Skip to main content
Log in

Probing the effect of molar concentration on TiO2 nanorod/nanoflower films toward enhanced field electron emission properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In this work, we report on the synthesis of rutile-TiO2 nanostructures for field electron emission studies using a simple one-step hydrothermal method at various TiCl4 molar concentrations. The formation of the pure and tetragonal rutile phase of TiO2 films has been confirmed by X-ray diffraction and Raman spectroscopy. The scanning electron microscopy analysis shows TiO2 has nanorods and nanoflower-like morphology with sharp petals. UV–Visible spectroscopy study exhibited broad absorption in the visible range with a band gap energy ranging from 2.32 to 3.01 eV over the entire range of TiCl4 molar concentration varied. A possible crystal growth mechanism and electron emission properties of TiO2 films are also discussed. At 0.6 M molar concentration of TiCl4, rutile-TiO2 film exhibited excellent field emission properties, including a low turn-on field of 1.11 V/µm for 10 µA/cm2, a maximum current density of 331.91 µA/cm2 at the applied bias of 3.44 V/μm, and superior current stability for three hours at a preset current of 1.08 µA. The results revealed that the rutile-TiO2 nanostructures can be used for various practical applications such as optoelectronics, biomedical devices, and supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets used and analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. S. Shen, J. Chen, M. Wang, X. Sheng, X. Chen, X. Feng, S. Mao, Titanium dioxide nanostructures for photoelectrochemical applications. Prog. Mater. Sci. 98, 299–385 (2018). https://doi.org/10.1016/j.pmatsci.2018.07.006

    Article  CAS  Google Scholar 

  2. M. Kang, S. Kim, H. Park, Optical properties of TiO2 thin films with crystal structure. J. Phys. Chem. Solids 123, 266–270 (2018). https://doi.org/10.1016/j.jpcs.2018.08.009

    Article  CAS  Google Scholar 

  3. Q. Ge, Z. Ma, M. Yao, H. Dong, X. Chen, S. Chen, T. Yao, X. Ji, L. Li, H. Wang, Carbon-coated Tin-Titanate derived SnO2/ TiO2 nanowires as high-performance anode for Lithium-Ion batteries. J. Colloid Interface Sci. 661, 888–896 (2024). https://doi.org/10.1016/j.jcis.2024.02.015

    Article  CAS  PubMed  Google Scholar 

  4. Z. Azizi, S. Daneshjou, Bacterial nano-factories as a tool for the biosynthesis of TiO2 nanoparticles: characterization and potential application in wastewater treatment. Appl. Biochem. Biotechnol. (2024). https://doi.org/10.1007/s12010-023-04839-6

    Article  PubMed  Google Scholar 

  5. R. Ikreedeegh, M. Hossen, M. Tahir, A. Aziz, A comprehensive review on anodic TiO2 nanotube arrays (TNTAs) and their composite photocatalysts for environmental and energy applications: Fundamentals, recent advances and applications. Coord. Chem. Rev. 499, 215495 (2024). https://doi.org/10.1016/j.ccr.2023.215495

    Article  CAS  Google Scholar 

  6. H. Liu, P. Zheng, S. Li, X. Hu, Y. Fang, Q. Chen, Effect of ethylene glycol chelated on ultrathin TiO2 (B) nanosheets on the photocatalytic selective benzyl alcohol oxidation. Molecular Catalysis 553, 113744 (2024). https://doi.org/10.1016/j.mcat.2023.113744

    Article  CAS  Google Scholar 

  7. J. Dai, Y. Yang, K. Ou, W. Zhang, Y. Tang, Y. Ni, Y. Xia, H. Wang, High-performance room temperature NH3 sensor based on zigzag morphology TiO2 nanorods. J. Alloys Compd. (2024). https://doi.org/10.1016/j.jallcom.2024.173807

