Skip to main content
Log in

Realization of strain field origination via Sb substitution in naumannite Ag2Se for room temperature power generation

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Silver selenide (Ag2Se) is considered as an excellent candidate to alter n-type Bi2Te3 for near-room-temperature thermoelectric applications owing to its distinctive transport properties, such as glass like thermal conductivity and intrinsically high electrical conductivity. This report summarizes the enhanced thermoelectric properties of Ag2Se via Antimony (Sb) incorporation. In this study, an energy and time efficient mechanical alloying process followed by hot press technique has been adopted to synthesize Ag2-xSbxSe (x = 0, 0.01, 0.02 & 0.03) samples. The XRD patterns confirmed the formation of orthorhombic structure of Ag2Se. The TG–DTA revealed the thermodynamic stability and the phase transition from semiconducting nature to superionic conducting nature of Ag2Se. The Sb substitution significantly improved the electrical transport properties and consequentially reduced the thermal transport properties, leads to the improved thermoelectric properties of Ag2Se. The enhanced electrical conductivity and Seebeck coefficient leads to a high-power factor of 925 µWm−1K−2 at 393 K for x = 0.01 sample. The effective scattering of phonons triggered by crystal imperfections due to Sb incorporation aids to obtain a low thermal conductivity of 0.8 W/mK. A maximum zT of 0.34 is obtained at 393 K for Ag2-xSbxSe sample with x = 0.02 via simultaneous modulation of electrical and thermal transport properties. The results indicates that, thermoelectric properties of Ag2Se can be improved through semi-metal incorporation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data will be made available on reasonable request.

References

  1. T. Zhu, Y. Liu, C. Fu, J.P. Heremans, J.G. Snyder, X. Zhao, Compromise and synergy in high-efficiency thermoelectric materials. Adv. Mater. 29(14), 1605884 (2017). https://doi.org/10.1002/adma.201605884

    Article  CAS  Google Scholar 

  2. K. Yu et al., Near-room-temperature thermoelectric materials and their application prospects in geothermal power generation. Geomech. Geophys. Geo-Energy Geo-Resour. 6, 1 (2020). https://doi.org/10.1007/s40948-019-00134-z

    Article  Google Scholar 

  3. K. Biswas et al., High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 489(7416), 414–418 (2012). https://doi.org/10.1038/nature11439

    Article  CAS  PubMed  Google Scholar 

  4. X. Wang et al., Geometric structural design for lead tellurium thermoelectric power generation application. Renew. Energy 141, 88–95 (2019). https://doi.org/10.1016/j.renene.2019.03.128

    Article  CAS  Google Scholar 

  5. L.C. Chen et al., Enhancement of thermoelectric performance across the topological phase transition in dense lead selenide. Nat. Mater. 18(12), 1321–1326 (2019). https://doi.org/10.1038/s41563-019-0499-9

    Article  CAS  PubMed  Google Scholar 

  6. B.-Z. Tian et al., Enhanced thermoelectric performance of SnTe-based materials via interface engineering. ACS Appl. Mater. Interfaces 13(42), 50057–50064 (2021). https://doi.org/10.1021/acsami.1c16053

    Article  CAS  PubMed  Google Scholar 

  7. A.S. Hakeem et al., Microstructural and thermal evaluation of the formation of tin–tellurium (SnTe) alloy by ball milling process. Powder Technol. 428, 118820 (2023). https://doi.org/10.1016/j.powtec.2023.118820

    Article  CAS  Google Scholar 

  8. G. Han et al., Facile surfactant-free synthesis of p-type SnSe nanoplates with exceptional thermoelectric power factors. Angew. Chemie Int. Ed. 55(22), 6433–6437 (2016). https://doi.org/10.1002/anie.201601420

    Article  CAS  Google Scholar 

  9. L. Huang et al., Facile in situ solution synthesis of SnSe/rGO nanocomposites with enhanced thermoelectric performance. J. Mater. Chem. A 8(3), 1394–1402 (2020). https://doi.org/10.1039/C9TA11737G

