Skip to main content
Log in

Tuning performance: strain modulation of GaAs layers grown on meso-porous silicon substrates

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A novel compliant substrate, comprising mono-layers (PS1, PS2) and multi-layers (PSML1, PSML2) of porous silicon structures, fabricated using galvanostatic mode, was employed for the Molecular Beam Epitaxy (MBE) growth of 0.5 µm GaAs. To counteract the lattice parameter mismatch, the growth process was tailored with a buffer layer SiGe, a gradual Si1−xGex with and without an in-situ annealing. Our investigation primarily proposes a compliant substrate as a platform for GaAs growth, which can serve in photodiodes and lasers applications. Field-Emission Scanning Electron Microscopy (FE-SEM) and High-Resolution X-Ray Diffraction (HR-XRD) identified PS2 and PSML2 as potential candidates for further investigations. The Si1−xGex buffer layer has mitigated the formation of the 3D GaAs hillocks in PS2. Although, this approach has led to the formation of "lamellar twins" in PSML2, as a consequence of the substantial stress excreted by high porosity layers (HPLs) stack during the growth process. This strain was confirmed by the redshift of the GaAs Photoluminescence (PL) peak. Energy dispersive Spectroscopy (EDS) and X-ray Photoelectron spectroscopy (XPS) demonstrated that the GaAs layer was in its pure state. An in-situ annealing at 680 °C, resulted in a respective decrease in the full width at half maximum (FWHM) of the HR-XRD rucking curves (658.68 arc s).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The authors confirm that the data of this study are available within the article.

References

  1. M. Feifel, D. Lackner, J. Ohlmann, J. Benick, M. Hermle, F. Dimroth, Solar RRL 3, 1900313 (2019)

    CAS  Google Scholar 

  2. J. Buencuerpo, J.F. Geisz, M.S. Young, T.R. Klein, W.E. McMahon, E.L. Warren, A.C. Tamboli, in 2020 47th IEEE Photovoltaic Specialists Conference (PVSC) (IEEE, Calgary, 2020), pp. 0538–0539

  3. S. Zhu, B. Shi, Q. Li, K.M. Lau, Appl. Phys. Lett. 113, 221103 (2018)

    Google Scholar 

  4. N. Jafar, J. Jiang, H. Lu, M. Qasim, H. Zhang, Crystals 13, 1623 (2023)

    CAS  Google Scholar 

  5. D. Caimi, H. Schmid, T. Morf, P. Mueller, M. Sousa, K.E. Moselund, C.B. Zota, Solid-State Electron. 185, 108077 (2021)

    CAS  Google Scholar 

  6. T. Taniguchi, T. Terada, Y. Komatsubara, T. Ishibe, K. Konoike, A. Sanada, N. Naruse, Y. Mera, Y. Nakamura, Nanoscale 13, 4971 (2021)

    CAS  PubMed  Google Scholar 

  7. M. Tang, J.-S. Park, Z. Wang, S. Chen, P. Jurczak, A. Seeds, H. Liu, Prog. Quantum Electron. 66, 1 (2019)

    Google Scholar 

  8. Y. Bogumilowicz, J.M. Hartmann, N. Rochat, A. Salaun, M. Martin, F. Bassani, T. Baron, S. David, X.-Y. Bao, E. Sanchez, J. Cryst. Growth 453, 180 (2016)

    CAS  Google Scholar 

  9. C. Shang, M.R. Begley, D.S. Gianola, J.E. Bowers, APL Mater. 10, 011114 (2022)

    CAS  Google Scholar 

  10. Y. Du, B. Xu, G. Wang, Y. Miao, B. Li, Z. Kong, Y. Dong, W. Wang, H.H. Radamson, Nanomaterials 12, 741 (2022)

    CAS  PubMed  PubMed Central  Google Scholar 

  11. K. Cheng, T. Tang, W. Zhan, Z. Sun, B. Xu, C. Zhao, Z. Wang, AIP Adv. 14, 035239 (2024)

    CAS  Google Scholar 

  12. B. Kunert, Y. Mols, M. Baryshniskova, N. Waldron, A. Schulze, R. Langer, Semicond. Sci. Technol. 33, 093002 (2018)

    Google Scholar 

  13. J. Yang, K. Li, H. Jia, H. Deng, X. Yu, P. Jurczak, J.-S. Park, S. Pan, W. Li, S. Chen, A. Seeds, M. Tang, H. Liu, Nanoscale 14, 17247 (2022)

