Skip to main content
Log in

Synthesis of TiO2/CuO/GO nanocomposite for the photocatalytic degradation of methylene blue

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, the removal of methylene blue from water using photocatalytic treatment with the TiO2/CuO/GO (TCG) nanocomposite under visible light was investigated. All materials, namely TiO2, CuO, GO, and the TCG nanocomposite, were synthesized using the sol–gel, co-precipitation, Tour, and Ball-milling methods, respectively. The material properties, including structural, morphological, compositional, and optical characteristics, were thoroughly analyzed. The XRD results confirm the formation of the tetragonal crystal structure for TiO2, the cubic crystal structure for CuO, and the presence of different phases for the TCG nanocomposite. From the FE-SEM images, grains with semi-spherical, blade-like, rock-like, and fungi-like structures were, respectively, found for TiO2, CuO, GO, and the TCG nanocomposite materials. EDS spectra verify the presence of each element constituting their respective samples. The photocatalytic properties of the TCG nanocomposite were evaluated by varying the dosage (100, 200, 300, 400, and 500 mg, respectively) for the photodegradation of methylene blue. The results reveal that the nanocomposite catalyst exhibits better photocatalytic activity compared to the individual materials due to an enhanced adsorption process and charge transfer. The photodegradation efficiency for MB was 100% after 30 min of irradiation using 500 mg of the composite at pH = 7. The incorporation of CuO and GO into the TiO2 matrix enhanced the absorption of light in the visible region, which, coupled with the large surface area and presence of GO, contributes to removal by adsorption, provoking more efficient MB removal. Holes and superoxide radicals are the reactive chemical species that govern the MB photodegradation process. Finally, adsorption kinetics revealed that the adsorption process occurs by chemisorption and undergoes a multilayer adsorption process, while the photodegradation kinetic fits to pseudo-first-order model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Ch. Jiang, T. Zhang, Z. Yang, Risk assessment of potential toxic metal pollution in water-sediment-submerged macrophyte systems: a case study of urban shallow lakes in Central China. Aquat. Ecol. 56, 1001–1017 (2022)

    Article  CAS  Google Scholar 

  2. Z. Chen, Y. Duan, L. Yin, Y. Chen, Y. Xue, X. Wang, D. Mao, Y. Luo, Unraveling the influence of human fecal pollution on antibiotic resistance gene levels in different receiving water bodies using crAssphage indicator gene. J. Hazard. Mater. 442, 130005 (2022)

    Article  PubMed  Google Scholar 

  3. B. Ovide, E. Cirino, C. Basran, T. Geertz, K. Syberg, Assessment of prevalence and heterogeneity of meso-and microplastic pollution in icelandic waters. Environments 2022(9), 150 (2022). https://doi.org/10.3390/environments9120150

    Article  Google Scholar 

  4. L. Chakraborti, J. Shimshak, Environmental disparities in urban Mexico: Evidence from toxic water pollution. Resour Energy Econ. 67(2022), 101281 (2022)

    Article  Google Scholar 

  5. C. Schifter, C. González-Macías, L. Salazar-Coria, G. Sánchez-Reyna, C. González-Lozano, Long-term effects of discharges of produced water the marine environment from petroleum-related activities at Sonda de Campeche, Gulf of Mexico. Environ. Monit. Assess. 187, 723 (2015). https://doi.org/10.1007/s10661-015-4944-1

    Article  CAS  PubMed  Google Scholar 

  6. A. Jiang, T.A. Otitoju, Y. Ouyang, N.F. Shoparwe, S. Wang, A. Zhang, S. Li, A review on Metal Ions Modified TiO2 for photocatalytic degradation of organic pollutants. Catalysts 11, 1039 (2021)

    Article  CAS  Google Scholar 

  7. M. Abdullah, Aspartic acid- and glycine-functionalized mesoporous silica as an effective adsorbent to remove methylene blue from contaminated water. J. Chem. 2022(14), 2022 (2022). https://doi.org/10.1155/2022/5375815

    Article  CAS  Google Scholar 

  8. Z.M. Shammi, A.H. Kianfar, M.M. Momeni, Hydrothermal synthesis and characterization of CuO-CoO/TiO2 for photocatalytic degradation of methylene blue under visible light and catalytic reduction of P-nitrophenol. J. Mater. Sci. Mater. Electron. 31, 14810–14822 (2020)

