Skip to main content
Log in

Efficient Zn-based pn-junction thermoelectric device for energy harvesting

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This paper proposes a novel pn-junction thermoelectric device to improve the conversion of thermoelectric energy. The device was created by depositing films of p-type Zn-doped CuI and n-type Al-doped ZnO onto an ITO glass substrate using electrodeposition technique. The resulting films had a smooth surface with nano-sized grains. They also exhibited strong adhesion at − 1.2 V compared to Ag/AgCl when 5 mol% of zinc acetate dehydrate was used. The UV-visible graphs revealed that both films had an average band gap of 3 eV. X-ray graphs showed that the thin films were highly crystalline, with orientations symmetrically arranged in the (1 0 2) and (2 2 0) planes. AFM images showed that both films have highly crystalline surface and their surface roughness favours strong adhesion. These high conductive films exhibited thermoelectric energy, which was calculated using the Seebeck effect. The hot probe method showed that the p-type Zn-CuI and n-type AZO thin films were dense and exhibited a thermoelectric figure of merit (ZT) of 0.40 and 0.50 up to the temperature of 120 °C. The thermal conductivity of the p-type and n-type materials was determined to be 2.23 W m−1 K−1 and 12.65 W m−1 K−1, respectively. The power factor of the p and n films was found to be 202.74 µW m−1 K−2 and 525.51 µW m−1 K−2, respectively. This was followed by the fabrication of a Zn-based thermoelectric device using a single pair of p-type Zn-CuI and n-type AZO thin-film legs. The fabricated thermoelectric device generated a maximum power of 117 pW. This Zn-based thermoelectric device is highly effective for waste heat recovery and can efficiently accumulate useful electricity over time, thereby prolonging battery life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

Data will be made available on reasonable request.

References

  1. S.P. Beeby, M.J. Tudor, N.M. White, Energy harvesting vibration sources for microsystems applications. Meas. Sci. Technol. 17, R175–R195 (2006)

    Article  CAS  Google Scholar 

  2. H. Akinaga, Recent advances and future prospects in energy harvesting technologies. Jpn. J. Appl. Phys. 59, 110201 (2020)

    Article  ADS  CAS  Google Scholar 

  3. M. Norouzi, M. Kolahdouz, P. Ebrahimi, M. Ganjian, R. Soleimanzadeh, K. Narimani, H. Radamson, Thermoelectric energy harvesting using array of vertically aligned Al-doped ZnO nanorods. Thin Solid Film. 619, 41–47 (2016)

    Article  ADS  CAS  Google Scholar 

  4. Y. Li, G. Wang, M. Akbari-Saatlu, M. Procek, H.H. Radamson, Si and SiGe nanowire for micro-thermoelectric generator: a review of the current state of the art. Front. Mater. 8, 611078 (2021)

    Article  Google Scholar 

  5. A. Hussam Jouhara, N. Zabnienska, Q. Khordehgah, Doragh, Thermoelectric generator (TEG) technologies and Applications. Int. J. Thermofluids. 9(2), 100063 (2021)

    Article  Google Scholar 

  6. A.S. Korotkov, V.V. Loboda, S.V. Dzyubanenko, E.M. Bakulin, Design of a thin-film thermoelectric generator for low-power applications. Russ. Microelectron. 48, 326–334 (2019)

    Article  CAS  Google Scholar 

  7. K. Gilbert, B. Xiao, S. Danquah, H. Lee, J. Niyogushima, K. Yarbrough, A. Candadai, A. Candadai, A. Marconnet, S.K. Pradhan, M. Bahoura, A thin film efficient pn-junction thermoelectric device fabricated by self-align shadow mask. Sci. Rep. 10, 1067 (2020)

    Article  ADS  Google Scholar 

  8. P. Fan, Z. Zheng, Y. Li, Q. Lin, J. Luo, G. Liang, X. Cai, D. Zhang, F. Ye, Low-cost flexible thin-film thermoelectric generator on zinc based thermoelectric materials. Appl. Phys. Lett. 106, 073901 (2015)

