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Abstract
This article concerns the zero-Hopf bifurcation of a quadratic polynomial differential sys-
tem in R

4. By using the averaging theory of third order, we provide that at most 25 limit
cycles can bifurcate from one singularity with eigenvalues of the form ±bi, 0 and 0.
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1 Introduction

A Hopf bifurcation takes place at a singular point of a differential system when this changes
its stability. More precisely, it is a local bifurcation which can appears when a singular point
of a differential system having a pair of complex conjugate eigenvalues crosses the imag-
inary axis of the complex plane when we move the parameters of the differential system.
At this crossing under convenient assumptions on the differential system, one or several
small-amplitude limit cycles bifurcate from the singular point.
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When the pair of complex eigenvalues are on the imaginary axis, i.e., they are of the form
±bi, if the other eigenvalues are non-zero, we talk about a Hopf bifurcation, but if some
of the other eigenvalues are zero, we say that we have a zero-Hopf bifurcation. Here we
are interested in the study of the zero-Hopf bifurcations when all the eigenvalues different
from the ±bi are zero, we denote such kind of zero-Hopf bifurcation a complete zero-
Hopf bifurcation. While there is a well developed theory for studying the Hopf bifurcations
(see for instance [6, 9]), such theory does not exist for the zero-Hopf bifurcations. For the
zero-Hopf bifurcations there are only partial results.

The goal of this paper is to study how many small-amplitude limit cycles can bifurcate in
a complete zero-Hopf bifurcation at a singular point of a quadratic polynomial differential
system in function of the dimension of the system.

Bautin [1] in 1954 proved that at most 3 small-amplitude limit cycles can bifurcate in
a Hopf bifurcation at a singular point of a quadratic polynomial differential system in R

2.
Note that in R

2 the notions of Hopf bifurcation, zero-Hopf bifurcation and complete zero-
Hopf bifurcation coincide.

Also using Bautin’s result it is easy to show that at least 3 small-amplitude limit cycles
can bifurcate in a zero-Hopf bifurcation at a singular point of a quadratic polynomial dif-
ferential system in R

3, for a proof of this last result using averaging theory see the paper
[5]. Some other results related with the zero-Hopf bifurcation of quadratic polynomial dif-
ferential system in R

3 can be found for instance in [8, 12]. Note that in R
3 the notions of

zero-Hopf bifurcation and complete zero-Hopf bifurcation coincide.
In 2017 Bendib et al. [2] studied the Hopf bifurcation occurring in vector fields in R

3 via
the averaging theory of third order. They obtained at most 10 limit cycles and they provided
an example for which exactly 10 limit cycles bifurcate from the origin.

In [4], the authors studied the zero-Hopf bifurcation of a polynomial differential system
in R

4 with cubic homogeneous nonlinearities. They provided that for a sufficient condition
the system can exhibit at least nine periodic solutions bifurcating from the origin when
ε = 0, using the averaging theory of second order.

The aim of this paper is to prove that at least 9 and 25 limit cycles can be bifurcate in
a complete zero-Hopf bifurcation of a quadratic polynomial differential system in R

4, by
using respectively the averaging theory of second and third order.

Here we are interested in studying the zero-Hopf bifurcation of a quadratic polynomial
differential system in R

4 with a singular point at the origin (0, 0, 0, 0) whose linear part
has eigenvalues (a1ε + a2ε

2 + a3ε
3) ± i(b + b1ε + b2ε

2 + b3ε
3), c1ε + c2ε

2 + c3ε
3 and

d1ε + d2ε
2 + d3ε

3, where ε is a small parameter. Such system can be described by the
following equations

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ = (a1ε + a2ε
2 + a3ε

3)x − (b + b1ε + b2ε
2 + b3ε

3)y +
2∑

j=0

εjXj (x, y, z, w),

ẏ = (b + b1ε + b2ε
2 + b3ε

3)x + (a1ε + a2ε
2 + a3ε

3)y +
2∑

j=0

εjYj (x, y, z, w),

ż = (c1ε + c2ε
2 + c3ε

3)z +
2∑

j=0

εjZj (x, y, z, w),

ẇ = (d1ε + d2ε
2 + d3ε

3)w +
2∑

j=0

εjWj (x, y, z, w),

(1)
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where

Xj(x, y, z, w) = aj0x
2 + aj1xy + aj2xz + aj3xw + aj4y

2

+ aj5yz + aj6yw + aj7z
2 + aj8zw + aj9w

2,

Yj (x, y, z, w), Zj (x, y, z, w) and Wj(x, y, z, w) have the same expression as Xj(x, y,

z, w) by replacing aji respectively by bji, cji and dji for j = 0, 1, 2 and i = 0, 1, . . . ,

9. The coefficients aij , bij , cij , dij , a1, a2, a3, b, b1, b2, b3, c1, c2, c3, d1, d2, d3 are real
parameters with b �= 0.

The following Theorem shows our main result on the zero-Hopf bifurcation of the
system (1).

Theorem 1 The following statements hold.

(a) At most 2 limit cycles bifurcate from the origin of system (1) when ε = 0 by applying
the averaging theory of first order, and this upper bound is reached.

(b) At most 9 limit cycles bifurcate from the origin of system (1) when ε = 0 by applying
the averaging theory of second order, and this upper bound is reached.

(c) At most 25 limit cycles bifurcate from the origin of system (1) when ε = 0 by applying
the averaging theory of third order.

Theorem 1 will be proved using the averaging theory for computing limit cycles. Then,
statement (a) of Theorem 1 is proved in Section 3, statement (b) is proved in Section 4 and
statement (c) is proved in Section 5. In Sections 3, 4 and 5, we will use Bezout’s theorem.
This theorem gives the maximum number of zeros of a system of polynomial functions.

