Skip to main content
Log in

Review: recent progress in fine-structured graphene materials for electromagnetic interference shielding

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

With growing concerns over electromagnetic pollution, developing advanced electromagnetic shielding materials has become critical. Graphene, a versatile two-dimensional material, exhibits exceptional electrical properties and high specific surface area, making it ideal for electromagnetic shielding. However, graphene sheets tend to aggregate due to strong van der Waals forces, which hampers conductivity and shielding effectiveness. This review addresses the fundamental theories of electromagnetic shielding and discusses various methods to fabricate graphene and to engineer its assembly into functional two-dimensional and 3D structures like films and foams. It also covers the development of graphene-based composites with unique structures such as core–shell, sandwich, and bionic structure, emphasizing the correlation between graphene's structure, its composites, and shielding performance. The aim is to foster new ideas and provide technological insights for advancing graphene-based shielding materials.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Copyright 2019, Vineeta Shukla).

Figure 3

Copyright 2019, Elsevier; d. Adapted with permission from reference [83]. Copyright 2015, Elsevier).

Figure 4

Copyright 2015, Elsevier; c, d, e. Adapted with permission from reference [84]. Copyright 2022, American Chemical Society).

Figure 5

Copyright 2016, Elsevier; c, d. Adapted with permission from reference [87]. Copyright 2018, Elsevier).

Figure 6

Copyright 2018, Elsevier; c, d. Adapted with permission from reference [106]. Copyright 2018, Elsevier; e. Adapted with permission from reference [107]. Copyright 2018, Elsevier; f. Adapted with permission from reference [110]. Copyright 2019, IOP).

Figure 7

Copyright 2020, Royal Society of Chemistry; c, d. Adapted with permission from reference [113]. Copyright 2017, American Chemical Society; e, f, g. Adapted with permission from reference [116]. Copyright 2020, Elsevier).

Figure 8

Copyright 2019, Elsevier; c. Adapted with permission from reference [127]. Copyright 2017, Chen Chen; d, e, f. Adapted with permission from reference [130]. Copyright 2020, John Wiley and Sons).

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Abbreviations

EMI:

Electromagnetic interference

SE:

Shielding effectiveness

GO:

Graphene oxide

RGO:

Reduced graphene oxide

CVD:

Chemical vapor deposition

LTCVD:

Low-temperature chemical vapor deposition

PECVD:

Plasma-enhanced chemical vapor deposition

πBG:

π-Bridged rGO films

MLG:

Multilayer graphene papers

VGNs:

Vertical graphene nanowalls

GAF:

Graphene aerogel featuring

GAs:

Graphene aerogels

TGAs:

Thermally annealed graphene aerogels

GMA:

Core–shell rGO/MXene fiber aerogel

Fe3C@NG/NCs:

2D N-doped carbon sheet containing Fe3C nanoparticles encapsulated in N-doped graphene layers

CuNWs:

Cu nanowires

CuNW@G:

Graphene-hybridized CuNW

FSPG:

Reduced graphene oxide-coated Fe3O4@SiO2@polypyrrole

PPy:

Polypyrrole

RF:

RGO decorated with iron oxide nanoparticles

PANI:

Polyaniline

PRF:

RGO-γ-Fe2O3-incorporated polyaniline composite

rGO-V-CdSe:

Nanocomposite of CdSe/V2O5 core–shell quantum dots with rGO

PNCFs:

Pore-rich cellulose-derived carbon fibers

CFs:

Carbon fibers

Ni NPs:

Nickel metal nanoparticles

DLG:

Dandelion-like graphene

GN-D-GN:

Graphene nanosheets-dielectric-graphene nanosheets sandwich-type composites

3D G-CNT-Fe2O3 :

3D graphene-carbon nanotube-iron oxide

MrG:

Ti3C2Tx-MXene/reduced-graphene-oxide

SWCNTs:

A lightweight single-walled carbon nanotubes

SGF:

Graphene film

PEDOT:PSS:

Graphene/Fe3O4/polystyrene sulfonate

PDMS:

Polydimethylsiloxane

Gmfs:

Porous bionic graphene/PDMS composites

PG/PI:

Pristine graphene/polyimide

PTFE:

Polytetrafluoroethylene

References

  1. Zhao B, Deng J, Zhang R et al (2018) Recent advances on the electromagnetic wave absorption properties of Ni based materials. Eng Sci 3:5–40

    Google Scholar 

  2. Gurusiddesh M, Madhu BJ, Shankaramurthy GJ (2018) Structural, dielectric, magnetic and electromagnetic interference shielding investigations of polyaniline decorated Co0.5Ni0.5Fe2O4 nanoferrites. J Mater Sci Mater Electron 29:3502–3509. https://doi.org/10.1007/s10854-017-8285-4

