Skip to main content

Advertisement

Log in

Transforming detrimental intermetallics by accumulative thermal and strain energies in the Al–Fe–Si alloy

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

It is well known that the plate-like Al13Fe4 intermetallics are detrimental to the mechanical properties of recycled Al alloys which have higher Fe levels than primary Al. In wrought Al alloys, it is difficult to avoid the formation of primary plate-like Al13Fe4 intermetallics due to its equilibrium nature during solidification and its adaptions of many impurities such as Si, Mn, and Cr to form complex substitutional (Al, Si)13(Fe, Mn)4 crystals during subsequent homogenization and hot deformation. In this study, the influences of hot processing with different Mn and Cr additions and subsequent homogenization and hot transformation have been investigated. When 0.3Mn is added to Al–0.9Fe–0.1Si alloy, the percentage of Al13(Fe, Mn)4 decreases from 0.75 to 0.45% after homogenization of 10 h. When both 0.3Mn and 0.3Cr are added, it will decrease from 1.57 to 0.65%. After 30% hot deformation, it further decreases to 0.40% and 0.35% in 0.3Mn and 0.3Mn + Cr alloy, respectively, resulting in an improvement in elongation by 11.15% and 49.35%. Combined with cold deformation by 20%, Al13(Fe, Mn)4 eventually decreases to 0.30% and 0.24% in 0.3Mn and 0.3Mn + Cr alloys, achieving complete conversion from Al13(Fe, Mn)4 to α-Al15(Fe, Mn)3Si2, and the tensile strength is increased by 23.52% and 19.90%, respectively. To reveal the transformation mechanisms of Fe-rich intermetallics, first-principle calculations are adopted to compare the interfacial energy of Al13Fe4 and α-Al15(Fe, Mn)3Si2 with the Al matrix. It is found that the Al13Fe4 shows a much more faceted nature than the α-Al15(Fe, Mn)3Si2 due to its higher Jackson's α-factor and greater interfacial energy but can be transformed into α-Al15(Fe, Mn)3Si2 at certain thermodynamic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

Data will be made available on request.

References

  1. Shakiba M, Parson N, Chen XG (2014) Effect of homogenization treatment and silicon content on the microstructure and hot workability of dilute Al–Fe–Si alloys. Mater Sci Eng A 619:180–189

    Article  CAS  Google Scholar 

  2. Shakiba M, Parson N, Chen XG (2015) Hot deformation behavior and rate-controlling mechanism in dilute Al–Fe–Si alloys with minor additions of Mn and Cu. Mater Sci Eng A 636:572–581

    Article  CAS  Google Scholar 

  3. Belov NA, Aksenov AA, Eskin DG (2002) Iron in aluminium alloys: impurity and alloying element. CRC Press, Boca Raton

    Book  Google Scholar 

  4. Shi ZM, Gao K, Shi YT, Wang Y (2015) Microstructure and mechanical properties of rare-earth-modified Al−1Fe binary alloys. Mater Sci Eng A 632:62–71

    Article  CAS  Google Scholar 

  5. Liu P, Thorvaldsson T, Dunlop GL (2013) Formation of intermetallic compounds during solidification of dilute Al–Fe–Si alloys. Mater Sci Technol 2(10):1009–1018

    Article  Google Scholar 

  6. Kral M, Nakashima P, Mitchell D (2006) Electron microscope studies of Al–Fe–Si intermetallics in an Al-11 Pct Si alloy. Metall Mater Trans A 37:1987–1997

    Article  Google Scholar 

  7. Chen J, Dahlborg U, Bao CM, Calvo-Dahlborg M, Henein H (2011) Microstructure evolution of atomized Al–0.61 wt pct Fe and Al–1.90 wt pct Fe alloys. Metall Mater Trans B 42(3):557–567

    Article  CAS  Google Scholar 

  8. Allen CM, O’Reilly KAQ, Cantor B, Evans PV (1998) Intermetallic phase selection in 1XXX Al alloys. Prog Mater Sci 43:89–170

    Article  CAS  Google Scholar 

  9. Skjerpe P (1987) Intermetallic phases formed during DC-casting of an Al–0.25 wt Pct Fe–0.13 wt Pct Si alloy. Metall Mater Trans A 18:189–200

    Article  Google Scholar 

  10. Feng S, Liotti E, Lui A, Kumar S, Mahadevegowda A, O’Reilly KAQ, Grant PS (2018) An in-situ method to estimate the tip temperature and phase selection of secondary Fe-rich intermetallics using synchrotron X-ray radiography. Scr Mater 149:44–48