    Article  ADS  Google Scholar 

  9. L. Zhang, X.-L. Shi, Y.-L. Yang, Z.-G. Chen, Flexible thermoelectric materials and devices: from materials to applications. Mater. Today 46, 62 (2021)

    Article  CAS  Google Scholar 

  10. W. Glatz, E. Schwyter, L. Durrer, C. Hierold, Bi2Te3-based flexible micro thermoelectric generator with optimized design. J. Microelectromech. Syst. 18(3), 763 (2009)

    Article  CAS  Google Scholar 

  11. L. Wei, J. Wei, X. Kuai, Z. You, M. Zhang, W. Liu, F. Yang, X. Wang, Optimization and fabrication of MEMS suspended structures for nanoscale thermoelectric devices. Nanotechnology 33, 325301 (2022)

    Article  ADS  Google Scholar 

  12. F. Xiao, C. Hangarter, B. Yoo, Y. Rheem, K. Lee, N. Myung, Recent progress in electrodeposition of thermoelectric thin films and nanostructures. Electrochem. Acta 53, 8103 (2008)

    Article  CAS  Google Scholar 

  13. N. Ganesh, J.C.R. Azariah, Investigation of Efficiency and Power Output for the MEMS-Based Thermoelectric Power Generator using n-type BiTeSe on p-type BiSbTe compared at different impedance matching conditions with matching load, in 5th International Conference on Contemporary Computing and Informatics (IC3I). (IEEE, Piscataway, 2022), pp.1851–1856. https://doi.org/10.1109/IC3I56241.2022.10072916

    Chapter  Google Scholar 

  14. Y. Liu, E. Mu, Z. Wu, Z. Che, F. Sun, X. Fu, X. Wang, F. Wang, H. Zhiyu, Ultrathin MEMS thermoelectric generator with Bi2Te3/(Pt, Au) multilayers and Sb2Te3 legs. Nano Convergence 7, 8 (2020)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. X. Yu, H. Wu, H. Shi, L. Xu, Y. Zhu, Y. Qin, G. Peng, Y. Zhang, Z.-H. Ge, X. Ding, L.-D. Zhao, High-Ranged ZT Value Promotes Thermoelectric Cooling and Power Generation in n-Type PbTe. Adv. Energy Mater. (2022). https://doi.org/10.1002/aenm.202200204

    Article  Google Scholar 

  16. K. uda, Y. Seki, M. Saito, Y. Sanobe, Y. Hsieh, H. Takahashi, I. Terasaki, T. Homma, Fabrication of Π-structured bi-te thermoelectric micro-device by electrodeposition. Electochem. Acta 153, 515–522 (2015)

    Article  CAS  Google Scholar 

  17. H. Bottner, J. Nurnus, A. Gavrikov, G. Kuhner, M. Jagle, C. Kunzel, D. Eberhard, G. Plescher, A. Schuber, K.H. Schlerth, New thermoelectric components using microsystem technologies. J. Microelectromech. syst. 13(3), 414–420 (2004)

    Article  Google Scholar 

  18. Z. Wang, V. Lenov, P. Fiorini, C.V. Hoof, in Realization of poly-SiGe based micromechined thermopile , in Proc. (Eurosensors, Dresden, 2008), pp.1420–1423

    Google Scholar 

  19. C. Chongyang, C. Shuai, L. jiawen, L. tingting, Y. Zhanlin, Z. Bing, C. Naichao, A high efficient photo thermoelectric coupling generator of cuprous iodide. AIP Adv. 12, 115125 (2022)

    Article  ADS  Google Scholar 

  20. N.P. Klochko, D.O. Zhadan, K.S. Klepikova, S.I. Petrushenko, V.R. Kopach, G.S. Khrypunov, V.M. Lyubov, S.V. Dukarov, A.L. Khrypunova, Semi-transparent copper iodide thin films on flexible substrates as p-type thermolegs for a wearable thermoelectric generator. Thin Solid Films. 683, 34–41 (2019)

