Skip to main content

Advertisement

Log in

Enhanced optical properties of graphite nanoflakes/polydimethylsiloxane nanocomposites induced by low-dose gamma irradiation

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Gamma irradiation has emerged as a promising technique for tailoring the microstructures and, by extension, properties of nanoparticles embedded polymer composites. Despite extensive efforts to elucidate the gamma ray-induced changes in nanocomposites, there is still a notable lack of studies on the effects of low-doses on the properties of polymer nanocomposites. This leads to a quantitative investigation about the impact of low-dose gamma irradiation on the optical properties of graphite nanoflake (GnF)-reinforced polydimethylsiloxane (PDMS) nanocomposites (GnF/PDMS nanocomposites). A series of GnF/PDMS nanocomposites with different GnF concentrations ranging from 1 to 10 wt% was prepared, followed by gamma irradiation at specific doses ranging from 0.0 to 5.0 kGy. The analyses showed that even low-dose gamma irradiation causes microstructural changes in the nanocomposites, resulting in a proportional relation between their light absorption properties and gamma ray dose. In detail, the GnF/PDMS nanocomposites showed a gradual increase in light absorption, peaking at gamma irradiation dose of 5 kGy. For example, 4 wt% GnF/PDMS nanocomposite under the influence of 5 kGy gamma irradiation shows an average light absorption value of 96.3%, whereas nonirradiated sample at the same composites exhibits absorption value of 93.2%. The increase in absorption is attributed to the combined effects arising from microstructural alterations in the nanocomposites, including the improved dispersion of GnF and the restoration of carbon rings under gamma irradiation. Notably, the optical energy band gap of the nanocomposite samples reveals a decreasing trend with increasing gamma irradiation. Specifically, band gap for 4 wt% GnF/PDMS at 5 kGy radiation is 2.76 eV against 4.96 eV for non-irradiated pure PDMS. This study sheds light on the fundamentals of enhancing the light absorption characteristics of GnF/PDMS nanocomposites under low-dose gamma irradiation.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Saif MJ, Naveed M, Asif HM, Akhtar R (2018) Irradiation applications for polymer nano-composites: a state-of-the-art review. J Ind Eng Chem 60:218–236. https://doi.org/10.1016/j.jiec.2017.11.009

    Article  CAS  Google Scholar 

  2. Evans D, Crook MA (1997) Irradiation of plastics: damage and gas evolution. MRS Bull 22:36–40. https://doi.org/10.1557/S0883769400033017

    Article  CAS  Google Scholar 

  3. Labouriau A, Cady C, Gill J et al (2015) Gamma irradiation and oxidative degradation of a silica-filled silicone elastomer. Polym Degrad Stab 116:62–74. https://doi.org/10.1016/j.polymdegradstab.2015.03.009

    Article  CAS  Google Scholar 

  4. Wang P-C, Yang N, Liu D et al (2020) Coupling effects of gamma irradiation and absorbed moisture on silicone foam. Mater Design 195:108998. https://doi.org/10.1016/j.matdes.2020.108998

    Article  CAS  Google Scholar 

  5. Battini D, Donzella G, Avanzini A et al (2018) Experimental testing and numerical simulations for life prediction of gate valve O-rings exposed to mixed neutron and gamma fields. Mater Design 156:514–527. https://doi.org/10.1016/j.matdes.2018.07.020

    Article  CAS  Google Scholar 

  6. Nambiar S, Yeow JTW (2012) Polymer-composite materials for radiation protection. ACS Appl Mater Int 4:5717–5726. https://doi.org/10.1021/am300783d

    Article  CAS  Google Scholar 

  7. Ormerod MG, Charlesby A (1963) The radiation chemistry of some polysiloxanes: An electron spin resonance study. Polymer 4:459–470. https://doi.org/10.1016/0032-3861(63)90059-4

    Article  CAS  Google Scholar 

  8. Muradov M, Baghirov MB, Eyvazova G et al (2023) Influence of gamma radiation on structure, morphology, and optical properties of GO and GO/PVA nanocomposite. Radiat Phys Chem 208:110926. https://doi.org/10.1016/j.radphyschem.2023.110926