    Article  CAS  Google Scholar 

  9. S.K. Lakkaboyana, S. Khantong, N.K. Asmel, A. Yuzir, W.Z. Wan, Synthesis of copper oxide nanowires-activated carbon (AC@CuO-NWs) and Applied for removal methylene blue from aqueous solution: kinetics, isotherms, and thermodinamics. J. Inorg. Organomet. Polym. Mater. 29, 1658–1668 (2019)

    Article  CAS  Google Scholar 

  10. F. Taleb, M. Ammar, M. Mosbah, R. Salem, Y. Moussaoui, Chemical modification of lignin derived from spent coffee grounds for methylene blue adsorption. Sci. Rep. 10(1), 1–3 (2020)

    Article  Google Scholar 

  11. V. Ravi, S. Narayana, Characteristic Studies on Adsorption of Methylene blue dye using natural low-cost adsorbent. Specialysis UGDYMAS. 1(43), 9057–9067 (2022)

    Google Scholar 

  12. R.M. Sánchez-Albores, B.Y. Pérez-Sariñana, C.A. Meza-Avendaño, P.J. Sebastian, O. Reyes-Vallejo, J.B. Robles-Ocampo, Hydrothermal synthesis of bismuth vanadate-alumina assisted by microwaves to evaluate the photocatalytic activity in the degradation of methylene Blue. Catal. Today 353, 126–133 (2020)

    Article  Google Scholar 

  13. H.M. Yadav, T.V. Kolekar, A.S. Barge, N.D. Thoral, S.D. Delekar, B.M. Kim, B.J. Kim, J.S. Kim, Enhance visible light photocatalytic activity of Cr+3 doped anatase TiO2 nanoparticles synthesized by sol-gel method. J. Sci.: Mater Electron. 27, 526–534 (2015)

    Google Scholar 

  14. M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahmemann, Environmental applications of semiconductor photocatalysis. Chem. Rev. 95, 69–96 (1995)

    Article  CAS  Google Scholar 

  15. W. Su, S. Wei, Q. Hu, X. Tang, Preparation of TiO2/Ag colloids with ultraviolet resistance and antibacterial property using short chain polyethylene glycol. J. Hazard. Mater. 172, 716–720 (2009)

    Article  CAS  PubMed  Google Scholar 

  16. H. Dong, G. Zeng, L. Tang, C. Fan, C. Zhang, X. He, Y. He, An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures. Water Res. 79, 128–146 (2015)

    Article  CAS  PubMed  Google Scholar 

  17. S. Lee, H. Tung, J. Heon, Microplasma-assisted synthesis of TiO2-Au hybrid nanoparticles and their photocatalytic mechanism for degradation of methylene blue dye under ultraviolet and visible light irradiation. Appl. Surf. Sci. 573, 151383 (2022)

    Article  CAS  Google Scholar 

  18. S. Shafafi, A. Habibi, S. Feizpoor, H. Chand, V. Krishnan, Ch. Wang, Impressive visible-light photocatalytic performance of TiO2 by integration with Bi2SiO5 nanoparticles: binary TiO2/Bi2SiO5 photocatalyst with n-n heterojunction. Colloids Surf. A 629, 127392 (2021)

    Article  CAS  Google Scholar 

  19. L. Alcaraz, A. López, I. García, F. López, Preparation and characterization of activated carbons from winemaking wastes and their adsorption of methylene blue. Adsorpt. Sci. Technol. 36(5–6), 1331–1351 (2018)

    Article  CAS  Google Scholar 

  20. Y. Costa, M. De Andrade, J. Ellena, J. Duque, T. Farías, G. Autié, Zeolite/ZnO composites base on a Cuban natural clinoptilolite and preliminary evaluation in methylene blue adsorption. Mater. Res. Express. 7(1), 015066 (2020)

    Google Scholar 

  21. M. Belhachemi, F. Addoun, Comparative adsorption isotherms and modeling of methylene blue onto activated carbons. Appl Water Sci 1(3), 111–117 (2011)

    Article  CAS  Google Scholar 

  22. E. Kusurini, S. Suhrowati, A. Usman, M. Khalil, V. Degirmenci, Synthesis and characterization of graphite oxide, graphene oxide, and reduced graphene oxide from graphite waste using modified Hummers’ method and zinc as reducing agent. Int. J. Technol 10(6), 1093–1104 (2019)

    Article  Google Scholar 

  23. Z. Ciğeroğlu, A. Haşimoğlu, O.K. Özdemir, Synthesis, characterization and an application of graphene oxide nanopowder: methylene blue adsorption and comparison between experimental data and literature data. J. Dispers. Sci. Technol. 42(5), 771–783 (2021)

