Skip to main content
Log in

Copper-nitrogen doped carbon nanosheet-based electrochemical sensors for the detection of luteolin and baicalein

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Metal-containing copper-nitrogen doped porous carbon materials (Cu@NC) were prepared by a one-step pyrolysis method, and an electrochemical sensor capable of simultaneously detecting luteolin and baicalein was fasbricated. Cu@NC has been characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The electrochemical properties of the Cu@NC sensor were studied by electrochemical impedance spectroscopy and cyclic voltammetry. In addition, the electrochemical behavior of the sensor on different electrodes was studied by differential pulse voltammetry. The calibration curve was linear in the range of (0.05–20.0) × 10–6 mol/L. The detection limits of luteolin and baicalein were 5.30 × 10–8 mol/L and 9.10 × 10–8 mol/L, respectively (S/N = 3). The sensor has also been successfully used to detect luteolin and baicalin in actual drugs. It has broad potential applications in the field of medicine due to its simple production and low technical cost requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

The authors declare that the data supporting the findings of this study are available within the paper and its Supplementary Information files. Should any raw data files be needed in another format they are available from the corresponding author upon reasonable request. Source data are provided with this paper.

References

  1. S. Xue, M. Shi, J. Wang, J. Li, G. Peng, J. Xu, Y. Gao, X. Duan, L. Lu, Mol. 28, 3262 (2023). https://doi.org/10.3390/molecules28073262

    Article  CAS  Google Scholar 

  2. Z. Zhang, Y. Fan, X. Wang, H. Tu, J. Jiang, C. Zhang, X. Zhao, J. Ma, M. Wang, R. Xu, J. Appl. Electrochem. 54, 189 (2023). https://doi.org/10.1007/s10800-023-01954-4

    Article  CAS  Google Scholar 

  3. S.M. Ahmadi, R. Farhoosh, A. Sharif, M. Rezaie, J. Food Sci. 85, 298 (2020). https://doi.org/10.1111/1750-3841.14994

    Article  CAS  PubMed  Google Scholar 

  4. D. Jiang, D. Li, W. Wu, Nutr. 5, 1648 (2013). https://doi.org/10.3390/nu5051648

    Article  CAS  Google Scholar 

  5. T. Nakajima, M. Imanishi, K. Yamamoto, J.C. Cyong, K. Hirai, Planta Medica (2001). https://doi.org/10.1055/s-2001-11532

    Article  PubMed  Google Scholar 

  6. C. Gang, Z. Hongwei, Y. Jiannong, Talanta 53, 471 (2000). https://doi.org/10.1016/S0039-9140(00)00514-2

    Article  Google Scholar 

  7. Z. Wang, G. Gou, L. Shi, J. Yang, C. Xu, L. Zhang, A. Fan, Y. Min, J. Appl. Polymer Sci. 135, 46720 (2018). https://doi.org/10.1002/app.46720

    Article  CAS  Google Scholar 

  8. F. Wang, M.-X. Lv, K. Lu, L. Gao, J. Liu, J. Chinese Chem. Soc. 59, 829 (2012). https://doi.org/10.1002/jccs.201100456

    Article  CAS  Google Scholar 

  9. F. Malongane, L.J. McGaw, H. Nyoni, F.N. Mudau, Food Chem. 257, 90 (2018). https://doi.org/10.1016/j.foodchem.2018.02.121

    Article  CAS  PubMed  Google Scholar 

  10. K.P. Divya, S. Keerthana, C. Viswanathan, N. Ponpandian, J. Electrochem. Soc. 169, 127510 (2022). https://doi.org/10.1149/1945-7111/aca8d5

    Article  ADS  CAS  Google Scholar 

  11. S. Kulevanova, M. Stefova, G. Stefkov, T. Stafilov, J. Liquid Chromatogr. Relat. Technol. 24, 589 (2007). https://doi.org/10.1081/jlc-100103396

