1 Introduction

A Hopf bifurcation takes place at a singular point of a differential system when this changes its stability. More precisely, it is a local bifurcation which can appears when a singular point of a differential system having a pair of complex conjugate eigenvalues crosses the imaginary axis of the complex plane when we move the parameters of the differential system. At this crossing under convenient assumptions on the differential system, one or several small-amplitude limit cycles bifurcate from the singular point.

When the pair of complex eigenvalues are on the imaginary axis, i.e., they are of the form ± bi, if the other eigenvalues are non-zero, we talk about a Hopf bifurcation, but if some of the other eigenvalues are zero, we say that we have a zero-Hopf bifurcation. Here we are interested in the study of the zero-Hopf bifurcations when all the eigenvalues different from the ± bi are zero, we denote such kind of zero-Hopf bifurcation a complete zero-Hopf bifurcation. While there is a well developed theory for studying the Hopf bifurcations (see for instance [6, 9]), such theory does not exist for the zero-Hopf bifurcations. For the zero-Hopf bifurcations there are only partial results.

The goal of this paper is to study how many small-amplitude limit cycles can bifurcate in a complete zero-Hopf bifurcation at a singular point of a quadratic polynomial differential system in function of the dimension of the system.

Bautin [1] in 1954 proved that at most 3 small-amplitude limit cycles can bifurcate in a Hopf bifurcation at a singular point of a quadratic polynomial differential system in \(\mathbb {R}^{2}\). Note that in \(\mathbb {R}^{2}\) the notions of Hopf bifurcation, zero-Hopf bifurcation and complete zero-Hopf bifurcation coincide.

Also using Bautin’s result it is easy to show that at least 3 small-amplitude limit cycles can bifurcate in a zero-Hopf bifurcation at a singular point of a quadratic polynomial differential system in \(\mathbb {R}^{3}\), for a proof of this last result using averaging theory see the paper [5]. Some other results related with the zero-Hopf bifurcation of quadratic polynomial differential system in \(\mathbb {R}^{3}\) can be found for instance in [8, 12]. Note that in \(\mathbb {R}^{3}\) the notions of zero-Hopf bifurcation and complete zero-Hopf bifurcation coincide.

In 2017 Bendib et al. [2] studied the Hopf bifurcation occurring in vector fields in \(\mathbb {R}^{3}\) via the averaging theory of third order. They obtained at most 10 limit cycles and they provided an example for which exactly 10 limit cycles bifurcate from the origin.

In [4], the authors studied the zero-Hopf bifurcation of a polynomial differential system in \(\mathbb {R}^{4}\) with cubic homogeneous nonlinearities. They provided that for a sufficient condition the system can exhibit at least nine periodic solutions bifurcating from the origin when ε = 0, using the averaging theory of second order.

The aim of this paper is to prove that at least 9 and 25 limit cycles can be bifurcate in a complete zero-Hopf bifurcation of a quadratic polynomial differential system in \(\mathbb {R}^{4}\), by using respectively the averaging theory of second and third order.

Here we are interested in studying the zero-Hopf bifurcation of a quadratic polynomial differential system in \(\mathbb {R}^{4}\) with a singular point at the origin (0,0,0,0) whose linear part has eigenvalues (a1ε + a2ε2 + a3ε3) ± i(b + b1ε + b2ε2 + b3ε3), c1ε + c2ε2 + c3ε3 and d1ε + d2ε2 + d3ε3, where ε is a small parameter. Such system can be described by the following equations

$$ \left\{\begin{array}{lll} \dot{x}&=&(a_{1} \varepsilon +a_{2}\varepsilon^{2}+a_{3}\varepsilon^{3})x-(b+b_{1} \varepsilon+b_{2}\varepsilon^{2}+b_{3}\varepsilon^{3})y+\displaystyle\sum\limits_{j=0}^{2} \varepsilon^{j}X_{j}(x,y,z,w), \\ \dot{y}&=&(b+b_{1}\varepsilon+b_{2}\varepsilon^{2}+b_{3}\varepsilon^{3})x+(a_{1} \varepsilon + a_{2} \varepsilon^{2}+a_{3}\varepsilon^{3})y+ \displaystyle\sum\limits_{j=0}^{2} \varepsilon^{j}Y_{j}(x,y,z,w), \\ \dot{z}&=&(c_{1} \varepsilon +c_{2} \varepsilon^{2}+c_{3}\varepsilon^{3})z+ \displaystyle \sum\limits_{j=0}^{2}\varepsilon^{j}Z_{j}(x,y,z,w),\\ \dot{w}&=&(d_{1} \varepsilon +d_{2} \varepsilon^{2}+d_{3}\varepsilon^{3})w+ \displaystyle\sum\limits_{j=0}^{2}\varepsilon^{j}W_{j}(x,y,z,w), \end{array}\right. $$
(1)

where

$$ \begin{array}{@{}rcl@{}} X_{j}(x,y,z,w)&=&a_{j0}x^{2}+a_{j1}xy+a_{j2}xz+a_{j3}xw+a_{j4}y^{2}\\ &&+ a_{j5}yz+a_{j6}yw+a_{j7}z^{2}+a_{j8}zw+a_{j9}w^{2}, \end{array} $$

Yj(x,y,z,w), Zj(x,y,z,w) and Wj(x,y,z,w) have the same expression as Xj(x,y, z,w) by replacing aji respectively by bji,cji and dji for j = 0,1,2 and i = 0,1,…, 9. The coefficients aij,bij,cij,dij,a1,a2,a3,b,b1,b2,b3,c1,c2,c3,d1,d2,d3 are real parameters with b≠ 0.

The following Theorem shows our main result on the zero-Hopf bifurcation of the system (1).

Theorem 1

The following statements hold.

  1. (a)

    At most 2 limit cycles bifurcate from the origin of system (1) when ε = 0 by applying the averaging theory of first order, and this upper bound is reached.

  2. (b)

    At most 9 limit cycles bifurcate from the origin of system (1) when ε = 0 by applying the averaging theory of second order, and this upper bound is reached.

  3. (c)

    At most 25 limit cycles bifurcate from the origin of system (1) when ε = 0 by applying the averaging theory of third order.

Theorem 1 will be proved using the averaging theory for computing limit cycles. Then, statement (a) of Theorem 1 is proved in Section 3, statement (b) is proved in Section 4 and statement (c) is proved in Section 5. In Sections 34 and 5, we will use Bezout’s theorem. This theorem gives the maximum number of zeros of a system of polynomial functions.

Theorem 2

(Bezout’s theorem). Let Pi be polynomials in the variables \((x_{1},\enspace \cdots ,\enspace x_{n})\in \mathbb {R}^{n}\) of degree di for i = 1, ⋯ , n. Consider the following polynomial system

$$ P_{i}(x_{1},\enspace\cdots,\enspace x_{n}) = 0, \enspace \enspace i = 1,\enspace \cdots,\enspace n, $$

If the number of solutions of this system is finite, then it is bounded by d1dn.

See [11] for more details on Bezout’s theorem.

2 The Averaging Theory of First, Second and Third Order

In this section we recall the averaging theory of first, second, and third order as it was developed in [3] and [7]. This will be the main tool for proving Theorem 1.

Theorem 3

Consider the differential system

$$ x^{\prime}(t)=\varepsilon F_{1}(t,x)+ \varepsilon^{2} F_{2}(t,x)+ \varepsilon^{3} F_{3}(t,x)+\varepsilon^{4}R(t,x,\varepsilon), $$
(2)

where \(F_{1},F_{2},F_{3}:\mathbb {R}\times D \rightarrow \mathbb {R}^{n}, R:\mathbb {R} \times D \times (-\varepsilon _{f},\varepsilon _{f}) \rightarrow \mathbb {R}^{n}\) are continuous functions, T-periodic in the first variable, and D is an open subset of \(\mathbb {R}^{n}\). Assume that the following hypotheses (i) and (ii) hold.

  • F1(t,.) ∈ C2(D),F2(t,.) ∈ C1(D) for all \(t \in \mathbb {R}\), \(F_{1}, F_{2}, F_{3}, R, {D^{2}_{x}}F_{1}, D_{x}F_{2}\) are locally lipschitz with respect to x, and R is twice differentiable with respect to ε. We define \(F_{k0}:D\longrightarrow \mathbb {R}^{n}\) for k = 1,2,3 as

    $$ F_{10}(z)=\frac{1}{T} {{\int}^{T}_{0}} F_{1}(s,z)ds, $$
    $$ F_{20}(z)=\frac{1}{T} {{\int}^{T}_{0}} \left[ D_{z}F_{1}(s,z) . y_{1}(s,z) + F_{2}(s,z) \right] ds, $$
    $$ F_{30}(z)=\frac{1}{T} {{\int}^{T}_{0}} [\frac{1}{2}y_{1}(s,z)^{T}\frac{\partial^{2}F_{1}}{\partial z^{2}}(s,z)y_{1}(s,z)+\frac{1}{2}\frac{\partial F_{1}}{\partial z}(s,z)y_{2}(s,z)+ $$
    $$ \frac{\partial F_{2}}{\partial z}(s,z)(y_{1}(s,z))+F_{3}(s,z)] ds, $$

    where

    $$ y_{1}(s,z)={{\int}^{s}_{0}} F_{1}(t,z)dt, $$
    $$ y_{2}(s,z)={{\int}^{s}_{0}} \left[\frac{\partial F_{1}}{\partial z}(t,z){{\int}^{t}_{0}} F_{1}(r,z)dr+F_{2}(t,z)\right] dt. $$
  • For VD an open and bounded set and for each ε ∈ (−εf,εf) ∖{0}, there exists a𝜖V such that F10(aε) + εF20(aε) + ε2F30(aε) = 0 and dB(F10 + εF20 + ε2F30,V,aε)≠ 0.

