Skip to main content
Log in

The performance of ultraviolet solar-blind detection of p-Si/n-Ga2O3 heterojunctions with/without hole-blocking layer

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The wide band gap semiconductor Ga2O3 has become an excellent UV detection material due to its suitable band gap, high crystalline quality and thermal stability. In this paper, the microstructure of Ga2O3 with different thicknesses is characterized and the solar-blind detection performance of Ga2O3/p-Si heterojunctions are further investigated. XRD and UV–VIS demonstrate that Ga2O3 sputtered for 20 min is amorphous with a band gap of 4.98 eV, as the sputtering time increases, Ga2O3 grows along the (002) crystal plane and the band gap increases. XPS reveals that the lattice oxygen content in the Ga2O3 increases with the sputtering time, however, the Ga3+ content reaches a peak in Ga2O3 sputtered for 1.5 h. And the increasing of the binding energy between Ga-O in Ga2O3/p-Si heterojunctions accelerates response speed. Electrical experiments show that the heterojunction consisting of sputtered 1.5 h Ga2O3 and p-Si reaches a higher PDCR, with a value of 6684 at 5.7 V. Meanwhile, the rise and decay time of the heterojunction are 0.13 s and 0.14 s at 0 V, and the decay time gradually increases from 0.1 to 0.7 s with increasing the applied voltage. However, insertion of 20 nm Si-doped Ga2O3 as a hole-blocking layer at the interface of p-Si and Ga2O3 remarkably declines the decay time under various applied biases and causes no obvious damage to the photo current of the heterojunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data supporting the results of this study can be obtained from the corresponding author according to reasonable requirements, and the data is transparent.

References

  1. T. He, X. Zhang, X. Ding, C. Sun, Y. Zhao, Q. Yu, B. Zhang, Broadband ultraviolet photodetector based on vertical Ga2O3/GaN nanowire array with high responsivity. Adv. Opt. Mater. 7(7), 1801563 (2019). https://doi.org/10.1002/adom.201801563

    Article  CAS  Google Scholar 

  2. X. Hou, X. Zhao, Y. Zhang, Z. Zhang, Y. Liu, Y. Qin, S. Long, High-performance harsh-environment-resistant GaOX solar-blind photodetectors via defect and doping engineering. Adv. Mater. 34(1), 2106923 (2022). https://doi.org/10.1002/adma.202106923

    Article  CAS  Google Scholar 

  3. G. Chen, Z. Xu, H. Ding, B.M. Sadler, Path loss modeling and performance trade-off study for short-range non-line-of-sight ultraviolet communications. Opt. Express 17(5), 3929–3940 (2009). https://doi.org/10.1364/OE.17.003929

    Article  CAS  PubMed  Google Scholar 

  4. Y. Chen, Y. Lu, M. Liao, Y. Tian, Q. Liu, C. Gao, C. Shan, 3D solar-blind Ga2O3 photodetector array realized via origami method. Adv. Funct. Mater.Funct. Mater. 29(50), 1906040 (2019). https://doi.org/10.1002/adfm.201906040

    Article  CAS  Google Scholar 

  5. Z. Xu, B.M. Sadler, Ultraviolet communications: potential and state-of-the-art. IEEE Commun. Mag.Commun. Mag. 46(5), 67–73 (2008). https://doi.org/10.1109/MCOM.2008.4511651

    Article  Google Scholar 

  6. Y. Zheng, M.N. Hasan, J.H. Seo, High-performance solar blind UV photodetectors based on single-crystal Si/β-Ga2O3 p-n heterojunction. Adv. Mater. Technol. 6(6), 2100254 (2021). https://doi.org/10.1002/admt.202100254

    Article  CAS  Google Scholar 

  7. F. Omnès, E. Monroy, E. Muñoz, J.L. Reverchon, Wide bandgap UV photodetectors: a short review of devices and applications. Gallium Nitride Mater. Devices II 6473, 111–125 (2007). https://doi.org/10.1117/12.705393

    Article  CAS  Google Scholar 

  8. Q. Cai, H. You, H. Guo, J. Wang, B. Liu, Z.R. XieZhang, Progress on AlGaN-based solar-blind ultraviolet photodetectors and focal plane arrays. Light Sci. Appl. 10(1), 94–94 (2021). https://doi.org/10.1038/s41377-021-00527-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. M. Hou, H. So, A.J. Suria, A.S. Yalamarthy, D.G. Senesky, Suppression of persistent photoconductivity in AlGaN/GaN ultraviolet photodetectors using in situ heating. IEEE Electron Device Lett. 38(1), 56–59 (2016). https://doi.org/10.1109/LED.2016.2626388