    Article  CAS  Google Scholar 

  9. Liu B, Huang W, Ao Y-Y et al (2018) Dose rate effects of gamma irradiation on silicone foam. Polym Degrad Stab 147:97–102. https://doi.org/10.1016/j.polymdegradstab.2017.11.016

    Article  CAS  Google Scholar 

  10. Folland R, Charlesby A (1976) Pulsed N.M.R. studies of radiation-induced crosslinking and gel formation in linear polydimethy siloxane. Int J Radiat Phys Chem 8:555–562. https://doi.org/10.1016/0020-7055(76)90022-X

    Article  CAS  Google Scholar 

  11. Satti AJ, Andreucetti NA, Ressia JA et al (2008) Modelling molecular weight changes induced in polydimethylsiloxane by gamma and electron beam irradiation. Eur Polym J 44:1548–1555. https://doi.org/10.1016/j.eurpolymj.2008.02.017

    Article  CAS  Google Scholar 

  12. Yan J, Kim B, Jeong YG (2015) Thermomechanical and electrical properties of PDMS/MWCNT composite films crosslinked by electron beam irradiation. J Mater Sci 50:5599–5608. https://doi.org/10.1007/s10853-015-9110-1

    Article  CAS  Google Scholar 

  13. Chen HT, Li CQ, Zhan H et al (2021) Preparation of ultrablack composite sheets with excellent mechanical and chemical stability from sandpaper-based template-imprinting. Adv Mater Technol 6:2100576. https://doi.org/10.1002/admt.202100576

    Article  CAS  Google Scholar 

  14. Lee GS, Biutty MN, Zakia M, Yoo SI (2021) Porous polydimethylsiloxane/AU composites as solar-light absorbers for light-driven thermoelectric applications. Macromol Mater Eng 306:2100351. https://doi.org/10.1002/mame.202100351

    Article  CAS  Google Scholar 

  15. Nouh SA, Benthami KA, AlSomali F et al (2024) Impact of gamma radiation on the linear and nonlinear optical properties of PVA/CMC/ZnS-NiO nanocomposite films. Radiat Effect Defect Sol 179:43–63. https://doi.org/10.1080/10420150.2024.2318710

    Article  CAS  Google Scholar 

  16. Nouh SA, Benthami K, Massoud AM, El-Shamy NT (2018) Effect of gamma irradiation on the structural and optical properties of PVA/CdS nanocomposite films prepared by ex-situ technique. Radiat Effect Defect Sol 173:956–969. https://doi.org/10.1080/10420150.2018.1513001

    Article  CAS  Google Scholar 

  17. Baghirov MB, Muradov M, Eyvazova G et al (2023) Features of structure and optical properties GO and a GO/PVA composite subjected to gamma irradiation. RSC Adv 13:35648–35658. https://doi.org/10.1039/D3RA07186C

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nouh SA, Benthami K (2019) Gamma induced changes in the structure and optical properties of ZnS/PVA nanocomposite. Vinyl Addit Technol 25:271–277. https://doi.org/10.1002/vnl.21689

    Article  CAS  Google Scholar 

  19. Behmanesh B, Rezaei-Ochbelagh D, Azizian-Kalandaragh Y, Imanzadeh-Karkaragh Gh (2017) Sonochemical preparation of Ag2O-PVA nanocomposites: study on pertinent structural and optical properties and exploring the effect of gamma and neutron irradiation. Curr Sci 112:735. https://doi.org/10.18520/cs/v112/i04/735-742

    Article  CAS  Google Scholar 

  20. Abdel Maksoud MIA, Awed AS, Sokary R, Bekhit M (2021) Effect of gamma irradiation on the free-standing polyvinyl alcohol/chitosan/Ag nanocomposite films: insights on the structure, optical, and dispersion properties. Appl Phys A 127:619. https://doi.org/10.1007/s00339-021-04776-3