Then, for |ε| > 0 sufficiently small there exists a T-periodic solution φ(⋅,ε) of the system (2) such that φ(0,ε) = aε.

The expression dB(F10 + εF20 + ε2F30,V,aε)≠ 0 means that the Brouwer degree of the function \(F_{10}+ \varepsilon F_{20}+ \varepsilon ^{2} F_{30}: V \rightarrow \mathbb {R}^{n}\) at the fixed point aε is not zero. A sufficient condition for the inequality to be true is that the Jacobian of the function F10 + εF20 + ε2F30 at aε is not zero.

If F10 is not identically zero, then the zeros of F10 + εF20 + ε2F30 are mainly the zeros of F10 for ε sufficiently small. In this case the previous result provides the averaging theory of first order.

If F10 is identically zero and F20 is not identically zero, then the zeros of F10 + εF20 + ε2F30 are mainly the zeros of F20 for ε sufficiently small. In this case the previous result provides the averaging theory of second order.

If F10 and F20 is identically zero and F30 is not identically zero, then the zeros of F10 + εF20 + ε2F30 are mainly the zeros of F30 for ε sufficiently small. In this case the previous result provides the averaging theory of third order.

For more information about the averaging theory see [10] and [13].

3 Proof of Statement (a) of Theorem 1

For proving statement (a) of Theorem 1, we should write system (1) into the normal form for applying the averaging theory of Section 2. First, we rescale the variables, setting (x,y, z,w) = (εX,εY,εZ,εW). Second, changing to cylindrical coordinates (X,Y,Z,W) = \((\rho \cos \limits \theta ,\rho \sin \limits \theta ,\eta ,\xi )\). Finally, we take the angle 𝜃 as the new independent variable. Thus in the variables (ρ,η,ξ) system (1) writes

$$ \left\{\begin{array}{c} \frac{d\rho}{d\theta}=\varepsilon F_{11}\displaystyle(\theta, \rho, \eta, \xi)+ \varepsilon^{2} F_{21}\displaystyle(\theta, \rho, \eta, \xi)+\varepsilon^{3} F_{31}\displaystyle(\theta, \rho, \eta, \xi)+ O(\varepsilon^{4}), \\ \frac{d\eta}{d\theta}=\varepsilon F_{12}(\theta, \rho, \eta, \xi)+ \varepsilon^{2} F_{22}\displaystyle(\theta, \rho, \eta, \xi)+\varepsilon^{3} F_{32}\displaystyle(\theta, \rho, \eta, \xi)+ O(\varepsilon^{4}),\\ \frac{d\xi}{d\theta}=\varepsilon F_{13}(\theta, \rho, \eta, \xi)+ \varepsilon^{2} F_{23}(\theta, \rho, \eta, \xi)+\varepsilon^{3} F_{33}\displaystyle(\theta, \rho, \eta, \xi)+ O(\varepsilon^{4}). \end{array}\right. $$
(3)

Taking

$$ \begin{array}{@{}rcl@{}} x&=&(\rho,\eta,\xi), \\ t&=& \theta, \\ F_{1}(t,x)&=&(F_{11}(\theta, \rho, \eta, \xi),F_{12}(\theta, \rho, \eta, \xi),F_{13}(\theta, \rho, \eta, \xi)),\\ F_{2}(t,x)&=&(F_{21}(\theta, \rho, \eta, \xi), F_{22}(\theta, \rho, \eta, \xi),F_{23}(\theta, \rho, \eta, \xi)),\\ F_{3}(t,x)&=&(F_{31}(\theta, \rho, \eta, \xi), F_{32}(\theta, \rho, \eta, \xi),F_{33}(\theta, \rho, \eta, \xi)), \end{array} $$

and T = 2π, system (3) is equivalent to system (2). Note that we do not provide the functions F1, F2 and F3 because some of them are huge and they need several pages for writing one of such huge functions. Applying the averaging theory of first order to the system (3). We have that f1 = (f11,f12,f13), where for i = 1,2,3

$$ f_{1i}(\rho, \eta, \xi)= \frac{1}{2 \pi} {\int}^{2 \pi}_{0} F_{1i}(\theta,\rho, \eta, \xi)d\theta. $$

Doing these computations we get that

$$ \left\{\begin{array}{lll} f_{11}(\rho, \eta, \xi)=\displaystyle\frac{1}{b}(\rho(2 a_{1}+(a_{03}+b_{06})\xi +(a_{02}+b_{05})\eta))=0, \\ f_{12}(\rho, \eta, \xi)=\displaystyle\frac{1}{b}((c_{00}+c_{04})\rho^{2} +2(c_{09} \xi^{2}+\eta(c_{1}+c_{08}\xi+c_{07}\eta)))=0, \\ f_{13}(\rho, \eta, \xi)=\displaystyle\frac{1}{b}((d_{00}+d_{04})\rho^{2} +2(\xi(d_{1} +d_{09}\xi)+d_{08}\xi\eta+d_{07}\eta^{2})) =0. \end{array}\right. $$
(4)

In order for looking for the limit cycles of system (1) by the averaging theory we need to compute the isolated real roots of the averaged system (4) with ρ > 0.

We solve the first equation f11 of (4), we obtain the following unique solution

$$ \xi=-\frac{2a_{1}+(a_{02}+b_{05})\eta}{a_{03}+b_{06}}. $$

Then the second and the third equations become

$$ \left\{\begin{array}{rl} g_{11}=&\frac{8{a_{1}^{2}}c_{09}}{(a_{03}+b_{06})^{2}}+(c_{00}+c_{04})\rho^{2} -\frac{2}{(a_{03}+b_{06})^{2}}(2a_{03}a_{1}c_{08}+\\ & 2a_{1}b_{06}c_{08}- 4a_{02}a_{1}c_{09}-4a_{1}b_{05}c_{09}- a_{03}^{2}c_{1}-2a_{03}b_{06}c_{1}-b_{06}^{2}c_{1}) \eta+\\ & \frac{2}{(a_{03}+b_{06})^{2}}(a_{03}^{2}c_{07}+ 2a_{03}b_{06}c_{07}+b_{06}^{2}c_{07}-a_{02}a_{03}c_{08}-a_{03}b_{05}c_{08}\\ & -a_{02}b_{06}c_{08}-b_{05}b_{06}c_{08}+ a_{02}^{2}c_{09}+ 2a_{02}b_{05}c_{09} +b_{05}^{2}c_{09})\eta^{2}=0,\\ g_{12}=&\frac{4a_{1}(2a_{1}d_{09}-a_{03}d_{1}-b_{06}d_{1})}{(a_{03}+ b_{06})^{2}}+(d_{00}+d_{04})\rho^{2}-\frac{2}{(a_{03}+b_{06})^{2}}\\ & (2a_{03}a_{1}d_{08}+ 2a_{1}b_{06}d_{08}-4a_{02}a_{1}d_{09}- 4a_{1}b_{05}d_{09} +a_{02}a_{03}d_{1}+\\ & a_{03}b_{05}d_{1}+a_{02}b_{06}d_{1}+ b_{05}b_{06}d_{1})\eta+\frac{2} {(a_{03}+b_{06})^{2}}(a_{03}^{2}d_{07}+\\ &2a_{03}b_{06}d_{07}+b_{06}^{2}d_{07}-a_{02}a_{03}d_{08}-a_{03}b_{05}d_{08} -a_{02}b_{06}d_{08}\\ &-b_{05}b_{06}d_{08}+a_{02}^{2}d_{09} +2a_{02}b_{05}d_{09}+ b_{05}^{2}d_{09})\eta^{2}=0. \end{array}\right. $$

This system has four real zeros. We eliminate ρ2 between the two equations g11 = 0 and g12 = 0; we obtain a quadratic equation in η which has at most two real zeros. Now, we substitute one of these two zeros in one of the two equations, since there appears only ρ2, we get two possible real zeros one of them is negative. Since ρ must be positive, system (4) has at most two real zeros with ρ > 0.