    Article  CAS  Google Scholar 

  10. H. Chen, P. Yu, Z. Zhang, F. Teng, L. Zheng, K. Hu, X. Fang, Ultrasensitive self-powered solar-blind deep-ultraviolet photodetector based on all-solid-state polyaniline/MgZnO bilayer. Small 12(42), 5809–5816 (2016). https://doi.org/10.1002/smll.201601913

    Article  CAS  PubMed  Google Scholar 

  11. Y. Duan, S. Zhang, M. Cong, D. Jiang, Q. Liang, X. Zhao, Performance modulation of a MgZnO/ZnO heterojunction flexible UV photodetector by the piezophototronic effect. J. Mater. Chem. C 8(37), 12917–12926 (2020). https://doi.org/10.1039/D0TC02464C

    Article  CAS  Google Scholar 

  12. S. Li, L. Yang, Z. Liu, M. Zhang, Y. Guo, W. Tang, Hybrid PEDOT: PSS/SiC heterojunction UV photodetector with superior self-powered responsivity over A/W level. Appl. Phys. Lett. (2023). https://doi.org/10.1063/5.0150344

    Article  Google Scholar 

  13. L. Li, S. Yuan, K. Amina, P. Zhai, Y. Su, R. Lou, G. Wei, Robust and fast response solar-blind UV photodetectors based on the transferable 4H-SiC free-standing nanowire arrays. Sens. Actuators A Phys. 346, 113878 (2022). https://doi.org/10.1016/j.sna.2022.113878

    Article  CAS  Google Scholar 

  14. H. Alamoudi, B. Xin, S. Mitra, M.N. Hedhili, S. Venkatesh, D. Almalawi, I.S. Roqan, Enhanced solar-blind deep UV photodetectors based on solution-processed p-MnO quantum dots and n-GaN p-n junction-structure. Appl. Phys. Lett. (2022). https://doi.org/10.1063/5.0083259

    Article  Google Scholar 

  15. V.J. Gómez, M. Marnauza, K.A. Dick, S. Lehmann, Growth selectivity control of InAs shells on crystal phase engineered GaAs nanowires. Nanoscale Adv. 4(16), 3330–3341 (2022). https://doi.org/10.1039/D2NA00109H

    Article  PubMed  PubMed Central  Google Scholar 

  16. M. Mishra, A. Gundimeda, S. Krishna, N. Aggarwal, L. Goswami, B. Gahtori, G. Gupta, Surface-engineered nanostructure-based efficient nonpolar GaN ultraviolet photodetectors. ACS Omega 3(2), 2304–2311 (2018). https://doi.org/10.1021/acsomega.7b02024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. X. Li, D. Liu, X. Mo, K. Li, Nanorod β-Ga2O3 semiconductor modified activated carbon as catalyst for improving power generation of microbial fuel cell. J. Solid State Electrochem.Electrochem. 23, 2843–2852 (2019). https://doi.org/10.1007/s10008-019-04377-4

    Article  CAS  Google Scholar 

  18. N. Alwadai, Z. Alharbi, F. Alreshidi, S. Mitra, B. Xin, H. Alamoudi, I.S. Roqan, Enhanced photoresponsivity UV-C photodetectors using a p–n junction based on ultra-wide-band Gap Sn-doped β-Ga2O3 microflake/MnO quantum dots. ACS Appl. Mater. Interfaces 15(9), 12127–12136 (2023). https://doi.org/10.1021/acsami.2c18900

    Article  CAS  PubMed  Google Scholar 

  19. H.F. Mohamed, C. Xia, Q. Sai, H. Cui, M. Pan, H. Qi, Growth and fundamentals of bulk β-Ga2O3 single crystals. J. Semicond.Semicond. 40(1), 011801 (2019). https://doi.org/10.1088/1674-4926/40/1/011801