    Article  Google Scholar 

  24. R. Sánchez-Albores, F.J. Cano, P.J. Sebastian, O. Reyes-Vallejo, Microwave-assisted biosynthesis of ZnO-GO particles using orange peel extract for photocatalytic degradation of methylene blue. J. Environ. Chem. Eng. 10, 108924 (2022)

    Article  Google Scholar 

  25. Y. Wang, T. Zhang, Y. Zhao, T. Lv, W. Liu, X. Liu, Catalytic degradation of methylene blue by biosynthesized Au nanoparticles on titanium dioxide (Au@TiO2). Environ. Sci. Pollut. Res. (2022). https://doi.org/10.1007/s11356-022-22945-6

    Article  Google Scholar 

  26. M. Kocijan, L. Curkovic, I. Bdikin, G. Otero-Irurueta, Immobilised rGO/TiO2 nanocomposite for multi-cycle removal of methylene blue dye from aqueous medium. Appl. Sci. 12, 385 (2022). https://doi.org/10.3390/app12010385

    Article  CAS  Google Scholar 

  27. C. Nutescu, C. Gómez, G. Apostolescu, G. Ciobanu, D. Lutic, L. Favier, M. Harja, Enhancing the TiO2-Ag photocatalytic efficiency by acetone in the dye removal from wastewater. Water 14, 2711 (2022). https://doi.org/10.3390/w14172711

    Article  CAS  Google Scholar 

  28. H. Shi, Y. Chen, J. Lu, H. Guo, H. Qiu, P. Li, Visible light photocatalytic degradation of methylene blue by hydrated titanium dioxide nanoparticles incorporated within rice straw. Appl. Nanosci. 11, 921–931 (2021)

    Article  CAS  Google Scholar 

  29. S. Torres-Arellano, O. Reyes-Vallejo, J.P. Enriquez, J.L. Aleman-Ramirez, A.M. Huerta-Flores, J. Moreira, J. Muñiz, L. Vargas-Estrada, P.J. Sebastian, Biosynthesis of cuprous oxide using banana pulp waste extract as reducing agent. Fuel 285, 119152 (2021)

    Article  CAS  Google Scholar 

  30. M. Babudurai, O. Nwakanma, A. Romero-Nuñez, R. Manisekaran, V. Subramaniam, H. Castaneda, A. Jantrania, Mechanical activation of TiO2/Fe2O3 nanocomposite for arsenic adsorption: effect of ball-to-powder ratio and milling time. J. Nanostruct. Chem. 11(4), 619–632 (2021)

    Article  CAS  Google Scholar 

  31. Cano, F., Reyes-Vallejo, O., Díaz, J., Velumani, S., Kassiba, A. (2022). Effect of the oxidation degree on the bandgap of graphene oxides by Tour method. 19th International Conference on Electrical Engineering Computing Science and Automatic Control (CCE). https://doi.org/10.1109/CCE56709.2022.9975930.

  32. V. Kotsyubynsky, V. Boychuk, I. Budzulyak, B. Rachiy, M. Hodlevska, A. Kachmar, M. Hodlevsky, Graphene oxide synthesis using modified Tour method. Adv. Nat. Sci. Nanosci. Nanotechnol. 12, 035006 (2021). https://doi.org/10.1088/2043-6262/ac204f

    Article  CAS  Google Scholar 

  33. J.C. Lazo, A.E. Navarro, M.R. Sun-Kou, B. Llanos, Síntesis y caracterización de arcillas organofílicas y su aplicación como adsorbentes de fenol. Rev. Soc. Quím. Perú 74, 3–19 (2008)

    CAS  Google Scholar 

  34. Z. Wu, Y. Xue, Z. Gao, Y. Li, L. Zhang, X. Yang, Z. Liu, Synthesis of Ni-doped anatase TiO2 single crystals loaded on wood-based activated carbon for enhanced photodegradation of triphenylmethane dyes. Environ. Sci. Pollut. Res. 28, 6491–6503 (2020)

    Article  Google Scholar 

  35. E. Worch, Adsorption technology in water treatment. Fundamentals, processes, and modeling, 1st edn. (De Gruyter, Berlin, 2012), pp.3–8

    Book  Google Scholar 

  36. M. Habuda-Stanic, M.R. Ergović, A. Flanagan, A review on adsorption of fluoride from aqueous solution. J. Mater. 7, 6317–6366 (2014)

    Article  Google Scholar 

  37. I. Matus, L. Paniagua, M. Benavente, Estudio de la cinética de adsorción de Cu y Hg a partir de soluciones binarias usando quitosano. Nexo Revista Científica 24, 20–32 (2011)