    Article  CAS  Google Scholar 

  3. Gong S, Zhu ZH, Arjmand M et al (2018) Effect of carbon nanotubes on electromagnetic interference shielding of carbon fiber reinforced polymer composites. Polym Compos 39:E655–E663. https://doi.org/10.1002/pc.24084

    Article  CAS  Google Scholar 

  4. Zhang L, Mei S, Huang K, Qiu C (2016) Advances in full control of electromagnetic waves with metasurfaces. Adv Opt Mater 4:818–833. https://doi.org/10.1002/adom.201500690

    Article  CAS  Google Scholar 

  5. Han Y, Lin J, Liu Y et al (2016) Crackle template based metallic mesh with highly homogeneous light transmission for high-performance transparent EMI shielding. Sci Rep 6:25601. https://doi.org/10.1038/srep25601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dong Y, Yu H, Feng Y, Feng W (2024) Structure, properties and applications of multi-functional thermally conductive polymer composites. J Mater Sci Technol 200:141–161

    Google Scholar 

  7. Tiikkaja M, Aro AL, Alanko T et al (2013) Electromagnetic interference with cardiac pacemakers and implantable cardioverter-defibrillators from low-frequency electromagnetic fields in vivo. Europace 15:388–394

    PubMed  Google Scholar 

  8. Huang X, Wang Y, Chen Y (2022) Analysis of electromagnetic interference effect of the pulse interference on the navigation receiver. Int J Antennas Propag 2022:e3049899. https://doi.org/10.1155/2022/3049899

    Article  Google Scholar 

  9. Alameri BM (2020) Electromagnetic interference (EMI) produced by high voltage transmission lines. EUREKA: Phys Eng 5:43–50

    Google Scholar 

  10. Kim MS, Min EH, Koh JG (2009) Comparison of the effects of particle shape on thin FeSiCr electromagnetic wave absorber. J Magn Magn Mater 321:581–585. https://doi.org/10.1016/j.jmmm.2008.09.033

    Article  CAS  Google Scholar 

  11. Morari C, Balan I, Pintea J et al (2011) Electrical conductivity and electromagnetic shielding effectiveness of silicone rubber filled with ferrite and graphite powders. Prog Electromagn Res M 21:93–104

    Google Scholar 

  12. Szczerba P, Ligenza S, Worek C (2023) Measurement and calculation techniques of complex permeability applied to Mn-Zn ferrites based on iterative approximation curve fitting and modified equivalent inductor model. Electronics 12:4002. https://doi.org/10.3390/electronics12194002

    Article  CAS  Google Scholar 

  13. Sugimoto S, Maeda T, Book D et al (2002) GHz microwave absorption of a fine α-Fe structure produced by the disproportionation of Sm2Fe17 in hydrogen. J Alloys Compd 330:301–306

    Google Scholar 

  14. Chung DDL (2001) Electromagnetic interference shielding effectiveness of carbon materials. Carbon 39:279–285

    CAS  Google Scholar 

  15. Yang Y, Gupta MC, Dudley KL, Lawrence RW (2005) Novel carbon nanotube−polystyrene foam composites for electromagnetic interference shielding. Nano Lett 5:2131–2134. https://doi.org/10.1021/nl051375r

    Article  CAS  PubMed  Google Scholar 

  16. Selzer R, Friedrich K (1997) Mechanical properties and failure behaviour of carbon fibre-reinforced polymer composites under the influence of moisture. Compos Part Appl Sci Manuf 28:595–604

    Google Scholar 

  17. Xiang C, Pan Y, Liu X et al (2005) Microwave attenuation of multiwalled carbon nanotube-fused silica composites. Appl Phys Lett 87:123103

    Google Scholar 

  18. Zou G, Cao M, Lin H et al (2006) Nickel layer deposition on SiC nanoparticles by simple electroless plating and its dielectric behaviors. Powder Technol 168:84–88

    CAS  Google Scholar 

  19. Yang H-J, Cao W-Q, Zhang D-Q et al (2015) NiO hierarchical nanorings on SiC: enhancing relaxation to tune microwave absorption at elevated temperature. ACS Appl Mater Interfaces 7:7073–7077. https://doi.org/10.1021/acsami.5b01122

    Article  CAS  PubMed  Google Scholar 

  20. Luo X, Chugh R, Biller BC et al (2002) Electronic applications of flexible graphite. J Electron Mater 31:535–544. https://doi.org/10.1007/s11664-002-0111-x

    Article  CAS  Google Scholar 

  21. McCreery RL (2008) Advanced carbon electrode materials for molecular electrochemistry. Chem Rev 108:2646–2687. https://doi.org/10.1021/cr068076m