Theorem 2 (Bezout’s theorem). Let Pi be polynomials in the variables (x1, · · · , xn) ∈
R

n of degree di for i = 1, · · · , n. Consider the following polynomial system

Pi(x1, · · · , xn) = 0, i = 1, · · · , n,

If the number of solutions of this system is finite, then it is bounded by d1 · · · dn.

See [11] for more details on Bezout’s theorem.

2 The Averaging Theory of First, Second and Third Order

In this section we recall the averaging theory of first, second, and third order as it was
developed in [3] and [7]. This will be the main tool for proving Theorem 1.

Theorem 3 Consider the differential system

x′(t) = εF1(t, x) + ε2F2(t, x) + ε3F3(t, x) + ε4R(t, x, ε), (2)

where F1, F2, F3 : R× D → R
n, R : R× D × (−εf , εf ) → R

n are continuous functions,
T -periodic in the first variable, and D is an open subset of Rn. Assume that the following
hypotheses (i) and (ii) hold.
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(i) F1(t, .) ∈ C2(D), F2(t, .) ∈ C1(D) for all t ∈ R, F1, F2, F3, R, D2
xF1, DxF2 are

locally lipschitz with respect to x, and R is twice differentiable with respect to ε. We
define Fk0 : D −→ R

n for k = 1, 2, 3 as

F10(z) = 1

T

∫ T

0
F1(s, z)ds,

F20(z) = 1

T

∫ T

0

[
DzF1(s, z).y1(s, z) + F2(s, z)

]
ds,

F30(z) = 1

T

∫ T

0
[1

2
y1(s, z)

T ∂2F1

∂z2
(s, z)y1(s, z) + 1

2

∂F1

∂z
(s, z)y2(s, z)+

∂F2

∂z
(s, z)(y1(s, z)) + F3(s, z)]ds,

where

y1(s, z) =
∫ s

0
F1(t, z)dt,

y2(s, z) =
∫ s

0

[
∂F1

∂z
(t, z)

∫ t

0
F1(r, z)dr + F2(t, z)

]

dt .

(ii) For V ⊂ D an open and bounded set and for each ε ∈ (−εf , εf ) \ {0}, there
exists aε ∈ V such that F10(aε) + εF20(aε) + ε2F30(aε) = 0 and dB(F10 + εF20 +
ε2F30, V , aε) �= 0.

Then, for |ε| > 0 sufficiently small there exists a T -periodic solution ϕ(·, ε) of the system
(2) such that ϕ(0, ε) = aε .

The expression dB(F10 + εF20 + ε2F30, V , aε) �= 0 means that the Brouwer degree of
the function F10 + εF20 + ε2F30 : V → R

n at the fixed point aε is not zero. A sufficient
condition for the inequality to be true is that the Jacobian of the function F10 +εF20 +ε2F30
at aε is not zero.

If F10 is not identically zero, then the zeros of F10 + εF20 + ε2F30 are mainly the zeros
of F10 for ε sufficiently small. In this case the previous result provides the averaging theory
of first order.

If F10 is identically zero and F20 is not identically zero, then the zeros of F10 + εF20 +
ε2F30 are mainly the zeros of F20 for ε sufficiently small. In this case the previous result
provides the averaging theory of second order.

If F10 and F20 is identically zero and F30 is not identically zero, then the zeros of
F10 + εF20 + ε2F30 are mainly the zeros of F30 for ε sufficiently small. In this case the
previous result provides the averaging theory of third order.

For more information about the averaging theory see [10] and [13].

3 Proof of Statement (a) of Theorem 1

For proving statement (a) of Theorem 1, we should write system (1) into the normal form
for applying the averaging theory of Section 2. First, we rescale the variables, setting (x, y,
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z, w) = (εX, εY, εZ, εW). Second, changing to cylindrical coordinates (X, Y,Z,W) =
(ρ cos θ, ρ sin θ, η, ξ). Finally, we take the angle θ as the new independent variable. Thus
in the variables (ρ, η, ξ) system (1) writes

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dρ

dθ
= εF11(θ, ρ, η, ξ) + ε2F21(θ, ρ, η, ξ) + ε3F31(θ, ρ, η, ξ) + O(ε4),

dη

dθ
= εF12(θ, ρ, η, ξ) + ε2F22(θ, ρ, η, ξ) + ε3F32(θ, ρ, η, ξ) + O(ε4),

dξ

dθ
= εF13(θ, ρ, η, ξ) + ε2F23(θ, ρ, η, ξ) + ε3F33(θ, ρ, η, ξ) + O(ε4).

(3)

Taking

x = (ρ, η, ξ),

t = θ,

F1(t, x) = (F11(θ, ρ, η, ξ), F12(θ, ρ, η, ξ), F13(θ, ρ, η, ξ)),

F2(t, x) = (F21(θ, ρ, η, ξ), F22(θ, ρ, η, ξ), F23(θ, ρ, η, ξ)),

F3(t, x) = (F31(θ, ρ, η, ξ), F32(θ, ρ, η, ξ), F33(θ, ρ, η, ξ)),

and T = 2π , system (3) is equivalent to system (2). Note that we do not provide the func-
tions F1, F2 and F3 because some of them are huge and they need several pages for writing
one of such huge functions. Applying the averaging theory of first order to the system (3).
We have that f1 = (f11, f12, f13), where for i = 1, 2, 3

f1i (ρ, η, ξ) = 1

2π

∫ 2π

0
F1i (θ, ρ, η, ξ)dθ .

Doing these computations we get that

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

f11(ρ, η, ξ) = 1

b
(ρ(2a1 + (a03 + b06)ξ + (a02 + b05)η)) = 0,

f12(ρ, η, ξ) = 1

b
((c00 + c04)ρ

2 + 2(c09ξ
2 + η(c1 + c08ξ + c07η))) = 0,

f13(ρ, η, ξ) = 1

b
((d00 + d04)ρ

2 + 2(ξ(d1 + d09ξ) + d08ξη + d07η
2)) = 0.