    Article  CAS  Google Scholar 

  20. V.I. Nikolaev, S.I. Stepanov, A.I. Pechnikov, S.V. Shapenkov, M.P. Scheglov, A.V. Chikiryaka, O.F. Vyvenko, HVPE growth and characterization of ε-Ga2O3 films on various substrates. ECS J. Solid State Sci. Technol. 9(4), 045014 (2020). https://doi.org/10.1149/2162-8777/ab8b4c

    Article  CAS  Google Scholar 

  21. J. Yu, Z. Nie, L. Dong, L. Yuan, D. Li, Y. Huang, R. Jia, Influence of annealing temperature on structure and photoelectrical performance of β-Ga2O3/4H-SiC heterojunction photodetectors. J. Alloys Compd. 798, 458–466 (2019). https://doi.org/10.1016/j.jallcom.2019.05.263

    Article  CAS  Google Scholar 

  22. S. Li, Y. Zhi, C. Lu, C. Wu, Z. Yan, Z. Liu, W. Tang, Broadband ultraviolet self-powered photodetector constructed on exfoliated β-Ga2O3/CuI core–shell microwire heterojunction with superior reliability. J. Phys. Chem. Lett. 12(1), 447–453 (2020). https://doi.org/10.1021/acs.jpclett.0c03382

    Article  CAS  PubMed  Google Scholar 

  23. Y. Chen, K. Zhang, X. Yang, X. Chen, J. Sun, Q. Zhao, C. Shan, Solar-blind photodetectors based on MXenes-β-Ga2O3 Schottky junctions. J. Phys. D Appl. Phys. 53(48), 484001 (2020). https://doi.org/10.1088/1361-6463/abae36

    Article  CAS  Google Scholar 

  24. M.C. Pedapudi, J.C. Dhar, High temperature annealing on vertical p-n junction p-NiO/n-β-Ga2O3 nanowire arrays for high performance UV photodetection. Mater. Sci. Semicond. Process.Semicond. Process. 163, 107592 (2023). https://doi.org/10.1016/j.mssp.2023.107592

    Article  CAS  Google Scholar 

  25. W. Ding, X. Meng, High performance solar-blind UV detector based on β-Ga2O3/GaN nanowires heterojunction. J. Alloys Compd. 866, 157564 (2021). https://doi.org/10.1016/j.jallcom.2020.157564

    Article  CAS  Google Scholar 

  26. Y. Wang, L. Li, H. Wang, L. Su, H. Chen, W. Bian, A. Shen, An ultrahigh responsivity self-powered solar-blind photodetector based on a centimeter-sized β-Ga2O3/polyaniline heterojunction. Nanoscale 12(3), 1406–1413 (2020). https://doi.org/10.1039/c9nr09095a

    Article  CAS  PubMed  Google Scholar 

  27. D. Hu, Y. Wang, Y. Wang, W. Huan, X. Dong, J. Yin, J. Zhu, Fabrication and properties of a solar-blind ultraviolet photodetector based on Si-doped β-Ga2O3 film grown on p-Si (111) substrate by MOCVD. Optik 245, 167708 (2021). https://doi.org/10.1016/j.ijleo.2021.167708

    Article  CAS  Google Scholar 

  28. X.C. Guo, N.H. Hao, D.Y. Guo, Z.P. Wu, Y.H. An, X.L. Chu, W.H. Tang, β-Ga2O3/p-Si heterojunction solar-blind ultraviolet photodetector with enhanced photoelectric responsivity. J. Alloys Compd. 660, 136–140 (2016). https://doi.org/10.1016/j.jallcom.2015.11.145

    Article  CAS  Google Scholar 

  29. Z. Yan, S. Li, J. Yue, X. Ji, Z. Liu, Y. Yang, W. Tang, Reinforcement of double built-in electric fields in spiro-MeOTAD/Ga2O3/Si p-i-n structure for a high-sensitivity solar-blind UV photovoltaic detector. J. Mater. Chem. C 9(41), 14788–14798 (2021). https://doi.org/10.1039/D1TC03359J

    Article  CAS  Google Scholar 

  30. C. Gao, Y. Wang, S. Fu, D. Xia, Y. Han, J. Ma, Y. Liu, High-performance solar-blind ultraviolet photodetectors based on β-Ga2O3 thin films grown on p-Si (111) substrates with improved material quality via an AlN buffer layer introduced by metal-organic chemical vapor deposition. ACS Appl. Mater. Interfaces 15(32), 38612–38622 (2023). https://doi.org/10.1021/acsami.3c07876

