1 Introduction

In the 1960s and 1990s, two families of m-sequences having low cross correlation were introduced by Gold [1] and Boztas et al. [2] respectively. Each of them has period \(2^n-1\) and a plateaued cross-correlation spectra. That is, for two such m-sequences \(u(t)={\mathrm{Tr}}_1^n(\alpha ^t)\) and \(v(t)={\mathrm{Tr}}_1^n(\beta ^t)\), where \(\alpha\) and \(\beta\) have order \(2^n-1\) in the finite field \(\mathbb {F}_{2^n}\), we have

$$\begin{aligned} C_{u,v}(\tau )=\sum \limits _{t=0}^{2^n-2}(-1)^{u(t+\tau )+v(t)}\in \left\{ -1, -1\pm 2^{\frac{n+1}{2}}\right\} . \end{aligned}$$

These families of sequences have the trace representations

$$\begin{aligned} f(x)={\mathrm{Tr}}_1^n \Big(x^{1+2^i}\Big)\; ({\mathrm{gcd}}(i,n)=1) \;\;\text{ and }\;\; f(x)=\sum \limits _{i=1}^{\frac{n-1}{2}}{\mathrm{Tr}}_1^n\Big(x^{1+2^i}\Big) \end{aligned}$$

respectively, where \({\mathrm{Tr}}_1^n(x)=\sum _{i=0}^{n-1}x^{2^i}\). Such families of maximum-length sequences, whose cross-correlation spectra attain exactly the values above, have a wide range of applications in cryptography and code-division multiple-access communication systems [3, 4]. Such sequences can be represented by Boolean functions which we call semi-bent functions, using the terminology of Khoo et al. [5].

In order to construct more sequences having the nice property as the above two sequences, Khoo et al. [6] investigated the problem of determining the function

$$\begin{aligned} f(x)=\sum \limits _{i=1}^{\frac{n-1}{2}}c_i{\mathrm{Tr}}_1^n\Big(x^{1+2^i}\Big),\;\;c_i\in \mathbb {F}_2 \end{aligned}$$

defined on \(\mathbb {F}_{2^n}\) with n odd is semi-bent, where this sum has more than one term. To such a function a cyclic code of length \(2^n-1\) was associated, spanned by

$$\begin{aligned} c(x), xc(x), \ldots , x^{n-1}c(x),\;\text{ where }\;c(x)=\sum \limits _{i=1}^{\frac{n-1}{2}}c_i\Big(x^i+x^{n-i}\Big). \end{aligned}$$

Then it was proved that f is semi-bent if and only if \(\mathrm{gcd}(c(x), x^n+1)=x+1\). This gives a very convenient tool for determining whether a function f having certain number of trace terms is semi-bent or not.

Following this work, Charpin et al. studied the following function [7]:

$$\begin{aligned} f(x)=\sum \limits _{i=1}^{\lfloor \frac{n-1}{2}\rfloor }c_i{\mathrm{Tr}}_1^n\Big(x^{1+2^i}\Big),\;\;c_i\in \mathbb {F}_2.\end{aligned}$$
(1)

When n is odd, they provide some semi-bent functions with three or four trace terms. When n is even, they proved that f(x) is semi-bent if and only if \(\mathrm{gcd}(c(x), x^n+1)=x^2+1\), where \(c(x)=\sum _{i=1}^{\frac{n}{2}-1}c_i(x^i+x^{n-i})\). Moreover, they found that the concatenation of two suitably chosen such semi-bent functions will yield a semi-bent function with higher algebraic degrees. After this work, a lot of research has been devoted to finding new families of quadratic semi-bent and bent functions in the form of Eq. (1) [8,9,10,11,12,13,14,15,16]. In 2013, Dong et al. present some new constructions of quadratic semi-bent functions. For odd \(n=pq\) with \(p(3\not \mid p), q\) odd, they proved that the function

$$\begin{aligned} f(x)=\sum \limits _{i=1}^{\frac{q-1}{2}}{\mathrm{Tr}}_1^n\Big(x^{1+2^{pi}}\Big)+{\mathrm{Tr}}_1^n\Big(x^{1+2^q}\Big), \end{aligned}$$

is semi-bent. For even \(n=2m\) with odd m, a necessary and sufficient condition for the function defined on \(\mathbb {F}_{2^n}\) by

$$\begin{aligned} f(x)=\sum \limits _{i-1}^{\frac{m-1}{2}}c_i{\mathrm{Tr}}_1^n\Big(\beta x^{1+2^{2i}}\Big), \end{aligned}$$

to be semi-bent is given. For some special cases of \(c_i(1\le i\le \frac{m-1}{2})\), they proved that f is semi-bent.