    Article  CAS  Google Scholar 

  10. X. Chen et al., Extraordinary thermoelectric performance in n-type manganese doped Mg3Sb2 Zintl: High band degeneracy, tuned carrier scattering mechanism and hierarchical microstructure. Nano Energy 52, 246–255 (2018). https://doi.org/10.1016/j.nanoen.2018.07.059

    Article  CAS  Google Scholar 

  11. X. Shi et al., Extraordinary n-type Mg3SbBi thermoelectrics enabled by yttrium doping. Adv. Mater. 31(36), 1903387 (2019). https://doi.org/10.1002/adma.201903387

    Article  CAS  Google Scholar 

  12. J. Zhou et al., Large thermoelectric power factor from crystal symmetry-protected non-bonding orbital in half-heuslers. Nat. Commun. 9(1), 1721 (2018). https://doi.org/10.1038/s41467-018-03866-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. T. Zhu, C. Fu, H. Xie, Y. Liu, X. Zhao, High efficiency half-heusler thermoelectric materials for energy harvesting. Adv. Energy Mater. 5(19), 1500588 (2015). https://doi.org/10.1002/aenm.201500588

    Article  CAS  Google Scholar 

  14. Y. Tang et al., Convergence of multi-valley bands as the electronic origin of high thermoelectric performance in CoSb3 skutterudites. Nat. Mater. 14(12), 1223–1228 (2015). https://doi.org/10.1038/nmat4430

    Article  CAS  PubMed  Google Scholar 

  15. X. Shi et al., Band structure engineering and thermoelectric properties of charge-compensated filled skutterudites. Sci. Rep. 5, 14641 (2015). https://doi.org/10.1038/srep14641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. L.D. Zhao, B.P. Zhang, J.F. Li, H.L. Zhang, W.S. Liu, Enhanced thermoelectric and mechanical properties in textured n-type Bi2Te3 prepared by spark plasma sintering. Solid State Sci. 10(5), 651–658 (2008). https://doi.org/10.1016/j.solidstatesciences.2007.10.022

    Article  CAS  Google Scholar 

  17. W. Liu et al., Bi2S3 nanonetwork as precursor for improved thermoelectric performance. Nano Energy 4, 113–122 (2014). https://doi.org/10.1016/j.nanoen.2013.12.015

    Article  CAS  Google Scholar 

  18. A.K. Bohra et al., Tellurium-free thermoelectrics: Improved thermoelectric performance of n-type Bi2Se3 having multiscale hierarchical architecture. Energy Convers. Manag. 145, 415–424 (2017). https://doi.org/10.1016/j.enconman.2017.04.083

    Article  CAS  Google Scholar 

  19. Y. Chang, J. Guo, Y.-Q. Tang, Y.-X. Zhang, J. Feng, Z.-H. Ge, Facile synthesis of Ag2Te nanowires and thermoelectric properties of Ag2Te polycrystals sintered by spark plasma sintering. CrystEngComm 21(11), 1718–1727 (2019). https://doi.org/10.1039/C8CE01863D

    Article  CAS  Google Scholar 

  20. C. Li et al., Magnetism-induced huge enhancement of the room-temperature thermoelectric and cooling performance of p-type BiSbTe alloys. Energy Environ. Sci. 13(2), 535–544 (2020). https://doi.org/10.1039/C9EE03446C

    Article  Google Scholar 

  21. B. Zhu et al., Realizing record high performance in n-type Bi2Te3-based thermoelectric materials. Energy Environ. Sci. 13(7), 2106–2114 (2020). https://doi.org/10.1039/D0EE01349H

    Article  CAS  Google Scholar 

  22. C. Kim, D.H. Kim, Y.S. Han, J.S. Chung, S.H. Park, H. Kim, Fabrication of bismuth telluride nanoparticles using a chemical synthetic process and their thermoelectric evaluations. Powder Technol. 214(3), 463–468 (2011). https://doi.org/10.1016/j.powtec.2011.08.049