    Article  Google Scholar 

  38. D. Figueroa, A. Moreno, A. Harmaza, Equilibrio, termodinámica y modelos cinéticos en la adsorción de Rojo 40 sobre tuza de maíz. Revista Ingernierías Universidad de Medellín 12, 105–120 (2014)

    Google Scholar 

  39. T. Mohammad, H. Morrison, Simultaneous photoconjugation of methylene blue and cis-Rh(phen)2Cl2+ to DNA via a synergistic effect. Photochem. Photobiol. 71, 369–381 (2007)

    Article  Google Scholar 

  40. J. Bolton, K. Bircher, W. Tumas, C. Tolman, Figures-of-merit for the technical development and application of advanced oxidation technologies for both electric-and-solar-driven systems (IUPAC Technical Report). Pure Appl. Chem. 73(4), 627–638 (2001)

    Article  CAS  Google Scholar 

  41. P. Gonçalves, R. Bertholdo, J.A. Dias, S.C. Maestrelli, T.R. Giraldi, Evaluation of the photocatalytic potential of TiO2 and ZnO obtained by different wet chemical methods. Mater. Res. 20, 181–189 (2017)

    Article  Google Scholar 

  42. H. Mersian, M. Alizadeh, Effect of diverse Pechini sol – gel parameters on the size, morphology, structural and optical properties of the Tenorite (CuO) NPs: a facile approach for desired properties. Ceram. Int. 40, 17197–17208 (2020)

    Article  Google Scholar 

  43. C. Carel, M. Mouallem-Bahout, J. Gaudé, Re-examination of the non-stoichiometry and defect structure of copper (II) oxide or tenorite, Cu1 +/-z or CuO1+/-e A short review. Solid State Ionics 117, 47–55 (1999)

    Article  CAS  Google Scholar 

  44. G. Hodes, Chemical solution deposition of semiconductor films (CRC Press, Boca Ratón, 2002), pp.1–14

    Book  Google Scholar 

  45. D. Cosma, A. Urda, T. Radu, M. Rosu, M. Mihet, C. Socaci, Evaluation of the photocatalytic properties of copper oxides/graphene/TiO2 nanoparticles composites. Molecules 27, 5803 (2022). https://doi.org/10.3390/molecules271858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. B. Li, W. Niu, Y. Cheng, J. Gu, P. Ning, Q. Guan, Preparation of CuO modified TiO2 nanopowder and its application to the visible light photoelectrocatalytic reduction of CO2 to CH3OH. Chem. Phys. Lett. 700, 57–63 (2018)

    Article  CAS  Google Scholar 

  47. J. Fang, Y. Xuan, Investigation of optical absorption and photothermal conversion characteristics of binary CuO/ZnO nanofluids. RSC Adv. 7(88), 56023–56033 (2017)

    Article  CAS  Google Scholar 

  48. E. Haro-Poniatowski, R. Rodríguez-Talavera, H.M. de la Cruz, Crystallization of nanosized titania particles prepared by the sol-gel process. J. Mater. Res. (1994). https://doi.org/10.1557/JMR.1994.2102

    Article  Google Scholar 

  49. J.L. Aleman-Ramirez, O. Reyes-Vallejo, P.U. Okoye, R. Sanchez-Albores, A. Maldonado-Álvarez, P.J. Sebastian, Crystal phase evolution of high temperature annealed Fe3O4-CaO catalysts for biodiesel production. Biofuels Bioprod. Biorefin. 17(4), 843–858 (2023)

    Article  CAS  Google Scholar 

  50. F. Cano, O. Reyes-Vallejo, A. Adhikari, M. Olvera, V. Subramaniam, A. Kassiba, Mechanisms of dyes Adsorption on titanium oxide Graphene oxide nanocomposites. Ceram. Int. (2023). https://doi.org/10.1016/j.ceramint.2023.03.249

    Article  Google Scholar 

  51. A. Kumar, M. Warshi, V. Mishra, S. Saxena, R. Kumar, P. Sagdeo, Strain control of Urbach energy in Cr-doped PrFeO3. Appl. Phys. A 123(9), 1–8 (2017)

    Article  Google Scholar 

  52. Z. Jia, L.B.T. La, W.C. Zhang, S.X. Liang, B. Jiang, S.K. Xie, D. Habibi, L.C. Zhang, Strong enhancement on dye photocatalytic degradation by ball-milled TiO2: a study of cationic and anionic dyes. J. Mater. Sci. Technol. 33(8), 856–863 (2017)

