Skip to main content
Log in

Structural and magnetic properties of double perovskites Ca2FeMn1−xCrxO6 (x = 0.06 and 0.12)

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The structural and magnetic properties of single-phase polycrystalline Ca2FeMn1−xCrxO6 (x = 0.06 and 0.12) double perovskites were thoroughly investigated in this study. The samples were prepared using a simple solid-state synthesis process. Rietveld analysis of the X-ray diffraction (XRD) patterns revealed a monoclinic structure with a P21/c space group for all samples. Several parameters, such as microstrain, density, and crystallite size were computed. Additionally, microstructure analysis showed random geometric morphologies of the grains. To determine the magnetic characteristics of these double perovskites, a temperature-dependent magnetization experiment was conducted at a magnetic field of µ0 H = 0.01T. Antiferromagnetic (AFM)-paramagnetic (PM) transitions were observed in the samples, with Neel temperatures of around TN = 36.40 K and 36.13 K for x = 0.06 and 0.12, respectively. Both compounds exhibit spin glass behavior. Antiferromagnetic (AFM), ferromagnetic (FM), and ferrimagnetic (FiM) ordering were among the various magnetic exchange interactions present in the system, leading to a complex magnetic response below the Neel temperature TN. The exchange bias in the compounds contributed to the FiM and FM moment exchange coupling at the antiphase boundaries of AFM ordering. The findings on the exchange bias effect in these materials have significant technical implications for practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

No data were used for the research described in the article.

References

  1. R. Atanasov, D. Ailenei, R. Bortnic, R. Hirian, G. Souca, A. Szatmari, I.G. Deac, Magnetic properties and magnetocaloric effect of polycrystalline and nano-manganites Pr0.65Sr(0.35−x)CaxMnO3 (x≤0.3). Nanomater. 13(8), 1373 (2023). https://doi.org/10.3390/nano13081373

    Article  CAS  Google Scholar 

  2. J. Wang, J. Fan, F. Liu, L. Zu, H. Zheng, H. Liu, H. Yang, Magnetic properties and critical behavior of the perovskite manganite La0.825Sr0.175MnO3. Chem. Phys. Lett. 807, 140119 (2022). https://doi.org/10.1016/j.cplett.2022.140119

    Article  CAS  Google Scholar 

  3. P.R. Nadig, M.S. Murari, M.D. Daivajna, Influence of heat sintering on the physical properties of bulk La0.67Ca0.33MnO3 per-ovskite manganite: role of oxygen in tuning the magnetocaloric response. Phys. Chem. Chem. Phys. 26(6), 5237–5252 (2024). https://doi.org/10.1039/D3CP04185A

    Article  CAS  PubMed  Google Scholar 

  4. Y. Regaieg, W. Cheikhrouhou-Koubaa, L. Sicard, S. Gam-Derouich, S. Nowak, M. Koubaa, A. Cheikhrouhou, Structural, magnetic and magnetocaloric properties of Li-substituted La0.8K0.2-xLixMnO3 per-ovskite manganites. Inorganica Chim. Acta (2024). https://doi.org/10.1016/j.ica.2024.122065

    Article  Google Scholar 

  5. H. Navarro, A.C. Basaran, F. Ajejas, L. Fratino, S. Bag, T.D. Wang, I.K. Schuller, Light-induced decoupling of electronic and magnetic properties in manganites. Phys. Rev. Appl. (2023). https://doi.org/10.1103/PhysRevApplied.19.044077

    Article  Google Scholar 

  6. S. Demirel, E. Oz, S.E.R.D.A.R. Altin, A. Bayri, O. Baglayan, E.M.İN.E. Altin, S. Avci, Structural, magnetic, electrical and electrochemical properties of SrCoO2.5, Sr9Co2Mn5O21 and SrMnO3 compounds. Ceram. Int. 43(17), 14818–14826 (2017). https://doi.org/10.1016/j.ceramint.2017.07.230

    Article  CAS  Google Scholar 

  7. S. Altin, A. Bayri, S. Oz, E. Demirel, E. Altin, S. Avci, Structural, magnetic, electrical, and electrochemical properties of Sr–Co–Ru–O: A hybrid-capacitor application. J. Am. Ceram. Soc. 101(10), 4572–4581 (2018). https://doi.org/10.1111/jace.15698

    Article  CAS  Google Scholar 

  8. E. Oz, S.O.N.E.R. Demirel, S.E.R.D.A.R. Altin, E.M.İN.E. Altin, O. Baglayan, A. Bayri, S.E.V.D.A. Avci, Fabrication of Ca-Mn-Nb-O compounds and their structural, electrical, magnetic and thermoelectric properties. Mater. Res. Express 5(3), 036304 (2018). https://doi.org/10.1088/2053-1591/aab3af