    Article  CAS  Google Scholar 

  21. Liu Q, Huang W, Liu B et al (2021) Gamma radiation chemistry of polydimethylsiloxane foam in radiation-thermal environments: experiments and simulations. ACS Appl Mater Interfaces 13:41287–41302. https://doi.org/10.1021/acsami.1c10765

    Article  CAS  PubMed  Google Scholar 

  22. Rücker C, Kümmerer K (2015) Environmental Chemistry of Organosiloxanes. Chem Rev 115:466–524. https://doi.org/10.1021/cr500319v

    Article  CAS  PubMed  Google Scholar 

  23. Liu B, Wang P-C, Ao Y-Y et al (2017) Effects of combined neutron and gamma irradiation upon silicone foam. Radiat Phys Chem 133:31–36. https://doi.org/10.1016/j.radphyschem.2016.12.005

    Article  CAS  Google Scholar 

  24. Charlesby A (1977) Folland R (1980) The use of pulsed NMR to follow radiation effects in long chain polymers. Radiat Phys Chem 15:393–403. https://doi.org/10.1016/0146-5724(80)90160-0

    Article  Google Scholar 

  25. Maxwell RS, Cohenour R, Sung W et al (2003) The effects of γ-radiation on the thermal, mechanical, and segmental dynamics of a silica filled, room temperature vulcanized polysiloxane rubber. Polym Degrad Stab 80:443–450. https://doi.org/10.1016/S0141-3910(03)00028-4

    Article  CAS  Google Scholar 

  26. Sui HL, Liu XY, Zhong FC et al (2013) Gamma radiation effects on polydimethylsiloxane rubber foams under different radiation conditions. Nucl Instrum Method Phys Res Sect B: Beam Interact Mater Atoms 307:570–574. https://doi.org/10.1016/j.nimb.2013.03.059

    Article  CAS  Google Scholar 

  27. Kaneko T, Ito S, Minakawa T et al (2019) Degradation mechanisms of silicone rubber under different aging conditions. Polym Degrad Stab 168:108936. https://doi.org/10.1016/j.polymdegradstab.2019.108936

    Article  CAS  Google Scholar 

  28. Chhetri S, Nguyen AT, Song S et al (2023) Flexible graphite nanoflake/polydimethylsiloxane nanocomposites with promising solar-thermal conversion performance. ACS Appl Energy Mater 6:2582–2593. https://doi.org/10.1021/acsaem.2c04054

    Article  CAS  Google Scholar 

  29. Park S, Nam G, Choi Y et al (2018) Mechanoelectrical properties of a GnF/PDMS composite controlled by the aspect ratio and concentration of GnF. Compos Sci Technol 159:77–86. https://doi.org/10.1016/j.compscitech.2018.02.032

    Article  CAS  Google Scholar 

  30. Zhang Y, Zhu Y, Lin G et al (2013) What factors control the mechanical properties of poly (dimethylsiloxane) reinforced with nanosheets of 3-aminopropyltriethoxysilane modified graphene oxide? Polymer 54:3605–3611. https://doi.org/10.1016/j.polymer.2013.04.057

    Article  CAS  Google Scholar 

  31. Du F, Yuan J, Zhang M et al (2014) Nitrogen-doped carbon dots with heterogeneous multi-layered structures. RSC Adv 4:37536. https://doi.org/10.1039/C4RA06818A

    Article  CAS  Google Scholar 

  32. Lou W, Xie C, Guan X (2023) Molecular dynamic study of radiation-moisture aging effects on the interface properties of nano-silica/silicone rubber composites. Mater Degrad 7:32. https://doi.org/10.1038/s41529-023-00351-8

    Article  CAS  Google Scholar 

  33. Nouh SA, Bahareth RA (2013) Effect of electron beam irradiation on the structural, thermal and optical properties of poly(vinyl alcohol) thin film. Radiat Effect Defect Sol 168:274–285. https://doi.org/10.1080/10420150.2012.741131

