t)]
x (19" EIR 4+ 1907 £15) + el 90 £1,
For the second term /1 on the right-hand side of (4.23),

ms > ‘(v x VIB.v,vN-ipf, VN"f)’ + (v x V2B . v, V21— P}, VM0 f)

1<j<No s
I
+x VVTB. vV {I-P £, VY f) + (v x VB . V,(T—-P}f, VYO f)
I3 T4
+ D, xV/B-v,V 1P}y, vy
1<j<No-3

Iis

4.27)
By the similar way as (4.24), I11,1 can be bounded by

CENgrn VMBI + VML £12 4 V™ £112) + el VYO £113,.
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For the second term /11 2 and /11 3 on the right-hand side of (4.23),
Lia+ s S IV BV VAT = Py fll 200l (0) VY £

+ IVM2 B 6 Vo VHT = PY £l 23 () VY £
SIVNTI BNV VHI = Py f [l 24 1 (0) VY £

- 1/2 1/2
SIVNT BIIVEVIE = Py IV = PYAL S )V O £
12 No=2ds
- — 2 —I+s
AL 1B||||v2v2{1—P}fllLéH; IA=em = P10
x VeI - P}fnz;N;,l”“ )V £
12 No—24s
- — 2(Ng—T+s
SIVNT BIIVEVHI = Py 1A= P F 1S
P =B
- —1+s Y _ S
U = BT e - 1
x ()N £ P w)hs v £ P
S €y yo s OUVSITHI=PILIG + VY0 115} + 2 VOB
' (4.28)
Here we can get /14 = Y42 _2}(/:12,;) andfys = 232 gakﬂ ? from 242 . 8714 (1— ) = 0

and %25 -B+ f15(1 — B) = 1. Moreover we require that m + B = 1 which yields

_ 2(Ng—1+9)
that 8 = N335 -

As the estimate on Ig 4, we have

Ina < HVN0+"B T | gt g | 1y, =P}/l r OfH
S ||VN°*"B||W VB YV, 1 Pl )9 |
< || ]vNO ™ - P}f\I};’"ZZ

m3

< VAL =P} f 1L 1) VYO £

HVN0+"B T || o1 || AT P}f||[1_;"’L32
T (1 )EN g)Z )
_ (1+m3) (N 2+ ) N 2 +m —2+0 N
TS T R N B SV W (UM
1 n_
< HVNOJF”B I e AT P}fuljl"’;z
m3(Nog—3) . m3p(1+o0)
< lA=e—p TFm3)(Ng—2+0) ‘ whisyNo—=2¢1 _ p (ﬁms)‘(No 2+o)
[a~e- Py i W)y o2 -y |
m(1-p)(1+e) 1-8 B
Y _ O+m-(Nn—240) 7 - Y .
x “(v)7+SVNO 2{1 _ P}fH (l:rm;(No 2+0) ’(U)ZHVNOf” ”(v> 5+s VN()fH
HXLU

< max [st O Exmatm ©: £y | i (r)]
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x [HV’VO—IBH2 o A fHH1L2 ]
TR i

Here we need to ask + + #X;ﬁgm + B = 2 which deduces that m3 > Lmﬁ/r‘;riz;r%
2 2 A 2 2 2
wecangetllgj = % — 2151-4-72) and Iy = VZ s — VJI Yﬁ) from }/+ : ﬂ+ll9](1 -B)=0
2 A 2
and Y52 B+1(1— ) = 1. We can choose m3 suitably suchthat3+m3 < 3—}-@1)”%%.

While for the case 1 < j < Ny — 3, one has

mss X [V [veria—pir] fovs]
1<j<Np-3
2Ng—2j—5 _2j+2043 1
< > HA—@B”% ‘VNO_IB Ty ‘V”""JFIVNO‘f{I—P}f mait]
1<j<No-3
4
x [ ig—pyp |70 |y vt |
2No—2/-5 No—1 2(N0 1+g) maj+1 o Ny— ﬁ
< Z HA QB||2<N0 ito ||[yNo—lp v, vNo—ip — pyf| "
1<j<No—3
myj(i—1) myj (Not+e—J)
||A Q{I_P}f (m4j+l)(N0 1+0) ‘VN() l{I P}f (’”4J+1)(N0 1+0) ‘(U)VNO‘]C”
_ 1
§ Z HA QB” Z(NO 1+Q) ‘VNO lB 2(N0 1+Q) ‘Vm4/+lvN()—j{I_P}f myj+1
1<j<No—-3
40D ma Mo o-Di=4;)
x |[ATe{I—P}f m (v )IISJVN() I — P}fH g ¥DMN=T+0)

myj(No+e—i)B;
(m4j+|)(NO 1+Q)

g | Jwy

W {708+ o

x | Erevtotn—py s

N

max | & 1, E
[ No+m4,No+m4() No.No—

{7l [l

Here we have used the fact that there exist positive constants mg; and 8; € (0, 1) such that