    Article  CAS  Google Scholar 

  9. B. Samantaray, S. Ravi, A. Das, S.K. Srivastava, Magnetic structure and magnetic properties of Nd1−xNaxMnO3 compounds. J. Appl. Phys. (2011). https://doi.org/10.1063/1.3656714

    Article  Google Scholar 

  10. S.K. Srivastava, M. Kar, S. Ravi, Effect of Al substitution on La0.85Ag0.15MnO3 double exchange ferromagnetic com-pound. Mater. Sci. Eng. B 147(1), 84–89 (2008). https://doi.org/10.1016/j.mseb.2007.11.014

    Article  CAS  Google Scholar 

  11. S.K. Srivastava, M. Kar, S. Ravi, P.K. Mishra, P.D. Babu, Magnetic properties of electron-doped Y1− xCexMnO3 compounds. J. Magn. Magn. Mater. 320(19), 2382–2386 (2008). https://doi.org/10.1016/j.jmmm.2008.05.003

    Article  CAS  Google Scholar 

  12. S.K. Srivastava, S. Ravi, Magnetic properties of transition metal substituted La0.85Ag0.15Mn1−yMyO3 compounds (M= Co, Cr and Al). J. Magn. Magn. Mater. 321(24), 4072–4080 (2009). https://doi.org/10.1016/j.jmmm.2009.08.007

    Article  CAS  Google Scholar 

  13. F.K. Patterson, C.W. Moeller, R. Ward, Magnetic oxides of molybdenum(V) and tungsten(V) with the ordered perovskite structure. Inorg. Chem. 2, 196–198 (1963). https://doi.org/10.1021/ic50005a050

    Article  CAS  Google Scholar 

  14. A.W. Sleight, J.F. Weiher, Magnetic and electrical properties of Ba2MReO6 ordered perovskites. J. Phys. Chem. Solids 33, 679–687 (2004). https://doi.org/10.1016/0022-3697(72)90076-5

    Article  Google Scholar 

  15. X. Xu, Y. Zhong, Z. Shao, Double perovskites in catalysis, electrocatalysis, and photo(electro)catalysis. Trends Chem. 1, 410–424 (2019). https://doi.org/10.1016/0022-3697(72)90076-5

    Article  CAS  Google Scholar 

  16. A. Kumar, R.S. Dhaka, Unraveling magnetic interactions and the spin state in insulating Sr2-xLaxCoNbO6. Phys. Rev. B 101, 1–14 (2020). https://doi.org/10.1103/PhysRevB.101.094434

    Article  Google Scholar 

  17. M.D.I. Bhuyan, S. Das, M.A. Basith, Sol-gel synthesized double perovskite Gd2FeCrO6 nanoparticles: Structural, magnetic and optical properties. J. Alloys Compd. 878, 2–11 (2021). https://doi.org/10.3390/ma14071715

    Article  CAS  Google Scholar 

  18. C. Ritter, M.R. Ibarra, L. Morellon, J. Blasco, J. Garcia, J.M. De Teresa, Structural and magnetic properties of double perovskites AA’FeMoO6 (AA’ = Ba2, BaSr, Sr2 and Ca2). J. Phys. Condens. Matter Struct. 12, 8295–8308 (2000). https://doi.org/10.1088/0953-8984/12/38/306

    Article  CAS  Google Scholar 

  19. R. Masrour, A. Jabar, Magnetocaloric and magnetic properties of La2NiMnO6 double perovskite. Chinese Phys. B 25, 2–8 (2016). https://doi.org/10.1088/1674-1056/25/8/087502

    Article  CAS  Google Scholar 

  20. I.B.-M.E. Burzo, Ferrimagnetic ordering of Ca2(Fe,Ni)MoO6 perovskites. Rom. J. Phys. 62, 601 (2016)

    Google Scholar 

  21. C. Pughe, O.H.J. Mustonen, A.S. Gibbs, M. Etter, C. Liu, S.E. Dutton, A. Friskney, N.C. Hyatt, G.B.G. Stenning, H.M. Mutch, F.C. Coomer, E.J. Cussen, Site-Selective d10/d0Substitution in an S = 1/2Spin Ladder Ba2CuTe1-xWxO6 (0 ≤ x ≤ 0.3). Inorg. Chem. 61, 4033–4045 (2022). https://doi.org/10.1021/acs.inorgchem.1c03655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. B. Philipp, P. Majewski, L. Alff, A. Erb, R. Gross, T. Graf, S. Brandt, J. Simon, T. Walther, W. Mader, D. Topwal, D. Sarma, Structural and doping effects in the half-metallic double perovskite A2CrWO6 (A=Sr, Ba, and Ca). Phys. Rev. B 68, 1–13 (2003). https://doi.org/10.1103/PhysRevB.68.144431