    Article  CAS  Google Scholar 

  11. Cui Y, Gourlay C (2022) Growth twinning and morphology of Al45Cr7 and Al13Fe4. J Alloys Compd 893:162318–162332

    Article  CAS  Google Scholar 

  12. Arbeiter J, Vončina M, Volšak D, Medved J (2020) Evolution of Fe-based intermetallic phases during homogenization of Al–Fe hypoeutectic alloy. J Therm Anal Calorim 142(5):1693–1699

    Article  CAS  Google Scholar 

  13. Wang X, Guan RG, Misra RDK, Wang Y, Li HC, Shang YQ (2018) The mechanistic contribution of nanosized Al3Fe phase on the mechanical properties of Al–Fe alloy. Mater Sci Eng A 724:452–460

    Article  CAS  Google Scholar 

  14. Pang N, Shi Z, Wang C, Li N, Lin Y (2021) Influence of Cr, Mn, Co and Ni addition on crystallization behavior of Al13Fe4 phase in Al–5Fe alloys based on thermodynamic calculations. Materials 14(4):768–783

    Article  CAS  Google Scholar 

  15. Yan F, Kumar S, McKay BJ, O’Reilly KAQ (2013) Effect of Mn on Fe containing phase formation in high purity aluminium. Int J Cast Met Res 27(4):202–206

    Article  Google Scholar 

  16. Wang B, Wang JS, Liu XX, Li Q, Liu X (2022) Uncovering the effects of neutralizing elements (Co, Mn and Cr) on the Fe-rich intermetallic formation in Al–Si–Cu alloys. Mater Sci Eng A 858:144090–144101

    Article  CAS  Google Scholar 

  17. Dorin T, Stanford N, Birbilis N, Gupta RK (2015) Influence of cooling rate on the microstructure and corrosion behavior of Al–Fe alloys. Corros Sci 100:396–403

    Article  CAS  Google Scholar 

  18. Yang W, Yang X, Ji S (2015) Melt superheating on the microstructure and mechanical properties of diecast Al–Mg–Si–Mn alloy. Met Mater Int 21(2):382–390

    Article  CAS  Google Scholar 

  19. Abedi K, Emamy M (2010) The effect of Fe, Mn and Sr on the microstructure and tensile properties of A356–10% SiC composite. Mater Sci Eng A 527(16–17):3733–3740

    Article  Google Scholar 

  20. Luo SX, Shi ZM, Li NY, Lin YM, Liang YH, Zeng YD (2019) Crystallization inhibition and microstructure refinement of Al–5Fe alloys by addition of rare earth elements. J Alloys Compd 789:90–99

    Article  CAS  Google Scholar 

  21. Hwang J, Doty H, Kaufman M (2008) The effects of Mn additions on the microstructure and mechanical properties of Al–Si–Cu casting alloys. Mater Sci Eng A 488(1–2):496–504

    Article  Google Scholar 

  22. Kim HY, Park TY, Han SW, Lee HM (2006) Effects of Mn on the crystal structure of α-Al(Mn, Fe)Si particles in A356 alloys. J Cryst Growth 291(1):207–211

    Article  CAS  Google Scholar 

  23. Timelli G, Bonollo F (2010) The influence of Cr content on the microstructure and mechanical properties of AlSi9Cu3(Fe) die-casting alloys. Mater Sci Eng A 528(1):273–282

    Article  Google Scholar 

  24. Mondolfo LF (1976) Aluminum alloys: structure and properties. Elsevier, Amsterdam

    Google Scholar 

  25. Qiu Z, Meng X, Yuan Q, Zeng X, Rao X, Ding Y, Luo L, Liu Y (2017) Morphological evolution of Fe-rich phases in the AlSi9Cu3Mg0.19(Fe) Alloy with the addition of minor Mn and Cr. Acta Metall Sin (Engl Lett) 31(6):629–640

    Article  Google Scholar 

  26. Ferraro S, Fabrizi A, Timelli G (2015) Evolution of sludge particles in secondary die-cast aluminum alloys as function of Fe, Mn and Cr contents. Mater Chem Phys 153:168–179

    Article  CAS  Google Scholar 

  27. Shabestari SG (2004) The effect of iron and manganese on the formation of intermetallic compounds in aluminum–silicon alloys. Mater Sci Eng A 383(2):289–298