    Article  CAS  PubMed  Google Scholar 

  22. Geim AK (2009) Graphene: status and prospects. Science 324:1530–1534. https://doi.org/10.1126/science.1158877

    Article  CAS  PubMed  Google Scholar 

  23. Wang J, Mu X, Sun M, Mu T (2019) Optoelectronic properties and applications of graphene-based hybrid nanomaterials and van der Waals heterostructures. Appl Mater Today 16:1–20

    Google Scholar 

  24. Balandin AA, Ghosh S, Bao W et al (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907. https://doi.org/10.1021/nl0731872

    Article  CAS  PubMed  Google Scholar 

  25. Xie SH, Liu YY, Li JY (2008) Comparison of the effective conductivity between composites reinforced by graphene nanosheets and carbon nanotubes. Appl Phys Lett 92:243121

    Google Scholar 

  26. Cao M, Wang X, Cao W et al (2018) Thermally driven transport and relaxation switching self-powered electromagnetic energy conversion. Small 14:1800987. https://doi.org/10.1002/smll.201800987

    Article  CAS  Google Scholar 

  27. Cao M-S, Shu J-C, Wen B et al (2021) Genetic dielectric genes inside 2D carbon-based materials with tunable electromagnetic function at elevated temperature. Small Struct 2:2100104. https://doi.org/10.1002/sstr.202100104

    Article  CAS  Google Scholar 

  28. He Y, Gong R, Nie Y et al (2005) Optimization of two-layer electromagnetic wave absorbers composed of magnetic and dielectric materials in gigahertz frequency band. J Appl Phys 98:084903

    Google Scholar 

  29. Liu H, Wang Z, Yang Y et al (2022) Thermally conductive MWCNTs/Fe3O4/Ti3C2Tx MXene multi-layer films for broadband electromagnetic interference shielding. J Mater Sci Technol 130:75–85

    CAS  Google Scholar 

  30. Kumar P, Narayan Maiti U, Sikdar A et al (2019) Recent advances in polymer and polymer composites for electromagnetic interference shielding: review and future prospects. Polym Rev 59:687–738

    CAS  Google Scholar 

  31. Kruželák J, Kvasničáková A, Hložeková K, Hudec I (2021) Progress in polymers and polymer composites used as efficient materials for EMI shielding. Nanoscale Adv 3:123–172. https://doi.org/10.1039/D0NA00760A

    Article  PubMed  Google Scholar 

  32. Wang Y-Y, Zhang F, Li N et al (2023) Carbon-based aerogels and foams for electromagnetic interference shielding: a review. Carbon 205:10–26

    CAS  Google Scholar 

  33. Pandey R, Tekumalla S, Gupta M (2020) EMI shielding of metals, alloys, and composites. Materials for potential EMI shielding applications. Elsevier, pp 341–355

    Google Scholar 

  34. Wu Y, Tan S, Zhao Y, Liang L, Zhou M, Ji G (2023) Broadband multispectral compatible absorbers for radar, infrared and visible stealth application. Prog Mater Sci 135:101088

    Google Scholar 

  35. Yu M, Huang Y, Liu X et al (2024) Synthetic strategy of biomimetic sea urchin-like Co-NC@ PANI modified MXene-based magnetic aerogels with enhanced electromagnetic wave absorption properties. Nano Res 17(3):2025–2037

    CAS  Google Scholar 

  36. Zhou M, Wang J, Tan S, Ji G (2023) Top–down construction strategy toward sustainable cellulose composite paper with tunable electromagnetic interference shielding. Mater Today Phys 31:100962

    CAS  Google Scholar 

  37. Zhang Y, Tan S, Zhou Z et al (2023) Construction of Co2NiO4@MnCo2O4.5 nanoparticles with multiple hetero-interfaces for enhanced electromagnetic wave absorption. Particuology 81:86–97

    CAS  Google Scholar 

  38. Shahzad F, Alhabeb M, Hatter CB et al (2016) Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353:1137–1140. https://doi.org/10.1126/science.aag2421

    Article  CAS  PubMed  Google Scholar 

  39. Shahzad F, Alhabeb M, Hatter CB et al (2016) Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353:1137–1140

    CAS  PubMed  Google Scholar 

  40. Iqbal A, Shahzad F, Hantanasirisakul K et al (2020) Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNTx (MXene). Science 369:446–450

    CAS  PubMed  Google Scholar 

  41. Shukla V (2019) Review of electromagnetic interference shielding materials fabricated by iron ingredients. Nanoscale Adv 1:1640–1671

    PubMed  PubMed Central  Google Scholar 

  42. Novoselov KS, Geim AK, Morozov SV et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669. https://doi.org/10.1126/science.1102896