    Article  CAS  Google Scholar 

  23. J. Chen et al., Hierarchical structures advance thermoelectric properties of porous n-type β-Ag2Se. ACS Appl. Mater. Interfaces 12(46), 51523–51529 (2020). https://doi.org/10.1021/acsami.0c15341

    Article  CAS  PubMed  Google Scholar 

  24. P. Jood, R. Chetty, M. Ohta, Structural stability enables high thermoelectric performance in room temperature Ag2Se. J. Mater. Chem. A 8(26), 13024–13037 (2020). https://doi.org/10.1039/d0ta02614j

    Article  CAS  Google Scholar 

  25. W. Mi, P. Qiu, T. Zhang, Y. Lv, X. Shi, L. Chen, Thermoelectric transport of Se-rich Ag2Se in normal phases and phase transitions. Appl. Phys. Lett. 104(13), 5 (2014). https://doi.org/10.1063/1.4870509

    Article  CAS  Google Scholar 

  26. H. Okazaki, Deviation from the Einstein relation in average crystals. II. Self-diffusion of Ag+ ions in α-Ag2Te. J. Phys. Soc. Jpn. 43(1), 213–221 (1977). https://doi.org/10.1143/JPSJ.43.213

    Article  CAS  Google Scholar 

  27. D. Grientschnig, W. Sitte, Interpretation of ionic transport properties of some silver chalcogenides. J. Phys. Chem. Solids 52(6), 805–820 (1991). https://doi.org/10.1016/0022-3697(91)90079-F

    Article  CAS  Google Scholar 

  28. R. Santhosh, R. Abinaya, J. Archana, S. Ponnusamy, S. Harish, M. Navaneethan, Controlled grain boundary interfaces of reduced graphene oxide in Ag2Se matrix for low lattice thermal conductivity and enhanced power factor for thermoelectric applications. J. Power. Sources 525, 231045 (2022). https://doi.org/10.1016/j.jpowsour.2022.231045

    Article  CAS  Google Scholar 

  29. H. Wu, X.L. Shi, J. Duan, Q. Liu, Z.G. Chen, Advances in Ag2Se-based thermoelectrics from materials to applications. Energy Environ. Sci. (2023). https://doi.org/10.1039/d3ee00378g

    Article  Google Scholar 

  30. P. Jood, M. Ohta, Temperature-dependent structural variation and Cu substitution in thermoelectric silver selenide. ACS Appl. Energy Mater. 3(3), 2160–2167 (2020). https://doi.org/10.1021/acsaem.9b02231

    Article  CAS  Google Scholar 

  31. C. Xiao, J. Xu, K. Li, J. Feng, J. Yang, Y. Xie, Superionic phase transition in silver chalcogenide nanocrystals realizing optimized thermoelectric performance. J. Am. Chem. Soc. 134(9), 4287–4293 (2012)

    Article  CAS  PubMed  Google Scholar 

  32. K.H. Lim et al., Critical role of nanoinclusions in silver selenide nanocomposites as a promising room temperature thermoelectric material. J. Mater. Chem. C 7(9), 2646–2652 (2019). https://doi.org/10.1039/c9tc00163h

    Article  CAS  Google Scholar 

  33. B. Feng et al., Ag interstitial inhibition and phonon scattering at the ZnSe nano-precipitates to enhance the thermoelectric performance of Ag2Se. ACS Appl. Energy Mater. 6(5), 2804–2811 (2023). https://doi.org/10.1021/acsaem.2c03704

    Article  CAS  Google Scholar 

  34. S. Lin et al., Revealing the promising near-room-temperature thermoelectric performance in Ag2Se single crystals. J. Mater. 9(4), 754–761 (2023). https://doi.org/10.1016/j.jmat.2023.02.003

    Article  Google Scholar 

  35. J. Chen et al., Ternary Ag2 Se1–x Tex : a near-room-temperature thermoelectric material with a potentially high figure of merit. Inorg. Chem. 60(18), 14165–14173 (2021). https://doi.org/10.1021/acs.inorgchem.1c01563