Motivated by the paper [8], we present new constructions of quadratic semi-bent and e-plateaued functions in polynomial forms. We study the function defined by

$$\begin{aligned} f(x)=\sum \limits _{i=1}^{s}c_i{\mathrm{Tr}}_1^n\Big(x^{1+2^{pi}}\Big)+\sum \limits _{j=1}^{t}d_j{\mathrm{Tr}}_1^n\Big( x^{1+2^{qj}}\Big), \end{aligned}$$
(2)

where \(c_i, d_j\in \mathbb {F}_2\), \(1\le s\le \frac{q-1}{2}\), \(1\le t\le \frac{p-1}{2}\), \(n=pq\), pq odd, \(\mathrm{gcd}(p, q)=1\), and the function defined by

$$\begin{aligned} f(x)=\sum \limits _{i=1}^{\frac{m-1}{2}}c_i{\mathrm{Tr}}_1^n\Big(\beta x^{1+2^{ei}}\Big), \end{aligned}$$
(3)

where \(n=em\), \(e=2^l\), m is odd, \(c_i\in \mathbb {F}_2\)\((1\le i\le \frac{m-1}{2})\), \(\beta \in \mathbb {F}_{2^e}^{*}\). For odd n, we find five new classes of semi-bent functions of the form Eq. (2) by choosing suitable vectors \((c_1,\ldots , c_{s})\in \mathbb {F}_2^{s}\) and \((d_1, \ldots , d_{t})\in \mathbb {F}_2^{t}\). For even n, we give a necessary and sufficient condition under which f(x) given by Eq. (3) is e-plateaued and provide some new e-plateaued and semi-bent functions with few trace terms.

To the best of our knowledge, we give a list of the quadratic semi-bent functions on \(\mathbb {F}_{2^n}\) as follows:

When n is odd, the following functions are semi-bent.

  1. (1)

    \(f(x)={\mathrm{Tr}}_1^n(x^{1+2^i})\), \(\mathrm{gcd}(i, n)=1\) [1].

  2. (2)

    \(f(x)=\sum \limits _{i=1}^{\frac{n-1}{2}}{\mathrm{Tr}}_1^n(x^{1+2^i})\) [2].

  3. (3)

    \(f(x)=\sum \limits _{i=1}^{\frac{n-1}{2}}c_i{\mathrm{Tr}}_1^n(x^{1+2^i})\), \(c_i\in \mathbb {F}_2\) for \(1\le i\le \frac{n-1}{2}\), \(\mathrm{gcd}(\sum \limits _{i=1}^{\frac{n-1}{2}}c_i\Big(x^i+x^{n-i}\Big), x^n+1)=x+1\) [6].

  4. (4)

    \(f(x)=\sum \limits _{i=0}^r{\mathrm{Tr}}_1^n(x^{1+2^{a+id}})\), \(\mathrm{gcd}(2a+rd, n)=\mathrm{gcd}((r+1)d, n)=1\) [5].

  5. (5)

    \(f(x)={\mathrm{Tr}}_1^n(x^{1+2^i})+{\mathrm{Tr}}_1^n(x^{1+2^j})\), \(\mathrm{gcd}(i+j, n)=\mathrm{gcd}(i-j, n)=1\) [5].

  6. (6)

    \(f(x)=\sum \limits _{i=1}^{\frac{q-1}{2}}{\mathrm{Tr}}_1^n\Big(x^{1+2^{pi}}\Big)+{\mathrm{Tr}}_1^n\Big(x^{1+2^q}\Big)\), \(n=pq\), \(p(3\not \mid p), q\) are odd positive integers such that \(\mathrm{gcd}(p, q)=1\) [8].

  7. (7)

    \(f(x)={\mathrm{Tr}}_1^n\Big(x^{1+2^{pi}}\Big)+{\mathrm{Tr}}_1^n(x^{1+2^{qj}})\), \(n=pq\), pq odd, \(\mathrm{gcd}(p, q)=1\), and ij are two positive integers such that \(\mathrm{gcd}(i, q)=\mathrm{gcd}(j, p)=1\) (Theorem 3 of this paper).

  8. (8)

    \(f(x)=\sum \limits _{i=1}^{\frac{q-1}{2}}{\mathrm{Tr}}_1^n(x^{1+2^{pi}})+{\mathrm{Tr}}_1^n(x^{1+2^{qj}})\), \(n=pq\), \(p(3\not \mid p), q\) are odd positive integers such that \(\mathrm{gcd}(p, q)=1\), \(\mathrm{gcd}(j, p)=1\) (Theorem 4 of this paper).

  9. (9)

    \(f(x)=\sum \limits _{i=1}^{\frac{q-1}{2}}{\mathrm{Tr}}_1^n(x^{1+2^{pi}})+{\mathrm{Tr}}_1^n(x^{1+2^{q}})+{\mathrm{Tr}}_1^n(x^{1+2^{qj}})\), \(n=pq\), pq odd and \(\mathrm{gcd}(p,q)=1\), \(j=2^l\) and l is a positive integer such that \(\mathrm{gcd}(l,n)=1\) (Theorem 5 of this paper).

  10. (10)

    \(f(x)=\sum \limits _{i=1}^{\frac{q-1}{2}}{\mathrm{Tr}}_1^n(x^{1+2^{pi}})+{\mathrm{Tr}}_1^n(x^{1+2^{qj}})+{\mathrm{Tr}}_1^n(x^{1+2^{qk}})\), \(n=pq\), pq odd and \(\mathrm{gcd}(p,q)=1\), \(j=2^{u-1}-2^{v-1}\), \(k=2^{u-1}+2^{v-1}\), \(u>v\ge 1\) (Theorem 6 of this paper).

