Skip to main content
Log in

Investigations on structural, dielectric, and ferroelectric properties of Bi4-xNdxTi3O12 (x = 0.00, 0.85) ceramics

  • Research
  • Published:
Interactions Aims and scope Submit manuscript

Abstract

In this manuscript, ceramics of Bi4-xNdxTi3O12 (x = 0.00, 0.85) were synthesized using solid state reaction method. This research focuses on examining the impact of the substitution of Neodymium (Nd3+) ions on various properties including structural, morphological, dielectric, and ferroelectric. X-ray diffraction analysis reveals the formation of a single phase of bismuth-layered perovskite structure having an orthorhombic unit cell. The structural parameters calculated using Rietveld analysis and Williamson Hall plot confirm the decrease in orthorhombicity (δ = 2(a-b)/a + b) and enhancement in the strain of the doped sample. The suppression in the intensity of Raman modes at 117, 225, 267, and 238 cm−1 confirms the substitution of Nd3+ ions. The morphological structure revealed the peculiar plate like structure for both the samples. The frequency dependent (100 Hz-1 MHz) dielectric studies confirm the enhancement in the dielectric constant with substitution. The structural distortions caused by Nd3+ substitution lead to a drop in the Curie Transition temperature (Tc). The ferroelectric property (remnant polarization) was found to increase with Nd3+ substitution. The detailed investigation of the samples would be helpful for use of these materials for possible applications in data storage and energy harvesting applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References:

  1. Bain, A., Chand, P.: Ferroelectrics: Principles and Applications. 1–8 (2017). https://doi.org/10.1002/9783527805310

  2. Huang, H., Scott, J.F.: Ferroelectric materials for energy applications. John Wiley & Sons (2018). https://doi.org/10.1002/9783527807505

  3. Peláiz-Barranco, A., Mendoza, M.E., Calderón-Piñar, F., García-Zaldívar, O., López-Noda, R., de los Santos-Guerra, J., Eiras, J.A.: Features of phase transitions in lanthanum-modified lead zirconate titanate ferroelectric ceramics. Solid State Commun. 144, 425–428 (2007). https://doi.org/10.1016/j.ssc.2007.09.030

  4. de Araujo, C.A.-P., Cuchiaro, J.D., McMillan, L.D., Scott, M.C., Scott, J.F.: Fatigue-free ferroelectric capacitors with platinum electrodes. Nature 374, 627–629 (1995). https://doi.org/10.1038/374627a0

    Article  ADS  Google Scholar 

  5. Nakamura, T., Nakao, Y., Kamisawa, A., Takasu, H.: Preparation of Pb(Zr, Ti)O3 thin films on electrodes including IrO2. Appl. Phys. Lett. 65, 1522–1524 (1994). https://doi.org/10.1063/1.112031

    Article  ADS  Google Scholar 

  6. Subbarao, E.C.: Ferroelectricity Bi4Ti3O12 and Its Solid Solutions. Phys. Rev. 122, 804–807 (1961). https://doi.org/10.1103/PhysRev.122.804

    Article  ADS  Google Scholar 

  7. Park, B.H., Kang, B.S., Bu, S.D., Noh, T.W., Lee, J., Jo, W.: Lanthanum-substituted bismuth titanate for use in non-volatile memories. Nature 401, 682–684 (1999). https://doi.org/10.1038/44352

    Article  ADS  Google Scholar 

  8. Kim, J.S., Kim, S.S.: Ferroelectric properties of Nd-substituted bismuth titanate thin films processed at low temperature. Appl. Phys. A 81, 1427–1430 (2005). https://doi.org/10.1007/s00339-004-3190-0

    Article  ADS  Google Scholar 

  9. Qi, Y.J., Xiao, X., Lu, C.J., Mao, X.Y., Chen, X.B.: Microstructural, ferroelectric, and dielectric properties of Bi3.15Nd0.85Ti3O12 ceramics. J Appl Phys. 98, (2005). https://doi.org/10.1063/1.2103418

  10. Tomar, M.S., Melgarejo, R.E., Singh, S.P.: Leakage current and ferroelectric memory in Nd and Sm substituted Bi4Ti3O12 films. Microelectronics J. 36, 574–577 (2005). https://doi.org/10.1016/j.mejo.2005.02.088

    Article  Google Scholar 

  11. Jardiel, T., Caballero, A.C., Villegas, M.: Aurivillius ceramics: Bi4Ti3O12-based piezoelectrics. J. Ceram. Soc. Jpn. 116, 511–518 (2008). https://doi.org/10.2109/jcersj2.116.511

    Article  Google Scholar 

  12. Yao, Y.Y., Song, C.H., Bao, P., Su, D., Lu, X.M., Zhu, J.S., Wang, Y.N.: Doping effect on the dielectric property in bismuth titanate. J. Appl. Phys. 95, 3126–3130 (2004). https://doi.org/10.1063/1.1649456