    Article  CAS  PubMed  Google Scholar 

  43. Parviz D, Irin F, Shah SA et al (2016) Challenges in liquid-phase exfoliation, processing, and assembly of pristine graphene. Adv Mater 28:8796–8818. https://doi.org/10.1002/adma.201601889

    Article  CAS  PubMed  Google Scholar 

  44. Wu W, Yu B (2020) Corn flour nano-graphene prepared by the hummers redox method. ACS Omega 5:30252–30256. https://doi.org/10.1021/acsomega.0c04722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Liu Y, Wu X, Tian Y et al (2019) Largely enhanced oxidation of graphite flakes via ammonium persulfate-assisted gas expansion for the preparation of graphene oxide sheets. Carbon 146:618–626

    CAS  Google Scholar 

  46. Gesellschaft DC (1898) Berichte der Deutschen Chemischen Gesellschaft. Verlag Chemie

    Google Scholar 

  47. Brodie BC (1860) Sur le poids atomique du graphite. Ann Chim Phys 59:e472

    Google Scholar 

  48. Hummers W, Offeman R (1958) Graphite oxide (GO) was prepared using the well-known Hummers method described by Hummers. J Am Chem Soc 80:1339–1345

    CAS  Google Scholar 

  49. De Silva KKH, Huang H-H, Joshi R, Yoshimura M (2020) Restoration of the graphitic structure by defect repair during the thermal reduction of graphene oxide. Carbon 166:74–90

    Google Scholar 

  50. Eda G, Chhowalla M (2010) Chemically derived graphene oxide: towards large-area thin-film electronics and optoelectronics. Adv Mater 22:2392–2415. https://doi.org/10.1002/adma.200903689

    Article  CAS  PubMed  Google Scholar 

  51. Agarwal V, Zetterlund PB (2021) Strategies for reduction of graphene oxide: a comprehensive review. Chem Eng J 405:127018. https://doi.org/10.1016/j.cej.2020.127018

    Article  CAS  Google Scholar 

  52. Kumar P, Šilhavík M, Zafar ZA, Červenka J (2023) Universal strategy for reversing aging and defects in graphene oxide for highly conductive graphene aerogels. J Phys Chem C 127:10599–10608. https://doi.org/10.1021/acs.jpcc.3c01534

    Article  CAS  Google Scholar 

  53. Jiang Y, Song S, Mi M et al (2023) Improved electrical and thermal conductivities of graphene-carbon nanotube composite film as an advanced thermal interface material. Energies 16:1378. https://doi.org/10.3390/en16031378

    Article  CAS  Google Scholar 

  54. Jiang W, Wang S, Yan X et al (2023) Electrical, luminescence, and microwave-assisted reduction behaviour of alkali vs. alkaline earth metal ion-modified graphene oxide membranes. Mater Chem Phys 294:127067

    CAS  Google Scholar 

  55. Yang C, Bi H, Wan D et al (2013) Direct PECVD growth of vertically erected graphene walls on dielectric substrates as excellent multifunctional electrodes. J Mater Chem A 1:770–775

    CAS  Google Scholar 

  56. Kim H, Ahn J-H (2017) Graphene for flexible and wearable device applications. Carbon 120:244–257. https://doi.org/10.1016/j.carbon.2017.05.041

    Article  CAS  Google Scholar 

  57. Kim J, Ishihara M, Koga Y et al (2011) Low-temperature synthesis of large-area graphene-based transparent conductive films using surface wave plasma chemical vapor deposition. Appl Phys Lett 98:091502

    Google Scholar 

  58. Lellala K, Chaliyawala HA, Mukhopadhyay I (2021) Graphene sheets from various carbon precursors. Fabrication of graphene from camphor. CRC Press, pp 7–24

    Google Scholar 

  59. Wang J, Ren Z, Hou Y et al (2020) A review of graphene synthesisatlow temperatures by CVD methods. New Carbon Mater 35:193–208

    CAS  Google Scholar 

  60. Losurdo M, Giangregorio MM, Capezzuto P, Bruno G (2011) Graphene CVD growth on copper and nickel: role of hydrogen in kinetics and structure. Phys Chem Chem Phys 13:20836–20843. https://doi.org/10.1039/C1CP22347J

    Article  CAS  PubMed  Google Scholar 

  61. Wang J, Ren Z, Hou Y et al (2020) A review of graphene synthesisatlow temperatures by CVD methods. New Carbon Mater 35:193–208. https://doi.org/10.1016/S1872-5805(20)60484-X

    Article  CAS  Google Scholar 

  62. Lin L, Deng B, Sun J et al (2018) Bridging the gap between reality and ideal in chemical vapor deposition growth of graphene. Chem Rev 118:9281–9343. https://doi.org/10.1021/acs.chemrev.8b00325