    Article  CAS  PubMed  Google Scholar 

  36. J. Liang et al., Crystalline structure-dependent mechanical and thermoelectric performance in Ag2Se1-xSx system. Research 2020, 128 (2020). https://doi.org/10.34133/2020/6591981

    Article  CAS  Google Scholar 

  37. J. Schilz, M. Riffel, K. Pixius, H.J. Meyer, Synthesis of thermoelectric materials by mechanical alloying in planetary ball mills. Powder Technol. 105(1–3), 149–154 (1999). https://doi.org/10.1016/S0032-5910(99)00130-8

    Article  CAS  Google Scholar 

  38. V. Sharma, D. Sharma, R. Bhatt, P.K. Patro, G.S. Okram, Enhanced thermoelectric performance of nanostructured nickel-doped Ag2Te. ACS Appl. Energy Mater. 5(11), 13887–13894 (2022). https://doi.org/10.1021/acsaem.2c02515

    Article  CAS  Google Scholar 

  39. S.Y. Tee, X.Y. Tan, X. Wang, C.J. Lee, K.Y. Win, X.P. Ni, S.L. Teo, D.H. Seng, Y. Tanaka, M.Y. Han, Aqueous synthesis, doping, and processing of n-type Ag2Se for high thermoelectric performance at near-room-temperature. Inorg. Chem. 61(17), 6451–6458 (2022). https://doi.org/10.1021/acs.inorgchem.2c00060

    Article  CAS  PubMed  Google Scholar 

  40. J.B. Vaney, S. Aminorroaya Yamini, H. Takaki, K. Kobayashi, N. Kobayashi, T. Mori, Magnetism-mediated thermoelectric performance of the Cr-doped bismuth telluride tetradymite. Mater. Today Phys. (2019). https://doi.org/10.1016/j.mtphys.2019.03.004

    Article  Google Scholar 

  41. P. Scherrer, Bestimmung der Grosse und inneren Struktur von Kolloidteilchen mittels Rontgenstrahlen. Nach Ges Wiss Gottingen. 2, 8–100 (1918)

    Google Scholar 

  42. J.I. Langford, A.J.C. Wilson, Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J. Appl. Crystallogr. 11(2), 102–113 (1978). https://doi.org/10.1107/S0021889878012844

    Article  CAS  Google Scholar 

  43. V. Uvarov, I. Popov, Metrological characterization of X-ray diffraction methods at different acquisition geometries for determination of crystallite size in nano-scale materials. Mater Charact 85, 111–123 (2013). https://doi.org/10.1016/j.matchar.2013.09.002

    Article  CAS  Google Scholar 

  44. F. Shimojo, H. Okazaki, Phase transition in superionic conductor Ag2Se: a molecular dynamics study. J. Phys. Soc. Jpn. 60(11), 3745–3753 (1991). https://doi.org/10.1143/JPSJ.60.3745

    Article  CAS  Google Scholar 

  45. C. Xiao, J. Xu, K. Li, J. Feng, J. Yang, Y. Xie, Superionic phase transition in silver chalcogenide nanocrystals realizing optimized thermoelectric performance. J. Am. Chem. Soc. 134(9), 4287–4293 (2012). https://doi.org/10.1021/ja2104476

    Article  CAS  PubMed  Google Scholar 

  46. B. Chikh-bled, B. Benyoucef, M. Aillerie, Experimental measurement of electric conductivity and activation energy in congruent lithium niobate crystal. J. Act. Passiv. Electron. Devices 7, 261–270 (2012)

    Google Scholar 

  47. A. Ashok et al., Electrical properties of cadmium substitution in nickel ferrites. World J. Condens. Matter Phys. 02(04), 257–266 (2012). https://doi.org/10.4236/wjcmp.2012.24043