    CAS  PubMed  Google Scholar 

  14. M. Tachikawa, M. Yamaguchi, Appl. Phys. Lett. 56, 484 (1990)

    CAS  Google Scholar 

  15. J.H. Kang, Q. Gao, H.J. Joyce, H.H. Tan, C. Jagadish, Y. Kim, D.Y. Choi, Y. Guo, H. Xu, J. Zou, M.A. Fickenscher, L.M. Smith, H.E. Jackson, J.M. Yarrison-Rice, Nanotechnology 21, 035604 (2010)

    CAS  PubMed  Google Scholar 

  16. C.S.C. Barrett, A. Atassi, E.L. Kennon, Z. Weinrich, K. Haynes, X.-Y. Bao, P. Martin, K.S. Jones, J. Mater. Sci. 54, 7028 (2019)

    CAS  Google Scholar 

  17. M.O. Petrushkov, D.S. Abramkin, E.A. Emelyanov, M.A. Putyato, O.S. Komkov, D.D. Firsov, A.V. Vasev, M.Y. Yesin, A.K. Bakarov, I.D. Loshkarev, A.K. Gutakovskii, V.V. Atuchin, V.V. Preobrazhenskii, Nanomaterials 12, 4449 (2022)

    CAS  PubMed  PubMed Central  Google Scholar 

  18. P.V. Seredin, D.L. Goloshchapov, I.N. Arsentyev, D.N. Nikolayev, N.A. Pikhtin, S.O. Slipchenko, H. Leiste, T. Prutskij, Appl. Surf. Sci. 537, 147985 (2021)

    CAS  Google Scholar 

  19. Y.H. Lo, Appl. Phys. Lett. 59, 2311 (1991)

    CAS  Google Scholar 

  20. C. Carter-Coman, A.S. Brown, N.M. Jokerst, D.E. Dawson, R. Bicknell-Tassius, Z.C. Feng, K.C. Rajkumar, G. Dagnall, JEM 25, 1044 (1996)

    CAS  Google Scholar 

  21. S.A. Scott, C. Deneke, D.M. Paskiewicz, H.J. Ryu, A. Malachias, S. Baunack, O.G. Schmidt, D.E. Savage, M.A. Eriksson, M.G. Lagally, A.C.S. Appl, Mater. Interfaces 9, 42372 (2017)

    CAS  Google Scholar 

  22. A.J. Garcia Jr., L.N. Rodrigues, S.F. Covre Da Silva, S.L. Morelhão, O.D.D. Couto Jr., F. Iikawa, C. Deneke, Nanoscale 11, 3748 (2019)

    CAS  Google Scholar 

  23. P.M. Mooney, Semicond. Sci. Technol. 38, 035026 (2023)

    Google Scholar 

  24. Y. Song, K. Wang, P. Du, Z. Cheng, I.O.P. Conf, Ser. Mater. Sci. Eng. 768, 022053 (2020)

    CAS  Google Scholar 

  25. L.T. Hieu, C.-H. Chiang, D. Anandan, C.-F. Dee, A.A. Hamzah, C.-T. Lee, C.-H. Lin, E.Y. Chang, Semicond. Sci. Technol. 37, 075012 (2022)

    CAS  Google Scholar 

  26. I. Berbezier, J.-N. Aqua, M. Aouassa, L. Favre, S. Escoubas, A. Gouyé, A. Ronda, Phys. Rev. B 90, 035315 (2014)

    CAS  Google Scholar 

  27. G. Calabrese, S. Baricordi, P. Bernardoni, D. De Salvador, M. Ferroni, V. Guidi, V. Morandi, D. Vincenzi, Appl. Phys. Lett. 105, 122104 (2014)

