Skip to main content
Log in

Development of the BiVO4/ZnFe2O4 heterostructure for solar water splitting

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, we report the development of a BiVO4/ZnFe2O4 heterostructure and its characterization as a photoanode in solar water splitting. ZnFe2O4 was deposited on a BiVO4 thin film after electrodepositing varying charges of FeOOH (50, 100, and 250 mC), which were then thermally oxidized in the presence of air and a zinc source. Structural characterization via XRD and profilometry indicated an increase in film thickness with higher deposited charges. The analysis revealed a decrease in strain and Urbach energy, indicative of reduced structural defects and an increase in the bandgap. SEM images illustrated the porous nature of the film surfaces, with elongated 2D structures enhancing light absorption through multiple reflectance effects. However, increased charge deposition led to particle agglomeration, reducing light absorption efficiency and active surface area, thus diminishing photogenerated charge generation. Electrochemical and photoelectrochemical characterization confirmed the n-type nature of all films, with carrier concentration increasing with film thickness. Nevertheless, the thinnest film (50 mC) exhibited the highest photocurrent, attributed to reduced particle agglomeration, enhanced light absorption, greater charge transport capacity, and superior electrocatalytic behavior, thereby minimizing recombination effects. Overall, the heterostructure demonstrated suitability as a photoanode for oxygen evolution reaction, supported by correct band alignment as determined from flat band potentials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. H. Song, S. Luo, H. Huang, B. Deng, J. Ye, Solar-driven hydrogen production: recent advances, challenges, and future perspectives. ACS Energy Lett. 7(3), 1043–1065 (2022). https://doi.org/10.1021/acsenergylett.1c02591

    Article  CAS  Google Scholar 

  2. S. Moon, H. Mametsuka, S. Tabata, E. Suzuki, Photocatalytic production of hydrogen from water using TiO2 and B/TiO2. Catal. Today. Today 58, 125–132 (2000). https://doi.org/10.1016/S0920-5861(00)00247-9

    Article  CAS  Google Scholar 

  3. J. Li, M. Hatami, Y. Huang, B. Luo, D. Jing, L. Ma, Efficient photothermal catalytic hydrogen production via plasma-induced photothermal effect of Cu/TiO2 nanoparticles. Int. J. Hydrog. EnergyHydrog. Energy 48, 6336–6345 (2023). https://doi.org/10.1016/j.ijhydene.2022.05.027

    Article  CAS  Google Scholar 

  4. M. Lee, S. Haas, V. Smirnov, T. Merdzhanova, U. Rau, Scalable photovoltaic-electrochemical cells for hydrogen production from water-recent advances. ChemElectroChem 9, 1–21 (2020). https://doi.org/10.1002/celc.202200838

    Article  CAS  Google Scholar 

  5. Y. Zhao, Z. Niu, J. Zhao, L. Xue, X. Fu, J. Long, Recent Advancements in photoelectrochemical water splitting for hydrogen production. Electrochem. Energy Rev. 6, 14 (2023). https://doi.org/10.1007/s41918-022-00153-7

    Article  CAS  Google Scholar 

  6. M.G. Walter, E.L. Warren, J.R. McKone, S.W. Boettcher, Q. Mi, I.A. Santori, N.S. Lewis, Solar water splitting cells. Chem. Rev. 110(11), 6446–6473 (2010). https://doi.org/10.1021/cr1002326

    Article  CAS  PubMed  Google Scholar 

  7. M. Ahmed, I. Dincer, A review on photoelectrochemical hydrogen production systems: challenges and future directions. Int. J. Hydrog. EnergyHydrog. Energy 44(5), 2474–2507 (2019). https://doi.org/10.1016/j.ijhydene.2018.12.037

    Article  CAS  Google Scholar 

  8. Y. Kang, F. Yu, L. Zhang, W. Wang, L. Chen, Y. Li, Review of ZnO-based nanomaterials in gas sensors. Solid State Ion. 360, 115544 (2021). https://doi.org/10.1016/j.ssi.2020.115544