(4)

In order for looking for the limit cycles of system (1) by the averaging theory we need to
compute the isolated real roots of the averaged system (4) with ρ > 0.

We solve the first equation f11 of (4), we obtain the following unique solution

ξ = −2a1 + (a02 + b05)η

a03 + b06
.
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Then the second and the third equations become

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g11 = 8a2
1c09

(a03 + b06)2
+ (c00 + c04)ρ

2 − 2

(a03 + b06)2
(2a03a1c08+

2a1b06c08 − 4a02a1c09 − 4a1b05c09 − a2
03c1 − 2a03b06c1 − b2

06c1)η+
2

(a03 + b06)2
(a2

03c07 + 2a03b06c07 + b2
06c07 − a02a03c08 − a03b05c08

−a02b06c08 − b05b06c08 + a2
02c09 + 2a02b05c09 + b2

05c09)η
2 = 0,

g12 = 4a1(2a1d09 − a03d1 − b06d1)

(a03 + b06)2
+ (d00 + d04)ρ

2 − 2

(a03 + b06)2

(2a03a1d08 + 2a1b06d08 − 4a02a1d09 − 4a1b05d09 + a02a03d1+
a03b05d1 + a02b06d1 + b05b06d1)η + 2

(a03 + b06)2
(a2

03d07+
2a03b06d07 + b2

06d07 − a02a03d08 − a03b05d08 − a02b06d08

−b05b06d08 + a2
02d09 + 2a02b05d09 + b2

05d09)η
2 = 0.

This system has four real zeros. We eliminate ρ2 between the two equations g11 = 0 and
g12 = 0; we obtain a quadratic equation in η which has at most two real zeros. Now, we
substitute one of these two zeros in one of the two equations, since there appears only ρ2,
we get two possible real zeros one of them is negative. Since ρ must be positive, system (4)
has at most two real zeros with ρ > 0.

Let
(
ρ̄, η̄, ξ̄

)
be a solution of system (4). In order to have a limit cycle according to the

averaging theory in Section 2, we must have

D(ρ̄, η̄, ξ̄ ) = det

⎛

⎜
⎜
⎜
⎜
⎜
⎝

∂f11

∂ρ

∂f11

∂η

∂f11

∂ξ
∂f12

∂ρ

∂f12

∂η

∂f12

∂ξ
∂f13

∂ρ

∂f13

∂η

∂f13

∂ξ

⎞

⎟
⎟
⎟
⎟
⎟
⎠

∣
∣
∣
(ρ,η,ξ)=(ρ̄,η̄,ξ̄ )

�= 0.

Therefore by applying the averaging theory of first order, we deduce that system (1) has at
most two limit cycles bifurcating from the origin. This case has been studied in [8].

Giving an example shows that system (1) has exactly 2 limit cycles bifurcating from a
zero-Hopf bifurcation.

Example 4 We consider the following system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx

dt
= −y + 2xw + (x2 + x)ε − xyε2,

dy

dt
= x + 2yw + (x − xy)ε − z2ε2,

dz

dt
= x2 − 2w2 + (−x2 + 3z2)ε2,

dw

dt
= x2 + 2

3
z2 − 6w2 + 3yzε.

(5)

The eigenvalues of the singular point (0, 0, 0, 0) of system (5) are
ε

2
± 1

2

√
ε2 − 4ε − 4 and

0 of multiplicity 2.
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For finding the limit cycles we must solve the averaged system
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

f11(ρ, η, ξ) = 1

2
ρ(1 + 4ξ) = 0,

f12(ρ, η, ξ) = −2ξ2 + 1

2
ρ2 = 0,

f13(ρ, η, ξ) = 2

3
η2 + 1

2
ρ2 − 6ξ2 = 0.

(6)

System (6) has the following two roots (ρ̄, η̄, ξ̄ ), with ρ > 0

P12 =
(

1

2
,±

√
6

4
,
−1

4

)

.

We shall verify that the determinant at these two roots is different from zero , where

D(ρ̄, η̄, ξ̄ ) = det

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1

2
(1 + 4ξ̄ ) 0 2ρ̄

ρ̄ 0 −4ξ̄

ρ̄
4

3
η̄ −12ξ̄

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

We get that

det

(
∂(f11, f12, f13)

∂(ρ, η, ξ)

)∣
∣
∣
∣
(ρ̄,η̄,ξ̄ )=P12

= ±
√

6

6
�= 0.

Then, this proves that system (5) has exactly two limit cycles bifurcating from the origin for
ε �= 0 sufficiently small.

4 Proof of Statement (b) of Theorem 1

For proving statement (b) of Theorem 1 we use the averaging theory of second order. Then,
we must annul the averaged system of first order (f11(ρ, η, ξ), f12(ρ, η, ξ), f13(ρ, η, ξ)).
So we take

a1 = d1 = c1 = 0, b06 = −a03, b05 = −a02, c09 = c08 = c07 = 0,

d04 = −d00, d09 = d08 = d07 = 0, c04 = −c00.