Let \(\left (\bar {\rho },\bar {\eta },\bar {\xi }\right )\) be a solution of system (4). In order to have a limit cycle according to the averaging theory in Section 2, we must have

$$ D(\bar{\rho},\bar{\eta}, \bar{\xi})= det \left( \begin{array}{ccc} \frac{\partial f_{11}}{\partial \rho} & \frac{\partial f_{11}}{\partial \eta} & \frac{\partial f_{11}}{\partial \xi} \\ \frac{\partial f_{12}}{\partial \rho} & \frac{\partial f_{12}}{\partial \eta} &\frac{\partial f_{12}}{\partial \xi} \\ \frac{\partial f_{13}}{\partial \rho} & \frac{\partial f_{13}}{\partial \eta} &\frac{\partial f_{13}}{\partial \xi} \end{array} \right)\Big|_{(\rho,\eta, \xi)=(\bar{\rho}, \bar{\eta}, \bar{\xi}) } \neq 0. $$

Therefore by applying the averaging theory of first order, we deduce that system (1) has at most two limit cycles bifurcating from the origin. This case has been studied in [8].

Giving an example shows that system (1) has exactly 2 limit cycles bifurcating from a zero-Hopf bifurcation.

Example 4

We consider the following system

$$ \left\{\begin{array}{lll} \frac{dx}{dt}&=&-y+2x w+(x^{2}+x)\varepsilon-x y \varepsilon^{2}, \\ \frac{dy}{dt}&=&x+2 y w+(x-x y)\varepsilon-z^{2} \varepsilon^{2} , \\ \frac{dz}{dt}&=&x^{2}-2 w^{2}+(-x^{2}+3 z^{2})\varepsilon^{2} , \\ \frac{dw}{dt}&=&x^{2}+\frac{2}{3}z^{2}-6 w^{2}+3 y z \varepsilon. \end{array}\right. $$
(5)

The eigenvalues of the singular point (0,0,0,0) of system (5) are \( \frac {\varepsilon }{2}\pm \frac {1}{2}\sqrt {{\varepsilon }^{2}-4\varepsilon -4}\) and 0 of multiplicity 2.

For finding the limit cycles we must solve the averaged system

$$ \left\{\begin{array}{lll} f_{11}(\rho, \eta, \xi)&=&\frac{1}{2}\rho(1+4\xi)=0, \\ f_{12}(\rho, \eta, \xi)&=&-2\xi^{2}+\frac{1}{2}\rho^{2}=0,\\ f_{13}(\rho, \eta, \xi)&=&\frac{2}{3}\eta^{2}+\frac{1}{2}\rho^{2}-6\xi^{2}=0. \end{array}\right. $$
(6)

System (6) has the following two roots \((\bar {\rho },\bar {\eta },\bar {\xi })\), with ρ > 0

$$ P_{12}=\displaystyle\left( \frac{1}{2}, \pm\frac{\sqrt{6}}{4}, \frac{-1}{4} \right). $$

We shall verify that the determinant at these two roots is different from zero , where

$$ D(\bar{\rho},\bar{\eta},\bar{\xi})= det\left( \begin{array}{ccc} \frac{1}{2}(1+4\bar{\xi}) & 0 & 2\bar{\rho} \\ \enspace& \enspace & \enspace\\ \bar{\rho}& 0 & -4\bar{\xi} \\ \enspace& \enspace & \enspace\\ \bar{\rho} & \frac{4}{3}\bar{\eta} & -12\bar{\xi} \end{array} \right). $$

We get that

$$ \left.\det \left( \frac{\partial(f_{11},f_{12},f_{13})}{\partial (\rho,\eta, \xi)}\right)\right|_{(\bar{\rho},\bar{\eta},\bar{\xi})=P_{12} }=\pm\frac{\sqrt{6}}{6}\neq 0. $$

Then, this proves that system (5) has exactly two limit cycles bifurcating from the origin for ε≠ 0 sufficiently small.

4 Proof of Statement (b) of Theorem 1

For proving statement (b) of Theorem 1 we use the averaging theory of second order. Then, we must annul the averaged system of first order (f11(ρ,η,ξ),f12(ρ,η,ξ),f13(ρ,η,ξ)). So we take

$$ a_{1}=d_{1}=c_{1}=0,\quad b_{06}=-a_{03},\quad b_{05}=-a_{02},\quad c_{09}=c_{08}=c_{07}=0,$$
$$ d_{04}=-d_{00}, \quad d_{09}=d_{08}=d_{07}=0, \quad c_{04}=-c_{00}. $$

Considering this conditions to apply the averaging theory of second order. Then from Section 2, we have f2 = (f21(ρ,η,ξ),f22(ρ,η,ξ), f23(ρ,η,ξ), where

$$ \left\{\begin{array}{lll} f_{21}(\rho,\eta,\xi)&=&\frac{\rho}{8b^{2}}(U_{0}+U_{1}\rho^{2}+U_{2} \xi+U_{3} \xi^{2}+U_{4}\eta+U_{5}\xi\eta+U_{6} \eta^{2}),\\ \enspace&\enspace&\enspace\\ f_{22}(\rho,\eta,\xi)&=&\frac{1}{2b^{2}}(V_{0}\rho^{2}+V_{1} \rho^{2}\xi+V_{2} \xi^{2}+V_{3}\xi^{3}+V_{4} \eta+V_{5}\rho^{2}\eta\\ \enspace&+&V_{6} \xi\eta+V_{7} \xi^{2}\eta+V_{8} \eta^{2}+V_{9}\xi\eta^{2}+V_{10}\eta^{3}),\\ \enspace&\enspace&\enspace\\ f_{23}(\rho,\eta,\xi)&=&\frac{1}{2b^{2}}(W_{0}\rho^{2}+W_{1} \xi+W_{2} \rho^{2}\xi+W_{3} \xi^{2}+W_{4}\xi^{3}+W_{5}\rho^{2}\eta\\ \enspace&+&W_{6} \xi\eta+W_{7} \xi^{2}\eta+W_{8} \eta^{2}+W_{9}\xi\eta^{2}+W_{10}\eta^{3}), \end{array}\right. $$
(7)

where

$$ \begin{array}{lll} U_{0}&=&8a_{2}b,\\ U_{1}&=&a_{00}a_{01}+a_{01}a_{04}-2a_{00}b_{00}-b_{00}b_{01}+2a_{04}b_{04}-b_{01}b_{04}+a_{05}c_{00}+b_{02}c_{00}\\ \enspace&-&a_{02}c_{01}+a_{06}d_{00}+b_{03}d_{00}-a_{03}d_{01},\\ U_{2}&=&4b(a_{13}+b_{16}),\\ U_{3}&=&4(a_{01}a_{09}+2a_{09}b_{04}-2a_{00}b_{09}-b_{01}b_{09}+b_{08}c_{03}-a_{08}c_{06}+2b_{09}d_{03}-2a_{09}d_{06}),\\ U_{4}&=&4b(a_{12}+b_{15}),\\ U_{5}&=&4(a_{01}a_{08}+2a_{08}b_{04}-2a_{00}b_{08}-b_{01}b_{08}+b_{08}c_{02}+2b_{07}c_{03}-a_{08}c_{05}-2a_{07}c_{06}\\ \enspace&+&2b_{09}d_{02}+b_{08}d_{03}-2a_{09}d_{05}-a_{08}d_{06}),\\ U_{6}&=&4(a_{01}a_{07}+2a_{07}b_{04}-2a_{00}b_{07}-b_{01}b_{07}+2b_{07}c_{02}-2a_{07}c_{05}+b_{08}d_{02}-a_{08}d_{05}), \end{array} $$

and

$$ \begin{array}{lll} V_{0}&=&b(c_{10}+c_{14}),\\ V_{1}&=&-(a_{06}c_{00}+b_{03}c_{00}-a_{03}c_{01}+b_{00}c_{03}+b_{04}c_{03}-c_{03}c_{05}-a_{00}c_{06}-a_{04}c_{06}\\ \enspace&+&c_{02}c_{06}-c_{06}d_{03}+c_{03}d_{06}),\\ V_{2}&=&2bc_{19},\\ V_{3}&=&-2(b_{09}c_{03}-a_{09}c_{06}),\\ V_{4}&=&2bc_{2},\\ V_{5}&=&\!-(a_{05}c_{00}+b_{02}c_{00} - a_{02}c_{01} + b_{00}c_{02} + b_{04}c_{02} - a_{00}c_{05} - a_{04}c_{05} - c_{06}d_{02} + c_{03}d_{05}),\\ V_{6}&=&bc_{18},\\ V_{7}&=&-2(b_{09}c_{02}+b_{08}c_{03}-a_{09}c_{05}- a_{08}c_{06}),\\ V_{8}&=&2bc_{17},\\ V_{9}&=&-2(b_{08}c_{02}+b_{07}c_{03}-a_{08}c_{05}-a_{07}c_{06}),\\ V_{10}&=&-2(b_{07}c_{02}-a_{07}c_{05}), \end{array} $$

and

$$ \begin{array}{lll} W_{0}&=&b(d_{10}+d_{14}),\\ W_{1}&=&2bd_{2},\\ W_{2}&=&-(a_{06}d_{00} + b_{03}d_{00} - a_{03}d_{01} + c_{06}d_{02} + b_{00}d_{03} + b_{04}d_{03} - c_{03}d_{05} - a_{00}d_{06} - a_{04}d_{06}),\\ W_{3}&=&2bd_{19},\\ W_{4}&=&-2(b_{09}d_{03}-a_{09}d_{06}),\\ W_{5}&=&-(a_{05}d_{00}+b_{02}d_{00}-a_{02}d_{01}+b_{00}d_{02}+b_{04}d_{02}+c_{05}d_{02}-a_{00}d_{05}-a_{04}d_{05}\\ \enspace&-&c_{02}d_{05}+d_{03}d_{05}-d_{02}d_{06}),\\ W_{6}&=&2bd_{18},\\ W_{7}&=&-2(b_{09}d_{02}+b_{08}d_{03}-a_{09}d_{05}-a_{08}d_{06}),\\ W_{8}&=&2bd_{17},\\ W_{9}&=&-2(b_{08}d_{02}+b_{07}d_{03}-a_{08}d_{05}-a_{07}d_{06}),\\ W_{10}&=&-2(b_{07}d_{02}-a_{07}d_{05})\eta^{3}. \end{array} $$