    Article  CAS  Google Scholar 

  9. M.F. Sanchez, T.G. Sanchez, M. Courel, O. Reyes-Vallejo, Y. Sanchez, E. Saucedo, P.J. Sebastian, Effect of post annealing thermal heating on Cu2ZnSnS4 solar cells processed by sputtering technique. Sol. Energy 237, 196–202 (2022). https://doi.org/10.1016/j.solener.2022.04.002

    Article  CAS  Google Scholar 

  10. R. Sánchez-Albores, F.J. Cano, P.J. Sebastian, O. Reyes-Vallejo, Microwave-assisted biosynthesis of ZnO–GO particles using orange peel extract for photocatalytic degradation of methylene blue. J. Environ. Chem. Eng. 10(6), 108924 (2022). https://doi.org/10.1016/j.jece.2022.108924

    Article  CAS  Google Scholar 

  11. O. Reyes-Vallejo, R. Sánchez-Albores, A. Fernández-Madrigal, S. Torres-Arellano, P.J. Sebastian, Evaluation of hydrogen evolution reaction on chemical bath deposited Cu2O thin films: effect of copper source and triethanolamine content. Int. J. Hydrog. EnergyHydrog. Energy 47(54), 22775–22786 (2022). https://doi.org/10.1016/j.ijhydene.2022.05.105

    Article  CAS  Google Scholar 

  12. A. Meidanchi, O. Akhavan, S. Khoei, A.A. Shokri, Z. Hajikarimi, N. Khansari, ZnFe2O4 nanoparticles as radiosensitizers in radiotherapy of human prostate cancer cells. Mater. Sci. Eng. C 45, 394–399 (2015). https://doi.org/10.1016/j.msec.2014.10.062

    Article  CAS  Google Scholar 

  13. R.M. Sánchez-Albores, B. Yadira Pérez-Sariñana, C.A. Meza-Avendaño, P.J. Sebastian, O. Reyes-Vallejo, J.B. Robles-Ocampo, Hydrothermal synthesis of bismuth vanadate-alumina assisted by microwaves to evaluate the photocatalytic activity in the degradation of methylene blue. Catal. Today. Today 353, 126–133 (2020). https://doi.org/10.1016/j.cattod.2019.07.044

    Article  CAS  Google Scholar 

  14. R.M. Sánchez-Albores, O. Reyes-Vallejo, E. Ríos-Valdovinos, A. Fernández-Madrigal, F. Pola-Albores, C.I. Enríquez-Flores, E. Ramírez-Álvarez, J. Moreira-Acosta, Characterization and photoelectrochemical evaluation of BiVO4 films developed by thermal oxidation of metallic Bi films electrodeposited. Mater. Sci. Semicond. 153, 107184 (2023). https://doi.org/10.1016/j.mssp.2022.107184

    Article  CAS  Google Scholar 

  15. C. Martínez Suarez, S. Hernández, N. Russo, BiVO4 as photocatalyst for solar fuels production through water splitting: a short review. Appl. Catal. A: Gen. 504, 158–170 (2015). https://doi.org/10.1016/j.apcata.2014.11.044

    Article  CAS  Google Scholar 

  16. S. Zhang, M. Rohloff, O. Kasian, A.M. Mingers, K.J.J. Mayrhofer, A. Fischer, C. Scheu, S. Cherevko, Dissolution of BiVO4 photoanodes revealed by time-resolved measurements under photoelectrochemical conditions. J. Phys. Chem. C 123(38), 23410–23418 (2019). https://doi.org/10.1021/acs.jpcc.9b07220

    Article  CAS  Google Scholar 

  17. K. RodulfoTolod, T. Saboo, S. Hernández, H. Guzmán, M. Castellino, R. Irani, P. Bogdanoff, F.F. Abdi, E. Alessandra Quadrelli, N. Russo, Insights on the surface chemistry of BiVO4 photoelectrodes and the role of Al overlayers on its water oxidation activity. Appl. Catal. A: Gen 605, 117796 (2020). https://doi.org/10.1016/j.apcata.2020.117796