Considering this conditions to apply the averaging theory of second order. Then from
Section 2, we have f2 = (f21(ρ, η, ξ), f22(ρ, η, ξ), f23(ρ, η, ξ), where

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f21(ρ, η, ξ) = ρ

8b2
(U0 + U1ρ

2 + U2ξ + U3ξ
2 + U4η + U5ξη + U6η

2),

f22(ρ, η, ξ) = 1

2b2
(V0ρ

2 + V1ρ
2ξ + V2ξ

2 + V3ξ
3 + V4η + V5ρ

2η

+ V6ξη + V7ξ
2η + V8η

2 + V9ξη2 + V10η
3),

f23(ρ, η, ξ) = 1

2b2
(W0ρ

2 + W1ξ + W2ρ
2ξ + W3ξ

2 + W4ξ
3 + W5ρ

2η

+ W6ξη + W7ξ
2η + W8η

2 + W9ξη2 + W10η
3),

(7)
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where

U0 = 8a2b,

U1 = a00a01 + a01a04 − 2a00b00 − b00b01 + 2a04b04 − b01b04 + a05c00 + b02c00
− a02c01 + a06d00 + b03d00 − a03d01,

U2 = 4b(a13 + b16),

U3 = 4(a01a09 + 2a09b04 − 2a00b09 − b01b09 + b08c03 − a08c06 + 2b09d03 − 2a09d06),

U4 = 4b(a12 + b15),

U5 = 4(a01a08 + 2a08b04 − 2a00b08 − b01b08 + b08c02 + 2b07c03 − a08c05 − 2a07c06
+ 2b09d02 + b08d03 − 2a09d05 − a08d06),

U6 = 4(a01a07 + 2a07b04 − 2a00b07 − b01b07 + 2b07c02 − 2a07c05 + b08d02 − a08d05),

and

V0 = b(c10 + c14),

V1 = −(a06c00 + b03c00 − a03c01 + b00c03 + b04c03 − c03c05 − a00c06 − a04c06
+ c02c06 − c06d03 + c03d06),

V2 = 2bc19,

V3 = −2(b09c03 − a09c06),

V4 = 2bc2,

V5 = −(a05c00 + b02c00−a02c01+b00c02+b04c02−a00c05−a04c05−c06d02+c03d05),

V6 = bc18,

V7 = −2(b09c02 + b08c03 − a09c05 − a08c06),

V8 = 2bc17,

V9 = −2(b08c02 + b07c03 − a08c05 − a07c06),

V10 = −2(b07c02 − a07c05),

and

W0 = b(d10 + d14),

W1 = 2bd2,

W2 = −(a06d00+b03d00−a03d01+c06d02+b00d03+b04d03−c03d05−a00d06−a04d06),

W3 = 2bd19,

W4 = −2(b09d03 − a09d06),

W5 = −(a05d00 + b02d00 − a02d01 + b00d02 + b04d02 + c05d02 − a00d05 − a04d05
− c02d05 + d03d05 − d02d06),

W6 = 2bd18,

W7 = −2(b09d02 + b08d03 − a09d05 − a08d06),

W8 = 2bd17,

W9 = −2(b08d02 + b07d03 − a08d05 − a07d06),

W10 = −2(b07d02 − a07d05)η
3.

Hence, from the first equation of system (7) and avoiding the solutions with ρ = 0, we
isolate ρ2 and we substitute it in f2i (ρ, η, ξ) = 0 for i = 2, 3. We obtain the following two
equations

{
g21 = C0 + C1η + C2ξ + C3η

2 + C4ηξ + C5ξ
2 + C6η

3 + C7η
2ξ + C8ηξ2 + C9ξ

3,

g22 = D0 + D1η + D2ξ + D3η
2 + D4ηξ + D5ξ

2 + D6η
3 + D7η

2ξ + D8ηξ2 + D9ξ
3,
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where Ci and Di for i = 0, · · · , 9 are real coefficients.

C0 = −V0U0

U1
,

C1 = −V0U4 − V5U0 + V4U1

U1
,

C2 = −V0U2 − V1U0

U1
,

C3 = −V0U6 − V5U4 + V8U1

U1
,

C4 = V6U1 − V0U5 − V1U4 − V5U2

U1
,

C5 = −V0U3 − V1U2 + V2U1

U1
,

C6 = −V5U6 + V10U1

U1
,

C7 = −V1U6 − V5U5 + V9U1

U1
,

C8 = −V1U5 − V5U3 + V7U1

U1
,

C9 = −V1U3 + V3U1

U1
,

and

D0 = −W0U0

U1
,

D1 = −W0U4 − W5U0

U1
,

D2 = −W0U2 − W2U0 + W1U1

U1
,

D3 = −W0U6 − W5U4 + W8U1

U1
,

D4 = W6U1 − W0U5 − W2U4 − W5U2

U1
,

D5 = −W0U3 − W2U2 + W3U1

U1
,

D6 = −W5U6 + W10U1

U1
,

D7 = −W2U6 − W5U5 + W9U1

U1
,

D8 = −W2U5 − W5U3 + W7U1

U1
,

D9 = −W2U3 + W4U1

U1
.

Looking only at the coefficients of system (1) which appear in Ci and Di for i = 0, · · · , 9
we see that the coefficients Ci and Di are all independent because pairwise contain different
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coefficients of system (1), with the exceptions of the coefficients C7 and C8, and D7 and
D8 that share the same coefficients of system (1). But now looking directly at the explicit
expressions of C7 and C8, and of D7 and D8 we observe that they are also independent.

Since all the coefficients of the two equations g21(η, ξ) = 0 and g22(η, ξ) = 0
are independent they can be chosen arbitrary. By Bezout’s theorem, system g21(η, ξ) =
0, g22(η, ξ) = 0 has nine real roots, and system (7) has at most nine real roots with ρ > 0.