    Google Scholar 

  28. B. Xiang, W.-L. An, J.-J. Fu, S.-X. Mei, S.-G. Guo, X.-M. Zhang, B. Gao, P.K. Chu, Rare Met. 40, 383 (2021)

    CAS  Google Scholar 

  29. U.M. Poberezhnaya, V.M. Freiman, M.A. Ilyushin, G.G. Zegrya, D.V. Fadeev, I.A. Os’kin, V.A. Morozov, AYu. Grigor’ev, G.G. Savenkov, Tech. Phys. 68, 721 (2023)

    CAS  Google Scholar 

  30. N. Chaaben, T. Boufaden, M. Christophersen, B. El Jani, Microelectron. J. 35, 891 (2004)

    CAS  Google Scholar 

  31. B. Azeza, M. Ezzedini, Z. Zaaboub, R. M’ghaieth, L. Sfaxi, F. Hassen, H. Maaref, Curr. Appl. Phys. 12, 1256 (2012)

    Google Scholar 

  32. B. Azeza, M. Ezzedini, R. Mghaieth, N. Ghaieth, L. Sfaxi, H. Maaref, Int. J. Nanotechnol. 10, 445 (2013)

    Google Scholar 

  33. D. Zolotukhin, P. Seredin, A. Lenshin, D. Goloshchapov, Y. Hudyakov, O.R. Ali, I. Arsentyev, H. Leiste, J. Phys. Conf. Ser. 2086, 012046 (2021)

    Google Scholar 

  34. A.B.P. Mbeunmi, M. El-Gahouchi, R. Arvinte, A. Jaouad, R. Cheriton, M. Wilkins, C.E. Valdivia, K. Hinzer, S. Fafard, V. Aimez, R. Arès, A. Boucherif, Sol. Energy Mater. Sol. Cells 217, 110641 (2020)

    CAS  Google Scholar 

  35. H.S. Radhakrishnan, R. Martini, V. Depauw, K. Van Nieuwenhuysen, M. Debucquoy, J. Govaerts, I. Gordon, R. Mertens, J. Poortmans, IEEE J. Photovolt. 4, 70 (2014)

    Google Scholar 

  36. M. Karim, R. Martini, H.S. Radhakrishnan, K. Van Nieuwenhuysen, V. Depauw, W. Ramadan, I. Gordon, J. Poortmans, Nanoscale Res. Lett. 9, 348 (2014)

    PubMed  PubMed Central  Google Scholar 

  37. M.K. Sahoo, P. Kale, Microporous Mesoporous Mater. 289, 109619 (2019)

    CAS  Google Scholar 

  38. C.-C. Chiang, B.T.-H. Lee, Sci. Rep. 9, 12631 (2019)

    PubMed  PubMed Central  Google Scholar 

  39. C. Sanchez-Perez, M. Hernandez-Castro, I. Garcia, Appl. Surf. Sci. 577, 151907 (2022)

    CAS  Google Scholar 

  40. A. Saidi, I. Zeydi, B. Smiri, I. Berbezier, R. Mghaieth, SILICON 15, 6085 (2023)

    CAS  Google Scholar 

  41. Y. Takano, M. Lopez, T. Torihata, T. Ikei, Y. Kanaya, K. Pak, H. Yonezu, J. Cryst. Growth 111, 216 (1991)

    CAS  Google Scholar 

  42. E. Klimov, A. Klochkov, S. Pushkarev, G. Galiev, R. Galiev, N. Yuzeeva, A. Zaitsev, Y. Volkovsky, A. Seregin, P. Prosekov, Crystals 13, 28 (2023)