    Article  Google Scholar 

  8. S. Anaam, M. Sahdan, Precursor-concentration-controlled Morphology of TiO2 nanorod/nanoflower films for enhanced photoelectrochemical water splitting and investigating their growth mechanism. Bull. Chem. React. Eng 19, 15–31 (2024). https://doi.org/10.9767/bcrec.20061

    Article  Google Scholar 

  9. T. Ivanova, A. Harizanova, T. Koutzarova, B. Vertruyen, Preparation and investigation of Sol-Gel TiO2-NiO films: structural. Opt. Electrochromic Prop. Cryst. 14, 192 (2024). https://doi.org/10.3390/cryst14020192

    Article  CAS  Google Scholar 

  10. K. Rajangam, S. Amuthameena, S. Thangavel, V. Sanjanadevi, B. Balraj, Synthesis and characterization of Ag incorporated TiO2 nanomaterials for supercapacitor applications. J. Mol. Struct. 1219, 128661 (2020). https://doi.org/10.1016/j.molstruc.2020.128661

    Article  CAS  Google Scholar 

  11. F. Vázquez, I. Tapia, V. Benítez, M. Magdaleno, O. Cuevas, M. Pérez, Multifunctional nanocomposite membranes containing TiO2 developed by Air-Jet-Spun fibers for tissue engineering. Biomed. Mater. Des. (2024). https://doi.org/10.1007/s44174-023-00148-y

    Article  Google Scholar 

  12. B. Sakar, Influence of Cu doping on the physical and H2 gas sensing properties of TiO2. Int. J. Hydrogen Energy 50, 1197–1208 (2024). https://doi.org/10.1016/j.ijhydene.2023.10.035

    Article  CAS  Google Scholar 

  13. Z. Chen, J. Xiong, G. Cheng, Recent advances in brookite phase TiO2-based photocatalysts toward CO2 reduction. Fuel 357, 129806 (2024). https://doi.org/10.1016/j.fuel.2023.129806

    Article  CAS  Google Scholar 

  14. H. Khir, A. Pandey, R. Saidur, M. Ahmad, M. Samykano, N. Rahim, Bismuth as efficient sintering aid for TiO2-based low temperature dye-sensitized solar cell. Mater. Sci. Semicond. 169, 107918 (2024). https://doi.org/10.1016/j.mssp.2023.107918

    Article  CAS  Google Scholar 

  15. G. Patil, S. Rondiya, V. Bagal, S. Shivhare, R. Cross, N. Dzade, S. Jadkar, P. Chavan, Field emission characteristics of double walled TiO2 nanotubes. ES Mater. Manuf. 13, 76–81 (2021). https://doi.org/10.30919/esmm5f1143

    Article  CAS  Google Scholar 

  16. R. Razavi, F. Nejad, S. Ahmadi, H. Beitollahi, Synthesis of ZnO@TiO2 nanoparticles and its application to construct an electrochemical sensor for determination of hydrazine. Electrochem. Comm. 159, 107639 (2024). https://doi.org/10.1016/j.elecom.2023.107639

    Article  CAS  Google Scholar 

  17. N. Mohamed, T. Kiong, A. Ismail, M. Teridi, Novel gamma-ray enhanced TiO2 nanoparticles photoanode for efficient photoelectrochemical (PEC) water splitting. Appl. Surf. Sci. 642, 158602 (2024). https://doi.org/10.1016/j.apsusc.2023.158602

    Article  CAS  Google Scholar 

  18. A. Salvador, M. Martı́, J. Adell, A. Requeni, J. March, Analytical methodologies for atomic spectrometric determination of metallic oxides in UV sunscreen creams. J. Pharm. Biomed. Anal. 22, 301–306 (2000). https://doi.org/10.1016/S0731-7085(99)00286-1

    Article  CAS  PubMed  Google Scholar 

  19. G. Pfaff, P. Reynders, Angle-dependent optical effects deriving from submicron structures of films and pigments. Chem. Rev. 99(7), 1963–1982 (1999). https://doi.org/10.1021/cr970075u