    Article  CAS  Google Scholar 

  48. D. Chattopadhyay, H.J. Queisser, Electron scattering by ionized impurities in semiconductors. Rev. Mod. Phys. 53(4), 745–768 (1981). https://doi.org/10.1103/RevModPhys.53.745

    Article  CAS  Google Scholar 

  49. R. Santhosh et al., Enhanced thermoelectric performance of hot-pressed n-type Ag2Se nanostructures by controlling the intrinsic lattice defects. CrystEngComm (2023). https://doi.org/10.1039/d3ce00066d

    Article  Google Scholar 

  50. S.Y. Tee et al., Thermoelectric silver-based chalcogenides. Adv. Sci. 9, 36 (2022). https://doi.org/10.1002/advs.202204624

    Article  CAS  Google Scholar 

  51. G.J. Snyder, E.S. Toberer, Complex thermoelectric materials. Mater. Sustain. Energy A Collect. Peer-Rev. Res. Rev. Artic. Nat. Publ. Gr. 7, 101–110 (2010). https://doi.org/10.1142/9789814317665_0016

    Article  Google Scholar 

  52. M. Thesberg, H. Kosina, N. Neophytou, On the Lorenz number of multiband materials. Phys. Rev. B 95(12), 1–14 (2017). https://doi.org/10.1103/PhysRevB.95.125206

    Article  Google Scholar 

  53. T. Zhu et al., Realizing high thermoelectric performance in Sb-doped Ag2Te compounds with a low-temperature monoclinic structure. ACS Appl. Mater. Interfaces 12(35), 39425–39433 (2020). https://doi.org/10.1021/acsami.0c10932

    Article  CAS  PubMed  Google Scholar 

  54. T. Day et al., Evaluating the potential for high thermoelectric efficiency of silver selenide. J. Mater. Chem. C 1(45), 7568–7573 (2013). https://doi.org/10.1039/c3tc31810a

    Article  CAS  Google Scholar 

  55. M. Ferhat, J. Nagao, Thermoelectric and transport properties of β-Ag2Se compounds. J. Appl. Phys. 88(2), 813–816 (2000). https://doi.org/10.1063/1.373741

    Article  CAS  Google Scholar 

  56. D. Li, J.H. Zhang, J.M. Li, J. Zhang, X.Y. Qin, High thermoelectric performance for an Ag2Se-based material prepared by a wet chemical method. Mater. Chem. Front. 4(3), 875–880 (2020). https://doi.org/10.1039/c9qm00487d

    Article  CAS  Google Scholar 

  57. F.F. Aliev, M.B. Jafarov, V.I. Eminova, Thermoelectric figure of merit of Ag2Se with Ag and Se excess. Semiconductors 43(8), 977–979 (2009). https://doi.org/10.1134/S1063782609080028

    Article  CAS  Google Scholar 

  58. D. Yang et al., Facile room temperature solventless synthesis of high thermoelectric performance Ag2Se: via a dissociative adsorption reaction. J. Mater. Chem. A 5(44), 23243–23251 (2017). https://doi.org/10.1039/c7ta08726h

    Article  CAS  Google Scholar 

  59. M. Jin et al., Investigation on low-temperature thermoelectric properties of Ag2Se polycrystal fabricated by using zone-melting method. J. Phys. Chem. Lett. 12(34), 8246–8255 (2021). https://doi.org/10.1021/acs.jpclett.1c02139

    Article  CAS  PubMed  Google Scholar 

  60. L.H. Ahrens, The use of ionization potentials Part 2. anion affinity and geochemistry. Geochim. Cosmochim. Acta 3(1), 1–29 (1953). https://doi.org/10.1016/0016-7037(53)90046-5

    Article  CAS  Google Scholar 

  61. R.G. Mazban, I.H. Khudayer, The effect of doping process on the structural and optical properties of Ag2Se thin films. AIP Conf. Proc. (2020). https://doi.org/10.1063/5.0033127