    Article  CAS  PubMed  Google Scholar 

  63. Emtsev KV, Bostwick A, Horn K et al (2009) Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat Mater 8:203–207

    CAS  PubMed  Google Scholar 

  64. Virojanadara C, Yakimova R, Zakharov AA, Johansson LI (2010) Large homogeneous mono-/bi-layer graphene on 6H–SiC (0 0 0 1) and buffer layer elimination. J Phys Appl Phys 43:374010

    Google Scholar 

  65. Wang C, Han X, Xu P et al (2011) The electromagnetic property of chemically reduced graphene oxide and its application as microwave absorbing material. Appl Phys Lett 98:072906

    Google Scholar 

  66. Ruan M, Hu Y, Guo Z et al (2012) Epitaxial graphene on silicon carbide: introduction to structured graphene. Mrs Bull 37:1138–1147

    CAS  Google Scholar 

  67. Berger C, Song Z, Li T et al (2004) Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J Phys Chem B 108:19912–19916. https://doi.org/10.1021/jp040650f

    Article  CAS  Google Scholar 

  68. Zhao X, Deng X, Li M et al (2021) Preparation of large area graphene on SiC (0 0 0–1) by moderate vacuum technology. J Cryst Growth 555:125968

    CAS  Google Scholar 

  69. Kaynak A (1996) Electromagnetic shielding effectiveness of galvanostatically synthesized conducting polypyrrole films in the 300–2000 MHz frequency range. Mater Res Bull 31:845–860

    CAS  Google Scholar 

  70. Li D, Müller MB, Gilje S et al (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3:101–105

    CAS  PubMed  Google Scholar 

  71. Lyu J, Wen X, Kumar U et al (2018) Separation and purification using GO and r-GO membranes. RSC Adv 8:23130–23151

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Nandy K (2016) The origin of hierarchical structure in self-assembled graphene oxide papers and the effect on mechanical properties. PhD Thesis, Northwestern University

  73. Azani M-R, Hassanpour A, Carcelén V et al (2016) Highly concentrated and stable few-layers graphene suspensions in pure and volatile organic solvents. Appl Mater Today 2:17–23

    Google Scholar 

  74. Wan S, Fang S, Jiang L et al (2018) Strong, conductive, foldable graphene sheets by sequential ionic and π bridging. Adv Mater 30:1802733. https://doi.org/10.1002/adma.201802733

    Article  CAS  Google Scholar 

  75. Wan S, Chen Y, Wang Y et al (2019) Ultrastrong graphene films via long-chain π-bridging. Matter 1:389–401

    Google Scholar 

  76. Yan D, Pang H, Li B et al (2015) Structured reduced graphene oxide/polymer composites for ultra-efficient electromagnetic interference shielding. Adv Funct Mater 25:559–566. https://doi.org/10.1002/adfm.201403809

    Article  CAS  Google Scholar 

  77. Stankovich S, Dikin DA, Dommett GH et al (2006) Graphene-based composite materials. Nature 442:282–286

    CAS  PubMed  Google Scholar 

  78. Ding J, Zhao H, Yu H (2022) Bioinspired strategies for making superior graphene composite coatings. Chem Eng J 435:134808

    CAS  Google Scholar 

  79. Cheng Y, Pu Y, Zhao D (2020) Two-dimensional membranes: new paradigms for high-performance separation membranes. Chem Asian J 15:2241–2270. https://doi.org/10.1002/asia.202000013

    Article  CAS  PubMed  Google Scholar 

  80. Shen B, Zhai W, Zheng W (2014) Ultrathin flexible graphene film: an excellent thermal conducting material with efficient EMI shielding. Adv Funct Mater 24:4542–4548. https://doi.org/10.1002/adfm.201400079

    Article  CAS  Google Scholar 

  81. Zhou E, Xi J, Guo Y et al (2018) Synergistic effect of graphene and carbon nanotube for high-performance electromagnetic interference shielding films. Carbon 133:316–322

    CAS  Google Scholar 

  82. Paliotta L, De Bellis G, Tamburrano A et al (2015) Highly conductive multilayer-graphene paper as a flexible lightweight electromagnetic shield. Carbon 89:260–271

    CAS  Google Scholar 

  83. Zhang L, Alvarez NT, Zhang M et al (2015) Preparation and characterization of graphene paper for electromagnetic interference shielding. Carbon 82:353–359

    CAS  Google Scholar 

  84. Wang Z, Shen H, Luo K et al (2022) Synthesis of vertical graphene nanowalls on substrates by PECVD as effective EMI shielding materials. ACS Appl Electron Mater 4:4023–4032. https://doi.org/10.1021/acsaelm.2c00670

    Article  CAS  Google Scholar 

  85. Chen Z, Jin L, Hao W et al (2019) Synthesis and applications of three-dimensional graphene network structures. Mater Today Nano 5:100027

