Skip to main content
Log in

An conductive ink based on silver oxide complex for low-temperature sintering with dense conductive paths

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the context of advancing flexible electronic technologies, conductive ink has garnered significant scholarly interest. Wherein, metal-organic decomposition (MOD) ink composed of silver precursors, complexing agents, and volatile organic solvents, has been widely studied due to its advantages such as simple preparation, long shelf life, high jetting stability, and low-temperature processing. However, the volumetric reduction of MOD ink frequently surpasses 80%, which typically could lead to multiple voids and breaks in the conductive film, resulting in poor conductivity. Meanwhile, a high temperature of above 180 °C is usually required for the MOD ink to be converted into conductive film. Nevertheless, it is imperative for the ink to be deposited onto substrates at low temperatures. Herein, a low temperature conducting ink with multiple silver source precursors has been developed. The results show that after sintering at 100 °C for 40 min on a polyimide (PI) substrate, the resistivity of the silver film was 16.8 µ Ω cm, which is only ten times higher than that of bulk silver, and the silver film with good uniformity and conductivity can be formed. Defects, such as voids and cracks, are significantly reduced through the gradient decomposition of different silver source during the sintering process. The formula of ink and the effects of sintering temperature on the microstructure and electrical properties of silver ink thin films have been studied in details using XRD, SEM, EDX, and four-probe techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

Data will be made available on request.

References

  1. H. Dong, Y. Chen, Q. Ma, X. Zhao, L. Chen, J. Polym. 30, 178 (2023)

    CAS  Google Scholar 

  2. G. Cao, S. Cai, H. Zhang, Y. Tian, Adv. Compos. Hybrid. Mater. 5, 1730–1742 (2022)

    Article  CAS  Google Scholar 

  3. X. Kong, Y. Chen, R. Yang, Y. Wang, Z. Zhang, M. Li, H. Chen, L. Li, P. Gong, J. Zhang Compos. Part. B-Eng. 271, 111164 (2024)

    Article  CAS  Google Scholar 

  4. J. Dong, Y. Feng, K. Lin, B. Zhou, F. Su, C. Liu, Adv. Funct. (2023). https://doi.org/10.1002/adfm.202310774

    Article  Google Scholar 

  5. S.K. Eshkalak, M. Khatibzadeh, E. Kowsari, A. Chinnappan, W. Jayathilaka, S. Ramakrishna, Opt. Laser Technol. 117, 38–51 (2019)

    Article  Google Scholar 

  6. H.W. Tan, Y.Y.C. Choong, C.N. Kuo, H.Y. Low, C.K. Chua, Prog Mater. Sci. 127, 100945 (2022)

    Article  CAS  Google Scholar 

  7. A.M. Jeffries, A. Mamidanna, L. Ding, O.J. Hildreth, M.I. Bertoni, IEEE J. Photovolt. 7, 37–43 (2016)

    Article  Google Scholar 

  8. S. Yang, M. Vaseem, A. Shamim, Adv. Mater. 4, 1800276 (2019)

    Google Scholar 

  9. S. Gong, D.T. Lai, Y. Wang, L.W. Yap, K.J. Si, Q. Shi, N.N. Jason, T. Sridhar, H. Uddin, W. Cheng, ACS Appl. Mater. 7, 19700–19708 (2015)

    Article  CAS  Google Scholar 

  10. A. Mościcki, A. Smolarek-Nowak, J. Felba, A. Kinart, J. Electron. Mater. 46, 4100–4108 (2017)

    Article  Google Scholar 

  11. N. Perinka, C.H. Kim, M. Kaplanova, Y. Bonnassieux, Phys. Procedia 44, 120–129 (2013)

    Article  CAS  Google Scholar 

  12. M. Li, J. Deng, X. Wang, S. Shao, X. Li, W. Gu, H. Wang, J. Zhao, Flex. Print. Electron. 6, 034001 (2021)

    Article  CAS  Google Scholar 

  13. J.-W. Han, B. Kim, J. Li, M. Meyyappan, Mater. Res. Bull. 50, 249–253 (2014)

    Article  CAS  Google Scholar 

  14. J. Li, F. Ye, S. Vaziri, M. Muhammed, M.C. Lemme, M. Östling, Adv. Mater. 25, 3985–3992 (2013)

    Article  CAS  PubMed  Google Scholar 

  15. J. Zhong, Z. Fang, D. Luo, H. Ning, T. Qiu, M. Li, Y. Yang, X. Fu, R. Yao, J. Peng, ACS Appl. Mater. 15, 3621–3632 (2023)

    Article  CAS  Google Scholar 

  16. A. Chiolerio, V. Camarchia, R. Quaglia, M. Pirola, P. Pandolfi, C.F. Pirri, J. Alloys Compd. 615, S501–S504 (2014)

    Article  CAS  Google Scholar 

  17. D.-Y. Wang, Y. Chang, Y.-X. Wang, Q. Zhang, Z.G. Yang, Mater. Technol. 31, 32–37 (2016)

    Article  Google Scholar 

  18. J. Jiang, B. Bao, M. Li, J. Sun, C. Zhang, Y. Li, F. Li, X. Yao, Y. Song, Adv. Mater. 28, 1420–1426 (2016)

    Article  CAS  PubMed  Google Scholar 

  19. C.F. Zhao, J. Wang, Z.Q. Zhang, Z. Sun, Z. Maimaitimin, ChemElectroChem 9, e202200948 (2022)

    Article  CAS  Google Scholar 

  20. D. Shukla, Y. Liu, Y. Zhu, Nanoscale 15, 2767–2778 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. L.-C. Jia, C.-G. Zhou, W.-J. Sun, L. Xu, D.-X. Yan, Z.-M. Li, Chen Eng. J. 384, 123368 (2020)