    Article  CAS  PubMed  Google Scholar 

  20. W. Ko, T. Wu, S. He, K. Lin, Phosphorus-doped TiO2 mesoporous nanocrystals for anodes in high-current-rate lithium-ion batteries. Nanotechnology 35, 175403 (2024). https://doi.org/10.1088/1361-6528/ad22aa

    Article  Google Scholar 

  21. J. Wang, B. Sanderson, H. Wang, Cyto- and genotoxicity of ultrafine TiO2 particles in cultured human lymphoblastoid cells. Mutat. Res. 628, 99–106 (2007). https://doi.org/10.1016/j.mrgentox.2006.12.003

    Article  CAS  PubMed  Google Scholar 

  22. M. Pylnev, F. Santos, D. Zhang, H. Alawadhi, N. Tabet, Compact TiO2 layer by UV-assisted TiBr 4 chemical bath deposition for perovskite solar cells. Mater. Sci. Semicond 161, 107467 (2023). https://doi.org/10.1016/j.mssp.2023.107467

    Article  CAS  Google Scholar 

  23. M. Liu, G. Shao, P. Lv, J. Li, Q. Zhu, Deposition of thin TiO2 films on fluorophlogopite particle surface by CVD in fluidized bed reactor to prepare silver pearlescent pigments. Particuology 89, 88–98 (2024). https://doi.org/10.1016/j.partic.2023.10.005

    Article  CAS  Google Scholar 

  24. A. Timoumi, S. Alharbi, W. Alzahrani, A. Kumar, A. Alzahrani, Z. Moussa, S. Ahmed, Synthesis, and impact of annealing rates on the physical and optical properties of spin coated TiO2 thin films for renewable energy applications. J. Inorg. Organomet. Polym. (2024). https://doi.org/10.1007/s10904-023-02884-6

    Article  Google Scholar 

  25. P. Dutra, C. Amorim, P. Gastelois, M. Grao, M. Ratova, A. Santos, P. Kelly, Carbonaceous-TiO2 composite photocatalysts through reactive direct current magnetron sputtering on powdered graphene for environmental applications. Thin Solid Films (2024). https://doi.org/10.1016/j.tsf.2024.140248

    Article  Google Scholar 

  26. Y. Doubi, B. Hartiti, H. Labrim, S. Fadili, M. Tahri, A. Belafhaili, M. Siadat, P. Thevenin, Experimental study of properties of TiO2 thin films deposited by spray pyrolysis for future sensory applications. Appl. Phys. A 127, 475 (2021). https://doi.org/10.1007/s00339-021-04629-z

    Article  CAS  Google Scholar 

  27. S. Revanakar, S. Pujar, G. Rao, Thickness dependent physical and optical properties of SILAR deposited titania films. Mater. Today: Proc (2023). https://doi.org/10.1016/j.matpr.2023.08.280

    Article  Google Scholar 

  28. A. Kubiak, M. Cegłowski, Unraveling the impact of microwave-assisted techniques in the fabrication of yttrium-doped TiO2 photocatalyst. Sci. Rep. 14, 262 (2024). https://doi.org/10.1038/s41598-023-51078-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. V. Zlobin, V. Nevedomskiy, M. Tomkovich, V. Ugolkov, O. Almjasheva, Influence of heterogeneous inclusions on the process of formation, structural transformations, and growth of TiO2 nanocrystals. Nanostructures NanoObjects 37, 101076 (2024). https://doi.org/10.1016/j.nanoso.2023.101076

    Article  CAS  Google Scholar 

  30. M. Abbas, M. Rasheed, Solid state reaction synthesis and characterization of Cu doped TiO2 nanomaterials. J. Phys.: Conf. Ser. (2021). https://doi.org/10.1088/1742-6596/1795/1/012059