    Article  ADS  CAS  Google Scholar 

  21. P. Sirimanne, M. Rusop, T. Shirata, T. Soga, T. Jimbo, Characterization of CuI thin films prepared by different techniques. Mater. Chem. Phys. 80, 461–465 (2003)

    Article  CAS  Google Scholar 

  22. N. Blessing, A.C. Ezealigo, A. Nwanya, R.U. Simo, R. Osuji, M. Bucher, Maaza, I. Fabian, Ezema, Optical and electrochemical capacitive properties of copper (I) iodide thin film deposited by SILAR method. Arab. J. Chem. 12(8), 5380–5391 (2019)

    Article  Google Scholar 

  23. H. Kang, R. Liu, K. Chen, Y. Zheng, Z. Xu, Electrodeposition and optical properties of highly oriented c-CuI thin films. Electrochim. Acta. 55, 8121–8125 (2010)

    Article  CAS  Google Scholar 

  24. I. Karuppusamy, K. Ramachandran, S. Karuppuchamy, Electrodeposition of CuI Thin Film for Perovskite Solar cells. Mater. Sci. Forum. 979, 180–184 (2020)

    Article  Google Scholar 

  25. M. Yang, J. Xu, S. Xu, J. Zhu, H. Chen, Preparation of porous spherical CuI nanoparticles. Inorg. Chem. Commun. 7, 628–630 (2004)

    Article  CAS  Google Scholar 

  26. M. Xia, M. Gu, X. Liu, B. Liu, S. Huang, C. Ni, Electrical and luminescence properties of Zn2 + doped CuI. J. Mater. Sci. (2015). https://doi.org/10.1007/s10854-015-2735-7

    Article  Google Scholar 

  27. A. Liu, H. Zhu, W.-T. Park, S.-J. Kim, H. Kim, M.-G. Kim, Y.-Y. Noh, High-performance p-channel transistors with transparent Zn doped-CuI. Nat. Commun. 11, 4309 (2020). https://doi.org/10.1038/s41467-020-18006-6

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  28. T. Minami, H. Sato, H. Nanto, S. Takata, Group III impurity doped zinc oxide thin films prepared by RF magnetron sputtering. Jpn. J. Appl. Phys. 24, L781–L784 (1985)

    Article  ADS  Google Scholar 

  29. K. Anit et al., Structural, Optical and thermoelectric properties of Al doped ZnO thin films prepared by spray pyrolysis. Surf. Interfaces 19, 100504 (2020)

    Article  Google Scholar 

  30. T. Amakali, L.S. Daniel, V. Uahengo et al., Structural and optical properties of ZnO thin films prepared by molecular precursor and sol–gel methods. Crystals 10(2), 132 (2020)

    Article  CAS  Google Scholar 

  31. S. Eisermann, J. Sann, A. Polity, B.K. Meyer, Sputter deposition of ZnO thin films at high substrate temperatures. Thin Solid Films. 517, 5805–5807 (2009)

    Article  ADS  CAS  Google Scholar 

  32. M. Rusop, K. Uma, T. Soga, T. Jimbo, Post-growth annealing of zinc oxide thin films pulsed laser deposited under enhanced oxygen pressure on quartz and silicon substrates. Mater. Sci. Eng., B 127, 150–153 (2006)

    Article  CAS  Google Scholar 

  33. K. Anit, M. Ambedkar, V. Singh, V. Kumar, B.P. Kumar, A. Singh, Kumar, Y.K. Gautam, Structural, optical and thermoelectric properties of Al-doped ZnO thin films prepared by spray pyrolysis. Surf. Interfaces Volume. 19, 100504 (2020)