    Google Scholar 

  86. Li C, Shi G (2012) Three-dimensional graphene architectures. Nanoscale 4:5549–5563

    CAS  PubMed  Google Scholar 

  87. Xi J, Li Y, Zhou E et al (2018) Graphene aerogel films with expansion enhancement effect of high-performance electromagnetic interference shielding. Carbon 135:44–51

    CAS  Google Scholar 

  88. Bi S, Zhang L, Mu C et al (2017) Electromagnetic interference shielding properties and mechanisms of chemically reduced graphene aerogels. Appl Surf Sci 412:529–536

    CAS  Google Scholar 

  89. Li C-B, Li Y-J, Zhao Q et al (2020) Electromagnetic interference shielding of graphene aerogel with layered microstructure fabricated via mechanical compression. ACS Appl Mater Interfaces 12:30686–30694. https://doi.org/10.1021/acsami.0c05688

    Article  CAS  PubMed  Google Scholar 

  90. Yang SJ, Kang JH, Jung H et al (2013) Preparation of a freestanding, macroporous reduced graphene oxide film as an efficient and recyclable sorbent for oils and organic solvents. J Mater Chem A 1:9427–9432

    CAS  Google Scholar 

  91. Niu Z, Chen J, Hng HH et al (2012) A leavening strategy to prepare reduced graphene oxide foams. Adv Mater 24:4144–4150. https://doi.org/10.1002/adma.201200197

    Article  CAS  PubMed  Google Scholar 

  92. Ma Y, Chen Y (2015) Three-dimensional graphene networks: synthesis, properties and applications. Natl Sci Rev 2:40–53

    CAS  Google Scholar 

  93. Goodman R, Blank M (2002) Insights into electromagnetic interaction mechanisms. J Cell Physiol 192:16–22. https://doi.org/10.1002/jcp.10098

    Article  CAS  PubMed  Google Scholar 

  94. Wang M, Tang X-H, Cai J-H et al (2021) Construction, mechanism and prospective of conductive polymer composites with multiple interfaces for electromagnetic interference shielding: a review. Carbon 177:377–402

    CAS  Google Scholar 

  95. Shen B, Li Y, Yi D et al (2016) Microcellular graphene foam for improved broadband electromagnetic interference shielding. Carbon 102:154–160

    CAS  Google Scholar 

  96. Huang M, Wang C, Quan L et al (2020) CVD growth of porous graphene foam in film form. Matter 3:487–497

    Google Scholar 

  97. Fan B, Xing L, Yang K et al (2023) Salt-templated graphene nanosheet foams filled in silicon rubber toward prominent EMI shielding effectiveness and high thermal conductivity. Carbon 207:317–327. https://doi.org/10.1016/j.carbon.2023.03.022

    Article  CAS  Google Scholar 

  98. Huang Y, Chen M, Xie A et al (2021) Recent advances in design and fabrication of nanocomposites for electromagnetic wave shielding and absorbing. Materials 14:4148

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Xu X, Jiang X-Y, Jiao F-P et al (2018) Tunable assembly of porous three-dimensional graphene oxide-corn zein composites with strong mechanical properties for adsorption of rare earth elements. J Taiwan Inst Chem Eng 85:106–114

    CAS  Google Scholar 

  100. Panahi-Sarmad M, Noroozi M, Xiao X, Park CB (2022) Recent advances in graphene-based polymer nanocomposites and foams for electromagnetic interference shielding applications. Ind Eng Chem Res 61:1545–1568. https://doi.org/10.1021/acs.iecr.1c04116

    Article  CAS  Google Scholar 

  101. Henglein A (1989) Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles. Chem Rev 89:1861–1873. https://doi.org/10.1021/cr00098a010

    Article  CAS  Google Scholar 

  102. Spanhel L, Weller H, Henglein A (1987) Photochemistry of semiconductor colloids. 22. Electron ejection from illuminated cadmium sulfide into attached titanium and zinc oxide particles. J Am Chem Soc 109:6632–6635. https://doi.org/10.1021/ja00256a012

    Article  CAS  Google Scholar 

  103. Youn HC, Baral S, Fendler JH (1988) Dihexadecyl phosphate, vesicle-stabilized and in situ generated mixed cadmium sulfide and zinc sulfide semiconductor particles: preparation and utilization for photosensitized charge separation and hydrogen generation. J Phys Chem 92:6320–6327. https://doi.org/10.1021/j100333a029

    Article  CAS  Google Scholar 

  104. Zheng X, Tang J, Wang P et al (2022) Interfused core–shell heterogeneous graphene/MXene fiber aerogel for high-performance and durable electromagnetic interference shielding. J Colloid Interface Sci 628:994–1003