  11. (11)

    \(f(x)=\sum \limits _{i=1}^{\frac{q-1}{2}}{\mathrm{Tr}}_1^n(x^{1+2^{pi}})+{\mathrm{Tr}}_1^n(x^{1+2^{qj}})+{\mathrm{Tr}}_1^n(x^{1+2^{qk}})\), \(n=pq\), pq odd and \(\mathrm{gcd}(p,q)=1\), \(j=2^u\), \(k=2^v\), \(u>v\ge 1\), \(\mathrm{gcd}(u-v,n)=1\) (Theorem 7 of this paper).

When \(n=2m\) is even, the following functions are semi-bent:

  1. (1)

    \(f(x)=\sum \limits _{i=1}^{\frac{n}{2}-1}c_i{\mathrm{Tr}}_1^n(x^{1+2^i})\), \(c_i\in \mathbb {F}_2\), \(\mathrm{gcd}(\sum \limits _{i=1}^{\frac{n}{2}-1}c_i(x^i+x^{n-i}), x^n+1)=x^2+1\) [7].

  2. (2)

    \(f(x)={\mathrm{Tr}}_1^n(\alpha x^{1+2^i})\), \(\alpha \in \mathbb {F}_{2^n}^{*}\), i even, m odd [10].

  3. (3)

    \(f(x)={\mathrm{Tr}}_1^n(\alpha x^{1+2^i})\), \(\alpha \in \{x^3\,|\,x\in \mathbb {F}_{2^n}^{*}\}\), i odd, m even [10].

  4. (4)

    \(f(x)={\mathrm{Tr}}_1^n(\alpha x^{1+2^i})\), \(\alpha \in \{x^3\,|\,x\in \mathbb {F}_{2^n}^{*}\}\), i odd, m odd and \(\mathrm{gcd}(i, m)=1\) [10].

  5. (5)

    \(f(x)={\mathrm{Tr}}_1^n(x^{1+2^i})+{\mathrm{Tr}}_1^n(x^{1+2^j})\), m odd, \(1\le i<j\le m\), \(\mathrm{gcd}(i+j, n)=\mathrm{gcd}(j-i, n)=1\) or \(\mathrm{gcd}(i+j, n)=\mathrm{gcd}(j-i, n)=2\) [10].

  6. (6)

    \(f(x)=\sum \limits _{i=1}^{\frac{m-1}{2}}{\mathrm{Tr}}_1^n(\beta x^{1+4^i})\), m odd, \(\beta \in \mathbb {F}_{4}^{*}\) [8].

  7. (7)

    \(f(x)=\sum \limits _{i=1}^{\frac{m-1}{2}}c_i{\mathrm{Tr}}_1^n(\beta x^{1+4^i})\), \(c_i\in \mathbb {F}_2\), \(\beta \in \mathbb {F}_4^{*}\), m odd, \(\mathrm{gcd}(\sum \limits _{i=1}^{\frac{m-1}{2}}c_i(x^i+x^{m-i}), x^m+1)=x+1\) [8].

  8. (8)

    \(f(x)=\sum \limits _{i=1}^{k}{\mathrm{Tr}}_1^n(\beta x^{1+4^{di}})\), \(\beta \in \mathbb {F}_4^{*}\), m odd, \(d\ge 1\), \(1\le k\le \frac{m-1}{2}\), \(\mathrm{gcd}(k+1, m)=\mathrm{gcd}(k, m)=\mathrm{gcd}(d, m)=1\) [8].

  9. (9)

    \(f(x)={\mathrm{Tr}}_1^n(\beta x^{1+4^i}+\beta x^{1+4^j})\), \(\beta \in \mathbb {F}_4^{*}\), m odd, \(1\le i<j\le \lfloor \frac{n}{4}\rfloor\), \(\mathrm{gcd}(i+j, m)=\mathrm{gcd}(j-i, m)=1\) [8].

  10. (10)

    \(f(x)={\mathrm{Tr}}_1^n(\beta x^{1+4^i}+\beta x^{1+4^j}+\beta x^{1+4^t})\), \(\beta \in \mathbb {F}_{4}^{*}\), m odd, \(1\le i<j<t\le \lfloor \frac{n}{4}\rfloor\), \(i+j=t\), \(\mathrm{gcd}(i, m)=\mathrm{gcd}(j, m)=\mathrm{gcd}(t, m)=1\) [8].

  11. (11)

    \(f(x)={\mathrm{Tr}}_1^n(\beta x^{1+4^i}+\beta x^{1+4^j}+\beta x^{1+4^t})\), \(\beta \in \mathbb {F}_{4}^{*}\), m odd, \(1\le i<j<t\le \lfloor \frac{n}{4}\rfloor\), \(i+j=2t\), \(j-i=3^hp\), \(3\not \mid p\), \(n=3^kq\), \(3\not \mid q\), \(\mathrm{gcd}(2t, m)=1\), \(h\ge k\) [8].