Let
(
ρ̄, η̄, ξ̄

)
be a solution of system (7). In order to have a limit cycle according to the

averaging theory in Section 2, we must have

D(ρ̄, η̄, ξ̄ ) = det

⎛

⎜
⎜
⎜
⎜
⎜
⎝

∂f21

∂ρ

∂f21

∂η

∂f21

∂ξ
∂f22

∂ρ

∂f22

∂η

∂f22

∂ξ
∂f23

∂ρ

∂f23

∂η

∂f23

∂ξ

⎞

⎟
⎟
⎟
⎟
⎟
⎠

∣
∣
∣
(ρ,η,ξ)=(ρ̄,η̄,ξ̄ )

�= 0.

Then, we conclude that by the averaging theory of second order system (1) has at most nine
limit cycles in a zero-Hopf bifurcation at the origin. This completes the proof of statement
(b) of Theorem 1.

Now we give an example which proves that system (1) has exactly 9 limit cycles
bifurcating from the origin by the averaging theory of second order.

Example 5 Consider the following quadratic polynomial differential system
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx

dt
= −2ε2x − y − x2 + yz + 2xz − 2xw − yw + 1

2
zw

+ ε(z2 − xz + xw) + ε2(x2 − yz),
dy

dt
= −2ε2y + x − 2yz + xz + xw + 2yw + zw + ε(xy − yz + yw)

+ ε2(xz + yw),
dz

dt
= 12ε2z − 2x2 − 2y2 − 2xz − 4xw + ε(x2 − y2 + 8z2 − 2zw) + ε2z2,

dw

dt
= 24ε2w + 2x2 − 2y2 + 2xy − 2xz − 2xw + ε(−2w2 − 2zw)

+ ε2(x2 + xw).

(8)

The eigenvalues of the singular point (0, 0, 0, 0) of system (8) are −2ε2 ± i , 12ε2 and 24ε2.
The averaged system associated to system (8) is

⎧
⎨

⎩

f21(ρ, η, ξ) = ρ(−2 − η + ξ − η2 − 2ξ2 + ρ2 − ηξ) = 0,

f22(ρ, η, ξ) = 12η + 8η2 − 2ηξ + 4ξ2η + 2ξη2 − 2ρ2η = 0,

f23(ρ, η, ξ) = 24ξ − 2ξ2 − 2ηξ + 2ξ2η + 2ξη2 − 2ρ2ξ = 0.
(9)

Solving system (9), there are only nine roots (ρ̄, η̄, ξ̄ ) with ρ > 0, namely

P1 =
(√

2, 0, 0
)

, P2 =
(√

12 − √
5, 0,

√
5

)

, P3 =
(√

12 + √
5, 0, −√

5

)

,

P4 =
(√

22, 4, 0
)

, P5 =
(√

27, 4, 1
)

, P6 =
(√

14 − 2
√

6, −1,
√

6

)

,

P7 =
(√

14 + 2
√

6, −1, −√
6

)

, P8 =
(√

2, −1, 0
)

, P9 =
(√

21, 4, −1
)

.
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Since, we must verify that the determinant is different from zero at these roots where

D(ρ̄, η̄, ξ̄ )

= det

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−2−η̄ + ξ̄−η̄2

−2ξ̄2+3ρ̄2−η̄ξ̄ ρ̄(−1 − 2η̄ − ξ̄ ) ρ̄(1 − 4ξ̄ − η̄)

−4ρ̄η̄ 12+16η̄−2ξ̄+4ξ̄2+4ξ̄ η̄−2ρ̄2 −2η̄ + 8ξ̄ η̄ + 2η̄2

−4ρ̄ξ̄ −2ξ̄ + 2ξ̄2 + 4ξ̄ η̄ 24 − 4ξ̄ − 2η̄ + 4ξ̄ η̄

+2η̄2 − 2ρ̄2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

we get

det

(
∂(f11, f12, f13)

∂(ρ, η, ξ)

)∣
∣
∣
∣
P1

=640 �= 0, det

(
∂(f11, f12, f13)

∂(ρ, η, ξ)

)∣
∣
∣
∣
P23

=−7680±640
√

5 �= 0,

det

(
∂(f11, f12, f13)

∂(ρ, η, ξ)

)∣
∣
∣
∣
P4

= −7040 �= 0, det

(
∂(f11, f12, f13)

∂(ρ, η, ξ)

)∣
∣
∣
∣
P5

= 17280 �= 0,

det

(
∂(f11, f12, f13)

∂(ρ, η, ξ)

)∣
∣
∣
∣
P67

=13440±1920
√

6 �=0, det

(
∂(f11, f12, f13)

∂(ρ, η, ξ)

)∣
∣
∣
∣
P8

=−960 �=0,

det

(
∂(f11, f12, f13)

∂(ρ, η, ξ)

)∣
∣
∣
∣
P9

= 13440 �= 0.

Hence, system (8) has exactly nine limit cycles bifurcating from the origin for ε �= 0
sufficiently small.

5 Proof of Statement (c) of Theorem 1

To prove the main result of this work we will use the third order averaging theory. Accord-
ing to the theorem of Section 2, we must annul the averaged system of second order
(f21(ρ, η, ξ), f22(ρ, η, ξ), f23(ρ, η, ξ)). For this, we take

a2 = c2 = d2 = 0, a00 = a04 = a07 = a08 = a09 = 0, a05 = −b02, a13 = −b16,

b07 = b08 = b09 = 0, a06 = −b03, a06 = −b03, b00 = −b04, a12 = −b15,

c01 = c03 = c06 = 0, d01 = d02 = d05 = 0, c14 = −c10, d14 = −d10.

c17 = c18 = c19 = 0, d17 = d18 = d19 = 0.