    Article  CAS  Google Scholar 

  53. H. Yadav, T. Kolekar, A. Barge, N. Thoral, S. Delekar, B. Kim, B.J. Kim, J. Kim, Enhanced visible light photocatalytic activity of Cr3+ -doped anatase TiO2 nanoparticles synthesized by sol – gel method. J. Mater. Sci. Mater. Electron. 27, 526–534 (2015)

    Article  Google Scholar 

  54. Y. Wang, L. Shen, S. Zhu, Synthesis of core-shell Fe3O4@SiO2@TiO2 microspheres and their application as recyclable photocatalysts. Int. J. Photoenergy 5, 2066–2072 (2012)

    Google Scholar 

  55. O. Reyes-Vallejo, R. Sánchez-Albores, A. Maldonado-Alvarez, A. Ashok, J.C. Duran-Alvarez, V. Subramaniam, Calcium-Magnesium oxide by the ball-milling method using eggshell as calcium source: its study for photodegradation of methylene blue. J. Mater. Sci. Mater. Electron. 34(8), 770 (2023)

    Article  CAS  Google Scholar 

  56. Y. Liu, L. Wang, N. Xue, P. Wang, M. Pei, W. Guo, Ultra-highly efficient removal of methylene blue based on graphene oxide/TiO2/bentonite sponge. Materials 13(4), 824 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Z.O. Alafif, M. Anjum, R. Kumar, S.M. Abdelbasir, M.A. Barakat, Synthesis of CuO–GO/TiO 2 visible light photocatalyst for 2-chlorophenol degradation, pretreatment of dairy wastewater and aerobic digestion. Appl. Nanosci. 9, 579–591 (2019)

    Article  CAS  Google Scholar 

  58. P. Sangpour, A. Hashemi, Z. Moshfegh, Photoenhanced degradation of methylene blue on cosputtered M:TiO2 (M= Au, Ag, Cu) nanocomposite systems: a comparative study. J. Phys. Chem. 114, 13955–13961 (2010)

    CAS  Google Scholar 

  59. S. Shammi, A. Kianfar, A. Momeni, Hydrotermal synthesis and characterization of CuO-CoO/TiO2 for photocatalytic degradation of methylene blue under visible light and catalytic reduction of P-nitrophenol. J. Mater. Sci. Mater. Electron. 31, 14810–14822 (2020)

    Article  CAS  Google Scholar 

  60. L. Cheng, S. Qiu, J. Chen, J. Shao, S. Cao, A practical pathway for the preparation of Fe2O3 decorated TiO2 photocatalyst with enhanced visible-light photoactivity. Mater. Chem. Phys. 190, 53–61 (2017)

    Article  CAS  Google Scholar 

  61. T. Lv, J. Zhao, M. Chen, K. Shen, D. Zhang, J. Zhang, G. Zhang, Q. Liu, Boosted visible-light photodegradation of methylene blue by V and Co Co-Doped TiO2. Materials (2018). https://doi.org/10.3390/ma11101946

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Verónica Rangel-Contreras, Odín Reyes-Vallejo acknowledge CONAHCYT for the doctoral and postdoctoral scholarships, respectively. The authors acknowledge to Advance Electron Nanoscopy Laboratory (LANE), Center of Research and Advanced Studies of the I.P.N. (CINVESTAV), the technical support received from the technician Jorge Roque de la Puente for SEM images and EDS analysis, Dr. Miguel Ángel Avendaño Ibarra for his support in conducting micro-RAMAN studies, and Dr. Juan Carlos Durán of Institute of Applied Sciences and Technology UNAM (ICAT-UNAM) for his support in conducting BET studies. Specially thanks to Dr. Arturo Maldonado Álvarez and Dr. Ashok Adhikari for general assistance.

Author information

Authors and Affiliations

Authors

Contributions

Verónica Rangel-Contreras contributed toward investigation, experiments, methodology, conceptualization, writing original draft, and corrections. Odín Reyes-Vallejo contributed toward characterization, editing, and writing the original draft and corrections. Velumani Subramaniam contributed toward supervision, reagents/materials/analysis tools, reviewing, and editing.

Corresponding author

Correspondence to Velumani Subramaniam.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rangel-Contreras, V., Reyes-Vallejo, O. & Subramaniam, V. Synthesis of TiO2/CuO/GO nanocomposite for the photocatalytic degradation of methylene blue. J Mater Sci: Mater Electron 35, 1301 (2024). https://doi.org/10.1007/s10854-024-12986-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12986-7

Navigation