  12. (12)

    \(f(x)={\mathrm{Tr}}_1^n(\beta x^{1+4^i}+\beta x^{1+4^j}+\beta x^{1+4^t})\), \(\beta \in \mathbb {F}_{4}^{*}\), m odd, \(1\le i<j<t\le \lfloor \frac{n}{4}\rfloor\), \(j-i=2t\), \(t\ne i\), \(j+i=3^up\), \(3\not \mid p\), \(n=3^vq\), \(3\not \mid q\), \(\mathrm{gcd}(2t, m)=1\), \(u\ge v\) [8].

  13. (13)

    \(f(x)={\mathrm{Tr}}_1^n(\beta x^{1+4^i}+\beta x^{1+4^j}+\beta x^{1+4^t}+\beta x^{1+4^s})\), \(\beta \in \mathbb {F}_{4}^{*}\), m odd, \(1\le i,j,t,s\le \lfloor \frac{n}{4}\rfloor\), \(i<j\), \(t<s\), \(i+j=t+s=r\), \(t\ne i\), \(\mathrm{gcd}(r, m)=\mathrm{gcd}(s-i, m)=\mathrm{gcd}(s-j, m)=1\) [8].

  14. (14)

    \(f(x)={\mathrm{Tr}}_1^n(\beta x^{1+2^{2i}})\), \(1\le i\le m-1\), \(\mathrm{gcd}(i, m)=1\) and m odd (Corollary 5 of this paper).

  15. (15)

    \(f(x)={\mathrm{Tr}}_1^n(\beta x^{1+2^{2i}}+\beta x^{1+2^{2j}}+\beta x^{1+2^{2t}})\), \(\beta \in \mathbb {F}_{4}^{*}\), m odd, \(1\le i<j<t\le m-1\), \(i+j=2t\), \(\mathrm{gcd}(t, m)=1\) (Corollary 9 of this paper).

  16. (16)

    \(f(x)={\mathrm{Tr}}_1^n(\beta x^{1+2^{2i}}+\beta x^{1+2^{2j}}+\beta x^{1+2^{2t}})\), \(\beta \in \mathbb {F}_{4}^{*}\), m odd, \(1\le i<j<t\le m-1\), \(j-i=2t\), \(\mathrm{gcd}(t, m)=1\) (Corollary 10 of this paper).

2 Preliminaries

Let \(\mathbb {F}_{2^n}\) be the finite field with \(2^n\) elements, and we use \(\mathcal {B}_n\) to denote the set of Boolean functions from \(\mathbb {F}_{2^n}\) to \(\mathbb {F}_2\). In this paper, we mainly investigate the Boolean function of the form

$$\begin{aligned} f(x)=\sum \limits _{i=1}^{s}c_i{\mathrm{Tr}}_1^n\Big(x^{1+2^{pi}}\Big)+\sum \limits _{j=1}^{t}d_j{\mathrm{Tr}}_1^n\Big( x^{1+2^{qj}}\Big), \end{aligned}$$

where \(c_i, d_j\in \mathbb {F}_2\), \(1\le s\le \frac{q-1}{2}\), \(1\le t\le \frac{p-1}{2}\), \(n=pq\), pq odd, \(\mathrm{gcd}(p, q)=1\), and the function defined by

$$\begin{aligned} f(x)=\sum \limits _{i=1}^{\frac{m-1}{2}}c_i{\mathrm{Tr}}_1^n\Big(\beta x^{1+2^{ei}}\Big), \end{aligned}$$

where \(n=em\), \(e=2^l\), m is odd, \(c_i\in \mathbb {F}_2\)\((1\le i\le \frac{m-1}{2})\), \(\beta \in \mathbb {F}_{2^e}^{*}\). The Walsh transform of f at \(\lambda \in \mathbb {F}_{2^n}\) is given by

$$\begin{aligned} W_f(\lambda )=\sum \limits _{x\in \mathbb {F}_{2^n}}(-1)^{f(x)+{\mathrm{Tr}}_1^n(\lambda x)}. \end{aligned}$$

Definition 1

([17]) Let \(f(x)\in \mathcal {B}_n\). For any \(\lambda \in \mathbb {F}_{2^n}\), if \(W_f(\lambda )\in \{0,\pm 2^{\frac{n+r}{2}}\}\), for some fixed r, \(r=0,1,\ldots ,n\), then f(x) is called r-plateaued. 0-plateaued (when n is even) functions are called bent. 1-plateaued (when n is odd) and 2-plateaued (when n is even) functions are called semi-bent.

The r-plateaued functions exist only when \(n-r\) is even, or equivalently, if n and r have the same parity [18]. It is well-known that all the quadratic functions are plateaued [19].

The quadratic Boolean functions on \(\mathbb {F}_{2^n}\) are as follows:

$$\begin{aligned} f(x)=\sum \limits _{i=1}^{\lfloor \frac{n}{2}\rfloor }c_i{\mathrm{Tr}}_1^n\Big(x^{1+2^i}\Big), \;c_i\in \mathbb {F}_2. \end{aligned}$$

Any such Boolean function with n variables has rank 2t with \(0\le t\le \lfloor \frac{n}{2}\rfloor\) [3], and the rank can be found as follows. Let

$$\begin{aligned} \Omega _f(x;y)=f(0)+f(x)+f(y)+f(x+y). \end{aligned}$$
(4)

Then the rank of f(x) is 2t if and only if the equation

$$\begin{aligned} \Omega _f(x;y)=0,\,\text{ for } \text{ any }\,y\in \mathbb {F}_{2^n} \end{aligned}$$

in x just has \(2^{n-2t}\) solutions. The rank of quadratic Boolean functions is connected with the distribution of its Walsh transform values. Furthermore, the following theorem holds.