    CAS  PubMed  Google Scholar 

  105. Yuan H, Zhang X, Yan F et al (2018) Nitrogen-doped carbon nanosheets containing Fe3C nanoparticles encapsulated in nitrogen-doped graphene shells for high-performance electromagnetic wave absorbing materials. Carbon 140:368–376

    CAS  Google Scholar 

  106. Wu S, Zou M, Li Z et al (2018) Robust and stable Cu nanowire@graphene core–shell aerogels for ultraeffective electromagnetic interference shielding. Small 14:1800634. https://doi.org/10.1002/smll.201800634

    Article  CAS  Google Scholar 

  107. Yuan Y, Yin W, Yang M et al (2018) Lightweight, flexible and strong core–shell non-woven fabrics covered by reduced graphene oxide for high-performance electromagnetic interference shielding. Carbon 130:59–68

    CAS  Google Scholar 

  108. Meng F, Wang H, Huang F et al (2018) Graphene-based microwave absorbing composites: a review and prospective. Compos Part B Eng 137:260–277

    CAS  Google Scholar 

  109. Singh AP, Mishra M, Sambyal P et al (2014) Encapsulation of γ-Fe2O3 decorated reduced graphene oxide in polyaniline core–shell tubes as an exceptional tracker for electromagnetic environmental pollution. J Mater Chem A 2:3581–3593

    CAS  Google Scholar 

  110. Singh AK, Yadav AN, Srivastava A et al (2019) CdSe/V2O5 core/shell quantum dots decorated reduced graphene oxide nanocomposite for high-performance electromagnetic interference shielding application. Nanotechnology 30:505704

    CAS  PubMed  Google Scholar 

  111. Yang Y, Wan C, Huang Q, Hua J (2023) Pore-rich cellulose-derived carbon fiber@graphene core–shell composites for electromagnetic interference shielding. Nanomaterials 13:174. https://doi.org/10.3390/nano13010174

    Article  CAS  Google Scholar 

  112. Wan C, Jiao Y, Li X et al (2020) A multi-dimensional and level-by-level assembly strategy for constructing flexible and sandwich-type nanoheterostructures for high-performance electromagnetic interference shielding. Nanoscale 12:3308–3316

    CAS  PubMed  Google Scholar 

  113. Song W-L, Gong C, Li H et al (2017) Graphene-based sandwich structures for frequency selectable electromagnetic shielding. ACS Appl Mater Interfaces 9:36119–36129. https://doi.org/10.1021/acsami.7b08229

    Article  CAS  PubMed  Google Scholar 

  114. Lee S-H, Kang D, Oh I-K (2017) Multilayered graphene-carbon nanotube-iron oxide three-dimensional heterostructure for flexible electromagnetic interference shielding film. Carbon 111:248–257

    CAS  Google Scholar 

  115. Tan H, Gou J, Zhang X et al (2023) Sandwich-structured Ti3C2Tx-MXene/reduced-graphene-oxide composite membranes for high-performance electromagnetic interference and infrared shielding. J Membr Sci 675:121560

    CAS  Google Scholar 

  116. Fu H, Yang Z, Zhang Y et al (2020) SWCNT-modulated folding-resistant sandwich-structured graphene film for high-performance electromagnetic interference shielding. Carbon 162:490–496

    CAS  Google Scholar 

  117. Shen B, Li Y, Yi D et al (2017) Strong flexible polymer/graphene composite films with 3D saw-tooth folding for enhanced and tunable electromagnetic shielding. Carbon 113:55–62

    CAS  Google Scholar 

  118. Cheng Z, Wang R, Wang Y et al (2023) Recent advances in graphene aerogels as absorption-dominated electromagnetic interference shielding materials. Carbon 205:112–137

    CAS  Google Scholar 

  119. Ayhan S, Pauli M, Scherr S et al (2016) Millimeter-wave radar sensor for snow height measurements. IEEE Trans Geosci Remote Sens 55:854–861

    Google Scholar 

  120. Dence D, Tamir T (1969) Radio loss of lateral waves in forest environments. Radio Sci 4:307–318

    Google Scholar 

  121. Wang X-X, Shu J-C, Cao W-Q et al (2019) Eco-mimetic nanoarchitecture for green EMI shielding. Chem Eng J 369:1068–1077

    CAS  Google Scholar 

  122. Abbasi H, Antunes M, Velasco JI (2019) Recent advances in carbon-based polymer nanocomposites for electromagnetic interference shielding. Prog Mater Sci 103:319–373

    CAS  Google Scholar 

  123. Zhang H-B, Yan Q, Zheng W-G et al (2011) Tough graphene−polymer microcellular foams for electromagnetic interference shielding. ACS Appl Mater Interfaces 3:918–924. https://doi.org/10.1021/am200021v