Hence, from the first equation of system (7) and avoiding the solutions with ρ = 0, we isolate ρ2 and we substitute it in f2i(ρ,η,ξ) = 0 for i = 2,3. We obtain the following two equations

$$ \left\{\begin{array}{lll} g_{21}&=&C_{0}+C_{1}\eta+C_{2}\xi+C_{3}\eta^{2}+C_{4}\eta\xi+C_{5}\xi^{2}+C_{6}\eta^{3}+C_{7}\eta^{2}\xi+C_{8}\eta\xi^{2}+C_{9}\xi^{3},\\ g_{22}&=&D_{0}+D_{1}\eta+D_{2}\xi+D_{3}\eta^{2}+D_{4}\eta\xi+D_{5}\xi^{2}+D_{6}\eta^{3}+D_{7}\eta^{2}\xi+D_{8}\eta\xi^{2}+D_{9}\xi^{3}, \end{array}\right. $$

where Ci and Di for i = 0,⋯ ,9 are real coefficients.

$$ \begin{array}{@{}rcl@{}} &&C_{0}=\frac{-V_{0} U_{0}}{U_{1}},\\ &&C_{1}=\frac{-V_{0} U_{4}-V_{5} U_{0}+V_{4} U_{1}}{U_{1}},\\ &&C_{2}=\frac{-V_{0} U_{2}-V_{1} U_{0}}{U_{1}},\\ &&C_{3}=\frac{-V_{0} U_{6}-V_{5} U_{4}+V_{8} U_{1}}{U_{1}},\\ &&C_{4}=\frac{V_{6} U_{1}-V_{0} U_{5}-V_{1} U_{4}-V_{5} U_{2}}{U_{1}},\\ &&C_{5}=\frac{-V_{0} U_{3}-V_{1} U_{2}+V_{2} U_{1}}{U_{1}},\\ &&C_{6}=\frac{-V_{5}U_{6}+V_{10} U_{1}}{U_{1}},\\ &&C_{7}=\frac{-V_{1} U_{6}-V_{5} U_{5}+V_{9} U_{1}}{U_{1}},\\ &&C_{8}=\frac{-V_{1} U_{5}-V_{5} U_{3}+V_{7} U_{1}}{U_{1}},\\ &&C_{9}=\frac{-V_{1} U_{3}+V_{3} U_{1}}{U_{1}}, \end{array} $$

and

$$ \begin{array}{@{}rcl@{}} &&D_{0}=\frac{-W_{0} U_{0}}{U_{1}},\\ &&D_{1}=\frac{-W_{0} U_{4}-W_{5} U_{0}}{U_{1}},\\ &&D_{2}=\frac{-W_{0} U_{2}-W_{2} U_{0}+W_{1} U_{1}}{U_{1}},\\ &&D_{3}=\frac{-W_{0} U_{6}-W_{5} U_{4}+W_{8} U_{1}}{U_{1}},\\ &&D_{4}=\frac{W_{6} U_{1}-W_{0} U_{5}-W_{2} U_{4}-W_{5} U_{2}}{U_{1}},\\ &&D_{5}=\frac{-W_{0} U_{3}-W_{2} U_{2}+W_{3} U_{1}}{U_{1}},\\ &&D_{6}=\frac{-W_{5} U_{6}+W_{10} U_{1}}{U_{1}},\\ &&D_{7}=\frac{-W_{2} U_{6}-W_{5} U_{5}+W_{9} U_{1}}{U_{1}},\\ &&D_{8}=\frac{-W_{2} U_{5}-W_{5} U_{3}+W_{7} U_{1}}{U_{1}},\\ &&D_{9}=\frac{-W_{2} U_{3}+W_{4}U_{1}}{U_{1}}. \end{array} $$

Looking only at the coefficients of system (1) which appear in Ci and Di for i = 0,⋯ ,9 we see that the coefficients Ci and Di are all independent because pairwise contain different coefficients of system (1), with the exceptions of the coefficients C7 and C8, and D7 and D8 that share the same coefficients of system (1). But now looking directly at the explicit expressions of C7 and C8, and of D7 and D8 we observe that they are also independent.

Since all the coefficients of the two equations g21(η,ξ) = 0 and g22(η,ξ) = 0 are independent they can be chosen arbitrary. By Bezout’s theorem, system g21(η,ξ) = 0, g22(η,ξ) = 0 has nine real roots, and system (7) has at most nine real roots with ρ > 0.

Let \(\left (\bar {\rho },\bar {\eta },\bar {\xi }\right )\) be a solution of system (7). In order to have a limit cycle according to the averaging theory in Section 2, we must have

$$ D(\bar{\rho},\bar{\eta}, \bar{\xi})= det \left( \begin{array}{ccc} \frac{\partial f_{21}}{\partial \rho} & \frac{\partial f_{21}}{\partial \eta} & \frac{\partial f_{21}}{\partial \xi} \\ \frac{\partial f_{22}}{\partial \rho} & \frac{\partial f_{22}}{\partial \eta} &\frac{\partial f_{22}}{\partial \xi} \\ \frac{\partial f_{23}}{\partial \rho} & \frac{\partial f_{23}}{\partial \eta} &\frac{\partial f_{23}}{\partial \xi} \end{array} \right)\Big|_{(\rho,\eta, \xi)=(\bar{\rho}, \bar{\eta}, \bar{\xi}) } \neq 0. $$

Then, we conclude that by the averaging theory of second order system (1) has at most nine limit cycles in a zero-Hopf bifurcation at the origin. This completes the proof of statement (b) of Theorem 1.

Now we give an example which proves that system (1) has exactly 9 limit cycles bifurcating from the origin by the averaging theory of second order.

Example 5

Consider the following quadratic polynomial differential system

$$ \left\{\begin{array}{lll} \frac{dx}{dt}&=&-2\varepsilon^{2} x-y-x^{2}+y z+2 x z-2 x w-y w+\frac{1}{2}z w\\ \enspace&+&\varepsilon (z^{2}-x z+x w)+\varepsilon^{2} (x^{2}-y z) , \\ \frac{dy}{dt}&=&-2\varepsilon^{2} y+x-2 y z+x z+x w+2 y w+z w+\varepsilon (x y-y z+y w)\\ \enspace&+&\varepsilon^{2} (x z+y w) , \\ \frac{dz}{dt}&=&12 \varepsilon^{2} z-2 x^{2}-2 y^{2}-2 x z-4 x w+\varepsilon (x^{2}-y^{2}+8 z^{2}-2 z w)+\varepsilon^{2} z^{2} , \\ \frac{dw}{dt}&=&24 \varepsilon^{2} w+2 x^{2}-2 y^{2}+2 x y-2 x z-2 x w+\varepsilon(-2 w^{2}-2 z w)\\ \enspace&+&\varepsilon^{2} (x^{2}+x w). \end{array}\right. $$
(8)

The eigenvalues of the singular point (0,0,0,0) of system (8) are − 2ε2 ± i, 12ε2 and 24ε2. The averaged system associated to system (8) is

$$ \left\{\begin{array}{lll} f_{21}(\rho, \eta, \xi)&=&\rho(-2-\eta+\xi-\eta^{2}-2\xi^{2}+\rho^{2}-\eta \xi)=0, \\ f_{22}(\rho, \eta, \xi)&=&12 \eta+8 \eta^{2}-2 \eta \xi+4\xi^{2} \eta+2 \xi \eta^{2}-2 \rho^{2} \eta=0,\\ f_{23}(\rho, \eta, \xi)&=& 24 \xi-2 \xi^{2}-2 \eta \xi+2 \xi^{2} \eta+2 \xi \eta^{2}-2 \rho^{2} \xi=0. \end{array}\right. $$
(9)