    Article  CAS  Google Scholar 

  18. F.F. Abdi, T.J. Savenije, M.M. May, B. Dam, R. van de Krol, The Origin of slow carrier transport in BiVO4 thin film photoanodes: a time-resolved microwave conductivity study. J. Phys. Chem. Lett. 4(16), 2752–2757 (2013). https://doi.org/10.1021/jz4013257

    Article  CAS  Google Scholar 

  19. Q. Yu, F. Zhang, G. Li, Structure, morphology and photocatalytic performance of BiVO4 nanoislands covered with ITO thin film. J. Mater. Sci. Mater. Electron. 31, 7035–7043 (2020). https://doi.org/10.1007/s10854-020-03269-y

    Article  CAS  Google Scholar 

  20. R. M. Sánchez-Albores, O. Reyes-Vallejo ,A. Fernández-Madrigal, E. Ríos-Valdovinos, F. Pola-Albores, J. Moreira-Acosta, C.A. Meza-Avendaño, FeOOH, α-Fe2O3, and ZnFe2O4 Thin Films Grown by Electrodeposition Method: Study for Photoanode Development, 2022 19th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), (2022) https://doi.org/10.1109/CCE56709.2022.9976011

  21. M. Sun, Y. Chen, G. Tian, A. Wu, H. Yan, H. Fu, Stable mesoporous ZnFe2O4 as an efficient electrocatalyst for hydrogen evolution reaction. Electrochim. Acta. Acta 190, 186–192 (2016). https://doi.org/10.1016/j.electacta.2015.12.166

    Article  CAS  Google Scholar 

  22. O.M. Lemine, M. Bououdina, M. Sajieddine, A.M. Al-Saie, M. Shafi, A. Khatab, M. Al-hilali, M. Henini, Synthesis, structural, magnetic and optical properties of nanocrystalline ZnFe2O4. Phys. B: Condens. Matter 406(10), 1989–1994 (2011). https://doi.org/10.1016/j.physb.2011.02.072

    Article  CAS  Google Scholar 

  23. J. Wang, Q. Zhang, F. Deng, X. Luo, D.D. Dionysiou, Rapid toxicity elimination of organic pollutants by the photocatalysis of environment-friendly and magnetically recoverable step-scheme SnFe2O4/ZnFe2O4 nano-heterojunctions. Chem. Eng. J. 379, 122264 (2020). https://doi.org/10.1016/j.cej.2019.122264

    Article  CAS  Google Scholar 

  24. S. Saxena, A. Verma, K. Asha, N.K. Biswas, A. Srivastav, V.R. Satsangi, R. Shrivastav, S. Dass, BiVO4/Fe2O3/ZnFe2O4; triple heterojunction for an enhanced PEC performance for hydrogen generation. RSC Adv. 12, 12552–12563 (2022). https://doi.org/10.1039/D2RA00900E

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Q. Wang, J. He, Y. Shi, S. Zhang, T. Niu, H. She, Y. Bi, Z. Lei, Synthesis of MFe2O4 (M=Ni, Co) /BiVO4 film for photolectrochemical hydrogen production activity. Appl. Catal. BCatal. B 214, 158–167 (2017). https://doi.org/10.1016/j.apcatb.2017.05.044

    Article  CAS  Google Scholar 

  26. Z. Braiek, M. Gannouni, I. Ben Assaker, A. Bardaoui, A. Lamouchi, A. Brayek, R. Chtourou, Correlation between physical properties and growth mechanism of In2S3 thin films fabricated by electrodeposition technique with different deposition times. Eur. Phys. J. Appl. Phys. 72, 10302 (2015). https://doi.org/10.1051/epjap/2015150195

    Article  CAS  Google Scholar 

  27. S.A. Salman, N.A. Bakr, R.K. Ismail, Study of the effect of annealing on optical properties of ZnFe2O4 films prepared by chemical spray pyrolysis method. Int. J. Thin. Fil. Sci. Tec 5(1), 33–37 (2016)