    Article  CAS  Google Scholar 

  23. R. Morrow, J. Yan, M.A. McGuire, J.W. Freeland, D. Haskel, P.M. Woodward, Effects of chemical pressure on the magnetic ground states of the osmate double perovskites SrCaCoOsO6 and Ca2CoOsO6. Phys. Rev. B 92, 1–7 (2015). https://doi.org/10.1103/PhysRevB.92.094435

    Article  CAS  Google Scholar 

  24. W. Prellier, V. Smolyaninova, A. Biswas, C. Galley, R.L. Greene, K. Ramesha, J. Gopalakrishnan, Properties of the ferrimagnetic double perovskites A2FeReO6 (A = Ba and Ca). J. Phys. Condens. Matter 12, 965–973 (2000). https://doi.org/10.1088/0953-8984/12/6/318

    Article  CAS  Google Scholar 

  25. L. Pinsard-Gaudart, R. Surynarayanan, A. Revcolevschi, J. Rodriguez-Carvajal, J.M. Greneche, P.A.I. Smith, R.M. Thomas, R.P. Borges, J.M.D. Coey, Ferrimagnetic order in [formula omitted]. J. Appl. Phys. 87, 7118–7120 (2000). https://doi.org/10.1088/1742-6596/1259/1/012018

    Article  CAS  Google Scholar 

  26. K.C. Kharkwal, R. Roy, H. Kumar, A.K. Bera, S.M. Yusuf, A.K. Shukla, K. Kumar, S. Kanungo, A.K. Pramanik, Structure, magnetism, and electronic properties in 3d-5d based double perovskite (Sr1-xCax)2FeIrO6 (0≤x≤1). Cond. Mater. 29, 495–801 (2017). https://doi.org/10.1103/PhysRevB.102.174401

    Article  Google Scholar 

  27. Y. Hosaka, N. Ichikawa, T. Saito, J.P. Attfield, Y. Shimakawa, Charge and spin order in the perovskite CaFe0.5Mn0.5O3: Charge disproportionation behavior of randomly arranged Fe4+. Phys. Rev. B 94(10), 104429 (2016). https://doi.org/10.1103/PhysRevB.94.104429

    Article  CAS  Google Scholar 

  28. J. Kanamori, Superexchange interaction and symmetry properties of electron orbitals. J. Phys. Chem. Solids 10(2–3), 87–98 (1959). https://doi.org/10.1021/jacs.5b03712

    Article  CAS  Google Scholar 

  29. Y. Hosaka, N. Ichikawa, T. Saito, M. Haruta, K. Kimoto, H. Kurata, Y. Shimakawa, Ca2FeMnO: a layered double perovskite with unusual high-valence Fe4+ in a layered arrangement. Bull. Chem. Soc. Jpn 88(5), 657–661 (2015). https://doi.org/10.1246/bcsj.20140404

    Article  CAS  Google Scholar 

  30. D.N. Singh, T.P. Sinha, D.K. Mahato, Structural and dielectric characteristics of La2CuMnO6 double perovskite ceramics. Mater. Today Proc. 4, 5640–5646 (2017). https://doi.org/10.1016/j.matpr.2017.06.023

    Article  Google Scholar 

  31. I.Z. Al-Yahmadi, A. Gismelssed, I.A. Abdel-Latif, F. Al Ma’Mari, A. Al-Rawas, S. Al-Harthi, I.A. Al-Omari, A. Yousf, H. Widatallah, M. ElZain, M.T.Z. Myint, Giant magnetocaloric effect and magnetic properties of nanocomposites of manganite Nd1-xSrxMnO3 (0.0 ≤ x ≤ 0.8) synthesized using modified sol-gel method. J. Alloys Compd. 857, 157566 (2021). https://doi.org/10.1016/j.jallcom.2020.157566

    Article  CAS  Google Scholar 

  32. R.C. Sahoo, Y. Takeuchi, A. Ohtomo, Z. Hossain, Exchange bias and spin glass states driven by antisite disorder in the double perovskite compound LaSrCoFeO6. Phys. Rev. B 100, 1–9 (2019). https://doi.org/10.1103/PhysRevB.100.214436

    Article  Google Scholar 

  33. A.R. Mazza, E. Skoropata, J. Lapano, J. Zhang, Y. Sharma, B.L. Musico, V. Keppens, Z. Gai, M.J. Brahlek, A. Moreo, D.A. Gilbert, E. Dagotto, T.Z. Ward, Charge doping effects on magnetic properties of single-crystal high-entropy perovskite oxides. Phys. Rev. B 104, 1–8 (2021). https://doi.org/10.1103/PhysRevB.104.094204

    Article  Google Scholar 

  34. M.E.M. Jorge, A.C. Dos Santos, M.R. Nunes, Effects of synthesis method on stoichiometry, structure and electrical conductivity of CaMnO3-δ. Int. J. Inorg. Mater. 3, 915–921 (2001). https://doi.org/10.1016/S1466-6049(01)00088-5