Solving system (9), there are only nine roots \((\bar {\rho },\bar {\eta },\bar {\xi })\) with ρ > 0, namely

$$ P_{1}=\left( \sqrt{2}, 0,0\right),\enspace P_{2}=\left( \sqrt{12-\sqrt{5}},0,\sqrt{5}\right),\enspace P_{3}=\left( \sqrt{12+\sqrt{5}},0,-\sqrt{5}\right), $$
$$ P_{4}=\left( \sqrt{22},4,0\right),\enspace P_{5}=\left( \sqrt{27},4,1\right), \enspace P_{6}=\left( \sqrt{14-2\sqrt{6}},-1,\sqrt{6}\right), $$
$$ P_{7}=\left( \sqrt{14+2\sqrt{6}},-1,-\sqrt{6}\right),\enspace P_{8}=\left( \sqrt{2}, -1,0\right),\enspace P_{9}=\left( \sqrt{21},4,-1\right). $$

Since, we must verify that the determinant is different from zero at these roots where

$$ \begin{array}{@{}rcl@{}} &&D(\bar{\rho},\bar{\eta},\bar{\xi})\\&=& det\left( \begin{array}{ccc} -2 - \bar{\eta}+\bar{\xi} - \bar{\eta}^{2}\\-2\bar{\xi}^{2} + 3\bar{\rho}^{2} - \bar{\eta} \bar{\xi} & \bar{\rho}(-1-2\bar{\eta}-\bar{\xi}) & \bar{\rho}(1-4\bar{\xi}-\bar{\eta})\\ \enspace& \enspace & \enspace\\ -4\bar{\rho}\bar{\eta} & 12 + 16\bar{\eta} - 2 \bar{\xi} + 4\bar{\xi}^{2} + 4 \bar{\xi} \bar{\eta} - 2 \bar{\rho}^{2} &-2\bar{\eta}+8\bar{\xi} \bar{\eta}+2\bar{\eta}^{2} \\ \enspace& \enspace & \enspace\\ -4\bar{\rho}\bar{\xi}&-2 \bar{\xi}+2 \bar{\xi}^{2}+4 \bar{\xi} \bar{\eta} & 24-4 \bar{\xi}-2 \bar{\eta}+4 \bar{\xi} \bar{\eta}\\\enspace& \enspace &+2 \bar{\eta}^{2}-2 \bar{\rho}^{2} \end{array} \right), \end{array} $$

we get

$$ \left.\det \left( \frac{\partial(f_{11},f_{12},f_{13})}{\partial (\rho,\eta, \xi)}\right)\right|_{P_{1}} = 640\neq 0,\left.\det \left( \frac{\partial(f_{11},f_{12},f_{13})}{\partial (\rho,\eta, \xi)}\right)\right|_{P_{23}} = -7680\pm 640 \sqrt{5}\neq 0, \\ $$
$$ \\ \left.\det \left( \frac{\partial(f_{11},f_{12},f_{13})}{\partial (\rho,\eta, \xi)}\right)\right|_{P_{4}}=-7040\neq 0,\left.\det \left( \frac{\partial(f_{11},f_{12},f_{13})}{\partial (\rho,\eta, \xi)}\right)\right|_{P_{5}}=17280\neq 0, $$
$$ \\ \left.\!\det \left( \frac{\partial(f_{11},f_{12},f_{13})}{\partial (\rho,\eta, \xi)}\right)\right|_{P_{67} } = 13440\pm 1920 \sqrt{6}\!\neq\! 0,\left.\det \left( \frac{\partial(f_{11},f_{12},f_{13})}{\partial (\rho,\eta, \xi)}\right)\right|_{P_{8} } = -960\!\neq\! 0, $$
$$ \\ \left.\det \left( \frac{\partial(f_{11},f_{12},f_{13})}{\partial (\rho,\eta, \xi)}\right)\right|_{P_{9}}=13440\neq 0. $$

Hence, system (8) has exactly nine limit cycles bifurcating from the origin for ε≠ 0 sufficiently small.

5 Proof of Statement (c) of Theorem 1

To prove the main result of this work we will use the third order averaging theory. According to the theorem of Section 2, we must annul the averaged system of second order (f21(ρ,η,ξ),f22(ρ,η,ξ),f23(ρ,η,ξ)). For this, we take

$$ a_{2}=c_{2}=d_{2}=0,\enspace a_{00}=a_{04}=a_{07}=a_{08}=a_{09}=0,\enspace a_{05}=-b_{02},\enspace a_{13}=-b_{16}, $$
$$ b_{07}=b_{08}=b_{09}=0,\enspace a_{06}=-b_{03},\enspace a_{06}=-b_{03},\enspace b_{00}=-b_{04},\enspace a_{12}=-b_{15}, $$
$$ c_{01}=c_{03}=c_{06}=0,\enspace d_{01}=d_{02}=d_{05}=0, c_{14}=-c_{10},\enspace d_{14}=-d_{10}. $$
$$ c_{17}=c_{18}=c_{19}=0,\enspace d_{17}=d_{18}=d_{19}=0. $$

Applying the averaging theory of third order, we must compute the following expression

$$ \begin{array}{@{}rcl@{}} f_{3}(\rho, \eta, \xi)&=&\frac{1}{2\pi} {\int}^{2\pi}_{0} [\frac{1}{2}{y_{1}^{T}}(\theta,\rho, \eta, \xi)\frac{\partial^{2}F_{1}}{\partial (\rho, \eta, \xi)^{2}}(\theta,\rho, \eta, \xi)y_{1}(\theta,\rho, \eta, \xi)\\ \enspace&&+ \frac{1}{2}\frac{\partial F_{1}}{\partial (\rho, \eta, \xi)}(\theta,\rho, \eta, \xi)y_{2}(\theta,\rho, \eta, \xi)\\ \enspace&&+ \frac{\partial F_{2}}{\partial (\rho, \eta, \xi)}(\theta,\rho, \eta, \xi)y_{1}(\theta,\rho, \eta, \xi)+F_{3}(\theta,\rho, \eta, \xi)]d\theta, \end{array} $$
(10)

where

$$ y_{1}(\theta,\rho, \eta, \xi)={\int}^{\theta}_{0} F_{1}(t,\rho, \eta, \xi)dt, $$
$$ y_{2}(\theta,\rho, \eta, \xi)={\int}^{\theta}_{0} \left[\frac{\partial F_{1}}{\partial (\rho, \eta, \xi)}(t,\rho, \eta, \xi){{\int}^{t}_{0}} F_{1}(s,\rho, \eta, \xi)ds+F_{2}(t,\rho, \eta, \xi)\right]dt, $$

and

$$ f_{3}(\rho, \eta, \xi)=\left( f_{31}, f_{32}, f_{33}\right), $$
$$ F_{1}(\theta,\rho, \eta, \xi)=\left( F_{11},F_{12},F_{13}\right), $$
$$ F_{2}(\theta,\rho, \eta, \xi)=\left( F_{21},F_{22},F_{23}\right), $$
$$ F_{3}(\theta,\rho, \eta, \xi)=\left( F_{31},F_{32},F_{33}\right), $$
$$ y_{1}(\theta,\rho, \eta, \xi)=\left( y_{11},y_{12},y_{13}\right), $$
$$ y_{2}(\theta,\rho, \eta, \xi)=\left( y_{21},y_{22},y_{23}\right). $$

So, first we compute the following integral, and we get that

$$ \begin{array}{@{}rcl@{}} &&\frac{1}{4\pi} {\int}^{2\pi}_{0} \left[y_{1}^{T}(\theta,\rho, \eta, \xi)\frac{\partial^{2}F_{1}}{\partial (\rho, \eta, \xi)^{2}}(\theta,\rho, \eta, \xi)y_{1}(\theta,\rho, \eta, \xi) \right]d\theta\\&&= \frac{\partial^{2} F_{1}}{\partial \rho^{2}} y_{11}^{2}+\frac{\partial^{2} F_{1}}{\partial \rho \partial \theta} y_{11} y_{12}\\ &&+\frac{\partial^{2} F_{1}}{\partial \rho \partial \xi } y_{11}y_{13}+\frac{\partial^{2} F_{1}}{\partial \eta \partial \xi} y_{11} y_{12}+\frac{\partial^{2} F_{1}}{\partial \eta^{2}} y_{12}^{2}+ \frac{\partial^{2} F_{1}}{\partial \eta \partial \xi} y_{12}^{y_{13}}+\frac{\partial^{2} F_{1}}{\partial \rho \partial \xi } y_{11} y_{13}+\frac{\partial^{2} F_{1}}{\partial \xi \partial \eta} y_{12} y_{13}\\&&+\frac{\partial^{2} F_{1}}{\partial \xi^{2}} y_{13}^{2}\\ &&=\left( G_{1}(\rho, \eta, \xi),G_{2}(\rho, \eta, \xi),G_{3}(\rho, \eta, \xi)\right). \end{array} $$