    Article  ADS  Google Scholar 

  13. Ahn, C.W., Lee, H.J., Kang, S.H., Kim, I.W., Choi, M.S., Lee, J.S., Kim, H.W., Jin, B.M.: Structure dependence of the ferroelectric properties of Bi3.25Ln0.75Ti3O12 (Ln=La, Nd, Sm, Dy) ceramics. J Electroceram. 21, 847–850 (2008). https://doi.org/10.1007/s10832-007-9308-y

  14. Khomchenko, V.A., Kakazei, G.N., Pogorelov, Y.G., Araujo, J.P., Bushinsky, M.V., Kiselev, D.A., Kholkin, A.L., Paixão, J.A.: Effect of Gd substitution on ferroelectric and magnetic properties of Bi4Ti3O12. Mater. Lett. 64, 1066–1068 (2010). https://doi.org/10.1016/j.matlet.2010.02.016

    Article  ADS  Google Scholar 

  15. Pavlović, N., Srdić, V.V.: Synthesis and structural characterization of Ce-doped bismuth titanate. Mater. Res. Bull. 44, 860–864 (2009). https://doi.org/10.1016/j.materresbull.2008.09.005

    Article  Google Scholar 

  16. Pavlović, N., Koval, V., Dusza, J., Srdić, V.V.: Effect of Ce and La substitution on dielectric properties of bismuth titanate ceramics. Ceram. Int. 37, 487–492 (2011). https://doi.org/10.1016/j.ceramint.2010.09.005

    Article  Google Scholar 

  17. Bhardwaj, S., Paul, J., Chand, S., Raina, K.K., Kumar, R.: Oxygen vacancy induced dielectric relaxation studies in Bi4−xLaxTi3O12 (x = 0.0, 0.3, 0.7, 1.0) ceramics. Journal of Materials Science: Materials in Electronics. 25, 4568–4576 (2014). https://doi.org/10.1007/s10854-014-2205-7

  18. Song, D.P., Yang, J., Sun, J.X., Chen, L.-Y., Chu, Y.Q., Wang, Y., Lee, J.-K.: Controlling the crystallization of Nd-doped Bi4Ti3O12 thin-films for lead-free energy storage capacitors. J Appl Phys. 127, (2020). https://doi.org/10.1063/5.0005775

  19. Islam, Md.A.: Distorted Lattice Structure of La and Nd Co-Doped Bismuth Titanate Bi3-XTi4O12 Nano-Grained Ceramics for High Quality Energy Storage Application. EDU J Comput Electr Eng. 2, 01–07 (2021). https://doi.org/10.46603/ejcee.v2i1.24

  20. Harshapriya, P., Basandrai, D.: Impact of bismuth titanate for microwave absorber application: a review. J Solgel Sci Technol. 103, 1–11 (2022). https://doi.org/10.1007/s10971-022-05805-0

    Article  Google Scholar 

  21. Paul, J., Bhardwaj, S., Sharma, K.K., Kotnala, R.K., Kumar, R.: Room-temperature multiferroic properties and magnetoelectric coupling in Bi4−x SmxTi3−xCoxO12−x ceramics. J. Mater. Sci. 49, 6056–6066 (2014). https://doi.org/10.1007/s10853-014-8328-7

    Article  ADS  Google Scholar 

  22. Paul, J., Bhardwaj, S., Sharma, K.K., Kotnala, R.K., Kumar, R.: Room temperature multiferroic behaviour and magnetoelectric coupling in Sm/Fe modified Bi4Ti3O12 ceramics synthesized by solid state reaction method. J. Alloys Compd. 634, 58–64 (2015). https://doi.org/10.1016/j.jallcom.2015.01.259

    Article  Google Scholar 

  23. Zhou, Q., Kennedy, B.J., Howard, C.J.: Structural Studies of the Ferroelectric Phase Transition in Bi 4 Ti 3 O 12. Chem. Mater. 15, 5025–5028 (2003). https://doi.org/10.1021/cm034580l

    Article  Google Scholar 

  24. Xu, Y., Hu, K., Shi, M., Zuo, R., Qiu, G., Si, Z., Men, E.: Effect of concentration of Nd3+ on the photoluminescence and ferroelectric properties of Bi4-xNdxTi3O12 films. J. Mater. Sci.: Mater. Electron. 32, 15653–15664 (2021). https://doi.org/10.1007/s10854-021-06117-9

    Article  Google Scholar 

  25. Supriya, S.: Effect of doping and enhanced microstructures of bismuth titanates as aurivillius perovskites. Micron 162, 103344 (2022). https://doi.org/10.1016/j.micron.2022.103344

    Article  Google Scholar 

  26. Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographic Section A. 32, 751–767 (1976). https://doi.org/10.1107/S0567739476001551

    Article  ADS  Google Scholar 

  27. Kim, S.J., Moriyoshi, C., Kimura, S., Kuroiwa, Y., Kato, K., Takata, M., Noguchi, Y., Miyayama, M.: Direct observation of oxygen stabilization in layered ferroelectric Bi3.25La0.75Ti3O12. Appl Phys Lett. 91, (2007). https://doi.org/10.1063/1.2768906