    Article  CAS  Google Scholar 

  22. Y. Choi, K.D. Seong, Y. Piao, Adv. Mater. 6, 1901002 (2019)

    CAS  Google Scholar 

  23. T.D. Jones, A.C. Hourd, T.C. Liu, L.-C. Jia, C.-M. Lung, S. Zolotovskaya, A. Abdolvand, C.Y. Tai, Microsystems  14, 100103 (2022)

    CAS  Google Scholar 

  24. Y. Yong, T. Yonezawa, M. Matsubara, H. Tsukamoto, J. Mater. 3, 5890–5895 (2015)

    CAS  Google Scholar 

  25. Y. Li, D. Li, C. Li, H. Wang, D. Shen, L. Liu, G. Zou, J. Alloys Compd. 636, 1–7 (2015)

    Article  CAS  Google Scholar 

  26. M. Peymannia, A. Soleimani-Gorgani, M. Ghahari, M. Jalili, Ceram. Int. 41, 9115–9121 (2015)

    Article  CAS  Google Scholar 

  27. M. Vaseem, S.-K. Lee, J.-G. Kim, Y.B. Hahn, Eng. J. 306, 796–805 (2016)

    CAS  Google Scholar 

  28. A. Huang, Y. Guo, Y. Zhu, T. Chen, Z. Yang, Y. Song, P. Wasnik, H. Li, X. Peng, Z. Guo, Adv. Compos. Hybrid. Mater. 6, 101 (2023)

    Article  CAS  Google Scholar 

  29. X. Liu, Z. Wu, D. Jiang, N. Guo, Y. Wang, T. Ding, L. Weng, Adv. Compos. Hybrid. Mater. 5, 1712–1729 (2022)

    Article  CAS  Google Scholar 

  30. K. Sun, C. Wang, J. Tian, Z. Zhang, N. Zeng, R. Yin, W. Duan, Q. Hou, Y. Zhao, H. Wu, Adv. Funct. 34, 2306747 (2024)

    Article  CAS  Google Scholar 

  31. M. Vaseem, G. McKerricher, A. Shamim, ACS Appl. Mater. 8, 177–186 (2016)

    Article  CAS  Google Scholar 

  32. Y. Dong, X. Li, S. Liu, Q. Zhu, J.-G. Li, X. Sun, Thin Solid Films. 589, 381–387 (2015)

    Article  CAS  Google Scholar 

  33. W. Yang, C. Wang, V. Arrighi, J. Mater. Sci-Mater. El. 29, 2771–2783 (2018)

    Article  CAS  Google Scholar 

  34. Y. Mou, H. Cheng, H. Wang, Q. Sun, J. Liu, Y. Peng, M. Chen, Appl. Surf. Sci. 475, 75–82 (2019)

    Article  CAS  Google Scholar 

  35. W.H. Antink, Y. Choi, K.-. Seong, Y. Piao, Sens. Actuators B Chem. 255, 1995–2001 (2018)

    Article  Google Scholar 

  36. Y. Dong, X. Li, S. Liu, Q. Zhu, M. Zhang, J.-G. Li, X. Sun, Thin Solid Films. 616, 635–642 (2016)

    Article  CAS  Google Scholar 

  37. G. Corro, U. Pal, E. Ayala, E. Vidal, Catal. Today 212, 63–69 (2013)

    Article  CAS  Google Scholar 

  38. S. Semenov, A. Trybala, R.G. Rubio, N. Kovalchuk, V. Starov, M.G. Velarde, Adv. Colloid Interface Sci. 206, 382–398 (2014)

    Article  CAS  PubMed  Google Scholar 

  39. Y. Zhong, R. An, H. Ma, C. Wang, Acta Mater. 162, 163–175 (2019)

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by Jiangsu Provincial Departments of Science and Technology (BE2022025-2).

Author information

Authors and Affiliations

Authors

Contributions

Miao Sun: conceptualization, methodology, data curation, writing-original draft, writing-review and editing. Chunmei Li: visualization, formal analysis, resources, investigation. Yuqing Xu: visualization, formal analysis, resources, investigation, writing-original draft. Baoping Lin: methodology, resources, writing-review and editing. Xueqin Zhang: methodology, resources, writing-review and editing. Ying Sun: methodology, investigation, supervision, writing-review and editing.

Corresponding author

Correspondence to Ying Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, M., Li, C., Xu, Y. et al. An conductive ink based on silver oxide complex for low-temperature sintering with dense conductive paths. J Mater Sci: Mater Electron 35, 755 (2024). https://doi.org/10.1007/s10854-024-12524-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12524-5

Navigation