Skip to main content
Log in

Thermal performance and heat transfer mechanism of EGa-In-Sn/W composite thermal interface materials

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Liquid metal-based thermal interface materials (TIMs) have garnered attention in the field of microelectronics due to their flowability and high thermal conductivity. In this study, Composite TIMs were developed using EGa-In-Sn (eutectic gallium-indium-tin) alloy and tungsten particles through a stirred grinding method. The effect of tungsten particle content on the thermal performance of the TIMs was investigated. Finite element analysis was employed to analyze the internal heat transfer behavior. Results demonstrated that the thermal conductivity of the composite TIMs initially increased and then decreased with increasing tungsten particle content, reaching a peak at nearly twice that of EGa-In-Sn alloy. The established two-dimensional model aligned with experimental data, facilitating predictions for the thermal conductivity of composite TIMs. Interconnected tungsten particles formed the primary heat flux channel, while voids impeded the heat flux. Particle spacing, contact mode and void size are the main factors affecting the heat conduction between tungsten particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The article includes all the data that support the conclusions of this study.

References

  1. K.M. Razeeb, E. Dalton, G.L.W. Cross, A.J. Robinson, Int. Mater. Rev. 63, 1–21 (2017)

    Article  Google Scholar 

  2. J. Hansson, T.M.J. Nilsson, L. Ye, J. Liu, Int. Mater. Rev. 63, 22–45 (2018)

    Article  CAS  Google Scholar 

  3. A. Bar-Cohen, K. Matin, S. Narumanchi, J. Electron. Packag. 137, 040803 (2015)

    Article  Google Scholar 

  4. J. Due, A.J. Robinson, Appl. Therm. Eng. 50, 455–463 (2013)

    Article  CAS  Google Scholar 

  5. A.J. McNamara, Y. Joshi, Z.M. Zhang, Int. J. Therm. Sci. 62, 2–11 (2012)

    Article  CAS  Google Scholar 

  6. S. Li, X. Yang, J. Hou, W. Du, J. Magnes Alloy 8, 78–90 (2020)

    Article  CAS  Google Scholar 

  7. M. Zhang, S. Yao, W. Rao, J. Liu, Mater. Sci. Eng. R. Rep. 138, 1–35 (2019)

    Article  CAS  Google Scholar 

  8. G. Bo, L. Ren, X. Xu, Y. Du, S. Dou, Adv. Phy: X 3(1), 1446359 (2018)

    Google Scholar 

  9. S. Liu, K. Sweatman, S. McDonald, K. Nogita, Materials 11(8), 1384 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  10. Q. Wang, Y. Yu, J. Liu, Adv. Eng. Mater. 20, 1800054 (2018)

    Article  Google Scholar 

  11. Z. Lin, H. Liu, Q. Li, H. Liu, S. Chu, Y. Yang, G. Chu, Appl. Phy. A. 124, 1 (2018)

    Article  Google Scholar 

  12. J. Tang, X. Zhao, J. Li, R. Guo, Y. Zhou, J. Liu, ACS Appl. Mater. Interface. 9, 35977–35987 (2017)

    Article  CAS  Google Scholar 

  13. W. Kong, Z. Wang, M. Wang, K.C. Manning, A. Uppal, M.D. Green, R.Y. Wang, K. Rykaczewski, Adv. Mater. 31, e1904309 (2019)

    Article  PubMed  Google Scholar 

  14. A.d. C. I, A. F. Chrimes, A. Zavabeti, K. J. Berean, B. J. Carey, J. Zhuang, Y. Du, S. X. Dou, K. Suzuki, R. A. Shanks, R. Nixon-Luke, G. Bryant, K. Khoshmanesh, K. Kalantar-Zadeh, T. Daeneke, (2017) Nano Lett. 17 7831 7838

  15. M. Ralphs, W. Kong, R.Y. Wang, K. Rykaczewski, Adv. Mater. Interfac. 6(6), 1801857 (2019)

    Article  Google Scholar 

  16. X. Wang, W. Yao, R. Guo, X. Yang, J. Tang, J. Zhang, W. Gao, V. Timchenko, J. Liu, Adv. Healthc. Mater. 7, e1800318 (2018)

    Article  PubMed  Google Scholar 

  17. Z. Ji, W. Liu, C. Ouyang, Y. Li, Mater. Adv. 2, 5977–5985 (2021)

    Article  CAS  Google Scholar 

  18. W. Kong, Z. Wang, N. Casey, M.M. Korah, A. Uppal, M.D. Green, K. Rykaczewski, R.Y. Wang, Adv. Mater. Interface. 8(14), 100069 (2021)