Applying the averaging theory of third order, we must compute the following expression

f3(ρ, η, ξ) = 1

2π

∫ 2π

0
[1

2
yT

1 (θ, ρ, η, ξ)
∂2F1

∂(ρ, η, ξ)2
(θ, ρ, η, ξ)y1(θ, ρ, η, ξ)

+ 1

2

∂F1

∂(ρ, η, ξ)
(θ, ρ, η, ξ)y2(θ, ρ, η, ξ)

+ ∂F2

∂(ρ, η, ξ)
(θ, ρ, η, ξ)y1(θ, ρ, η, ξ) + F3(θ, ρ, η, ξ)]dθ, (10)

where

y1(θ, ρ, η, ξ) =
∫ θ

0
F1(t, ρ, η, ξ)dt,

y2(θ, ρ, η, ξ) =
∫ θ

0

[
∂F1

∂(ρ, η, ξ)
(t, ρ, η, ξ)

∫ t

0
F1(s, ρ, η, ξ)ds + F2(t, ρ, η, ξ)

]

dt,
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and

f3(ρ, η, ξ) = (f31, f32, f33) ,

F1(θ, ρ, η, ξ) = (F11, F12, F13) ,

F2(θ, ρ, η, ξ) = (F21, F22, F23) ,

F3(θ, ρ, η, ξ) = (F31, F32, F33) ,

y1(θ, ρ, η, ξ) = (y11, y12, y13) ,

y2(θ, ρ, η, ξ) = (y21, y22, y23) .

So, first we compute the following integral, and we get that

1

4π

∫ 2π

0

[

yT
1 (θ, ρ, η, ξ)

∂2F1

∂(ρ, η, ξ)2
(θ, ρ, η, ξ)y1(θ, ρ, η, ξ)

]

dθ

= ∂2F1

∂ρ2
y2

11 + ∂2F1

∂ρ∂θ
y11y12

+ ∂2F1

∂ρ∂ξ
y11y13 + ∂2F1

∂η∂ξ
y11y12 + ∂2F1

∂η2
y2

12 + ∂2F1

∂η∂ξ
y

y13
12 + ∂2F1

∂ρ∂ξ
y11y13 + ∂2F1

∂ξ∂η
y12y13

+∂2F1

∂ξ2
y2

13

= (G1(ρ, η, ξ),G2(ρ, η, ξ),G3(ρ, η, ξ)) .

Secondly, we compute the second part of the expression, and we get

1

2π

∫ 2π

0

[
1

2

∂F1

∂(ρ, η, ξ)
(θ, ρ, η, ξ)y2(θ, ρ, η, ξ) + ∂F2

∂(ρ, η, ξ)
(θ, ρ, η, ξ)y1(θ, ρ, η, ξ)

+F3(θ, ρ, η, ξ)

]

dθ = (H1(ρ, η, ξ),H2(ρ, η, ξ),H3(ρ, η, ξ)) .

Finally, we obtain the following averaged system of third order (f31(ρ, η, ξ) = G1 +
H1, f32(ρ, η, ξ) = G2 + H2, f33(ρ, η, ξ) = G3 + H3).

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f31(ρ, η, ξ) = 1

8b3
ρ(8a3b

2 + A1η + A2ξ + A3ξ
2 + A4η

2 + A5ηξ

+ A6ρ
2 + A7ρ

2η + A8ρ
2ξ),

f32(ρ, η, ξ) = 1

8b3
(8c3ηb2 + B1ρ

2ξ + B2ρ
2η + B3η

2 + B4ξ
2 + B5η

4

+ B6ηξ + B7ρ
2ηξ + B8ρ

2 + B9η
3 + B10ρ

2η2 + B11ηξ2 + B12η
2ξ),

f33(ρ, η, ξ) = 1

8b3
(8d3ξb2 + K1ηξ + K2ρ

4 + K3ρ
2η + K4ρ

2ηξ + K5ρ
2ξ2

+ K6η
2ξ + K7ηξ2 + K8ξ

2 + K9η
2 + K10ρ

2ξ + K11ξ
3 + K12ρ

2),

(11)
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where

A1 = 4(b25b
2 + a22b

2),

A2 = 4(b26b
2 + a23b

2),

A3 = −4b19b01b + 4a19a01b + 8d03b19b − 8d06a19b + 8b04a19b,

A4 = −4b17b01b + 4a17a01b + 8c02b17b − 8c05a17b + 8b04a17b,

A5 = −4a18c05b + 4b18c02b+4d03b18b−4d06a18b + 8b04a18b + 4a18a01b − 4b18b01b,

A6 = d00a16b + d00b13b − a02c11b + c00b12b + a14a01b + 2a14b04b + 2b04a10b

+a10a01b

− b14b01b − b10b01b − a03d11b + c00a15,

A7 = a02c
2
05 − a02c

2
02 + a02a

2
01 − a02b

2
01 + c05b01b02 + 2a02a01b04 + 2a02c02b01

− 2a02c05b04 − 2a02c05a01 − a01c02b02 − 2b02c02b04,

A8 = −a03d
2
03 + a03d

2
06 + a03a

2
01 − a03b

2
01 + d06b01b03 + 2a03a01b04 + 2a03d03b01

− 2a03d06b04 − 2a03d06a01 − a01d03b03 − 2b03d03b04,

and

B1 = −4b13c00b−4a16c00b−4c02c16b + 4c13c05b + 4a03c11b + 4d03c16b − 4d06c13b,

B2 = −4b12c00b−4a15c00b + 4c05a10b − 4b14c02b−4b10c02b + 4a02c11b + 4c05a14b,

B3 = 8c27b
2,

B4 = 8c29b
2,

B5 = −c00c
2
02 + c00c

2
05 + b01c00c02 − a01c00c05,

B6 = 8c28b
2,

B7 = 4d06b03c02 − 4a03b01c02 + 4a03c02d03 + 4a03a01c05 − 4a03d06c05 − 4b03c05d03,