Secondly, we compute the second part of the expression, and we get

$$ \begin{array}{@{}rcl@{}} &&\frac{1}{2\pi} {\int}^{2\pi}_{0}\left[ \frac{1}{2}\frac{\partial F_{1}}{\partial (\rho, \eta, \xi)}(\theta,\rho, \eta, \xi)y_{2}(\theta,\rho, \eta, \xi) +\frac{\partial F_{2}}{\partial (\rho, \eta, \xi)}(\theta,\rho, \eta, \xi)y_{1}(\theta,\rho, \eta, \xi)\right.\\&&\left.+F_{3}(\theta,\rho, \eta, \xi)\vphantom{\frac{\partial F_{1}}{\partial (\rho, \eta, \xi)}}\right]d\theta=\left( H_{1}(\rho, \eta, \xi),H_{2}(\rho, \eta, \xi),H_{3}(\rho, \eta, \xi)\right). \end{array} $$

Finally, we obtain the following averaged system of third order (f31(ρ,η,ξ) = G1 + H1, f32(ρ,η,ξ) = G2 + H2, f33(ρ,η,ξ) = G3 + H3).

$$ \left\{\begin{array}{lll} f_{31}(\rho,\eta,\xi)&=&\frac{1}{8b^{3}}\rho(8 a_{3} b^{2}+A_{1} \eta+A_{2} \xi +A_{3} \xi^{2}+A_{4} \eta^{2}+A_{5} \eta \xi\\ \enspace&+&A_{6} \rho^{2}+A_{7}\rho^{2} \eta+A_{8} \rho^{2}\xi),\\ \enspace&\enspace&\enspace\\ f_{32}(\rho,\eta,\xi)&=&\frac{1}{8b^{3}}(8 c_{3}\eta b^{2}+B_{1} \rho^{2}\xi+B_{2} \rho^{2}\eta +B_{3} \eta^{2}+B_{4} \xi^{2}+B_{5} \eta^{4} \\ \enspace&+&B_{6} \eta\xi+B_{7}\rho^{2} \eta\xi+B_{8} \rho^{2}+B_{9} \eta^{3}+B_{10} \rho^{2}\eta^{2}+B_{11} \eta\xi^{2}+B_{12}\eta^{2}\xi),\\ \enspace&\enspace&\enspace\\ f_{33}(\rho,\eta,\xi)&=&\frac{1}{8b^{3}}(8 d_{3}\xi b^{2}+K_{1} \eta\xi+K_{2} \rho^{4} +K_{3} \rho^{2}\eta+K_{4} \rho^{2} \eta\xi+K_{5} \rho^{2}\xi^{2}\\ \enspace&+&K_{6} \eta^{2}\xi+K_{7}\eta\xi^{2}+K_{8} \xi^{2}+K_{9} \eta^{2}+K_{10} \rho^{2}\xi+K_{11}\xi^{3}+K_{12}\rho^{2}), \end{array}\right. $$
(11)

where

$$ \begin{array}{lll} A_{1}&=&4 (b_{25}b^{2}+a_{22}b^{2}),\\ A_{2}&=&4 (b_{26}b^{2}+a_{23}b^{2}),\\ A_{3}&=&-4b_{19}b_{01}b+4a_{19}a_{01}b+8d_{03}b_{19}b-8d_{06}a_{19}b+8b_{04}a_{19}b,\\ A_{4}&=&-4b_{17}b_{01}b+4a_{17}a_{01}b+8c_{02}b_{17}b-8c_{05}a_{17}b+8b_{04}a_{17}b,\\ A_{5}&=&-4a_{18}c_{05}b+4b_{18}c_{02}b + 4d_{03}b_{18}b - 4d_{06}a_{18}b+8b_{04}a_{18}b+4a_{18}a_{01}b-4b_{18}b_{01}b,\\ A_{6}&=&d_{00}a_{16}b+d_{00}b_{13}b-a_{02}c_{11}b+c_{00}b_{12}b+a_{14}a_{01}b+2 a_{14}b_{04}b+2b_{04}a_{10}b\\&&+a_{10}a_{01}b\\ &-&b_{14}b_{01}b-b_{10}b_{01}b-a_{03}d_{11}b+c_{00}a_{15},\\ A_{7}&=&a_{02}c_{05}^{2}-a_{02}c_{02}^{2}+a_{02}a_{01}^{2}-a_{02}b_{01}^{2}+c_{05}b_{01}b_{02}+2a_{02}a_{01}b_{04}+2a_{02}c_{02}b_{01}\\ &-&2a_{02}c_{05}b_{04}-2a_{02}c_{05}a_{01}-a_{01}c_{02}b_{02}-2b_{02}c_{02}b_{04},\\ A_{8}&=&-a_{03}d_{03}^{2}+a_{03}d_{06}^{2}+a_{03}a_{01}^{2}-a_{03}b_{01}^{2}+d_{06}b_{01}b_{03}+2a_{03}a_{01}b_{04}+2a_{03}d_{03}b_{01}\\ &-&2a_{03}d_{06}b_{04}-2a_{03}d_{06}a_{01}-a_{01}d_{03}b_{03}-2b_{03}d_{03}b_{04}, \end{array} $$

and

$$ \begin{array}{lll} B_{1}&=&-4b_{13}c_{00}b - 4a_{16}c_{00}b - 4c_{02}c_{16}b+4c_{13}c_{05}b+4a_{03}c_{11}b+4d_{03}c_{16}b-4d_{06}c_{13}b,\\ B_{2}&=&-4b_{12}c_{00}b - 4a_{15}c_{00}b+4c_{05}a_{10}b-4b_{14}c_{02}b - 4b_{10}c_{02}b+4a_{02}c_{11}b+4c_{05}a_{14}b,\\ B_{3}&=&8c_{27}b^{2},\\ B_{4}&=&8c_{29}b^{2},\\ B_{5}&=&-c_{00}c_{02}^{2}+c_{00}c_{05}^{2}+b_{01}c_{00}c_{02}-a_{01}c_{00}c_{05},\\ B_{6}&=&8c_{28}b^{2},\\ B_{7}&=&4d_{06}b_{03} c_{02}-4a_{03}b_{01} c_{02}+4a_{03}c_{02}d_{03}+4a_{03}a_{01} c_{05}-4a_{03}d_{06} c_{05}-4b_{03}c_{05}d_{03},\\ B_{8}&=&4c_{20}b^{2}+4c_{24}b^{2},\\ B_{9}&=&8a_{17}c_{05}b-8b_{17}c_{02}b,\\ B_{10}&=&4a_{02}c_{02}^{2}-4a_{02}c_{05}^{2}-4b_{01}c_{02}a_{02}+4a_{01}a_{02}c_{05},\\ B_{11}&=&8a_{19}c_{05}b-8b_{19}c_{02}b,\\ B_{12}&=&8a_{18}c_{05}b-8b_{18}c_{02}b, \end{array} $$

and

$$ \begin{array}{lll} K_{1}&=&8d_{28}b^{2},\\ K_{2}&=&-d_{00}d_{03}^{2}+d_{00}d_{06}^{2}+b_{01}d_{00}d_{03}-a_{01}d_{00}d_{06},\\ K_{3}&=&-4b_{12}d_{00}b - 4a_{15}d_{00}b - 4d_{03}d_{15}b+4d_{12}d_{06}b+4a_{02}d_{11}b+4c_{02}d_{15}b - 4c_{05}d_{12}b,\\ K_{4}&=&-4d_{06}b_{02} c_{02}+4a_{02}d_{03} c_{02}+4a_{01}a_{02}d_{06}+4b_{02}d_{03} c_{05} - 4a_{02}d_{06} c_{05} - 4b_{01}a_{02}d_{03},\\ K_{5}&=&4a_{03}d_{03}^{2}-4a_{03}d_{06}^{2}-4b_{01}d_{03}a_{03}+4a_{01}a_{03}d_{06},\\ K_{6}&=&8a_{17}d_{06}b-8b_{17}d_{03}b,\\ K_{7}&=&8a_{18}d_{06}b-8b_{18}d_{03}b,\\ K_{8}&=&8d_{29}b^{2},\\ K_{9}&=&8d_{27}b^{2},\\ K_{10}&=&-4b_{13}d_{00}b-4a_{16}d_{00}b+4d_{06}a_{10}b - 4b_{14}d_{03}b - 4b_{10}d_{03}b+4a_{03}d_{11}b + 4d_{06}a_{14}b,\\ K_{11}&=&8a_{19}d_{06}b-8b_{19}d_{03}b,\\ K_{12}&=&4d_{20}b^{2}+4d_{24}b^{2}. \end{array} $$

We solve the first equation f31 with respect to ρ and avoiding the solutions with ρ = 0, we obtain

$$\rho^{2}=-\frac{A_{4}\eta^{2}+ A_{3}\xi^{2}+A_{1}\eta+ A_{2}\xi+ A_{5}\eta\xi+8a_{3}b{2}}{A_{6}+A_{8}\xi+ A_{7}\eta}.$$