    Article  Google Scholar 

  31. X. Huang, C. Pan, Large-scale synthesis of single-crystalline rutile TiO2 nanorods via a one-step solution route. J. Cryst. Growth 306, 117–122 (2007). https://doi.org/10.1016/j.jcrysgro.2007.04.018

    Article  CAS  Google Scholar 

  32. R.S. Dubey, K.V. Krishnamurthy, S. Singh, Experimental studies of TiO2 nanoparticles synthesized by sol-gel and solvothermal routes for DSSCs application. Results Phys. 14, 102390 (2019). https://doi.org/10.1016/j.rinp.2019.102390

    Article  Google Scholar 

  33. Y. Takahashi, H. Suzuki, M. Nasu, Rutile growth at the surface of TiO2 films deposited by vapour-phase decomposition of isopropyl titanate, J. Chem. Soc. Faraday Trans. 1, 3117–3125 (1985). https://doi.org/10.1039/F19858103117

    Article  Google Scholar 

  34. A. Nikam, G. Kamble, A. Patil, S. Patil, A. Sheikh, A. Takaloo, P. Gaikwad, R. Kamat, J. Kim, T. Dongale, Solvothermal synthesis of TiO2 nanospheres for non-volatile memory and synaptic learning applications. Nanotechnology 34, 425201 (2023). https://doi.org/10.1088/1361-6528/ace830

    Article  Google Scholar 

  35. M. Ardani, A. Pang, U. Pal, M. Haniff, A. Ismail, A. Hamzah, W. Khanday, M. Ahmadipour, Ultrasonic-assisted of TiO2-MWCNT nanocomposite with advanced photocatalytic efficiency for elimination of dye pollutions. Diam. Relat. Mater. 137, 110066 (2023). https://doi.org/10.1016/j.diamond.2023.110066

    Article  CAS  Google Scholar 

  36. R. Saini, P. Kumar, Green synthesis of TiO2 nanoparticles using Tinospora cordifolia plant extract & its potential application for photocatalysis and antibacterial activity. Inorg. Chem. Commun. 156, 111221 (2023). https://doi.org/10.1016/j.inoche.2023.111221

    Article  CAS  Google Scholar 

  37. N. Asim, S. Ahmadi, M. Alghoul, F. Hammadi, K. Saeedfar, K. Sopian, Int. J. Photoenergy 21, 518156 (2014). https://doi.org/10.1155/2014/518156

    Article  CAS  Google Scholar 

  38. J. Ma, W. Ren, J. Zhao, H. Yang, Growth of TiO2 nanoflowers photoanode for dye-sensitized solar cells. J. Alloy. Compd. 692, 1004–1009 (2016). https://doi.org/10.1016/j.jallcom.2016.09.134

    Article  CAS  Google Scholar 

  39. A. Talib, M. Ahmad, N. Ahmad, N. Nafarizal, F. Mohamad, C. Soon, A. Suriani, M. Mamat, K. Murakami, M. Shimomura, Performance of dye-sensitized solar cell using size-controlled synthesis of TiO2 nanostructure. Int. J. Integr. 12, 106–114 (2020). https://doi.org/10.30880/ijie.2020.12.02.013

    Article  Google Scholar 

  40. A. Norazlina, F. Mohamad, A. Talib, M. Ahmad, N. Nafarizal, C. Soon, A. Suriani, M. Mamat, K. Murakami, M. Shimomura, Fabrication of rutile-phased TiO2 film with different concentrations of hydrochloric acid towards the performance of dye-sensitized solar cell. Int. J. Integr. Eng. 12, 115–124 (2020)

    Article  Google Scholar 

  41. N. Desai, K. Khot, T. Dongale, K. Musselman, P. Bhosale, Development of dye-sensitized TiO2 thin films for efficient energy harvesting. J. Alloys Compd. 790, 1001–1013 (2019). https://doi.org/10.1016/j.jallcom.2019.03.246