    Article  CAS  Google Scholar 

  35. S. Kumari, V. Kumar, P. Kumar, M. Kar, L. Kumar, Structural and magnetic properties of nanocrystalline yttrium substituted cobalt ferrite synthesized by the citrate precursor technique. Adv. Powder Technol. 26, 213–223 (2015). https://doi.org/10.1016/j.apt.2014.10.002

    Article  CAS  Google Scholar 

  36. R.J. Carrillo, C.M. Hill, K.J. Warren, J.R. Scheffe, Oxygen nonstoichiometry and defect equilibria of yttrium manganite perovskites with strontium A-site and aluminum B-site doping. J. Phys. Chem. C 124, 4448–4458 (2020). https://doi.org/10.1021/acs.jpcc.9b11308

    Article  CAS  Google Scholar 

  37. S. Ravi, C. Senthilkumar, Anomalous magnetic behavior of Bi2NiCrO6 nanoparticles with multiferroic behavior synthe-sized using gel combustion. Ceram. Int. 46, 3976–3978 (2020). https://doi.org/10.1016/j.ceramint.2019.09.251

    Article  CAS  Google Scholar 

  38. H.M. Usama, A. Akter, M.A. Zubair, Modulation of structural, electrical, and magnetic features with dilute Zr substitution in Bi0.8La0.2Fe1-xZrxO3 system. J. Appl. Phys. 122, 244102 (2017). https://doi.org/10.1063/1.5006264

    Article  CAS  Google Scholar 

  39. L. Jin, D. Ni, X. Straus, D.B. Zhang, Q. Cava, R.J. Gui, Magnetic cations doped into a double perovskite semiconductor. J. Mater. Chem. C 10(8), 3232–3240 (2022). https://doi.org/10.1039/D1TC05585B

    Article  CAS  Google Scholar 

  40. J. Bashir, R. Shaheen, M. Siddique, A.K. Azad, J. Eriksen, H. Rundlöf, The influence of Cr doping on the structural and magnetic properties of Sr2Fe1−xCrxMoO6 double perovskite. Phys. B 385, 126–129 (2006). https://doi.org/10.1016/j.physb.2006.05.296

    Article  CAS  Google Scholar 

  41. R. Selmi, W. Cherif, A.R. Sarabando, N.M. Ferreira, L. Ktari, Crystal structure and magnetic properties in B-site-disordered La1.75Ca0.25MnMO6 (with M = Ti and Fe) double perovskites. J. Supercond. Nov. Magn. 35, 1195–1206 (2022). https://doi.org/10.1007/s10948-022-06174-z

    Article  CAS  Google Scholar 

  42. S. Thankachan, B.P. Jacob, S. Xavier, E.M. Mohammed, Effect of neodymium substitution on structural and magnetic properties of magnesium ferrite nanoparticles. Phys. Scr. 87(2), 025701 (2013). https://doi.org/10.1088/0031-8949/87/02/025701

    Article  CAS  Google Scholar 

  43. E.C. Devi, S.D. Singh, Tracing the magnetization curves: a review on their importance, strategy, and outcomes. J. Supercond. Nov. Magn. 34, 15–25 (2021). https://doi.org/10.1007/s10948-020-05733-6

    Article  CAS  Google Scholar 

  44. S. Thankachan, B.P. Jacob, S. Xavier, E.M. Mohammed, Effect of neodymium substitution on structural and magnetic properties of magnesium ferrite nanoparticles. Phys. Scr. 87, 1–7 (2013). https://doi.org/10.1088/0031-8949/87/02/025701

    Article  CAS  Google Scholar 

Download references

Funding

This research has been funded by the Research Deanship of the University of Ha’il-Saudi Arabia through project number RG-23 135.

Author information

Authors and Affiliations

Authors

Contributions

Fatma Khammassi: Preparing of samples, experimental measurements, writing-original draft, revising. Wajdi Chérif: Supervision, revising. Khouloud Abdouli: She has contributed in data analysis and paper writing. Aminta Mendoza: Investigation, Revising. Latifah Alfhaid: Revising. Olfa Messaoudi: Revising. Amjad S. Aljaloud: Revising. Selma Abdelrahman: Revising. Daniel Salazar: Investigation, Revising. Senentxu Lanceros-Mendez: Revising.

Corresponding author

Correspondence to Fatma Khammassi.

Ethics declarations

Conflict of interest

The authors declare having no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khammassi, F., Chérif, W., Abdouli, K. et al. Structural and magnetic properties of double perovskites Ca2FeMn1−xCrxO6 (x = 0.06 and 0.12). J Mater Sci: Mater Electron 35, 1242 (2024). https://doi.org/10.1007/s10854-024-12995-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12995-6

Navigation