Substituting ρ2 in f3i(ρ,η,ξ) = 0 for i = 2,3, we get the following system

$$ \left\{\begin{array}{lll} g_{31}&\!=&\!\frac{1}{8(A_{6} + A_{7}\eta + A_{8}\xi)^{2}b^{3}}(I_{0}+I_{1}\xi\eta+I_{2}\eta^{2}\xi+I_{3}\eta\xi^{2}+I_{4}\eta^{2} + I_{5}\eta^{4} + I_{6}\xi^{2}+I_{7}\xi^{4}\\ \enspace&\enspace&\enspace\\ \enspace&+&I_{8}\eta^{3}+I_{9}\eta^{5}+I_{10}\eta +I_{11}\xi^{3}+I_{12}\eta^{2}\xi^{2}+I_{13}\eta^{3}\xi+I_{14}\eta\xi^{3}+I_{15}\xi+I_{16}\eta^{3}\xi^{2}\\ \enspace&+&I_{17}\eta\xi^{4}+I_{18}\eta^{4}\xi+I_{19}\eta^{2}\xi^{3}),\\ \enspace&\enspace&\enspace\\ g_{32}&=&\frac{1}{8(A_{6}+A_{7}\eta+A_{8}\xi)^{2}b^{3}}(J_{0}+J_{1}\xi\eta+J_{2}\eta\xi^{2}+J_{3}\eta^{2}\xi+J_{4}\eta^{3}+J_{5}\xi^{3}+J_{6}\eta^{2}\xi^{2}\\ \enspace&\enspace&\enspace\\ \enspace&+&J_{7}\eta^{2}+J_{8}\eta^{4}+J_{9}\xi^{4}+J_{10}\xi^{5}+J_{11}\eta^{4}\xi+J_{12}\eta^{2}\xi^{3}+J_{13}\eta^{3}\xi^{2}+J_{14}\eta\xi^{4}\\ \enspace&+&J_{15}\xi^{2}+J_{16}\eta+J_{17}\xi+J_{18}\eta^{3}\xi+J_{19}\eta\xi^{3}), \end{array}\right. $$

where

$$ \begin{array}{lll} I_{0}&=&64B_{5} {a_{3}^{2}}b^{4}-8B_{8}a_{3}b^{2}A_{6},\\ I_{1}&=&16c_{3}b^{2}A_{6} A_{8}-8 B_{1} a_{3} b^{2} A_{7}-8B_{2} a_{3} b^{2} A_{8}+16 B_{5}a_{3} b^{2} A_{5}-8 B_{7} a_{3}b^{2} A_{6}+B_{6} {A_{6}^{2}}\\ &-&B_{1} A_{1} A_{6}+2B_{5} A_{1} A_{2}-B_{2} A_{2}A_{6}-B_{8} A_{1} A_{8}-B_{8} A_{2} A_{7}-B_{8} A_{5} A_{6},\\ I_{2}&=&16 c_{3}b^{2}A_{7} A_{8}-8B_{7}a_{3}b^{2} A_{7}-8 B_{10} a_{3}b^{2} A_{8}+B_{12} {A_{6}^{2}}-B_{10} A_{2} A_{6}-B_{1} A_{1} A_{7}\\ &-&B_{1} A_{4} A_{6}-B_{2} A_{1} A_{8}-B_{2} A_{2} A_{7}- B_{2} A_{5} A_{6} +2B_{3}A_{6} A_{8}+2B_{5} A_{1} A_{5}+2 B_{5} A_{2} A_{4}\\ &+&2 B_{6} A_{6} A_{7}-B_{7} A_{1} A_{6}-B_{8} A_{4} A_{8}-B_{8} A_{5} A_{7},\\ I_{3}&=&8c_{3} b^{2}{A_{8}^{2}}-8 B_{7} a_{3} b^{2}A_{8}+B_{11}{A_{6}^{2}}-B_{1} A_{1} A_{8}-B_{1} A_{2} A_{7}-B_{1}A_{5} A_{6}-B_{2} A_{2} A_{8}\\ &-&B_{2} A_{3} A_{6}+2B_{4} A_{6} A_{7}+2B_{5}A_{1} A_{3}+2 B_{5} A_{2} A_{5}+2 B_{6}A_{6} A_{8}-B_{7} A_{2} A_{6}-B_{8} A_{3} A_{7}\\ &-&B_{8} A_{5} A_{8},\\ I_{4}&=&B_{3} {A_{6}^{2}}+B_{5} {A_{1}^{2}}-B_{2} A_{1} A_{6}-B_{8} A_{1} A_{7}-B_{8} A_{4} A_{6}+16 c_{3} b^{2} A_{6} A_{7}-8 B_{2} a_{3} b^{2} A_{7}\\ &+&16 B_{5} a_{3} b^{2} A_{4}-8 B_{10}a_{3} b^{2} A_{6},\\ I_{5}&=&B_{3} {A_{7}^{2}}+B_{5} {A_{4}^{2}}-B_{2} A_{4} A_{7}+2 B_{9} A_{6} A_{7}-B_{10} A_{1} A_{7}-B_{10} A_{4} A_{6},\\ I_{6}&=&B_{4} {A_{6}^{2}}+B_{5} {A_{2}^{2}}-B_{1} A_{2} A_{6}-B_{8} A_{2} A_{8}-B_{8} A_{3} A_{6}-8 B_{1}a_{3} A_{8} b^{2}+16 B_{5} a_{3} b^{2} A_{3},\\ I_{7}&=&B_{4} {A_{8}^{2}}+B_{5} {A_{3}^{2}}-B_{1} A_{3} A_{8},\\ I_{8}&=&B_{9} {A_{6}^{2}}+8 c_{3} b^{2}{A_{7}^{2}}-B_{2} A_{1} A_{7}-B_{2} A_{4} A_{6}+2 B_{3} A_{6} A_{7}+2B_{5} A_{1} A_{4}-B_{8} A_{4} A_{7}\\ &-&B_{10}A_{1} A_{6}-8 B_{10}a_{3} A_{7} b^{2},\\ I_{9}&=&B_{9} {A_{7}^{2}}-B_{10}A_{4} A_{7},\\ I_{10}&=&8c_{3} b^{2} {A_{6}^{2}}-B_{8} A_{1} A_{6}-8 B_{2} a_{3} A_{6} b^{2}+16 B_{5} a_{3} A_{1} b^{2}-8 B_{8} a_{3} A_{7} b^{2},\\ I_{11}&=&-B_{1} A_{2} A_{8}-B_{1} A_{3} A_{6}+2 B_{4} A_{6} A_{8}+2 B_{5} A_{2} A_{3}-B_{8} A_{3} A_{8},\\ I_{12}&=&B_{3}{A_{8}^{2}}+B_{4} {A_{7}^{2}}+B_{5} {A_{5}^{2}}-B_{1} A_{4} A_{8}-B_{1} A_{5} A_{7}-B_{2} A_{3} A_{7}-B_{2} A_{5} A_{8}+2 B_{5} A_{3} A_{4}\\ &+&2 B_{6} A_{7} A_{8}-B_{7} A_{1} A_{8}-B_{7} A_{2} A_{7}-B_{7} A_{5} A_{6}-B_{10}A_{2} A_{8} - B_{10}A_{3} A_{6}+2 B_{11}A_{6} A_{7}\\ &+&2 B_{12}A_{6} A_{8},\\ I_{13}&=&B_{6} {A_{7}^{2}}-B_{1} A_{4} A_{7}-B_{2} A_{4} A_{8}-B_{2} A_{5} A_{7}+2 B_{3} A_{7} A_{8}+2 B_{5} A_{4} A_{5}-B_{7} A_{1} A_{7}\\ &+&2 B_{9}A_{6} A_{8}-B_{7} A_{4} A_{6}-B_{10} A_{1} A_{8}-B_{10}A_{2} A_{7}-B_{10}A_{5} A_{6}+2 B_{12}A_{6} A_{7},\\ I_{14}&=&B_{6} {A_{8}^{2}}-B_{1} A_{3} A_{7}-B_{1} A_{5} A_{8}-B_{2} A_{3}A_{8}+2B_{4} A_{7} A_{8}+2 B_{5} A_{3} A_{5}-B_{7} A_{2} A_{8}\\ &-&B_{7} A_{3} A_{6}+2 B_{11}A_{6} A_{8}, \end{array} $$
$$ \begin{array}{lll} I_{15}&=&-B_{8} A_{2} A_{6}-8B_{1} a_{3} A_{6} b^{2}+16B_{5} a_{3} A_{2} b^{2}-8 B_{8} a_{3} A_{8} b^{2},\\ I_{16}&=&B_{9} {A_{8}^{2}}+B_{11}{A_{7}^{2}}-B_{7} A_{4} A_{8}-B_{7} A_{5} A_{7}-B_{10}A_{3} A_{7}-B_{10}A_{5} A_{8}+2 B_{12}A_{7} A_{8},\\ I_{17}&=&B_{11} {A_{8}^{2}}-B_{7} A_{3} A_{8},\\ I_{18}&=&B_{12}{A_{7}^{2}}-B_{7} A_{4} A_{7}-B_{10}A_{4} A_{8}-B_{10}A_{5} A_{7}+2 B_{9} A_{7}A_{8},\\ I_{19}&=&B_{12}{A_{8}^{2}}-B_{7} A_{3} A_{7}-B_{7} A_{5} A_{8}-B_{10}A_{3} A_{8}+2 B_{11}A_{7} A_{8}, \end{array} $$