    Article  Google Scholar 

  19. L. Han, L. Huiqiang, L. Zuoye, C. Sheng, Rare Met. Mater. Eng. 47, 2668–2674 (2018)

    Article  Google Scholar 

  20. H. Chang, P. Zhang, R. Guo, Y. Cui, Y. Hou, Z. Sun, W. Rao, A.C.S. Appl, Mater. Interface. 12, 14125–14135 (2020)

    Article  CAS  Google Scholar 

  21. S. Wei, Z.F. Yu, L.J. Zhou, J.D. Guo, J. Mater. Sci. Mater. Electron. 30, 7194–7202 (2019)

    Article  CAS  Google Scholar 

  22. S. Wei, W. Wang, L. Zhou, J. Guo, Comp. Part a-Appl. Sci. Manuf. 162, 107149 (2022)

    Article  CAS  Google Scholar 

  23. W. Wang, S. Wei, X. Du, Z. Ding, Q. Zhu, Y. Qiao, X. Wang, J. Guo, J. Mater. Sci.–Mater. Electron 34(18), 1395 (2023)

    Article  CAS  Google Scholar 

  24. G. Li, Y. Ji, Q. Zhang, B. Tian, H. Ma, J. Heat Transf 138, 080911 (2016)

    Article  Google Scholar 

  25. L. Zhao, S. Chu, X. Chen, G. Chu, Bull. Mater. Sci. 42(4), 192 (2019)

    Article  Google Scholar 

  26. C. Wang, Y. Gong, B.V. Cunning, S. Lee, Q. Le, S.R. Joshi, O. Buyukcakir, H. Zhang, W.K. Seong, M. Huang, M. Wang, J. Lee, G.H. Kim, R.S. Ruoff, Sci. Adv. 7(1), 1 (2021)

    CAS  Google Scholar 

  27. G. Li, Y.L. Ji, M.K. Wu, H.B. Ma, in: ASME Summer Heat Transfer Conference (Amer. Soc. Mech. Eng, Washington, DC, 2016)

    Google Scholar 

  28. S. Ki, J. Shim, S. Oh, E. Koh, D. Seo, S. Ryu, J. Kim, Y. Nam, Int. J. Heat Mass Transf. 170, 121012 (2021)

    Article  CAS  Google Scholar 

  29. Y. Yan, Y. Zhuang, H. Ouyang, J. Hao, X. Han, Int. J. Heat Mass Transf. 226, 125455 (2024)

    Article  CAS  Google Scholar 

  30. Z. Zheng, S. Wei, Y. Yang, D. Zhang, D. Yang, W. Li, J. Guo, Adv. Eng. Mater. 25, 2207752 (2023)

    Google Scholar 

  31. J. Zhang, M. Sun, S. Du, Z. Xie, H. Guo, J. Phy.: Confer Ser 2639, 012045 (2023)

    Google Scholar 

  32. X.F. Ma, G. Li, X.L. Zheng, X.Z. Wang, Z.C. Wang, Y.L. Ji, in: 6th ASME International Conference on Micro/Nanoscale Heat and Mass Transfer, Amer Soc Mechanical Engineers, Dalian, PEOPLES R CHINA, 2019.