  28. Pei, L., Li, M., Liu, J., Yu, B., Wang, J., Zhao, X.: Improvements of the ferroelectric properties of high-valence Tb-doped Bi4Ti3O12 thin film grown by sol–gel method. Mater. Lett. 64, 364–366 (2010). https://doi.org/10.1016/j.matlet.2009.11.017

    Article  ADS  Google Scholar 

  29. Hou, J., Qu, Y., Vaish, R., Varma, K.B.R., Krsmanovic, D., Kumar, R.V.: Crystallographic Evolution, Dielectric, and Piezoelectric Properties of Bi4Ti3O12:W/Cr Ceramics. J. Am. Ceram. Soc. 93, 1414–1421 (2010). https://doi.org/10.1111/j.1551-2916.2009.03582.x

    Article  Google Scholar 

  30. Cullity, B.D.: Elements of X-ray Diffraction. Addison-Wesley Publishing (1956)

  31. Idink, H., Srikanth, V., White, W.B., Subbarao, E.C.: Raman study of low temperature phase transitions in bismuth titanate, Bi4Ti3O12. J. Appl. Phys. 76, 1819–1823 (1994). https://doi.org/10.1063/1.357700

    Article  ADS  Google Scholar 

  32. Graves, P.R., Hua, G., Myhra, S., Thompson, J.G.: The Raman Modes of the Aurivillius Phases: Temperature and Polarization Dependence. J. Solid State Chem. 114, 112–122 (1995). https://doi.org/10.1006/jssc.1995.1017

    Article  ADS  Google Scholar 

  33. Osada, M., Tada, M., Kakihana, M., Watanabe, T., Funakubo, H.: Cation Distribution and Structural Instability in Bi4-xLaxTi3O12. Jpn. J. Appl. Phys. 40, 5572 (2001). https://doi.org/10.1143/JJAP.40.5572

    Article  ADS  Google Scholar 

  34. Zhou, D., Gu, H., Hu, Y., Qian, Z., Hu, Z., Yang, K., Zou, Y., Wang, Z., Wang, Y., Guan, J., Chen, W.: Raman scattering, electronic, and ferroelectric properties of Nd modified Bi4Ti3O12 nanotube arrays. J Appl Phys. 107, (2010). https://doi.org/10.1063/1.3407563

  35. Lazarević, Z., Romčević, N., Vijatović, M., Paunović, N., Romčević, M., Stojanović, B., Dohčević-Mitrović, Z.: Characterization of Barium Titanate Ceramic Powders by Raman Spectroscopy. Acta Phys Pol A. 115, 808–810 (2009). https://doi.org/10.12693/APhysPolA.115.808

  36. Chou, X., Zhai, J., Jiang, H., Yao, X.: Dielectric properties and relaxor behavior of rare-earth (La, Sm, Eu, Dy, Y) substituted barium zirconium titanate ceramics. J Appl Phys. 102, (2007). https://doi.org/10.1063/1.2799081

  37. Fröhlich, H. (Herbert): Theory of dielectrics : dielectric constant and dielectric loss. Clarendon Press (1949)

  38. Khan, A.R., Goel, R., Gupta, A., Tripathi, H., Kumar, N., Bhardwaj, S., Kumar, S., Sharma, I., Kumar, G., Sharma, P., Kumar, S.: Enhanced structural, magnetodielectric, and multiferroic response in Fe and Co Co-doped Barium strontium titanate ceramics. Phys. Scr. 99, 055963 (2024). https://doi.org/10.1088/1402-4896/ad3b43

    Article  ADS  Google Scholar 

  39. Islam, M.A., Islam, M.S., Gafur, M.A.: Synthesis and Characterization of La and Nd Co-Doped Bismuth Titanate Ferroelectric Ceramics. Int J Appl Ceram Technol. 12, (2015). https://doi.org/10.1111/ijac.12394

Download references

Acknowledgements

The authors wish to thankful to Punjab Engineering College (Deemed to be University), Chandigarh, for granting access to some of the characterization facilities.

Author information

Authors and Affiliations

Authors

Contributions

Sandhya Rani: Sample Preparation, Data curation, writing original draft. Anand Sagar: X-ray diffraction Analysis. Arbaz Reyaz Khan: Dielectric and Ferroelectric studies, Aayush Gupta: Software, Writing-review & editing. Sumit Bhardwaj: Supervision, Conceptualization, Writing-review & editing.

Corresponding author

Correspondence to Sumit Bhardwaj.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rani, S., Sagar, A., Khan, A.R. et al. Investigations on structural, dielectric, and ferroelectric properties of Bi4-xNdxTi3O12 (x = 0.00, 0.85) ceramics. Interactions 245, 251 (2024). https://doi.org/10.1007/s10751-024-02082-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10751-024-02082-x

Keywords

Navigation