    Article  CAS  Google Scholar 

  42. S. Miyauchi, H. Tokudome, Y. Toda, T. Kamiya, H. Hosono, Electron field emission from nanotube arrays synthesized by hydrothermal reaction. Appl. Phys. Lett. 89, 043114 (2006). https://doi.org/10.1063/1.2245202

    Article  CAS  Google Scholar 

  43. M. Ahmad, S. Mokhtar, C. Soon, N. Nafarizal, A. Suriani, A. Mohamed, M. Mamat, M. Malek, M. Shimomura, K. Murakami, Raman investigation of rutile-phased TiO2 nanorods/nanoflowers with various reaction times using one step hydrothermal method. J. Mater. Sci. Mater. Electron. 27, 7920–7926 (2016). https://doi.org/10.1007/s10854-016-4783-z

    Article  CAS  Google Scholar 

  44. N. Nithyaa, N. Victor Jaya, Effect of Nd on the structural, optical and magnetic behavior of TiO2 nanoparticles. Appl. Phys. A Mater. Sci. Process (2021). https://doi.org/10.1007/s00339-020-04140-x

    Article  Google Scholar 

  45. S. Mustapha, J. Tijani, M. Ndamitso, A. Abdulkareem, D. Shuaib, A. Amigun, H. Abubakar, Facile synthesis and characterization of TiO2 nanoparticles: X-ray peak profile analysis using Williamson-Hall and Debye-Scherrer methods. Int. Nano Lett. 11, 241 (2021). https://doi.org/10.1007/s40089-021-00338-w

    Article  CAS  Google Scholar 

  46. A. Patterson, The Scherrer formula for x-ray particle size determination. Phys. Rev. 56, 978–982 (1939). https://doi.org/10.1103/PhysRev.56.978

    Article  CAS  Google Scholar 

  47. A. Jiji, N. Joseph, R. Donald, M. Daniel, S. Amit, Y. Qiang, Size-dependent specific surface area of nanoporous film assembled by core-shell iron nanocluster. J. Nanomater. 2006, 1–4 (2006). https://doi.org/10.1155/JNM/2006/54961

    Article  CAS  Google Scholar 

  48. S. Kite, D. Sathe, S. Patil, P. Bhosale, K. Garadkar, Mater. Res. Express. 6, 026411 (2018). https://doi.org/10.1088/2053-1591/aaed81

    Article  CAS  Google Scholar 

  49. T. Zahra, K. Ahmad, A. Thomas, C. Zequine, R. Gupta, M. Malik, M. Sohail, RSC Adv. 10, 29961 (2020). https://doi.org/10.1039/D0RA04571C

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. A. Suriani, M. Mohamed, M. Othman, M. Mamat, N. Hashim, M. Ahmad, N. Nayan, H. Khalil, Reduced graphene oxide-multiwalled carbon nanotubes hybrid film with low Pt loading as counter electrode for improved photovoltaic performance of dye-sensitised solar cells. J Mater Sci Mater Electron 29, 10723–10743 (2018). https://doi.org/10.1007/s10854-018-9139-4

    Article  CAS  Google Scholar 

  51. J. Yan, G. Wu, N. Guan, L. Li, Z. Li, X. Cao, Understanding the effect of surface/bulk defects on the photocatalytic activity of TiO2: anatase versus rutile. Phys. Chem. Chem. Phys. 15, 10978 (2013). https://doi.org/10.1039/C3CP50927C

    Article  CAS  PubMed  Google Scholar 

  52. A. Kumar, A. Madaria, C. Zhou, Growth of aligned single-crystalline rutile TiO2 nanowires on arbitrary substrates and their application in dye-sensitized solar cells. J. Phys. Chem. C 114, 7787–7792 (2010). https://doi.org/10.1021/jp100491h

    Article  CAS  Google Scholar 

  53. W. Guo, C. Xu, X. Wang, S. Wang, C. Pan, C. Lin, Z. Wang, Rectangular bunched rutile TiO2 nanorod arrays grown on carbon fiber for dye-sensitized solar cells. J. Am. Soc. Mech. Eng. 134, 4437–4441 (2012). https://doi.org/10.1021/ja2120585