    Google Scholar 

  28. A.A.A. Ahmed, A.M. Abdulwahab, Z.A. Talib, D. Salah, M.H. Flaifel, Magnetic and optical properties of synthesized ZnO–ZnFe2O4 nanocomposites via calcined Zn–Fe layered double hydroxide. Opt. Mater. 108, 110179 (2020)

    Article  CAS  Google Scholar 

  29. T.T.K. Chi, N.T. Le, B.T.T. Hien, D.Q. Trung, N.Q. Liem, Preparation of sers substrates for the detection of organic molecules at low concentration. Commun. Phys.. Phys. 26, 261–268 (2016). https://doi.org/10.15625/0868-3166/26/3/8053

    Article  Google Scholar 

  30. P. Makuła, M. Pacia, W. Macyk, How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV–Vis spectra. J. Phys. Chem. Lett. 9(23), 6814–6817 (2018). https://doi.org/10.1021/acs.jpclett.8b02892

    Article  CAS  PubMed  Google Scholar 

  31. B.C. Xiao, L.Y. Lin, J.Y. Hong, H.S. Lin, Y.T. Song, Synthesis of a monoclinic BiVO4 nanorod array as the photocatalyst for efficient photoelectrochemical water oxidation. RSC Adv. 7, 7547–7554 (2017). https://doi.org/10.1039/C6RA28262H

    Article  CAS  Google Scholar 

  32. M.A. Golsefidi, M. Abrodi, Z. Abbasi, A. Dashtbozor, M.E. Rostami, M. Ebad, Hydrothermal method for synthesizing ZnFe2O4 nanoparticles, photo-degradation of rhodamine B by ZnFe2O4 and thermal stable PS-based nanocomposite. J. Mater. Sci. Mater. Electron. 27, 8654–8660 (2016). https://doi.org/10.1007/s10854-016-4886-6

    Article  CAS  Google Scholar 

  33. F. Urbach, The long-wavelength edge of photographic sensitivity and the electronic absorption of solids. Phys. Rev. 92(5), 1324 (1953). https://doi.org/10.1103/PhysRev.92.1324

    Article  CAS  Google Scholar 

  34. I.N. Reddy, Ch.V. Reddy, M. Cho, D. Kim, J. Shim, Truffle-shaped ZnFe2O4-BiVO4 nanostructures nanocomposite for photoelectrochemical activity under light illumination. J. Electroanal. Chem.Electroanal. Chem. 873, 114424 (2020). https://doi.org/10.1016/j.jelechem.2020.114424

    Article  CAS  Google Scholar 

  35. O. Reyes-Vallejo, J. Escorcia-García, P.J. Sebastian, Effect of complexing agent and deposition time on structural, morphological, optical and electrical properties of cuprous oxide thin films prepared by chemical bath deposition. Mater. Sci. Semicond 138, 106242 (2022). https://doi.org/10.1016/j.mssp.2021.106242

    Article  CAS  Google Scholar 

  36. R.M. Sánchez-Albores, O. Reyes-Vallejo, E. Ríos-Valdovinos, A. Fernández-Madrigal, F. Pola-Albores, Characterization of BiVO4/FeOOH and BiVO4/α-Fe2O3 nanostructures photoanodes for photoelectrochemical water splitting. J. Mater. Sci. Mater. Electron. 34, 1001 (2023). https://doi.org/10.1007/s10854-023-10382-1

    Article  CAS  Google Scholar 

  37. E.R. Shaaban, N. Afify, A. El-Taher, Effect of film thickness on microstructure parameters and optical constants of CdTe thin films. J. Alloy. Compd. 482(1–2), 400–404 (2009)

    Article  CAS  Google Scholar 

  38. A.S. Hassanien, A.A. Akl, Effect of Se addition on optical and electrical properties of chalcogenide CdSSe thin films. Superlattices Microstruct. Microstruct. 89, 153–169 (2016)

