Skip to main content
Log in

Effect of molding process on sintering and properties of (Mg1-xZnx)2SiO4 high-frequency dielectric ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

(Mg1-xZnx)2SiO4 (x = 0.2, 0.4, 0.6, 0.8) ceramics were prepared by different molding methods, the sintering characteristics and high-frequency dielectric properties of ceramics with different ratios were studied, and the optimum Mg/Zn ratio was determined under the experimental conditions. X-ray diffraction (XRD) patterns show that the specimens have a Forsterite structure when x < 0.4, while when x ≥ 0.4, the specimens have a Willemite structure. SEM images suggested that the density of hot pressing (Mg0.4Zn0.6)2SiO4 ceramics is better than that of dry pressing. The (Mg1-xZnx)2SiO4 ceramics obtained by hot pressing show an overall increase in bulk density. (Mg0.4Zn0.6)2SiO4 ceramics have the best high-frequency dielectric properties when sintered at 1325 °C, and the performance parameters of dry pressing and hot pressing are εr = 6.74, tanδ = 8.88 × 10–4 and εr = 6.36, tanδ = 1.35 × 10–3, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article [and its supplementary information files].

References

  1. W. Lei, W.Z. Lu, X.H. Wang, F. Liang, J. Wang, J. Am. Ceram. Soc. 94, 20 (2010). https://doi.org/10.1111/j.1551-2916.2010.04247.x

    Article  CAS  Google Scholar 

  2. M.T. Sebastian, R. Ubic, H. Jantunen, Int. Mater. Rev. 60, 392 (2015). https://doi.org/10.1179/1743280415y.0000000007

    Article  Google Scholar 

  3. R.J. Cava, J. Mater. Chem. 11, 54 (2001). https://doi.org/10.1039/b003681l

    Article  CAS  Google Scholar 

  4. X. Xue, X. Li, J. Guo, H. Wang, J. Eur. Ceram. Soc. 42, 6527 (2022). https://doi.org/10.1016/j.jeurceramsoc.2022.07.047

    Article  CAS  Google Scholar 

  5. B. Huang, T. Xia, F. Shang, G. Chen, J. Eur. Ceram. Soc. 43, 6107 (2023). https://doi.org/10.1016/j.jeurceramsoc.2023.07.004

    Article  CAS  Google Scholar 

  6. M. Zang, M. Zheng, M. Zhu, Y. Hou, J. Eur. Ceram. Soc. 44, 293 (2024). https://doi.org/10.1016/j.jeurceramsoc.2023.09.029

    Article  CAS  Google Scholar 

  7. P.S. Anjana, M.T. Sebastian, J. Am. Ceram. Soc. 92, 96 (2009). https://doi.org/10.1111/j.1551-2916.2008.02756.x

    Article  CAS  Google Scholar 

  8. T.S. Sasikala, C. Pavithran, M.T. Sebastian, J. Mater. Sci. Mater. Electron. 21, 141 (2009). https://doi.org/10.1007/s10854-009-9882-7

    Article  CAS  Google Scholar 

  9. G. Dou, D. Zhou, M. Guo, S. Gong, Y. Hu, J. Mater. Sci. Mater. Electron. 24, 1431 (2012). https://doi.org/10.1007/s10854-012-0945-9

    Article  CAS  Google Scholar 

  10. G. Dou, D. Zhou, M. Guo, S. Gong, J. Alloys Compd. 513, 466 (2012). https://doi.org/10.1016/j.jallcom.2011.10.089

    Article  CAS  Google Scholar 

  11. O. Tamada, K. Fujino, S. Sasaki, ACTA CRYSTALLOGR B. 39, 692 (1983). https://doi.org/10.1107/s0108768183003250

    Article  Google Scholar 

  12. K. Sohn, B. Cho, H. Chang, H.D. Park, J. Electrochem. Soc. 146, 2353 (1999). https://doi.org/10.1149/1.1391939

    Article  CAS  Google Scholar 

  13. T. Tsunooka, T. Sugiyama, H. Ohsato, K. Kakimoto, M. Andou, Y. Higashida, H. Sugiura, Key Eng. Mater. 269, 199 (2004). https://doi.org/10.4028/www.scientific.net/kem.269.199

    Article  CAS  Google Scholar 

  14. C. Kosanović, N. Stubičar, N. Tomašić, V. Bermanec, M. Stubičar, J. Alloys Compd. 389, 306 (2005). https://doi.org/10.1016/j.jallcom.2004.08.015

    Article  CAS  Google Scholar 

  15. Y. Guo, H. Ohsato, K. Kakimoto, J. Eur. Ceram. Soc. 26, 1827 (2006). https://doi.org/10.1016/j.jeurceramsoc.2005.09.008