    Article  CAS  Google Scholar 

  54. M. Lefdil, R. Diaz, H. Bihri, M. Aouaj, F. Rueda, Preparation and characterization of sprayed FTO thin films. Eur. Phys. J. Appl. Phys. 38, 217–219 (2007). https://doi.org/10.1051/epjap:2007090

    Article  CAS  Google Scholar 

  55. C. Howard, T. Sabine, F. Dickson, Structural and thermal parameters for rutile and anatase. Acta Crystallogr. Sect. B 47, 462–468 (1991). https://doi.org/10.1107/S010876819100335X

    Article  Google Scholar 

  56. B. Morgan, D. Scanlon, G. Watson, Small polarons in Nb-and Ta-doped rutile and anatase TiO2. J. Mater. Chem. 19, 5175–5178 (2009). https://doi.org/10.1039/B905028K

    Article  CAS  Google Scholar 

  57. J. Lin, Y. Heo, A. Nattestad, Z. Sun, L. Wang, J. Kim, S. Dou, 3D hierarchical rutile TiO2 and metal-free organic sensitizer producing dye-sensitized solar cells 8.6% conversion efficiency. Sci Rep 4, 5769 (2014). https://doi.org/10.1038/srep05769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. S. Kim, S. Park, Y. Jeong, S. Park, Homogeneous precipitation of TiO2 ultrafine powders from aqueous TiOCl2 solution. J. Am. Ceram. Soc. 82, 927–932 (1999). https://doi.org/10.1111/j.1151-2916.1999.tb01855.x

    Article  CAS  Google Scholar 

  59. E. Hosono, S. Fujihara, K. Kakiuchi, H. Imai, Growth of submicrometer-scale rectangular parallelepiped rutile TiO2 films in aqueous TiCl3 solutions under hydrothermal conditions. J. Am. Chem. Soc. 126, 7790–7791 (2004). https://doi.org/10.1021/ja048820p

    Article  CAS  PubMed  Google Scholar 

  60. C. Charbonneau, R. Gauvin, G. Demopoulos, Nucleation and growth of self-assembled nanofibre-structured rutile (TiO2) particles via controlled forced hydrolysis of titanium tetrachloride solution. J. Cryst. Growth 312, 86–94 (2009). https://doi.org/10.1016/j.jcrysgro.2009.09.033

    Article  CAS  Google Scholar 

  61. H. Khizir, T. Abbas, Hydrothermal growth and controllable synthesis of flower-shaped TiO2 nanorods on FTO coated glass. J. Sol-Gel Sci. Technol. 98(3), 487–496 (2021). https://doi.org/10.1007/s10971-021-05531-z

    Article  CAS  Google Scholar 

  62. A. Lawal, A. Shaari, R. Ahmed, L. Taura, Investigation of excitonic states effects on optoelectronic properties of Sb2Se3 crystal for broadband photodetector by highly accurate first-principles approach. Curr. Appl. Phys. 18, 567–575 (2018). https://doi.org/10.1016/j.cap.2018.02.008

    Article  Google Scholar 

  63. R. Forbes, Field emission: new theory for the derivation of emission area from a Fowler-Nordheim plot. J. Vac. Sci. Technol. B 17, 526–533 (1999). https://doi.org/10.1116/1.590588

    Article  CAS  Google Scholar 

  64. S. Bhopale, K. Jagtap, A. Phatangare, S. Kamble, S. Dhole, V. Mathe, M. More, Field electron emission behavior of pristine and Au nanoparticles decorated Sb2Te3-rGO heterostructure emitters. Appl. Surf. Sci. 619, 156752 (2023). https://doi.org/10.1016/j.apsusc.2023.156752