    Article  CAS  PubMed  Google Scholar 

  31. Y. An, Y. Zhi, Z. Wu, W. Cui, X. Zhao, D. Guo, W. Tang, Deep ultraviolet photodetectors based on p-Si/i-SiC/n-Ga2O3 heterojunction by inserting thin SiC barrier layer. Appl. Phys. A 122, 1–5 (2016). https://doi.org/10.1007/s00339-016-0576-8

    Article  CAS  Google Scholar 

  32. X. Yan, X. Ji, J. Wang, C. Lu, Z. Yan, S. Hu, P. Li, Improve photo-to-dark current ratio of p-Si/SiO2/n-Ga2O3 heterojunction solar-blind photodetector by inserting SiO2 barrier layer. J. Vac. Sci. Technol. B (2022). https://doi.org/10.1116/5.0107495

    Article  Google Scholar 

  33. H. Qian, X. Zhang, Y. Ma, L. Zhang, T. Chen, X. Wei, B. Zhang, Quasi-vertical ε-Ga2O3 solar-blind photodetectors grown on p-Si substrates with Al2O3 buffer layer by metalorganic chemical vapor deposition. Vacuum 200, 111019 (2022). https://doi.org/10.1016/j.vacuum.2022.111019

    Article  CAS  Google Scholar 

  34. V. Eduardo, B.I. Sundar, N.O. Tom, Microstructure and optical properties of sputter-deposited Ga2O3 films. J. Vac. Sci. Technol. A 39, 033412 (2021). https://doi.org/10.1116/6.0000938

    Article  CAS  Google Scholar 

  35. V.M. Kalygina, A.N. Zarubin, Y.P. Nayden, V.A. Novikov, Y.S. Petrova, O.P. Tolbanov, T.M. Yaskevich, The effect of annealing on the properties of Ga2O3 anodic films. Semiconductors 46, 267–273 (2012). https://doi.org/10.1134/s1063782612020145

    Article  CAS  Google Scholar 

  36. Y. Li, T. Tokizono, M. Liao, M. Zhong, Y. Koide, I. Yamada, J.J. Delaunay, Efficient assembly of bridged β-Ga2O3 nanowires for solar-blind photodetection. Adv. Funct. Mater.Funct. Mater. 20(22), 3972–3978 (2010). https://doi.org/10.1002/adfm.201001140

    Article  CAS  Google Scholar 

  37. C. Wu, F. Wu, C. Ma, S. Li, A. Liu, X. Yang, D. Guo, A general strategy to ultrasensitive Ga2O3 based self-powered solar-blind photodetectors. Mater. Today Phys. 23, 100643 (2022). https://doi.org/10.1016/j.mtphys.2022.100643

    Article  CAS  Google Scholar 

  38. Z. Liu, Y. Liu, X. Wang, W. Li, Y. Zhi, X. Wang, W. Tang, Energy-band alignments at ZnO/Ga2O3 and Ta2O5/Ga2O3 heterointerfaces by X-ray photoelectron spectroscopy and electron affinity rule. J. Appl. Phys. (2019). https://doi.org/10.1063/1.5112067

    Article  Google Scholar 

  39. R. Saha, S. Chakrabarti, A. Karmakar, S. Chattopadhyay, Investigation of Yttrium (Y)-doped ZnO (Y: ZnO)–Ga2O3 core-shell nanowire/Si vertical heterojunctions for high-performance self-biased wide band photodetectors. J. Mater. Sci. Mater. Electron. 34(8), 759 (2023). https://doi.org/10.1007/s10854-023-10148-9

    Article  CAS  Google Scholar 

  40. Z. Yan, S. Li, J. Yue, Z. Liu, X. Ji, Y. Yang, W. Tang, A spiro-MeOTAD/Ga2O3/Si p-i-n junction featuring enhanced self-powered solar-blind sensing via balancing absorption of photons and separation of photogenerated carriers. ACS Appl. Mater. Interfaces 13(48), 57619–57628 (2021). https://doi.org/10.1021/acsami.1c18229

    Article  CAS  PubMed  Google Scholar 

  41. S. Luan, L. Dong, X. Ma, R. Jia, The further investigation of N-doped β-Ga2O3 thin films with native defects for Schottky-barrier diode. J. Alloys Compd. 812, 152026 (2020). https://doi.org/10.1016/j.jallcom.2019.152026