    Article  CAS  Google Scholar 

  16. T. Tsunooka, M. Ando, S. Suzuki, Y. Yasufuku, and H. Ohsato, Jpn. J. Appl. Phys. 52, 09KH02 (2013) https://doi.org/10.7567/jjap.52.09kh02

  17. E.R. Segnit, A.E. Holland, J. Am. Ceram. Soc. 48, 409 (1965). https://doi.org/10.1111/j.1151-2916.1965.tb14778

    Article  CAS  Google Scholar 

  18. K.X. Song, X.M. Chen, C.W. Zheng, Ceram. Int. 34, 917 (2008). https://doi.org/10.1016/j.ceramint.2007.09.057

    Article  CAS  Google Scholar 

  19. Z. Ye, J. Li, G. Wang, Z. Qi, G. Gan, Y. Yang, H. Zhang, Mater. Res. Express. 6, 106313 (2019). https://doi.org/10.1088/2053-1591/ab3f1b

    Article  CAS  Google Scholar 

  20. B. Li, Y. Yuan, S. Zhang, H. Jiang, Bull. Mater. Sci. 34, 921 (2011). https://doi.org/10.1007/s12034-011-0215-0

    Article  CAS  Google Scholar 

  21. L. Li, Y. Wang, W. Xia, X. He, P. Zhang, J. Electron. Mater. 41, 684 (2012). https://doi.org/10.1007/s11664-011-1899-z

    Article  CAS  Google Scholar 

  22. J. Luo, X.R. Xing, R.B. Yu, Q.F. Xing, G.R. Liu, D.F. Zhang, X.L. Chen, J. Alloys Compd. 420, 317 (2006). https://doi.org/10.1016/j.jallcom.2005.10.050

    Article  CAS  Google Scholar 

  23. K. Zhang, X. Liu, N. Bai, Z. Li, Q. Wu, Z. Yang, J. Mater. Sci. Mater. Electron. 32, 4090 (2021). https://doi.org/10.1007/s10854-020-05150-4

    Article  CAS  Google Scholar 

  24. J. Luo, X.R. Xing, R.B. Yu, Q.F. Xing, D.F. Zhang, X.L. Chen, J. Alloys Compd. 402, 263 (2005). https://doi.org/10.1016/j.jallcom.2005.04.153

    Article  CAS  Google Scholar 

  25. Z. Huang, J. Qiao, L. Li, Ceram. Int. 49, 37017 (2023). https://doi.org/10.1016/j.ceramint.2023.09.034

    Article  CAS  Google Scholar 

  26. Y. Zhang, Y. Yao, J. Ren, H. Kong, B. Wang, Z. Wang, Z. Zhang, J. Wang, J. Alloys Compd. 829, 154546 (2020). https://doi.org/10.1016/j.jallcom.2020.154546

    Article  CAS  Google Scholar 

  27. Y. Lai, X. Tang, H. Zhang, X. Liang, X. Huang, Y. Li, H. Su, Mater. Res. Bull. 99, 496 (2018). https://doi.org/10.1016/j.materresbull.2017.11.036

    Article  CAS  Google Scholar 

  28. L. Lu, A.N. Chen, Y. Chen, L.J. Cheng, J.M. Wu, R.Z. Liu, Y.S. Shi, Ceram. Int. 47, 4055 (2021). https://doi.org/10.1016/j.ceramint.2020.09.277

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China [grant number 52272123], the National Key Basic Research and Development Project Subproject [grant number 2017YFC0703204], and the Science and Technology Project of Shaanxi Provincial Market Supervision Administration [grant number 2022KY20].

Funding

This work was supported by the National Natural Science Foundation of China [grant number 52272123], the National Key Basic Research and Development Project Subproject [grant number 2017YFC0703204], and the Science and Technology Project of Shaanxi Provincial Market Supervision Administration [grant number 2022KY20].

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Hanbi Zhang and Kai Zhang designed the experiments. Material preparation, data collection, and analysis were performed by Jiayan Guan, Danni Chen, Miao Zhang, and Ziyao Wei. Xiangchun Liu and Feng Gao contributed reagents/materials/analysis tools and participated in the data discussion. The first draft of the manuscript was written by Hanbi Zhang and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Xiangchun Liu or Feng Gao.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Liu, X., Zhang, K. et al. Effect of molding process on sintering and properties of (Mg1-xZnx)2SiO4 high-frequency dielectric ceramics. J Mater Sci: Mater Electron 35, 1702 (2024). https://doi.org/10.1007/s10854-024-13440-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-13440-4

Navigation