    Article  CAS  Google Scholar 

  39. J. Ke, F. He, H. Wu, S. Lyu, J. Liu, B. Yang, Z. Li, Q. Zhang, J. Chen, L. Lei, Y. Hou, K. Ostrikov, Nanocarbon-Enhanced 2D Photoelectrodes: a new paradigm in photoelectrochemical water splitting. Nano-Micro Lett. (2021). https://doi.org/10.1007/s40820-020-00545-8

    Article  Google Scholar 

  40. N. Baig, Two-dimensional nanomaterials: a critical review of recent progress, properties, applications, and future directions. Compos. Part A Appl. Sci. 165, 107362 (2023). https://doi.org/10.1016/j.compositesa.2022.107362

    Article  CAS  Google Scholar 

  41. M. Zhou, X.W.D. Lou, Y. Xie, Two-dimensional nanosheets for possibilities and opportunities. Nano Today 8, 598–618 (2013). https://doi.org/10.1016/j.nantod.2013.12.002

    Article  CAS  Google Scholar 

  42. Reyes-Vallejo, O., Sánchez-Albores, R. M., Ashok, A., Fernández-Madrigal, A., Díaz, J. J., Vázquez-Vázquez, E. F. & Sebastian, P. J. (2023, October). Cuprous Oxide Thin Films Deposited by Microwave-Assisted Chemical Bath Deposition. In 2023 20th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE) (pp. 1–6). IEEE

  43. T.W. Kim, K.S. Choi, Improving stability and photoelectrochemical performance of BiVO4 photoanodes in basic media by adding a ZnFe2O4 layer. J. Phys. Chem. Lett. 7, 447–451 (2016). https://doi.org/10.1021/acs.jpclett.5b02774

    Article  CAS  PubMed  Google Scholar 

  44. Y. Hu, X. Zhao, F. Li, Q. Dong, B. Wen, D. Sun, X. Lyu, Spherical ZnFe2O4 nanoparticles on nitrogen-doped graphene: a synergistic effect on efficient electrocatalytic oxygen evolution reaction. ACS Appl. Energy Mater. 6(19), 9985–9993 (2019)

    Article  Google Scholar 

  45. Reyes-Vallejo, O., Sánchez-Albores, R. M., Ashok, A., Fernández-Madrigal, A., Díaz, J. J., Montejo-López, W., & Sebastian, P. J. (2023, October). Cuprous Oxide Thin Films Deposited by Chemical Bath Deposition: Effect of Temperature and TEA. In 2023 20th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE) (pp. 1–6). IEEE

  46. L. Montañés, C.A. Mesa, A. Gutiérrez-Blanco, C. Robles, B. Julián-López, S. Giménez, Facile surfactant-assisted synthesis of BiVO4 nanoparticulate films for solar water splitting. Catalysts 11, 1244 (2021). https://doi.org/10.3390/catal11101244

    Article  CAS  Google Scholar 

  47. T. Benkó, S. Shen, M. Németh, J. Su, Á. Szamosvölgyi, Z. Kovács, G. Sáfrán, S.M. Al-Zuraiji, E.Z. Horváth, A. Sápi, Z. Kónya, J. Sándor Pap, BiVO4 charge transfer control by a water-insoluble iron complex for solar water oxidation. Appl. Catal. A: General (2023). https://doi.org/10.1016/j.apcata.2023.119035

    Article  Google Scholar 

  48. K.R. Tolod, S. Hernández, M. Castellino, F.A. Deorsola, E. Davarpanah, N. Russo, Optimization of BiVO4 photoelectrodes made by electrodeposition for sun-driven water oxidation. Int. J. Hydrog. EnergyHydrog. Energy 45, 605–618 (2020). https://doi.org/10.1016/j.ijhydene.2019.10.236