    Article  Google Scholar 

  62. V. Vijay, S. Harish, J. Archana, M. Navaneethan, Synergistic effect of grain boundaries and phonon engineering in Sb substituted Bi2Se3 nanostructures for thermoelectric applications. J. Coll. Interface Sci. 612, 97–110 (2022). https://doi.org/10.1016/j.jcis.2021.12.027

    Article  CAS  Google Scholar 

  63. M.D. Nielsen, V. Ozolins, J.P. Heremans, Lone pair electrons minimize lattice thermal conductivity. Energy Environ. Sci. 6(2), 570–578 (2013). https://doi.org/10.1039/c2ee23391f

    Article  CAS  Google Scholar 

  64. D.T. Morelli, J.P. Heremans, Thermal conductivity of germanium, silicon, and carbon nitrides. Appl. Phys. Lett. 81(27), 5126–5128 (2002). https://doi.org/10.1063/1.1533840

    Article  CAS  Google Scholar 

  65. G.A. Slack, Crystals 34, 321–335 (1973)

    CAS  Google Scholar 

  66. D.T. Morelli, V. Jovovic, J.P. Heremans, Intrinsically minimal thermal conductivity in cubic I-V-VI2 semiconductors. Phys. Rev. Lett. 101(3), 16–19 (2008). https://doi.org/10.1103/PhysRevLett.101.035901

    Article  CAS  Google Scholar 

  67. S. Ganesan, Temperature variation of the grüneisen parameter in magnesium oxide. Philos. Mag. 7(74), 197–205 (1962). https://doi.org/10.1080/14786436208211854

    Article  CAS  Google Scholar 

  68. X.L. Shi, J. Zou, Z.G. Chen, Advanced thermoelectric design: from materials and structures to devices. Chem. Rev. 120(15), 7399–7515 (2020). https://doi.org/10.1021/acs.chemrev.0c00026

    Article  CAS  PubMed  Google Scholar 

  69. Z.G. Chen, X. Shi, L.D. Zhao, J. Zou, High-performance SnSe thermoelectric materials: progress and future challenge. Prog. Mater. Sci. 97, 283–346 (2018). https://doi.org/10.1016/j.pmatsci.2018.04.005

    Article  CAS  Google Scholar 

  70. S.I. Kim, K.H. Lee, H.A. Mun, H.S. Kim, S.W. Hwang, J.W. Roh, D.J. Yang, W.H. Shin, X.S. Li, Y.H. Lee, G.J. Snyder, Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics. Science 348(6230), 109–114 (2015). https://doi.org/10.1126/science.aaa4166

    Article  CAS  PubMed  Google Scholar 

  71. M.M. Mallick et al., High-performance Ag-Se-based n-type printed thermoelectric materials for high power density folded generators. ACS Appl. Mater. Interfaces 12(17), 19655–19663 (2020). https://doi.org/10.1021/acsami.0c01676

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Nanotechnology Research Centre (NRC) and Functional Materials and Energy Devices (FMED) laboratory for the experimental and characterization facilities. The authors thank the management of SRM Institute of Science and Technology for the support through SEED and STARTUP grant. The authors also thank DST SERB (CRG/2023/000352), CSIR-HRDG (03/ 1509/23/EMR-II), and DST-FIST [SR/FST/PS-II/2021/190(G)], Government of India, for financial support.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

Tony Mathew: Conceptualization, Investigation, Methodology, Data curation, Writing—original draft; V. Vijay: Methodology, Software, Data curation, Writing—review & editing; R. Santhosh: Methodology, Formal analysis; E. Senthilkumar: Methodology, Formal analysis; S. Ponnusamy: Supervision, Resources, Writing—review, Formal analysis; M. Navaneethan: Supervision, Resources, Validation, Writing—review.

Corresponding authors

Correspondence to S. Ponnusamy or M. Navaneethan.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15118 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mathew, T., Vijay, V., Santhosh, R. et al. Realization of strain field origination via Sb substitution in naumannite Ag2Se for room temperature power generation. J Mater Sci: Mater Electron 35, 1321 (2024). https://doi.org/10.1007/s10854-024-13037-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-13037-x

Navigation