B8 = 4c20b
2 + 4c24b

2,

B9 = 8a17c05b − 8b17c02b,

B10 = 4a02c
2
02 − 4a02c

2
05 − 4b01c02a02 + 4a01a02c05,

B11 = 8a19c05b − 8b19c02b,

B12 = 8a18c05b − 8b18c02b,

and

K1 = 8d28b
2,

K2 = −d00d
2
03 + d00d

2
06 + b01d00d03 − a01d00d06,

K3 = −4b12d00b−4a15d00b−4d03d15b + 4d12d06b + 4a02d11b + 4c02d15b−4c05d12b,

K4 = −4d06b02c02 + 4a02d03c02 + 4a01a02d06 + 4b02d03c05−4a02d06c05−4b01a02d03,

K5 = 4a03d
2
03 − 4a03d

2
06 − 4b01d03a03 + 4a01a03d06,

K6 = 8a17d06b − 8b17d03b,

K7 = 8a18d06b − 8b18d03b,

K8 = 8d29b
2,

K9 = 8d27b
2,

K10 = −4b13d00b − 4a16d00b + 4d06a10b−4b14d03b−4b10d03b + 4a03d11b+4d06a14b,

K11 = 8a19d06b − 8b19d03b,

K12 = 4d20b
2 + 4d24b

2.

We solve the first equation f31 with respect to ρ and avoiding the solutions with ρ = 0, we
obtain

ρ2 = −A4η
2 + A3ξ

2 + A1η + A2ξ + A5ηξ + 8a3b2

A6 + A8ξ + A7η
.
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Substituting ρ2 in f3i (ρ, η, ξ) = 0 for i = 2, 3, we get the following system
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g31 = 1

8(A6+A7η+A8ξ)2b3
(I0 + I1ξη + I2η

2ξ + I3ηξ2 + I4η
2+I5η

4+I6ξ
2 + I7ξ

4

+ I8η
3 + I9η

5 + I10η + I11ξ
3 + I12η

2ξ2 + I13η
3ξ + I14ηξ3 + I15ξ + I16η

3ξ2

+ I17ηξ4 + I18η
4ξ + I19η

2ξ3),

g32 = 1

8(A6 + A7η + A8ξ)2b3
(J0 + J1ξη + J2ηξ2 + J3η

2ξ + J4η
3 + J5ξ

3 + J6η
2ξ2

+ J7η
2 + J8η

4 + J9ξ
4 + J10ξ

5 + J11η
4ξ + J12η

2ξ3 + J13η
3ξ2 + J14ηξ4

+ J15ξ
2 + J16η + J17ξ + J18η

3ξ + J19ηξ3),

where

I0 = 64B5a
2
3b4 − 8B8a3b

2A6,

I1 = 16c3b
2A6A8 − 8B1a3b

2A7 − 8B2a3b
2A8 + 16B5a3b

2A5 − 8B7a3b
2A6 + B6A

2
6− B1A1A6 + 2B5A1A2 − B2A2A6 − B8A1A8 − B8A2A7 − B8A5A6,

I2 = 16c3b
2A7A8 − 8B7a3b

2A7 − 8B10a3b
2A8 + B12A

2
6 − B10A2A6 − B1A1A7

− B1A4A6 − B2A1A8 − B2A2A7 − B2A5A6 + 2B3A6A8 + 2B5A1A5 + 2B5A2A4
+ 2B6A6A7 − B7A1A6 − B8A4A8 − B8A5A7,

I3 = 8c3b
2A2

8 − 8B7a3b
2A8 + B11A

2
6 − B1A1A8 − B1A2A7 − B1A5A6 − B2A2A8

− B2A3A6 + 2B4A6A7 + 2B5A1A3 + 2B5A2A5 + 2B6A6A8 − B7A2A6 − B8A3A7
− B8A5A8,

I4 = B3A
2
6 + B5A

2
1 − B2A1A6 − B8A1A7 − B8A4A6 + 16c3b

2A6A7 − 8B2a3b
2A7

+ 16B5a3b
2A4 − 8B10a3b

2A6,

I5 = B3A
2
7 + B5A

2
4 − B2A4A7 + 2B9A6A7 − B10A1A7 − B10A4A6,

I6 = B4A
2
6 + B5A

2
2 − B1A2A6 − B8A2A8 − B8A3A6 − 8B1a3A8b

2 + 16B5a3b
2A3,

I7 = B4A
2
8 + B5A

2
3 − B1A3A8,

I8 = B9A
2
6 + 8c3b

2A2
7 − B2A1A7 − B2A4A6 + 2B3A6A7 + 2B5A1A4 − B8A4A7

− B10A1A6 − 8B10a3A7b
2,

I9 = B9A
2
7 − B10A4A7,

I10 = 8c3b
2A2

6 − B8A1A6 − 8B2a3A6b
2 + 16B5a3A1b

2 − 8B8a3A7b
2,

I11 = −B1A2A8 − B1A3A6 + 2B4A6A8 + 2B5A2A3 − B8A3A8,

I12 = B3A
2
8 + B4A

2
7 + B5A

2
5 − B1A4A8 − B1A5A7 − B2A3A7 − B2A5A8 + 2B5A3A4

+ 2B6A7A8 − B7A1A8 − B7A2A7 − B7A5A6 − B10A2A8−B10A3A6 + 2B11A6A7
+ 2B12A6A8,

I13 = B6A
2
7 − B1A4A7 − B2A4A8 − B2A5A7 + 2B3A7A8 + 2B5A4A5 − B7A1A7

+ 2B9A6A8 − B7A4A6 − B10A1A8 − B10A2A7 − B10A5A6 + 2B12A6A7,

I14 = B6A
2
8 − B1A3A7 − B1A5A8 − B2A3A8 + 2B4A7A8 + 2B5A3A5 − B7A2A8

− B7A3A6 + 2B11A6A8,

I15 = −B8A2A6 − 8B1a3A6b
2 + 16B5a3A2b

2 − 8B8a3A8b
2,

I16 = B9A
2
8 + B11A

2
7 − B7A4A8 − B7A5A7 − B10A3A7 − B10A5A8 + 2B12A7A8,

I17 = B11A
2
8 − B7A3A8,

I18 = B12A
2
7 − B7A4A7 − B10A4A8 − B10A5A7 + 2B9A7A8,

I19 = B12A
2
8 − B7A3A7 − B7A5A8 − B10A3A8 + 2B11A7A8,
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and