    Article  CAS  Google Scholar 

  65. T. Zhang, C. Chen, Z. Liang, L. Wang, F. Gao, W. Yang, S. Chen, Boosting field emission performance of TiO2 nanoarrays with designed architectures. Appl. Surf. Sci. 507, 145146 (2020). https://doi.org/10.1016/j.apsusc.2019.145146

    Article  CAS  Google Scholar 

  66. Y. Shen, Y. Yang, Y. Gong, S. Yu, H. Hei, H. Gong, Fabrication of rutile TiO2 nanoarrays/free-standing diamond composite film and its field emission properties. J. Market. Res. 18, 4314–4328 (2022). https://doi.org/10.1016/j.jmrt.2022.04.003

    Article  CAS  Google Scholar 

  67. J. Wu, H. Shih, W. Wu, Electron field emission from single crystalline TiO2 nanowires prepared by thermal evaporation. Chem. Phys. Lett. 413, 490–494 (2005). https://doi.org/10.1016/j.cplett.2005.07.113

    Article  CAS  Google Scholar 

  68. J. Liang, G. Zhang, TiO2 Nanotip arrays: anodic fabrication and field-emission properties. ACS Appl. Mater. Interfaces 4(11), 6053–6061 (2012). https://doi.org/10.1021/am301690f

    Article  CAS  PubMed  Google Scholar 

  69. C. Fukuyama, K. Murakami, S. Abo, F. Wakaya, M. Takai, T. Takimoto, Y. Kumashiro, Y. Takaoka, Field-enhanced surface treatment of needle-shaped TiO2 cathode for improvement in field emission. J. Vac. Sci. Technol. B 27, 775–777 (2009). https://doi.org/10.1116/1.3070652

    Article  CAS  Google Scholar 

  70. Z. Song, H. Zhou, P. Tao, B. Wang, J. Mei, H. Wang, S. Wen, Z. Song, G. Fang, The synthesis of TiO2 nanoflowers and their application in electron field emission and self-powered ultraviolet photodetector. Mater. Lett. 180, 179–183 (2016). https://doi.org/10.1016/j.matlet.2016.05.178

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Abdullah M Al-Enizi and Shoyebmohamad F. Shaikh thanks the Researchers Supporting Project Number RSP 2024R55, King Saud University, Riyadh, Saudi Arabia, for the financial support. Yogesh Hase, Subhas Pandharkar, and Ashish Waghmare thanks the Ministry of New and Renewable Energy (MNRE), Government of India New Delhi, for the National Renewable Energy (NRE) fellowship and financial assistance. Sandesh Jadkar thanks the Indo-French Centre for the Promotion of Advanced Research-CEFIPRA, Department of Science and Technology, New Delhi, for special financial support.

Author information

Authors and Affiliations

Authors

Contributions

Priti Vairale: Methodology, Conceptualization, Validation, Formal analysis, Investigation. Amol Deore: Methodology, Validation, Formal analysis, Investigation. Ashish Waghmare: Methodology, Formal analysis, Investigation. Haribhau Borate: Methodology, Formal analysis, Investigation. Subhash Pandharkar: Validation, Formal analysis, Investigation. Yogesh Hase: Formal analysis, Investigation, Data curation, Writing-Review. Vijaya Jadkar: Methodology, Validation, Investigation. Mahindra More: Methodology, Conceptualization, Validation, Investigation. Abdullah M Al-Enizi: Formal analysis, Investigation. Shoyebmohamad F. Shaikh: Formal analysis, Investigation. Sandesh Jadkar: Visualization, Writing-Review, Editing, Supervision, Funding acquisition.

Corresponding authors

Correspondence to Priti Vairale or Sandesh Jadkar.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vairale, P., Deore, A., Hase, Y. et al. Probing the effect of molar concentration on TiO2 nanorod/nanoflower films toward enhanced field electron emission properties. J Mater Sci: Mater Electron 35, 1240 (2024). https://doi.org/10.1007/s10854-024-12992-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12992-9

Navigation