    Article  Google Scholar 

  12. L. Abidin, M. Mujeeb, S.R. Mir, S.A. Khan, A. Ahmad, Asian Pacific J. Trop. Med. (2014). https://doi.org/10.1016/S1995-7645(14)60248-0

    Article  Google Scholar 

  13. Y. Liu, J. Peng, W. Zhuge, Q. Huang, G. Xiang, L. Wei, J. Electrochem. Soc. 169, 046502 (2022). https://doi.org/10.1149/1945-7111/ac60ec

    Article  ADS  CAS  Google Scholar 

  14. D.L. Glasco, A.M. Mamaril, A. Sheelam, N.H.B. Ho, J.G. Bell, J. Electrochem. Soc. 169, 077513 (2022). https://doi.org/10.1149/1945-7111/ac80d7

    Article  ADS  CAS  Google Scholar 

  15. N. Karimian, P. Hashemi, A. Khanmohammadi, A. Afkhami, H. Bagheri, Anal. and Bioanal. Chem. Res. 7, 281 (2020). https://doi.org/10.22036/ABCR.2020.206676.1423

    Article  CAS  Google Scholar 

  16. Q. Li, J. Wu, Y. Liu, X. Qi, H. Jin, C. Yang, J. Liu, G. Li, Q. He, Anal. Chimica Acta 1170, 338480 (2021). https://doi.org/10.1016/j.aca.2021.338480

    Article  CAS  Google Scholar 

  17. Q. Li, Y. Xia, X. Wan, S. Yang, Z. Cai, Y. Ye, G. Li, Mater. Sci. Engin.: C 109, 110615 (2020). https://doi.org/10.1016/j.msec.2019.110615

    Article  CAS  Google Scholar 

  18. Y. Wang, M. Ni, J. Chen, C. Wang, Y. Yang, Y. Xie, P. Zhao, J. Fei, Electrochimica Acta 438, 141534 (2023). https://doi.org/10.1016/j.electacta.2022.141534

    Article  CAS  Google Scholar 

  19. X. Chen, J. Li, J. Li, L. Zhang, P. Zhao, C. Wang, J. Fei, Y. Xie, Food Chem. 397, 133723 (2022). https://doi.org/10.1016/j.foodchem.2022.133723

    Article  CAS  PubMed  Google Scholar 

  20. G. Wang, X. Lei, H. Liu, Z. Shi, J. Su, J. Miao, G. Shi, Anal. Lett. 49, 1424 (2015). https://doi.org/10.1080/00032719.2015.1104326

    Article  CAS  Google Scholar 

  21. X. Niu, W. Zhang, Y. Huang, L. Wang, Z. Li, W. Sun, New J. Chem. 44, 15975 (2020). https://doi.org/10.1039/d0nj03827j

    Article  CAS  Google Scholar 

  22. Y. Lu, X. Mu, Y. Liu, Y. Gao, Z. Shi, Y. Zheng, W. Huang, Electroanal. 35, e202200129 (2022). https://doi.org/10.1002/elan.202200129

    Article  CAS  Google Scholar 

  23. L.S. Zhang, X.H. Jiang, Z.A. Zhong, L. Tian, Q. Sun, Y.T. Cui, X. Lu, J.P. Zou, S.L. Luo Angewandte, Chemie Int. Edition 60, 21751 (2021). https://doi.org/10.1002/anie.202109488

    Article  CAS  Google Scholar 

  24. J. Wang, T. Heil, B. Zhu, C.W. Tung, J. Yu, H.M. Chen, M. Antonietti, S. Cao, ACS Nano 14, 8584 (2020). https://doi.org/10.1021/acsnano.0c02940

    Article  CAS  PubMed  Google Scholar 

  25. N. Anzar, R. Hasan, M. Tyagi, N. Yadav, J. Narang, Sensors Int. 1, 100003 (2020). https://doi.org/10.1016/j.sintl.2020.100003