J0 = 64K2a
2
3b4 − 8K12a3b

2A6,

J1 = 16d3b
2A6A7 − 8K3a3b

2A8 − 8K4a3b
2A6 + 16K2a3b

2A5 − 8K10a3b
2A7

+ K1A
2
6 − K3A2A6 + 2K2A1A2 − K10A1A6−K12A1A8 − K12A2A7 − K12A5A6,

J2 = 16d3b
2A7A8 − 8K4a3b

2A8 − 8K5a3b
2A7 + K7A

2
6 − K3A2A8 − K3A3A6

− K4A2A6 − K5A1A6 − K10A1A8 − K10A2A7 + 2K1A6A8 + 2K2A1A3
+ 2K2A2A5 + 2K8A6A7 − K10A5A6 − K12A3A7 − K12A5A8,

J3 = 8d3b
2A2

7 − 8K4a3b
2A7 + K6A

2
6 − K3A1A8 − K3A2A7 − K3A5A6 − K4A1A6

− K10A1A7 + 2K1A6A7 + 2K2A1A5 + 2K2A2A4 + 2K9A6A8 − K10A4A6
− K12A4A8 − K12A5A7,

J4 = −K3A1A7 − K3A4A6 + 2K9A6A7 + 2K2A1A4 − K12A4A7,

J5 = K11A
2
6 + 8d3b

2A2
8 − K5A2A6 − K10A2A8 + 2K2A2A3 + 2K8A6A8 − K10A3A6

− K12A3A8 − 8K5a3A8b
2,

J6 = K2A
2
5 + K8A

2
7 + K9A

2
8 − K3A3A7 − K3A5A8 − K4A1A8 − K4A2A7

+ 2K1A7A8 + 2K2A3A4 − K4A5A6 − K5A1A7 − K5A4A6 − K10A4A8
− K10A5A7 + 2K6A6A8 + 2K7A6A7,

J7 = K2A
2
1 + K9A

2
6−K3A1A6−K12A1A7 − K12A4A6 − 8K3a3A7b

2 + 16K2a3b
2A4,

J8 = K2A
2
4 + K9A

2
7 − K3A4A7,

J9 = K8A
2
8 + K2A

2
3 − K5A2A8 + 2K11A6A8 − K5A3A6 − K10A3A8,

J10 = K11A
2
8 − K5A3A8,

J11 = K6A
2
7 − K4A4A7,

J12 = K6A
2
8 + K11A

2
7 − K4A3A7 − K4A5A8 − K5A4A8 − K5A5A7 + 2K7A7A8,

J13 = K7A
2
7 − K4A4A8 − K4A5A7 − K5A4A7 + 2K6A7A8,

J14 = K7A
2
8 − K4A3A8 − K5A3A7 − K5A5A8 + 2K11A7A8,

J15 = K2A
2
2 + K8A

2
6−K10A2A6−K12A2A8−K12A3A6 + 16d3b

2A6A8 − 8K5a3b
2A6

+ 16K2a3b
2A3 − 8K10a3b

2A8,

J16 = −K12A1A6 − 8K3a3A6b
2 + 16K2a3A1b

2 − 8K12a3A7b
2,

J17 = 8d3b
2A2

6 − K12A2A6 − 8K10a3A6b
2 + 16K2a3A2b

2 − 8K12a3A8b
2,

J18 = K1A
2
7 − K3A4A8 − K3A5A7 − K4A1A7 + 2K6A6A7 + 2K9A7A8 − K10A4A7

− K4A4A6 + 2K2A4A5,

J19 = K1A
2
8 − K3A3A8 − K4A2A8 − K4A3A6 + 2K2A3A5 + 2K7A6A8 − K5A1A8

+ 2K11A6A7 − K5A2A7 − K5A5A6 − K10A3A7 − K10A5A8 + 2K8A7A8.

Hence, it is easy to verify that this system has 25 real solutions by Bezout’s theorem. So,
the coefficients of system (11) can be taken in such a way that this system has at most 25
real solutions different from zero for ρ > 0.

Let
(
ρ̄, η̄, ξ̄

)
be a solution of system (11). In order to have a limit cycle according to the

averaging theory in Section 2, we must have

D(ρ̄, η̄, ξ̄ ) = det

⎛

⎜
⎜
⎜
⎜
⎜
⎝

∂f31

∂ρ

∂f31

∂η

∂f31

∂ξ
∂f32

∂ρ

∂f32

∂η

∂f32

∂ξ
∂f33

∂ρ

∂f33

∂η

∂f33

∂ξ

⎞

⎟
⎟
⎟
⎟
⎟
⎠

∣
∣
∣
(ρ,η,ξ)=(ρ̄,η̄,ξ̄ )

�= 0.

In short, we deduce that system (1) has at most 25 limit cycles in a zero-Hopf bifurcation at
the origin, using the averaging theory of third order. This completes the proof of statement
(c) of Theorem 1.
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