  33. J.C. Maxwell, Oxford University Press, (1873).

  34. R. Ruppin, Opt. Commun. 182, 273–279 (2000)

    Article  CAS  Google Scholar 

  35. H. Frickl, Phys. Rev. 24, 575–587 (1924)

    Article  Google Scholar 

  36. F. Lin, G.S. Bhatia, J.D. Ford, J. Appl. Polym. Sci. 49, 1901–1908 (1993)

    Article  CAS  Google Scholar 

  37. H. Fricke, J. Phys. Chem. 57, 934–937 (1953)

    Article  CAS  Google Scholar 

  38. R.L. Hamilton, O.K. Crosser, Ind. Eng. Chem. Fundam. 1, 187–190 (1962)

    Article  CAS  Google Scholar 

  39. D.P.H. Hasselman, L.F. Johnson, J. Compos. Mater. 21, 508–515 (1987)

    Article  Google Scholar 

  40. D.A.G. Bruggeman, Z. Angew. Phys. 92, 561–588 (1934)

    Google Scholar 

  41. D.A.G. Bruggeman, Ann. Phys. 24, 636–664 (1935)

    Article  CAS  Google Scholar 

  42. D.A.G. Bruggeman, Ann. Phys. 416, 665–679 (1935)

    Article  Google Scholar 

  43. A.G. Every, Y. Tzou, D.P.H. Hasselman, R. Raj, Acta Metall. Mater. 40, 123–129 (1992)

    Article  CAS  Google Scholar 

  44. C. Zeng, J. Shen, C. He, H. Chen, Scr. Metall. 170, 140–144 (2019)

    Article  CAS  Google Scholar 

  45. K. Makarian, S. Santhanam, Ceram. Int. 46, 4381–4393 (2020)

    Article  CAS  Google Scholar 

  46. I.L. Ngo, V.T. Vu, Int. J. Therm. Sci. 197, 182 (2024)

    Article  Google Scholar 

  47. L.-Z. Zhang, X.-J. Wang, Y.-Y. Quan, L.-X. Pei, Int. J. Heat Mass Transf. 64, 735–742 (2013)

    Article  CAS  Google Scholar 

  48. I.V. Singh, M. Tanaka, M. Endo, Comput. Mech. 39, 719–728 (2007)

    Article  Google Scholar 

  49. C. Yue, Y. Zhang, Z. Hu, J. Liu, Z. Cheng, Microsyst. Technol. 16, 633–639 (2010)

    Article  CAS  Google Scholar 

  50. T. Wejrzanowski, M. Grybczuk, M. Chmielewski, K. Pietrzak, K.J. Kurzydlowski, A. Strojny-Nedza, Mater. Des. 99, 163–173 (2016)

    Article  CAS  Google Scholar 

  51. Y.-F. Zhang, Y.-H. Zhao, S.-L. Bai, X. Yuan, Compos. B Eng. 106, 324–331 (2016)

    Article  CAS  Google Scholar 

  52. H.A. Moghaddam, P. Mertiny, Result. Phy. 11, 905–914 (2018)

    Article  Google Scholar 

  53. B. Liu, W. Lu, T. Olofsson, X. Zhuang, T. Rabczuk, Compos. Struct. 327, 117601 (2024)

    Article  CAS  Google Scholar 

  54. B. Yan, L. Cheng, B. Li, P. Liu, X. Wang, R. Gao, Z. Yang, S. Xu, X. Ding, P. Zhang, Mater. Des. 189, 108483 (2020)

    Article  CAS  Google Scholar 

  55. I.V. Singh, M. Tanaka, M. Endo, Int. J. Therm. Sci. 46, 842–847 (2007)

    Article  CAS  Google Scholar 

  56. X. Li, X. Fan, Y. Zhu, J. Li, J.M. Adams, S. Shen, H. Li, Comput. Mater. Sci. 63, 207–213 (2012)

    Article  CAS  Google Scholar 

  57. F. Cheng, L. Hu, J.N. Reddy, I. Karaman, E. Hoffman, M. Radovic, Acta Mater. 68, 267–278 (2014)

    Article  CAS  Google Scholar 

  58. D. Kumlutas, I.H. Tavman, J. Thermoplast. Compos. Mater. 19, 441–455 (2006)

    Article  CAS  Google Scholar 

  59. W.Z. Cai, S.T. Tu, G.L. Tao, J.Thermoplast. Compos. Mater. 18, 241–253 (2005)

    Article  CAS  Google Scholar 

  60. Z. Jin, X. Chen, Y. Wang, D. Wang, Comput. Mater. Sci. 102, 45–50 (2015)

    Article  CAS  Google Scholar 

  61. K. Sanada, Y. Tada, Y. Shindo, Compos. A Appl. Sci. Manuf. 40, 724–730 (2009)

    Article  Google Scholar 

  62. F. Ejaz, M. Kang, J. Son, J.-S. Kim, D.S. Lee, B. Kwon, Materialia 24, 101505 (2022)

    Article  CAS  Google Scholar 

  63. Z. Tong, M. Liu, H. Bao, Int. J. Heat Mass Transf. 100, 355–361 (2016)

    Article  Google Scholar 

  64. H. Wang, W. Xing, S. Chen, C. Song, M.D. Dickey, T. Deng, Adv. Mater. 33, 2103104 (2021)

    Article  CAS  Google Scholar 

  65. E.T. Swartz, R.O. Pohl, Rev. Mod. Phys. 61, 605–668 (1989)

    Article  Google Scholar 

  66. Q. Kang, X. He, S. Ren, L. Zhang, M. Wu, C. Guo, W. Cui, X. Qu, Appl. Therm. Eng. 60, 423–429 (2013)

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 51971231 and 52105327), Guangxi Natural Science Foundation (Grant No. 2020GXNSFBA297109), Guangxi Science and Technology Program (Grant No. Guike AD20297023), and Science and Technology Plan Project of Yunnan province (Grant No. 202101BC070001-007)

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: WW, JG; Data curation: WW, XD; Formal analysis: WW, SW; Investigation: WW, XD; Validation: WW; Writing-Original Draft: WW; Writing—Review & Editing: WW, SW, JG; Methodology: SW; Resources: QZ, YQ, XW, JG; Funding acquisition: JG; Project administration: JG; Supervision: JG.

Corresponding authors

Correspondence to Song Wei or Jingdong Guo.

Ethics declarations

Conflict of interest

The authors affirm that they do not have any competing financial interests or personal relationships that could have influenced the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Wei, S., Du, X. et al. Thermal performance and heat transfer mechanism of EGa-In-Sn/W composite thermal interface materials. J Mater Sci: Mater Electron 35, 1085 (2024). https://doi.org/10.1007/s10854-024-12848-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12848-2

Navigation