    CAS  Google Scholar 

  43. V. Sivadasan, S. Rhead, D. Leadley, M. Myronov, Semicond. Sci. Technol. 33, 024002 (2018)

    Google Scholar 

  44. A.G. Taboada, T. Kreiliger, C.V. Falub, F. Isa, M. Salvalaglio, L. Wewior, D. Fuster, M. Richter, E. Uccelli, P. Niedermann, A. Neels, F. Mancarella, B. Alén, L. Miglio, A. Dommann, G. Isella, H. von Känel, Appl. Phys. Lett. 104, 022112 (2014)

    Google Scholar 

  45. A.S. Abdel-Rahman, Y.A. Sabry, Int. J. Non-Linear Mech. 161, 104670 (2024)

    Google Scholar 

  46. Y.C. Hsieh, E.Y. Chang, G.L. Luo, S.H. Chen, D. Biswas, S.Y. Wang, C.Y. Chang, J. Appl. Phys. 100, 064502 (2006)

    Google Scholar 

  47. D. Pelati, G. Patriarche, O. Mauguin, L. Largeau, L. Travers, F. Brisset, F. Glas, F. Oehler, J. Cryst. Growth 519, 84 (2019)

    CAS  Google Scholar 

  48. R.V. Ghita, C. Negrila, A.S. Manea, C. Logofatu, M. Cernea, M.F. Lazarescu, J. Optoelectron. Adv. Mater. 5, 859 (2003)

    CAS  Google Scholar 

  49. S. Krishnamurthy, A. Sher, A. Chen, Phys. Rev. B Condens. Matter 33, 1026 (1986)

    CAS  PubMed  Google Scholar 

  50. Y. Du, B. Xu, G. Wang, S. Gu, B. Li, Z. Kong, J. Yu, G. Bai, J. Li, W. Wang, H.H. Radamson, J. Mater. Sci. Mater. Electron. 32, 6425–6437 (2021)

    CAS  Google Scholar 

  51. G. Brammertz, Y. Mols, S. Degroote, V. Motsnyi, M. Leys, G. Borghs, M. Caymax, J. Appl. Phys. 99, 093514 (2006)

    Google Scholar 

  52. S. Tutashkonko, T. Nychyporuk, V. Lysenko, M. Lemiti, J. Appl. Phys. 113, 023517 (2013)

    Google Scholar 

  53. J. Yang, P. Jurczak, F. Cui, K. Li, M. Tang, L. Billiald, R. Beanland, A.M. Sanchez, H. Liu, J. Cryst. Growth 514, 109 (2019)

    CAS  Google Scholar 

Download references

Acknowledgements

We gratefully thank Ahmed Benmanaa, Technical Support Manager at Laboservices, for his contributions in HR-XRD analysis. The authors would like to gratefully acknowledge the staff at the "Plateforme de Recherche en Sciences et Technologies PRST-UM" for their help and support with XPS analysis techniques. The authors would like to thank CAMPOS Andrea from "Centre Pluridisciplinaire de Microscopie Electronique et de Microanalyse (CP2M)" Marseille for EDS characterizations and technical help

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

The authors confirm the contribution to the paper as follows: A. Saidi: Data collection, analysis, investigation, interpretation of results, writing, review and editing; I. Zeydi: Investigation, interpretation of results, manuscript preparation, writing, review and editing; M.H. Hadj Alouane: Investigation, writing; M. Bouabdellaoui: Investigation; L. Sfaxi: Validation, conceptualization; I. Berbezier: Resources; R. Mghaieth: Validation, conceptualization, supervision:

Corresponding author

Correspondence to Imen Zeydi.

Ethics declarations

Conflict of interest

Not applicable.

Consent for publication

The author confirms: That the work has been approved by all co-authors; That the work described has not been published before; That is not under consideration for publication elsewhere.

Ethics approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saidi, A., Zeydi, I., Alouane, M.H.H. et al. Tuning performance: strain modulation of GaAs layers grown on meso-porous silicon substrates. J Mater Sci: Mater Electron 35, 1149 (2024). https://doi.org/10.1007/s10854-024-12888-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12888-8

Navigation