    Article  Google Scholar 

  34. D. Perednis, L.J. Gauckler, Thin Film Deposition using spray pyrolysis. J. Electroceram. 14, 103–111 (2005)

    Article  CAS  Google Scholar 

  35. H.M. Yoshitoku, D. Furuyama, M. Saito, T. Homma, Electrodeposition of ZnO from acetate bath for thermoelectric devices. ECS transactions 75(52), 143–148 (2017)

    Article  Google Scholar 

  36. M.N.D. Sin, M. Fuad Kamel, I. Rosalena, I. Alip, Z. Mohamed, M. Rusop, The electrical characteristics of aluminium doped zinc oxide thin film for humidity sensor applications. Adv. Mater. Sci. Eng. 2011, 974906 (2011)

    Google Scholar 

  37. G. Golan, A. Axelevitch, B. Gorenstein, V. Mznevych, Hot-probe method for evalution of impurities concentration in semiconductors. Microelectron. J. 37, 910–915 (2006)

    Article  CAS  Google Scholar 

  38. B. V. Zeghbroeck, Principle of semiconductor device. http://ece-www.colorado.edu/̴bart/book/ (1997)

  39. A. Bar-Lev, G. Golan, Semiconductors (The open university of Israel, Tel-Aviv, 1996)

    Google Scholar 

  40. J. Gong, S. Krishnan, Mathematical modeling of dye-sensitized solar cells (Elsevier, Amsterdam, 2019)

    Book  Google Scholar 

  41. A. Blacha, N.E. Christensen, M. Cardona, Electronic structure of the high-pressure modifications of CuCl, CuBr, and CuI. Phys. Rev. B 33, 2413 (1986)

    Article  ADS  CAS  Google Scholar 

  42. B. Bouhafs, H. Heireche, W. Sekkal, H. Aourag, M. Certier, Electronic and optical properties of copper halides mixed crystal CuCl1 – xIx. Physics Letters A 240, 257–264 (1998)

    Article  ADS  CAS  Google Scholar 

  43. W. Sekkal, A. Zaoui, Monte Carlo study of transport properties in copper halides. Phys. B: Condens. Matter. 315, 201–209 (2002)

    Article  ADS  CAS  Google Scholar 

  44. D.M. Rowe, Thermoelecrics handbook: macro to nano (Taylor and Francis, Boca Raton, 2006), pp.1-1-1–9

    Google Scholar 

  45. H. Baltes, O. Brand, O. Paul, CMOS MEMS Technology and CAD: the case of Thermal Microtransducers. Part of the SPIE Conference on Smart Electronics and MEMS. March SPIE. 3328 (1998)

  46. M. Strasser, R. Aigner, C. Lauterbach, T.F. Sturm, M. Franosch, G. Wachutka, Micro machined CMOS TEG as on-chip power supply. Sens. Actuators A 144, 362–370 (2004)

    Article  Google Scholar 

  47. T. Toriyama, M. Yajima, S. Sugiyama, Thermoelectric micro power generator utilizing self-standing polysilicon-metal thermopile, in Proceedings of the IEEE Micro Electro Mechanical System. (IEEE, Interlaken, 2001), pp.562–565

    Google Scholar 

  48. W. Glatz, S. Muntwyler, C. Hierold, Optimization and fabrication of thick flexible polymer based micro thermoelectric generator. Sens. Actuators A Phys. 132, 337–345 (2006)

    Article  CAS  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by LB, RNE and GJB. The first draft of the manuscript was written by LB and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to R. N. Emerson.

Ethics declarations

Competing Interests

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

The accepted principles of ethical and professional conduct have been followed. There are no sources of funding nor any potential conflicts of interest (financial or non-financial). The research has not involved any human participants or involved any animals. There are no potential conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banupriya, L., Emerson, R.N. & Bala, G.J. Efficient Zn-based pn-junction thermoelectric device for energy harvesting. J Mater Sci: Mater Electron 35, 263 (2024). https://doi.org/10.1007/s10854-024-12014-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12014-8

Navigation