2j+20+3 myj(No+o—j)Bj o . .
3 No—TF0) + (m4j’_+1)(N0_1+’Q) + B; = 2holds for 1 < j < Ny — 3. Similar to the way to

determine of m, it is sufficient to take

2 6 2Nog—5-2j
No — > max ———.
2045 204+5 1<j=No-3 2045

my = max myj =
1<j<No—3

Consequently, No— j+1+my4; < No+my4 = 3 with Ny > 4. Moreover, since

2g+5 NO 2@+

[1sj and lyo; satisty Y22 B; + I1g;(1 — Bj) = 0and g, +119,(1 —Bj) = 1with0 <

B; < 1 respectively, one can deduce that, l]g, = %25 2’(’1+2S and 119, = VJEZS ’2’;{2_3/3_3

from which we can see that [, 19 > 11 18j where
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(mgj +1)(4No+20—2j =)

Pi= aNe—1 ¥ o+ ma;@No+ 20— — 1)’

Here we take /19 = max|<;<ny—3 {i]g_/}.
Consequently, one has

1) <max [5No+n (1), ENg+maxims.ma}, No+maxims,my} (1), ENO Ngfmax(l"ls,in,ilg) (t)]
’ v
x {1920 B2 4 V=PI, + VYT I+ IVYfIR ) @D

2 2
el
HL2 D

+s (||V’V<>—119||2 + |74 2Py |
Applying the same trick as /71, we have

I1o < max [5N0+n ®), 5N0+max[m3,m4},N0+max{n13,m4](t), SNQ No_max{ils,f”,ilg) (t)]
’ Y
x VN B 4 VYR Ry I + IV I 4 VY1) @32)

2 2
TS ARl PP L W
+s[|| P+ |vra=pir] L+ V]

For the last term on the right-hand side of (4.23), by the similar way as (4.22), one has
12 S Eng ) {IVY = PLEIG + VY7 £ 4 19 f1 ]+ 01970 11
Thus collecting the above estimates gives (4.3). This completes the proof of Lemma 4.1. O
The next lemma is concerned with the macro dissipation Dy 4. (t) defined by
DN.mac(®) ~ IVaax, b, v + lay — a > + 1El -1 + Ve Bl gv-a-

Applying the argument of Lemma 3.2 in [15, p 3727] and Lemma 3.3 in [15, p 3731], we
easily have the following lemma:

Lemma 4.2 For the macro dissipation estimates on f(t, x, v), we have the following results:
(i) Fork =0,1,2..., No—2, there exists interactive energy functionals Gl}- (1) satisfying
k k 2 k1 2 k+2 -2
G S|V BB+ [V E B[+ |V
such that

Lo e on, s s
< Enp-r0(0) (Hvk+‘(E, B + Hvk“fo)) 8 L Y] MCE S
#[ora-n, + [ n)

ii) For k = No — 1, there exists an interactive energy functiona - satisfyin,
(ii) Fork = Ng — 1, th t teract gy functional G}~ (1) satisfying

G0 < [V e )| [V e p |+ [y e
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such that

2+ [, ¢ [ s e
< Enpo(D) (HVNO—I(E, B)H2 + HvNo—lfHZ) n HVNH{I - P}ij) (4.34)
svrta—mr ]+ [a—p]

(iii) As [4], there exists an interactive energy functional 85\}” () satisfying

grmy s > |9 E B

le|<N
such that
d in o 2
TEN O+ D mac®) D0 [0 =PH [} +EvODN (1) (4.35)
le|<N

holds for any t € [0, T].