    Article  CAS  Google Scholar 

  34. Gharbi F, Benthami K, TarfaH Alsheddi et al (2022) Structural, thermal, and optical studies of gamma irradiated polyvinyl alcohol-, lignosulfonate-, and palladium nanocomposite film. Polymers 14:2613. https://doi.org/10.3390/polym14132613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liu Q, Huang W, Liu B et al (2022) Experimental and theoretical study of gamma radiolysis and dose rate effect of o -cresol formaldehyde epoxy composites. ACS Appl Mater Interfaces 14:5959–5972. https://doi.org/10.1021/acsami.1c19609

    Article  CAS  PubMed  Google Scholar 

  36. Oliveira LM, Araújo ES, Guedes SML (2006) Gamma irradiation effects on poly(hydroxybutyrate). Polym Degrad Stab 91:2157–2162. https://doi.org/10.1016/j.polymdegradstab.2006.01.008

    Article  CAS  Google Scholar 

  37. Mahrous EM, BarakatBahareth MMRA et al (2022) Tailoring the structural and optical properties of Makrofol/CdS nanocomposite by gamma radiation. J Mater Res Technol 18:3085–3093. https://doi.org/10.1016/j.jmrt.2022.04.011

    Article  CAS  Google Scholar 

  38. Atta A, Abdel Reheem AM, Abdeltwab E (2020) Ion beam irradiation effects on surface morphology and optical properties of zno/pva composites. Surf Rev Lett 27:1950214. https://doi.org/10.1142/S0218625X19502147

    Article  CAS  Google Scholar 

  39. Bae SC, Lee H, Lin Z, Granick S (2005) Chemical imaging in a surface forces apparatus: confocal raman spectroscopy of confined poly (dimethylsiloxane). Langmuir 21:5685–5688. https://doi.org/10.1021/la050233+

    Article  CAS  PubMed  Google Scholar 

  40. Jawhari T, Roid A, Casado J (1995) Raman spectroscopic characterization of some commercially available carbon black materials. Carbon 33:1561–1565. https://doi.org/10.1016/0008-6223(95)00117-V

    Article  CAS  Google Scholar 

  41. Nguyen AT, Lee Y, Nguyen PQH et al (2022) Enhancing the electrical properties of graphite nanoflake through gamma-ray irradiation. Sci Rep 12:14824. https://doi.org/10.1038/s41598-022-19232-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Silambarasan D, Surya VJ, Iyakutti K et al (2017) Gamma (γ)-ray irradiated multi-walled carbon nanotubes (MWCNTs) for hydrogen storage. Appl Surf Sci 418:49–55. https://doi.org/10.1016/j.apsusc.2017.02.262

    Article  CAS  Google Scholar 

  43. Ghai V, Baranwal A, Singh H, Agnihotri PK (2019) Design and fabrication of a multifunctional flexible absorber (flexorb) in the UV–Vis–NIR wavelength range. Adv Mater Technol 4:1900513. https://doi.org/10.1002/admt.201900513

    Article  CAS  Google Scholar 

  44. Sun W, Du A, Feng Y et al (2016) Super black material from low-density carbon aerogels with subwavelength structures. ACS Nano 10:9123–9128. https://doi.org/10.1021/acsnano.6b02039

    Article  CAS  PubMed  Google Scholar 

  45. Bulla SS, Bhajantri RF, Chavan C (2021) Optical and structural properties of biosynthesized silver nanoparticle encapsulated PVA (Ag–PVA) films. J Inorg Organomet Polym 31:2368–2380. https://doi.org/10.1007/s10904-021-01909-2

    Article  CAS  Google Scholar 

  46. Atta A, Abdeltwab E (2022) Influence of ion irradiation on the surface properties of silver-coated flexible PDMS polymeric films. Braz J Phys 52:3. https://doi.org/10.1007/s13538-021-01011-5

    Article  CAS  Google Scholar 

  47. Borah B, Rajitha G, Dash RK (2018) Correlation between the thickness and properties of the ethanol treated GO–PDMS based composite materials. J Mater Sci: Mater Electron 29:20216–20224. https://doi.org/10.1007/s10854-018-0154-2