Lemma 1

([3]) Let \(f(x)\in \mathcal {B}_n\) is a quadratic function, and the rank of f(x) is 2t, \(0\le t\le \lfloor \frac{n}{2}\rfloor\), then the distribution of its Walsh transform values is given by

$$\begin{aligned} W_f(\lambda )=\left\{ \begin{array}{ll} 2^{n-t},&{}\;\;2^{2t-1}+2^{t-1}\;\mathrm{times,}\\ 0, &{} \;\;2^{n-2t}\;\mathrm{times,}\\ -2^{n-t}, &{}\;\;2^{2t-1}-2^{t-1}\; \mathrm{times}. \end{array}\right. \end{aligned}$$

From the above theorem, it is easy to see that a quadratic Boolean function is semi-bent if and only if the rank of f(x) is \(n-2\) when n is even, or the rank of f(x) is \(n-1\) when n is odd.

Definition 2

([20]) The polynomials \(l(x)=\sum \limits _{i=0}^na_ix^i\) and \(L(x)=\sum \limits _{i=0}^na_ix^{q^i}\) over \(\mathbb {F}_{q^m}\) (q is a prime integer) are called q-associates of each other. More specifically, l(x) is the conventional q-associate of L(x) and L(x) is the linearized q-associate of l(x).

Lemma 2

([20]) Let \(L_1(x)\) and L(x) be q-polynomials over \(\mathbb {F}_{q}\) with conventional q-associates \(l_1(x)\) and l(x). Then \(L_1(x)\) divides L(x) holds if and only if \(l_1(x)\) divides l(x).

Lemma 3

Let \(\phi (x)=x+\frac{1}{x}\) be a function defined over \(\mathbb {F}_{2^n}^{*}\). Then the following two statements hold.

  1. (i)

    If \(\phi (x)=\phi (y)\) for two elements x and y in \(\mathbb {F}_{2^n}^*\), then \(x=y\) or \(xy=1\).

  2. (ii)

    \(\phi (x)=0\) if and only if \(x=1\).

Proof

  1. (i)

    If \(\phi (x)=\phi (y)\) for \(x,y\in \mathbb {F}_{2^n}^{*}\), i.e.,

    $$\begin{aligned} x+\frac{1}{x}=y+\frac{1}{y}, \end{aligned}$$

    then

    $$\begin{aligned} x^2y+y=xy^2+x, \end{aligned}$$

    which implies

    $$\begin{aligned} (x+y)(xy+1)=0. \end{aligned}$$

    Therefore \(x=y\) or \(xy=1\).

  2. (ii)

    \(\phi (x)=0\) if and only if \(x+\frac{1}{x}=0\), which is equivalent to \(x^2=1\). Since \(\mathrm{gcd}(2,2^n-1)=1\), the equation \(x^2=1\) has only one solution \(x=1\) in \(\mathbb {F}_{2^n}^{*}\).

Lemma 4

Let pq and ij be positive integers satisfying that pq are odd and \(\mathrm{gcd}(p,q)=1\) and \(\mathrm{gcd}(i, q)=\mathrm{gcd}(j, p)=1\). Then \(\mathrm{gcd}(pq, pi\pm qj)=1\).

Proof

If \(\mathrm{gcd}(pq, pi\pm qj)\ne 1\), then there exists a prime integer t such that \(t\,|\,\mathrm{gcd}(pq, pi\pm qj)\), i.e.,

$$\begin{aligned} t\,|\,pq \;\;\text{ or }\;\;t\,|\,pi\pm qj. \end{aligned}$$
(5)

Since t is a prime, by Eq. (5) we have \(t\,|\,p\) or \(t\,|\,q\).

If \(t\,|\,p\), then by Eq. (5), we have \(t\,|\,qj\). Therefore, \(t\,|\,q\) or \(t\,|\,j\). If \(t\,|\,q\), then \(t\,|\,\mathrm{gcd}(p, q)=1\), which is impossible. If \(t\,|\,j\), then \(t\,|\,\mathrm{gcd}(j, p)=1\), which is also a contradiction with the assumption that t is a prime.

If \(t\,|\,q\), we can similarly deduce that \(t=1\), a contradiction. This completes the proof.

3 New constructions of semi-bent functions on \(\mathbb {F}_{2^n}\) with n odd

In this section, several classes of semi-bent functions are constructed on \(\mathbb {F}_{2^n}\), where \(n=pq\) and pq are odd integers such that \(\mathrm{gcd}(p,q)=1\).

Theorem 3

Let \(n=pq\) with pq odd and \(\mathrm{gcd}(p,q)=1\). Then the function defined on \(\mathbb {F}_{2^n}\) by

$$\begin{aligned} f(x)={\mathrm{Tr}}_1^n\Big(x^{1+2^{pi}}\Big)+{\mathrm{Tr}}_1^n\Big(x^{1+2^{qj}}\Big) \end{aligned}$$
(6)

is semi-bent, where ij are two positive integers such that \(\mathrm{gcd}(i,q)=\mathrm{gcd}(j,p)=1\).