Appendix 2: The Estimates in the Negative Space

To close the first part of the a priori assumption (3.1), we have the following lemma: the first
one is about the estimate of ||(f, E, B)(#)|l g—o-

Lemma 5.1 Under the assumptions stated above, we have for ¢ € (%, %) that

d
E(nA‘an2 +IATC(E, B)|I) + |A{I - P} f||3,

< (Goom)'? (HA%’%(E, B)H2 + HA%*%fHZ) (5.1)

3,51
2,max{ 5+ >

s e

Proof Wehave by taking Fourier transform of (1.4) withrespect to x, multiplying the resulting

identity by |&|7 fi with f; which is the complex conjugate of fi, and integrating the final

result with respect to £ and v over Rg x R3 that

A 1 N
((%fi + v FIVi fel £ FI(E+v X B)-Vy fi]l F CR FIEf£]F E - opt

+ FILsf1 = FITe(f N1 E72F) =0. (52)
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Recalling that throughout this manuscript, F[g](r, &, v) = g(t, &, v) denotes the Fourier
transform of g(z, x, v) with respect to x. (5.2) together with (2.1) yields

d
S (lames P+ 1ameE ) + |aeu - pys]]

S |(FE Vo L ) [+ 30 |(Fro < B Vo i1 )|
+ +

8 o (5.3)

+ 3| (v FEL g2 A )|+ D0 (FIracr o1 e A ) |
+ +

Jo Jio

To estimate J; (j =7, 8,9), we have from Lemmas 2.1, 2.5, and 2.6 that

J7 SNFLE - Vo £, [EITRFIPFD] + (FIE - Vy £1, [E]7 2 FHL - P} £1)
< ||A—@(E : /ff)IIIIA‘@(u‘Sf)II + ||A—@<Evuf<v>-%-5>n||A—@{I —P}flp
f)~ 7 5 1A =P)flIp
L

x

< ||E|| 3 IIM fII 3 1A~ °(u’ f)||+(IIE|I 3IIV )y in?

+8|IA eI — }fIID

3_¢ 3_¢ _ 3_ _Y_
SHATTZENATZGE HIATCWE )l 4 A2 CE|? |V, f(0) 272
+elATHI-P}f

G 1/2 3_¢ 3_¢ 5 3_
< (Boo®) P NATTZEI +1AT5 1) 8, 3, (OIAZCE|?
+el AT =PSB,

For Jg and Jy, we have by repeating the argument used in deducing the estimate on J7 that

1/2 3_¢ 3_¢
Js+ 95 5 (0.00)"* (10373 E B2+ 14775 £113)

_ s 5 5 5.4
+ &1 3t OIATTAE, B)IP + e AT = P 1]},
J1o can be bounded from Lemma 2.3 by
Jio =(FID(f O ETRFI-PLf)
SIATC) T )] AT =Py f
S 22TS N e [A720 =PI/,
/2—s /2—s - —
S [ RS TR PN B SV s
Sloy2=rl 5 o w2 SfHLsz area—ryr],
Ly y/2+s

< ||f||L§L§ Ifli2m A~ =P} f],

2 - 2
+ellAT{I-P}fID
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Substituting the estimates on J;(j =7, 8, 9, 10) into (5.3) yields
d _ _ _
S UATELIZ+ IATAE, BYP) + 1A~ = P) £,
_ ; 2 ; 2
<oy ([at-e, ¢ ai-5 )

+&

ax] 3 s—1
2,mdx{§+s7,2

3 2
jofaiec e B
Thus we complete this proof of lemma 5.1. O

For the macro dissipation estimate on || A'~¢P f||%, applying the argument of Lemma 3.2
in [15, page3727] and Lemma 3.3 in [15, page3731], we easily have the following lemma:

1

Lemma 5.2 Letp € (j, %), there exists an interactive functional G ;Q(t) satisfying

G0 s |aefP+ |aer|
such that

d _ _ 2 _
TGO+ A Ay —an)

A =Py + A eI =Py £]3 + E1o()Dao(0)

(5.6)

holds for any 0 <t < T. Moreover, there exists an interactive functional G g _p(t) satisfying

Gep®) S A0 E B+ | A0 E, B + IAZCE )2 (5.7)

such that
d 1-o 2 -0 |2 —0 2
EGE,B(z)+||A (E.B)|" + |ATE|" + A%t —a)|

Saea—Pyr|3 + AU =Py £ + [ AT CE = PYf | + E10() D20 ()
(5.8)

holds forany 0 <t <T.
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