    Article  Google Scholar 

  28. Shakiba M (2015) Effect of homogenization and alloying elements on hot deformation behaviour of 1XXX series aluminum alloys. University of Québec, Québec

    Google Scholar 

  29. Vončina M, Kresnik K, Volšak D, Medved J (2020) Effects of homogenization conditions on the microstructure evolution of aluminium alloy EN AW 8006. Metals 10(3):419–431

    Article  Google Scholar 

  30. Lentz M, Laptyeva G, Engler O (2016) Characterization of second-phase particles in two aluminium foil alloys. J Alloys Compd 660:276–288

    Article  CAS  Google Scholar 

  31. Zhao Y, He W, Song D, Zhang W, Shen F, Ma B, Jia Y, Sun Z, Fu Y, Fernández R (2023) In-situ synchrotron X-ray radiography study of primary Fe-rich phases growth in Al-Fe(Cu) alloys. Mater Charact 195:112539–112550

    Article  CAS  Google Scholar 

  32. Chen J, Liu C, Guan R, Wen F, Zhou Q, Zhao H (2020) Improving the comprehensive mechanical property of the rheo-extruded Al–Fe alloy by severe rolling deformation. J Mater Res Technol 9(2):1768–1779

    Article  CAS  Google Scholar 

  33. Li Q, Wang JS, Liu XX, Wang B (2023) Minimizing detrimental impacts of β-Fe in Al–Mg–Si alloy by combining thermal and compression processes. Mater Charact 198:112752–112768

    Article  CAS  Google Scholar 

  34. Liu XX, Wang B, Li Q, Wang JS, Zhang C, Xue CP, Yang XH, Tian GY, Liu X, Tang H (2022) Quantifying the effects of grain refiners Al–Ti–B and La on the microstructure and mechanical properties of W319 alloy. Metals 12(4):627–646

    Article  Google Scholar 

  35. Liu XX, Wang B, Li Q, Wang JS, Xue CP, Yang XH, Tian GY, Chang X, Liu X (2022) Quantifying the effects of grain refiners (AlTiB and Y) on microstructure and properties in W319 alloys. Mater Today Commun 33:104671–104683

    Article  CAS  Google Scholar 

  36. Wang B, Zhang MS, Wang JS (2021) Quantifying the effects of cooling rates and alloying additions on the microporosity formation in Al alloys. Mater Today Commun 28:102524–102534

    Article  CAS  Google Scholar 

  37. Liu KL, Wang JS, Yang Y, Zhou Y (2021) Effect of cooling rate on carbides in directionally solidified nickel-based single crystal superalloy: X-ray tomography and U-net CNN quantification. J Alloys Compd 883:160723–160732

    Article  CAS  Google Scholar 

  38. Wang B, Liu XX, Wang JS, Li Q, Liu KL, Zhang MS (2022) Uncovering the effects of Ce and superheat temperature on Fe-rich intermetallic and microporosity formation in aluminum alloy. Mater Charact 193:112226–112239

    Article  CAS  Google Scholar 

  39. Xue CP, Zhang Y, Mao P, Liu C, Wang JS (2021) Improving mechanical properties of wire arc additively manufactured AA2196 Al–Li alloy by controlling solidification defects. Addit Manuf 43:102019–102032

    CAS  Google Scholar 

  40. Goulart PR, Spinelli JE, Cheung N, Mangelinck-Nöel N, Garcia A (2010) Al–Fe hypoeutectic alloys directionally solidified under steady-state and unsteady-state conditions. J Alloys Compd 504(1):205–210

    Article  CAS  Google Scholar 

  41. Engler O, Miller-Jupp S (2016) Control of second-phase particles in the Al–Mg–Mn alloy AA 5083. J Alloys Compd 689:998–1010

    Article  CAS  Google Scholar 

  42. Zhan H, Hu B (2018) Analyzing the microstructural evolution and hardening response of an Al–Si–Mg casting alloy with Cr addition. Mater Charact 142:602–612

    Article  CAS  Google Scholar 

  43. ASM International (2016) ASM handbook volume 4E: heat treating of nonferrous alloys. ASM International, Materials park

    Google Scholar 

  44. Sun S, Zheng L, Liu J, Zhang H (2017) Selective laser melting of an Al–Fe–V–Si Alloy: microstructural evolution and thermal stability. J Mater Sci Technol 33(4):389–396