and

$$ \begin{array}{lll} J_{0}&=&64K_{2} {a_{3}^{2}} b^{4}-8 K_{12} a_{3} b^{2} A_{6},\\ J_{1}&=&16d_{3} b^{2} A_{6} A_{7}-8 K_{3} a_{3} b^{2} A_{8}-8 K_{4} a_{3} b^{2} A_{6}+16 K_{2} a_{3} b^{2} A_{5}-8 K_{10}a_{3} b^{2}A_{7}\\ &+&K_{1} {A_{6}^{2}}-K_{3} A_{2} A_{6}+2 K_{2} A_{1} A_{2}-K_{10}A_{1} A_{6} - K_{12} A_{1} A_{8}-K_{12}A_{2} A_{7}-K_{12}A_{5} A_{6},\\ J_{2}&=&16 d_{3} b^{2} A_{7} A_{8}-8 K_{4} a_{3} b^{2} A_{8}-8 K_{5} a_{3} b^{2} A_{7}+K_{7} {A_{6}^{2}}-K_{3} A_{2} A_{8}-K_{3} A_{3} A_{6}\\ &-&K_{4} A_{2} A_{6}-K_{5} A_{1} A_{6}-K_{10} A_{1} A_{8}-K_{10}A_{2} A_{7}+2 K_{1} A_{6} A_{8}+2 K_{2} A_{1} A_{3}\\ &+&2 K_{2} A_{2} A_{5}+2 K_{8} A_{6} A_{7}-K_{10}A_{5} A_{6}-K_{12} A_{3} A_{7}-K_{12} A_{5} A_{8},\\ J_{3}&=&8 d_{3} b^{2} {A_{7}^{2}}-8 K_{4} a_{3} b^{2} A_{7}+K_{6} {A_{6}^{2}}-K_{3} A_{1} A_{8}-K_{3} A_{2} A_{7}-K_{3} A_{5} A_{6}-K_{4} A_{1} A_{6} \\ &-&K_{10} A_{1} A_{7}+2 K_{1} A_{6} A_{7}+2 K_{2} A_{1} A_{5}+2 K_{2} A_{2} A_{4}+2 K_{9} A_{6} A_{8}-K_{10} A_{4} A_{6}\\ &-&K_{12}A_{4} A_{8}-K_{12}A_{5} A_{7},\\ J_{4}&=&-K_{3} A_{1} A_{7}-K_{3} A_{4} A_{6}+2 K_{9} A_{6} A_{7}+2 K_{2} A_{1} A_{4}-K_{12} A_{4} A_{7},\\ J_{5}&=&K_{11} {A_{6}^{2}}+8 d_{3} b^{2} {A_{8}^{2}}-K_{5} A_{2} A_{6}-K_{10} A_{2} A_{8}+2 K_{2} A_{2} A_{3}+2 K_{8} A_{6} A_{8}-K_{10} A_{3} A_{6}\\ &-&K_{12} A_{3} A_{8}-8 K_{5} a_{3} A_{8} b^{2},\\ J_{6}&=&K_{2} {A_{5}^{2}}+K_{8} {A_{7}^{2}}+K_{9} {A_{8}^{2}}-K_{3} A_{3} A_{7}-K_{3} A_{5} A_{8}-K_{4} A_{1} A_{8}-K_{4} A_{2} A_{7}\\ &+&2 K_{1} A_{7} A_{8}+2 K_{2} A_{3} A_{4}-K_{4} A_{5} A_{6}-K_{5} A_{1} A_{7}-K_{5} A_{4} A_{6}-K_{10} A_{4} A_{8}\\ &-&K_{10} A_{5} A_{7}+2 K_{6} A_{6} A_{8}+2 K_{7} A_{6} A_{7},\\ J_{7}&=&K_{2} {A_{1}^{2}}+K_{9} {A_{6}^{2}} - K_{3} A_{1} A_{6} - K_{12} A_{1} A_{7}-K_{12}A_{4} A_{6}-8 K_{3} a_{3} A_{7} b^{2}+16 K_{2} a_{3} b^{2} A_{4},\\ J_{8}&=&K_{2} {A_{4}^{2}}+K_{9} {A_{7}^{2}}-K_{3} A_{4} A_{7},\\ J_{9}&=&K_{8} {A_{8}^{2}}+K_{2} {A_{3}^{2}}-K_{5} A_{2} A_{8}+2 K_{11} A_{6} A_{8}-K_{5} A_{3} A_{6}-K_{10} A_{3} A_{8},\\ J_{10}&=&K_{11}{A_{8}^{2}}-K_{5} A_{3} A_{8},\\ J_{11}&=&K_{6} {A_{7}^{2}}-K_{4} A_{4} A_{7},\\ J_{12}&=&K_{6} {A_{8}^{2}}+K_{11} {A_{7}^{2}}-K_{4} A_{3} A_{7}-K_{4} A_{5} A_{8}-K_{5} A_{4} A_{8}-K_{5} A_{5} A_{7}+2 K_{7} A_{7} A_{8},\\ J_{13}&=&K_{7} {A_{7}^{2}}-K_{4} A_{4} A_{8}-K_{4} A_{5} A_{7}-K_{5} A_{4} A_{7}+2 K_{6} A_{7} A_{8},\\ J_{14}&=&K_{7} {A_{8}^{2}}-K_{4} A_{3} A_{8}-K_{5} A_{3} A_{7}-K_{5} A_{5} A_{8}+2 K_{11} A_{7} A_{8},\\ J_{15}&=&K_{2} {A_{2}^{2}}+K_{8} {A_{6}^{2}} - K_{10} A_{2} A_{6} - K_{12} A_{2} A_{8} - K_{12}A_{3} A_{6}+16 d_{3} b^{2} A_{6} A_{8}-8 K_{5} a_{3} b^{2} A_{6}\\ &+&16 K_{2} a_{3} b^{2} A_{3}-8 K_{10} a_{3} b^{2} A_{8},\\ J_{16}&=&-K_{12} A_{1} A_{6}-8 K_{3} a_{3} A_{6} b^{2}+16 K_{2} a_{3} A_{1} b^{2}-8 K_{12} a_{3} A_{7} b^{2},\\ J_{17}&=&8 d_{3} b^{2} {A_{6}^{2}}-K_{12} A_{2} A_{6}-8 K_{10} a_{3} A_{6} b^{2}+16 K_{2} a_{3} A_{2} b^{2}-8 K_{12} a_{3} A_{8} b^{2},\\ J_{18}&=&K_{1} {A_{7}^{2}}-K_{3} A_{4} A_{8}-K_{3} A_{5} A_{7}-K_{4} A_{1} A_{7}+2 K_{6} A_{6} A_{7}+2 K_{9} A_{7} A_{8}-K_{10} A_{4} A_{7}\\ &-&K_{4} A_{4} A_{6}+2 K_{2} A_{4} A_{5},\\ J_{19}&=&K_{1} {A_{8}^{2}}-K_{3} A_{3} A_{8}-K_{4} A_{2} A_{8}-K_{4} A_{3} A_{6}+2 K_{2} A_{3} A_{5}+2 K_{7} A_{6} A_{8}-K_{5} A_{1} A_{8}\\ &+&2 K_{11} A_{6} A_{7}-K_{5} A_{2} A_{7}-K_{5} A_{5} A_{6}-K_{10} A_{3} A_{7}-K_{10} A_{5} A_{8}+2 K_{8} A_{7} A_{8}. \end{array} $$

Hence, it is easy to verify that this system has 25 real solutions by Bezout’s theorem. So, the coefficients of system (11) can be taken in such a way that this system has at most 25 real solutions different from zero for ρ > 0.

Let \(\left (\bar {\rho },\bar {\eta },\bar {\xi }\right )\) be a solution of system (11). In order to have a limit cycle according to the averaging theory in Section 2, we must have

$$ D(\bar{\rho},\bar{\eta}, \bar{\xi})= det \left( \begin{array}{ccc} \frac{\partial f_{31}}{\partial \rho} & \frac{\partial f_{31}}{\partial \eta} & \frac{\partial f_{31}}{\partial \xi} \\ \frac{\partial f_{32}}{\partial \rho} & \frac{\partial f_{32}}{\partial \eta} &\frac{\partial f_{32}}{\partial \xi} \\ \frac{\partial f_{33}}{\partial \rho} & \frac{\partial f_{33}}{\partial \eta} &\frac{\partial f_{33}}{\partial \xi} \end{array} \right)\Big|_{(\rho,\eta, \xi)=(\bar{\rho}, \bar{\eta}, \bar{\xi}) } \neq 0. $$

In short, we deduce that system (1) has at most 25 limit cycles in a zero-Hopf bifurcation at the origin, using the averaging theory of third order. This completes the proof of statement (c) of Theorem 1.