Proof

By Lemma 1, in order to prove that f(x) is a semi-bent function, we just need to prove that the rank of f(x) is \(n-1\). By Eq. (4), we have

$$\begin{aligned} \Omega _f(x;y)={\mathrm{Tr}}_1^n\Big(y \Big(x^{2^{pi}}+x^{2^{pq-pi}}+x^{2^{qj}}+x^{2^{pq-qj}}\Big)\Big). \end{aligned}$$

Let \(L(x)=x^{2^{pi}}+x^{2^{pq-pi}}+x^{2^{qj}}+x^{2^{pq-qj}}\), and it is easy to see that \(x^2+x\,|\,L(x)\). To prove that the rank of f(x) is \(n-1\), we need to show that L(x) has two solutions in \(\mathbb {F}_{2^n}\) or equivalently to prove \(\mathrm{gcd}(L(x),x^{2^{pq}}+x)=x^2+x\). By Lemma 2, we need to show

$$\begin{aligned} \mathrm{gcd}(l(x), x^{pq}+1)=x+1, \end{aligned}$$

where \(l(x)=x^{pi}+x^{pq-pi}+x^{qj}+x^{pq-qj}\). To do this, we divide the remaining proof into three cases.

If \(\beta \ne 1\) is root of \(x^{pq}+1\) and \(\beta ^p=1\), then \(l(\beta )=\beta ^{qj}+\beta ^{-qj}\ne 0\). Otherwise, if \(l(\beta )=0\), then \(\beta ^{2qj}=1\). Since \(\mathrm{gcd}(2, 2^n-1)=1\), we have \(\beta ^{qj}=1\). Recall that \(\beta ^{p}=1\), \(\mathrm{gcd}(p,q)=1\) and \(\mathrm{gcd}(p,j)=1\), we have \(\beta =1\), which is a contradiction with the assumption \(\beta \ne 1\).

If \(\beta \ne 1\) is a root of \(x^{pq}+1\) and \(\beta ^q=1\), we can similarly deduce that \(l(\beta )=\beta ^{pi}+\beta ^{-pi}\ne 0\).

If \(\beta \ne 1\) is a root of \(x^{pq}+1\) and \(\beta ^p\ne 1\), \(\beta ^{q}\ne 1\), then \(l(\beta )=\beta ^{pi}+\beta ^{-pi}+\beta ^{qj}+\beta ^{-qj}\). If \(l(\beta )=0\), i.e., \(\phi (\beta ^{pi})=\phi (\beta ^{qj})\), where \(\phi (x)\) is the function defined in Lemma 2. By Lemma 2, we have

$$\begin{aligned} \beta ^{pi}=\beta ^{qj}\; \text{ or }\;\beta ^{pi+qj}=1. \end{aligned}$$
(7)

Since \(\mathrm{gcd}(p,q)=1\) and \(\mathrm{gcd}(i,q)=\mathrm{gcd}(j,p)=1\), by Lemma 4 we have \(\mathrm{gcd}(pq, pi\pm qj)=1\). Recall that \(\beta ^{pq}=1\), then by Eq. (7), we have \(\beta =\beta ^{\mathrm{gcd}(pq,pi+qj)}=1\) or \(\beta =\beta ^{\mathrm{gcd}(pq,pi-qj)}=1\), both of which contradict with the assumption \(\beta \ne 1\).

From the analysis of above, we can see that \(\mathrm{gcd}(l(x),x^{pq}+1)=x+1\). Thus the rank of f(x) is \(n-1\), and this completes the proof.

Corollary 1

Let \(n=pq\) with pq distinct odd prime integers. Then the function defined on \(\mathbb {F}_{2^n}\) by

$$\begin{aligned} f(x)={\mathrm{Tr}}_1^n\Big(x^{1+2^{pi}}\Big)+{\mathrm{Tr}}_1^n\Big(x^{1+2^{qj}}\Big) \end{aligned}$$
(8)

is semi-bent for any integers ij.

Theorem 4

Let \(n=pq\) with pq odd, \(\mathrm{gcd}(p,q)=1\) and \(3\not \mid p\). Then the function defined on \(\mathbb {F}_{2^n}\) by

$$\begin{aligned} f(x)=\sum \limits _{i=1}^{\frac{q-1}{2}}{\mathrm{Tr}}_1^n\Big(x^{1+2^{pi}}\Big)+{\mathrm{Tr}}_1^n\Big(x^{1+2^{qj}}\Big) \end{aligned}$$
(9)

is semi-bent, where j is a positive integer such that \(\mathrm{gcd}(j,p)=1\).