    Article  CAS  Google Scholar 

  45. Dinnis CM, Taylor JA, Dahle AK (2006) Iron-related porosity in Al–Si–(Cu) foundry alloys. Mater Sci Eng A 425(1–2):286–296

    Article  Google Scholar 

  46. Chen J, Lengsdorf R, Henein H, Herlach DM, Dahlborg U, Calvo-Dahlborg M (2013) Microstructure evolution in undercooled Al–8wt%Fe melts: comparison between terrestrial and parabolic flight conditions. J Alloys Compd 556:243–251

    Article  CAS  Google Scholar 

  47. Goulart PR, Spinelli JE, Cheung N, Garcia A (2010) The effects of cell spacing and distribution of intermetallic fibers on the mechanical properties of hypoeutectic Al–Fe alloys. Mater Chem Phys 119(1–2):272–278

    Article  CAS  Google Scholar 

  48. Akhtar M, Khajuria A, Sahu JK, Swaminathan J, Kumar R, Bedi R, Albert SK (2018) Phase transformations and numerical modelling in simulated HAZ of nanostructured P91B steel for high temperature applications. Appl Nanosci 8(7):1669–1685

    Article  CAS  Google Scholar 

  49. Akhtar M, Khajuria A (2023) The synergistic effects of boron and impression creep testing during paced controlling of temperature for P91 steels. Adv Eng Mater 25(16):2300053–2300070

    Article  CAS  Google Scholar 

  50. Aryshenskii E, Hirsch J, Yashin V, Sergei K, Kawalla R (2018) Influence of local inhomogeneity of thermomechanical treatment conditions on microstructure evolution in aluminum alloys. J Mater Eng Perform 27(4):6780–6799

    Article  CAS  Google Scholar 

  51. Cubero-Sesin JM, In H, Arita M, Iwaoka H, Horita Z (2014) High-pressure torsion for fabrication of high-strength and high-electrical conductivity Al micro-wires. J Mater Sci 49(19):6550–6557

    Article  CAS  Google Scholar 

  52. Cubero-Sesin JM, Horita Z (2015) Age hardening in ultrafine-grained Al-2 Pct Fe alloy processed by high-pressure torsion. Metall Mater Trans A 46(6):2614–2624

    Article  CAS  Google Scholar 

  53. Luo G, Zhou X, Li CB, Du J, Huang ZH (2022) Design and preparation of Al–Fe–Ce ternary aluminum alloys with high thermal conductivity. Trans Nonferrous Met Soc China 32(6):1781–1794

    Article  CAS  Google Scholar 

  54. Wang S, Zhang C, Li X, Huang H, Wang JS (2020) First-principle investigation on the interfacial structure evolution of the δ’/θ’/δ’ composite precipitates in Al–Cu–Li alloys. J Mater Sci Technol 58:205–214

    Article  CAS  Google Scholar 

  55. Que Z, Wang Y, Mendis CL, Fang C, Xia J, Zhou X, Fan Z (2022) Understanding Fe-containing intermetallic compounds in Al alloys: an overview of recent advances from the LiME research hub. Metals 12(10):1677–1710

    Article  CAS  Google Scholar 

  56. Butler KT, Sai-Gautam G, Canepa P (2019) Designing interfaces in energy materials applications with first-principles calculations. npj Comput Mater 5(1):19–31

    Article  Google Scholar 

  57. Jackson K (1958) Liquid metals and solidification. ASM, Cleveland, p 174

    Google Scholar 

Download references

Acknowledgements

Great support for the X-ray tomography experiments from the Dr. Pengcheng Mao at the Center for Micro and Nano Technologies, Beijing Institute of Technology is sincerely acknowledged. We are also grateful for tremendous help from all members at the Integrated Computational Materials Engineering (ICME) laboratory, Beijing Institute of Technology, China. The authors would like to thank all members in the Integrated Computational Materials Engineering (ICME) laboratory, Advanced Research Institute of Multidisciplinary Science (ARIMS), Beijing Institute of Technology (BIT). The research work is supported by National Natural Science Foundation of China-Guangxi Joint Fund (U20A20276) and National Natural Science Foundation of China (Project number: 52073030) .

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junsheng Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Handling Editor: Megumi Kawasaki.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 550 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Wang, J., Xue, C. et al. Transforming detrimental intermetallics by accumulative thermal and strain energies in the Al–Fe–Si alloy. J Mater Sci 59, 1699–1720 (2024). https://doi.org/10.1007/s10853-023-09287-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-09287-5

Navigation