    Article  CAS  PubMed  Google Scholar 

  124. Ling J, Zhai W, Feng W et al (2013) Facile preparation of lightweight microcellular polyetherimide/graphene composite foams for electromagnetic interference shielding. ACS Appl Mater Interfaces 5:2677–2684. https://doi.org/10.1021/am303289m

    Article  CAS  PubMed  Google Scholar 

  125. Hsiao S-T, Ma C-CM, Tien H-W et al (2013) Using a non-covalent modification to prepare a high electromagnetic interference shielding performance graphene nanosheet/water-borne polyurethane composite. Carbon 60:57–66

    CAS  Google Scholar 

  126. Yan D-X, Ren P-G, Pang H et al (2012) Efficient electromagnetic interference shielding of lightweight graphene/polystyrene composite. J Mater Chem 22:18772–18774

    CAS  Google Scholar 

  127. Chen C, Xi J, Zhou E et al (2018) Porous graphene microflowers for high-performance microwave absorption. Nano-Micro Lett 10:26. https://doi.org/10.1007/s40820-017-0179-8

    Article  CAS  Google Scholar 

  128. Wegst UG, Bai H, Saiz E et al (2015) Bioinspired structural materials. Nat Mater 14:23–36

    CAS  PubMed  Google Scholar 

  129. Barthelat F, Yin Z, Buehler MJ (2016) Structure and mechanics of interfaces in biological materials. Nat Rev Mater 1:1–16

    Google Scholar 

  130. Wei Q, Pei S, Qian X et al (2020) Superhigh electromagnetic interference shielding of ultrathin aligned pristine graphene nanosheets film. Adv Mater 32:1907411. https://doi.org/10.1002/adma.201907411

    Article  CAS  Google Scholar 

  131. Fan X, Wang F, Gao Q et al (2022) Nature inspired hierarchical structures in nano-cellular epoxy/graphene-Fe3O4 nanocomposites with ultra-efficient EMI and robust mechanical strength. J Mater Sci Technol 103:177–185

    CAS  Google Scholar 

  132. Gao W, Zhao N, Yu T et al (2020) High-efficiency electromagnetic interference shielding realized in nacre-mimetic graphene/polymer composite with extremely low graphene loading. Carbon 157:570–577

    CAS  Google Scholar 

  133. Yang W, Jiang B, Che S et al (2021) Research progress on carbon-based materials for electromagnetic wave absorption and the related mechanisms. New Carbon Mater 36:1016–1030

    CAS  Google Scholar 

  134. Fan Z, Cheng X, Ding Y et al (2024) A comparative study of graphite and graphene sheets employed in polymer-based electromagnetic shielding materials. Polym Compos 45:2701–2711. https://doi.org/10.1002/pc.27949

    Article  CAS  Google Scholar 

  135. Jiang C, Wen B (2023) Construction of 1D Heterogeneous Co/C@Ag Nws with tunable electromagnetic wave absorption and shielding performance. Small 19:2301760. https://doi.org/10.1002/smll.202301760

    Article  CAS  Google Scholar 

  136. Xu L, Wan S, Heng Y et al (2023) Double layered design for electromagnetic interference shielding with ultra-low reflection features: PDMS including carbon fibre on top and graphene on bottom. Compos Sci Technol 231:109797

    CAS  Google Scholar 

  137. Yuan X, Li L, Yan Y et al (2024) Multi-interfaced Ni/C@ RGO/PTFE composites for electromagnetic protection applications with high environmental stability and durability. J Colloid Interface Sci 664:371–380

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was undertaken with funding from the Hunan Provincial Technical Innovation Platform and Talent Program in Science and Technology (grant no. 2020RC3041), the Hunan Provincial Natural Science Foundation of China (grant no. 2022JJ30079), the Training Program for Excellent Young Innovators of Changsha (grant no. kq2106056), the Young Elite Scientists Sponsorship Program from National Forestry and Grassland Administration of China (grant no. 2023132020), and the China Postdoctoral Science Foundation (grant nos. 2020M672846 and 2022T150556).

Author information

Authors and Affiliations

Authors

Contributions

WC, YY and CW contributed to conceptualization; CW contributed to funding acquisition and project administration; WC and GW contributed to investigation and formal analysis; WC contributed to writing—original draft; YY and CW contributed to data curation, writing—review and editing; YY and CW contributed to resources.

Corresponding author

Correspondence to Caichao Wan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Additional information

Handling Editor: Annela M. Seddon.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, W., Yang, Y., Wang, G. et al. Review: recent progress in fine-structured graphene materials for electromagnetic interference shielding. J Mater Sci 59, 11246–11277 (2024). https://doi.org/10.1007/s10853-024-09846-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-09846-4

Navigation