Proof

From Lemma 1, in order to prove that f(x) is a semi-bent function, we just need to prove that the rank of f(x) is \(n-1\). By Eq. (9), we have

$$\begin{aligned} \begin{array}{rcl} f(x+y)&{}=&{}\sum \limits _{i=1}^{\frac{q-1}{2}}{\mathrm{Tr}}_1^n\Big(x+y)^{1+2^{pi}}+{\mathrm{Tr}}_1^n(x+y)^{1+2^{qj}}\Big)\\ {} &{}=&{}\sum \limits _{i=1}^{\frac{q-1}{2}}{\mathrm{Tr}}_1^n\Big(x^{1+2^{pi}}+y^{1+2^{pi}}\Big)+\sum \limits _{i=1}^{\frac{q-1}{2}}{\mathrm{Tr}}_1^n\Big(x^{2^{pi}}y+y^{2^{pi}}x\Big)\\ {} &&+\,{\mathrm{Tr}}_1^n\Big(x^{1+2^{qj}}+y^{1+2^{qj}}+x^{2^{qj}}y+y^{2^{qj}}x\Big). \end{array} \end{aligned}$$

Hence,

$$\begin{aligned} \begin{array}{rcl} \Omega _f(x;y)&{}=&{}f(0)+f(x)+f(y)+f(x+y)\\ {} &{}=&{}\sum \limits _{i=1}^{\frac{q-1}{2}}{\mathrm{Tr}}_1^n\Big(x^{2^{pi}}y+y^{2^{pi}}x\Big)+{\mathrm{Tr}}_1^n\Big(x^{2^{qj}}y+y^{2^{qj}}x\Big)\\ {} &{}=&{}\sum \limits _{i=1}^{\frac{q-1}{2}}{\mathrm{Tr}}_1^n\Big(x^{2^{pi}}y+yx^{2^{pq-pi}}\Big)+{\mathrm{Tr}}_1^n\Big(x^{2^{qj}}y+yx^{2^{pq-qj}}\Big)\\ &{}=&{}{\mathrm{Tr}}_1^n\left(y\left(\sum \limits _{i=1}^{\frac{q-1}{2}}\Big(x^{2^{pi}}+x^{2^{pq-pi}}\Big)\right)\right)+{\mathrm{Tr}}{\mathrm{Tr}}_1^n\Big(y\Big(x^{2^{qj}}+x^{2^{pq-qj}}\Big)\Big)\\ &{}=&{} {\mathrm{Tr}}_1^n\left(y\left(\sum \limits _{i=1}^{q-1}x^{2^{pi}}+x^{2^{qj}}+x^{2^{pq-qj}}\right )\right). \end{array} \end{aligned}$$

Let \(L(x)=\sum \limits _{i=1}^{q-1}x^{2^{pi}}+x^{2^{qj}}+x^{2^{pq-qj}}\), and it is easy to see that \(x^2+x\,|\,L(x)\). To prove that the rank of f(x) is \(n-1\), we need to show that \(\mathrm{gcd}(L(x),x^{2^{pq}}+x)=x^2+x\), which is equivalent to show that

$$\begin{aligned} \mathrm{gcd}(l(x), x^{pq}+1)=x+1 \end{aligned}$$

from Lemma 2, where \(l(x)=\sum \limits _{i=1}^{q-1}x^{pi}+x^{qj}+x^{pq-qj}\).

If \(\beta \ne 1\) is a root of \(x^{pq}+1\) and \(\beta ^p=1\), then \(l(\beta )=\beta ^{jq}+\beta ^{-jq}\ne 0\). Otherwise, we have \(\beta ^{2jq}=1\). Since \(\mathrm{gcd}(2,2^n-1)=1\), \(\beta ^{jq}=1\). From the conditions \(\beta ^p=1\) and \(\mathrm{gcd}(j,p)=1\), we have \(\beta =1\), which is a contradiction with the assumption.

If \(\beta \ne 1\) is a root of \(x^{pq}+1\) and \(\beta ^q=1\), then \(l(\beta )=\frac{\beta ^{pq}+\beta ^p}{\beta ^p+1}+\beta ^{q(p-j)}+\beta ^{qj}=1\ne 0\).

If \(\beta \ne 1\) is a root of \(x^{pq}+1\) and \(\beta ^p\ne 1\), \(\beta ^q\ne 1\), thus

$$\begin{aligned} l(\beta )=\frac{\beta ^{pq}+\beta ^p}{\beta ^p+1}+\beta ^{q(p-j)}+\beta ^{qj}=1+\beta ^{q(p-j)}+\beta ^{qj}. \end{aligned}$$

If \(l(\beta )=0\), then \(\beta ^{3jq}=1\). Since \(\beta ^{pq}=1\), \(3\not \mid p\) and \(\mathrm{gcd}(j,p)=1\), \(\beta ^{\mathrm{gcd}(pq,3jq)}=\beta ^{\mathrm{gcd}(p,3j)q}=\beta ^q=1\), which contradicts with the assumption \(\beta ^q\ne 1\). Hence we also have \(l(\beta )\ne 0\) in this case.

From the analysis of above, we can see that \(\mathrm{gcd}(l(x),x^{pq}+1)=x+1\). Thus the rank of f(x) is \(n-1\), and this completes the proof.

For \(j=1\) in Theorem 4, we have the following corollary.