    Article  CAS  Google Scholar 

  42. Q. Zhang, J.X. Deng, R.D. Li, J.X. Luo, L. Kong, J.H. Meng, J.Y. Wang, Study on the structure and properties of gallium bismuth oxide alloy thin films prepared by sol–gel method. J. Sol-Gel Sci. Technol. 103(1), 280–289 (2022). https://doi.org/10.1007/s10971-022-05784-2

    Article  CAS  Google Scholar 

  43. Z. Yan, S. Li, J. Yue, Z. Liu, X. Ji, Y. Yang, A spiro-meotad/Ga2O3/Si p-i-n junction featuring enhanced self-powered solar-blind sensing via balancing absorption of photons and separation of photogenerated carriers. ACS Appl. Mater. Interfaces 13(48), 57619–57628 (2021). https://doi.org/10.1021/acsami.1c18229

    Article  CAS  PubMed  Google Scholar 

  44. Y. Han, Y. Wang, S. Fu, J. Ma, H. Xu, B. Li, Y. Liu, Ultrahigh detectivity broad spectrum UV photodetector with rapid response speed based on p-β-Ga2O3/n-GaN heterojunction fabricated by a reversed substitution doping method. Small 19(16), 2206664 (2023). https://doi.org/10.1002/smll.202206664

    Article  CAS  Google Scholar 

  45. I.K. Jeong, H.L. Park, S.I. Mho, Two self-activated optical centers of blue emission in zinc gallate. Solid State Commun.Commun. 105(3), 179–183 (1998). https://doi.org/10.1590/S1413-73722013000400006

    Article  CAS  Google Scholar 

  46. Y. Yuan, W. Du, X. Qian, ZnxGa2O3+x (0≤ x≤ 1) solid solution nanocrystals: tunable composition and optical properties. J. Mater. Chem. 22(2), 653–659 (2012). https://doi.org/10.1039/c1jm13091a

    Article  CAS  Google Scholar 

  47. M.L. Lee, P.F. Chi, J.K. Sheu, Photodetectors formed by an indium tin oxide/zinc oxide/p-type gallium nitride heterojunction with high ultraviolet-to-visible rejection ratio. Appl. Phys. Lett. (2009). https://doi.org/10.1063/1.3064130

    Article  PubMed  PubMed Central  Google Scholar 

  48. P. Liu, S. Cosentino, S.T. Le, S. Lee, D. Paine, A. Zaslavsky, Transient photoresponse and incident power dependence of high-efficiency germanium quantum dot photodetectors. J. Appl. Phys. 112(8), 27 (2012). https://doi.org/10.1063/1.4759252

    Article  CAS  Google Scholar 

  49. X. Xu, J. Chen, S. Cai, Z. Long, Y. Zhang, L. Su, A real-time wearable uv-radiation monitor based on a high-performance p-cuzns/n-tio2 photodetector. Adv. Mater. (2018). https://doi.org/10.1002/adma.201803165

    Article  PubMed  PubMed Central  Google Scholar 

  50. Y. Li, C. Yang, L. Wu, R. Zhang, Electrical and optical properties of Si-doped Ga2O3. Mod. Phys. Lett. B 31(15), 1750172 (2017). https://doi.org/10.1142/S021798491750172X

    Article  CAS  Google Scholar 

  51. G. Shin, H.Y. Kim, J. Kim, Deep-ultraviolet photodetector based on exfoliated n-type β-Ga2O3 nanobelt/p-Si substrate heterojunction. Korean J. Chem. Eng. 35, 574–578 (2018). https://doi.org/10.1007/s11814-017-0279-7

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (62204234), Beijing Nova Program (Z211100002121079), and the Natural Science Foundation of Beijing, China (Grant No. 4192016).

Author information

Authors and Affiliations

Authors

Contributions

Professor Deng Jinxiang’s guidance on the details of the experiment and the revision of the paper; others’ experimental support.

Corresponding author

Correspondence to J. X. Deng.

Ethics declarations

Conflict of interest

There is no financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 668 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Gao, H.L., Deng, J.X. et al. The performance of ultraviolet solar-blind detection of p-Si/n-Ga2O3 heterojunctions with/without hole-blocking layer. J Mater Sci: Mater Electron 35, 1125 (2024). https://doi.org/10.1007/s10854-024-12897-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12897-7

Navigation