    Article  Google Scholar 

  26. M. Kolahdouz, B. Xu, A.F. Nasiri, M. Fathollahzadeh, M. Manian, H. Aghababa, Y. Wu, H.H. Radamson, Micromach. 13, 1257 (2022). https://doi.org/10.3390/mi13081257

    Article  Google Scholar 

  27. X. Xie, X. Chen, Y. Wang, M. Zhang, Y. Fan, X. Yang, Talanta 257, 124387 (2023). https://doi.org/10.1016/j.talanta.2023.124387

    Article  CAS  PubMed  Google Scholar 

  28. H. Hayat, T. Noor, N. Iqbal, R. Ahmed, N. Zaman, Y. Huang, J. Environ. Chem. Eng. 11, 109627 (2023). https://doi.org/10.1016/j.jece.2023.109627

    Article  CAS  Google Scholar 

  29. Z. Zhu, Q. Xu, Z. Ni, K. Luo, Y. Liu, D. Yuan, ACS Sustain. Chem. Eng. 9, 13491 (2021). https://doi.org/10.1021/acssuschemeng.1c04259

    Article  CAS  Google Scholar 

  30. Y. Zhang, W. Zhang, S. Hui, C. Fan, J. Sun, Z. Ying, J. Electron. Mater. 49, 3165 (2020). https://doi.org/10.1007/s11664-020-08020-1

    Article  ADS  CAS  Google Scholar 

  31. L. Lu, Sens. Actuators B: Chem. 281, 182 (2019). https://doi.org/10.1016/j.snb.2018.10.074

    Article  CAS  Google Scholar 

  32. J Qiao, 2019 "Construction of Graphene-based electrochemical sensors and its application in drug and environmental analysis," M.S. thesis, ENV.E, ZZU, Zhengzhou

  33. Y. Ai, G. Luo, L. Yan, Y. Yao, Z. Zhang, B. Wang, W. Sun, J. Iranian Chem. Soc. 20, 319 (2022). https://doi.org/10.1007/s13738-022-02652-2

    Article  CAS  Google Scholar 

  34. Q. Wu, F. Qin, X. Wang, C. Ji, Y. Wu, H. Tao, Chem. Res. Appl. 33, 1712 (2021)

    Google Scholar 

  35. F. Gao, X. Chen, H. Tanaka, A. Nishitani, Q. Wang, Advanced Powder Technol. 27, 921 (2016). https://doi.org/10.1016/j.apt.2016.02.016

    Article  CAS  Google Scholar 

  36. X. Niu, Y. Huang, W. Zhang, L. Yan, L. Wang, Z. Li, W. Sun, J. Electroanal. Chem. 880, 114832 (2021). https://doi.org/10.1016/j.jelechem.2020.114832

    Article  CAS  Google Scholar 

  37. V. Krishnan, M. Parandhaman, R. Kanagaraj, M. Veerapandian, Nanoscale 15, 18727 (2023). https://doi.org/10.1039/d3nr04438f

    Article  CAS  PubMed  Google Scholar 

  38. N. Zhang, X. Zhu, B. Liu, Z. Chang, Y. Hao, Y. Zhang, M. Xu, B. Ye, Int. J. Electrochem. Sci. 13, 4535 (2018). https://doi.org/10.20964/2018.05.56

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 22066010); The Master's Degree Research Innovation Project (MYK2023003) of Hubei University of Nationalities

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by [TC], [YL] and [YG]. The first draft of the manuscript was written by [TC] and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yin Zheng.

Ethics declarations

Conflicts of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 898 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chu, T., Liu, Y., Gao, Y. et al. Copper-nitrogen doped carbon nanosheet-based electrochemical sensors for the detection of luteolin and baicalein. J Mater Sci: Mater Electron 35, 340 (2024). https://doi.org/10.1007/s10854-024-12089-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12089-3

Navigation