    Article  CAS  Google Scholar 

  49. C. Van Nguyen, T.H. Do, J.W. Chen, W.Y. Tzeng, K.A. Tsai, H. Song, H.J. Liu, Y.C. Lin, Y.C. Chen, C.L. Wu, C.W. Luo, C.W. Luo, W.C. Chou, R. Huang, Y.J. Hsu, Y.H. Chu, WO3 mesocrystal-assisted photoelectrochemical activity of BiVO4. NPG Asia Mater. (2017). https://doi.org/10.1038/am.2017.15

    Article  Google Scholar 

  50. S. Bai, Xu. Haomiao Chu, R.L. Xiang, J. He, A. Chen, Fabricating of Fe2O3/BiVO4 heterojunction based photoanode modified with NiFe-LDH nanosheets for efficient solar water splitting. Chem. Eng. J. 350, 148–156 (2018). https://doi.org/10.1016/j.cej.2018.05.109

    Article  CAS  Google Scholar 

  51. H. He, S.P. Berglund, A.J.E. Rettie, W.D. Chemelewski, P. Xiao, Y. Zhang, C.B. Mullins, Synthesis of BiVO4 nanoflake array films for photoelectrochemical water oxidation. J. Mater. Chem. A 2, 9371–9379 (2014). https://doi.org/10.1039/C4TA00895B

    Article  CAS  Google Scholar 

  52. V.V. Petrov, E.M. Bayan, VYu. Storozhenko, M.A. Bunin, Yu.N. Varzarev, A.V. Nesterenko, I.V. Rybalchenko, Structure and dielectric properties of thin nanocrystalline ZnFe2O4 films. Ferroelectrics 575, 130–139 (2021). https://doi.org/10.1080/00150193.2021.1888235

    Article  CAS  Google Scholar 

  53. J. Jian, Y. Xu, X. Yang, W. Liu, M. Fu, H. Yu, F. Xu, F. Feng, L. Jia, D. Friedrich, R. van de Krol, H. Wang, Embedding laser-generated nanocrystals in BiVO4 photoanode for efficient photoelectrochemical water splitting. Nat. Commun.Commun. 10, 1–9 (2019). https://doi.org/10.1038/s41467-019-10543-z

    Article  CAS  Google Scholar 

  54. K.P. Parmar, H.J. Kang, A. Bist, P. Dua, J.S. Jang, J.S. Lee, Photocatalytic and photoelectrochemical water oxidation over metal-doped monoclinic BiVO4 photoanodes. Chemsuschem 10, 1926–1934 (2012). https://doi.org/10.1002/cssc.201200254

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank CONAHCYT-México for providing postdoctoral fellowships to carry out the present work (Odín Reyes). The authors also thank Dr. Patricia Altuzar Coello and MS María Luisa Ramón García for XRD analysis, and Rogelio Morán Elvira for SEM images. Thanks to QFB Nayeli del Carmen López Vázquez for her assistance in the Faculty of Chemical Sciences of the Autonomous University of Chiapas laboratories.

Funding

Odín Reyes Vallejo (CVU 487411) acknowledges CONAHCYT for the postdoctoral fellowships.

Author information

Authors and Affiliations

Authors

Contributions

Rocío Magdalena Sánchez-Albores: Conceptualization, investigation, experiments, methodology, writing the original draft, and corrections. Odin Reyes-Vallejo: Conceptualization, investigation, experiments, characterization, methodology, writing the original draft, and corrections. Francisco Pola-Albores: Reviewing and editing. Arturo Fernández-Madrigal: Reagents/materials/analysis tools, and reviewing. Andrés López-López: Characterization and reviewing. Edna Iris Ríos-Valdovinos: Reviewing and editing.

Corresponding authors

Correspondence to Odín Reyes-Vallejo, A. Fernández-Madrigal or E. Ríos-Valdovinos.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sánchez-Albores, R.M., Reyes-Vallejo, O., Pola-Albores, F. et al. Development of the BiVO4/ZnFe2O4 heterostructure for solar water splitting. J Mater Sci: Mater Electron 35, 1538 (2024). https://doi.org/10.1007/s10854-024-13315-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-13315-8

Navigation