    Article  CAS  Google Scholar 

  48. Mandal SK, Kumar D (2023) Study of PDMS-based flexible conductive elastomeric composite filled with rGO-CaCO3 nanocomposite. Polym-Plast Technol Mater 62:1776–1788. https://doi.org/10.1080/25740881.2023.2234460

    Article  CAS  Google Scholar 

  49. Jubu PR, Yam FK, Igba VM, Beh KP (2020) Tauc-plot scale and extrapolation effect on bandgap estimation from UV vis NIR data – A case study of β-Ga2O3. Journal of Solid State Chemistry 290:121576. https://doi.org/10.1016/j.jssc.2020.121576

  50. Makuła P, Pacia M, Macyk W (2018) How To Correctly Determine the Band Gap Energy of Modified Semiconductor Photocatalysts Based on UV–Vis Spectra. J Phys Chem Lett 9:6814–6817. https://doi.org/10.1021/acs.jpclett.8b02892

  51. Darwesh AHA, AzizHussan BSSA (2022) Insights into optical band gap identification in polymer composite films based on PVA with enhanced optical properties: Structural and optical characteristics. Opt Mater 133:113007. https://doi.org/10.1016/j.optmat.2022.113007

    Article  CAS  Google Scholar 

  52. Tarawneh MA, Saraireh SA, Chen RS et al (2021) Gamma irradiation influence on mechanical, thermal and conductivity properties of hybrid carbon nanotubes/montmorillonite nanocomposites. Radiat Phys Chem 179:109168. https://doi.org/10.1016/j.radphyschem.2020.109168

    Article  CAS  Google Scholar 

  53. Zegaoui A, Wang A, Qadeer Dayo A et al (2017) Effects of gamma irradiation on the mechanical and thermal properties of cyanate ester/benzoxazine resin. Radiat Phys Chem 141:110–117. https://doi.org/10.1016/j.radphyschem.2017.06.010

    Article  CAS  Google Scholar 

  54. Maxwell RS, Balazs B (2002) Residual dipolar coupling for the assessment of cross-link density changes in γ-irradiated silica-PDMS composite materials. J Chem Phys 116:10492–10502. https://doi.org/10.1063/1.1477184

    Article  CAS  Google Scholar 

  55. Zaidi L, Bruzaud S, Kaci M et al (2013) The effects of gamma irradiation on the morphology and properties of polylactide/Cloisite 30B nanocomposites. Polym Degrad Stab 98:348–355. https://doi.org/10.1016/j.polymdegradstab.2012.09.014

    Article  CAS  Google Scholar 

  56. Peng J, Qu X, Wei G et al (2004) The cutting of MWNTs using gamma radiation in the presence of dilute sulfuric acid. Carbon 42:2741–2744. https://doi.org/10.1016/j.carbon.2004.05.015

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (2023R1A2C1005933). W.L. acknowledges support from the National Science Foundation (EEC-2034824, CBET-2340208). S.C. and W.L. acknowledges support through Patents2Products Fellowship, Office of Innovation and Commercialization, University of Hawaii System.

Author information

Authors and Affiliations

Authors

Contributions

S.C. involved in methodology, data curation, investigation, formal analysis, validation, visualization, writing (original draft). A.T.N. involved in data curation, formal analysis, writing (review & editing). S.S. involved in methodology, formal analysis. N.G. involved in data curation, formal analysis, writing (review and editing). S.-H.Y. involved in data curation, formal analysis, validation, writing (review and editing). W.L. involved in conceptualization, supervision, writing (review and editing), project administration, funding acquisition.

Corresponding authors

Correspondence to Sang-Hee Yoon or Woochul Lee.

Ethics declarations

Conflicts of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Handling Editor: Andréa de Camargo.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1465 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chhetri, S., Nguyen, A.T., Song, S. et al. Enhanced optical properties of graphite nanoflakes/polydimethylsiloxane nanocomposites induced by low-dose gamma irradiation. J Mater Sci 59, 14354–14366 (2024). https://doi.org/10.1007/s10853-024-10027-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-10027-6

Navigation