Corollary 2

([8]) Let \(n=pq\) with pq odd, \(\mathrm{gcd}(p,q)=1\) and \(3\not \mid p\). Then the function defined on \(\mathbb {F}_{2^n}\) by

$$\begin{aligned} f(x)=\sum \limits _{i=1}^{\frac{q-1}{2}}{\mathrm{Tr}}_1^n\Big(x^{1+2^{pi}}\Big)+{\mathrm{Tr}}_1^n\Big(x^{1+2^{q}}\Big) \end{aligned}$$
(10)

is semi-bent.

Theorem 5

Let \(n=pq\) with pq odd and \(\mathrm{gcd}(p,q)=1\). Then the function defined on \(\mathbb {F}_{2^n}\) by

$$\begin{aligned} f(x)=\sum \limits _{i=1}^{\frac{q-1}{2}}{\mathrm{Tr}}_1^n\Big(x^{1+2^{pi}}\Big)+{\mathrm{Tr}}_1^n\Big(x^{1+2^{q}}\Big)+{\mathrm{Tr}}_1^n\Big(x^{1+2^{qj}}\Big) \end{aligned}$$
(11)

is semi-bent, where \(j=2^l\) and l is a positive integer such that \(\mathrm{gcd}(l,n)=1\).

Proof

From Lemma 1, in order to prove that f(x) is a semi-bent function, we just need to prove that the rank of f(x) is \(n-1\). By Eq. (11), we have

$$\begin{aligned} \begin{array}{rcl} f(x+y)&{}=&{}\sum \limits _{i=1}^{\frac{q-1}{2}}{\mathrm{Tr}}_1^n\Big((x+y)^{1+2^{pi}}+{\mathrm{Tr}}_1^n((x+y)^{1+2^{q}})+{\mathrm{Tr}}_1^n((x+y)^{1+2^{qj}}\Big)\\ &{}=&{}\sum \limits _{i=1}^{\frac{q-1}{2}}{\mathrm{Tr}}_1^n(x^{1+2^{pi}}+y^{1+2^{pi}})+\sum \limits _{i=1}^{\frac{q-1}{2}}{\mathrm{Tr}}_1^n(x^{2^{pi}}y+y^{2^{pi}}x)\\ &&+{}{\mathrm{Tr}}_1^n(x^{1+2^{q}}+y^{1+2^{q}}+x^{2^{q}}y+y^{2^{q}}x)\\ &&+{}{\mathrm{Tr}}_1^n(x^{1+2^{qj}}+y^{1+2^{qj}}+x^{2^{qj}}y+y^{2^{qj}}x). \end{array} \end{aligned}$$

Hence,

$$\begin{aligned} \begin{array}{rcl} \Omega _f(x;y)&{}=&{}f(0)+f(x)+f(y)+f(x+y)\\ &{}=&{}\sum \limits _{i=1}^{\frac{q-1}{2}}{\mathrm{Tr}}_1^n\Big(x^{2^{pi}}y+y^{2^{pi}}x\Big)\\ &&+\,{\mathrm{Tr}}_1^n\Big(x^{2^{q}}y+y^{2^{q}}x\Big)+{\mathrm{Tr}}_1^n\Big(x^{2^{qj}}y+y^{2^{qj}}x\Big)\\ &{}=&{}\sum \limits _{i=1}^{\frac{q-1}{2}}{\mathrm{Tr}}_1^n\Big(x^{2^{pi}}y+yx^{2^{pq-pi}}\Big)\\ &&+\,{\mathrm{Tr}}_1^n\Big(x^{2^{q}}y+yx^{2^{pq-q}}\Big)+{\mathrm{Tr}}_1^n\Big(x^{2^{qj}}y+yx^{2^{pq-qj}}\Big)\\ &{}=&{}{\mathrm{Tr}}_1^n \left(y\left(\sum \limits _{i=1}^{\frac{q-1}{2}}\Big(x^{2^{pi}}+x^{2^{pq-pi}}\Big)\right)\right)+{\mathrm{Tr}}_1^n\Big(y\Big(x^{2^{q}}+x^{2^{pq-q}}\Big)\Big)\\ &&+\,{\mathrm{Tr}}_1^n\Big(y\Big(x^{2^{qj}}+x^{2^{pq-qj}}\Big)\Big)\\ &{}=&{} {\mathrm{Tr}}_1^n\left(y\left(\sum \limits _{i=1}^{q-1}x^{2^{pi}}+x^{2^{q}}+x^{2^{pq-q}}+x^{2^{qj}}+x^{2^{pq-qj}}\right)\right). \end{array} \end{aligned}$$

Let \(L(x)=\sum \limits _{i=1}^{q-1}x^{2^{pi}}+x^{2^{q}}+x^{2^{pq-q}}+x^{2^{qj}}+x^{2^{pq-qj}}\), and it is easy to see that \(x^2+x\,|\,L(x)\). To prove that the rank of f(x) is \(n-1\), we need to show that \(\mathrm{gcd}(L(x),x^{2^{pq}}+x)=x^2+x\), which equals

$$\begin{aligned} \mathrm{gcd}(l(x), x^{pq}+1)=x+1 \end{aligned}$$

from Lemma 2, where \(l(x)=\sum \limits _{i=1}^{q-1}x^{pi}+x^{{q}}+x^{pq-q}+x^{qj}+x^{pq-qj}\).

If \(\beta \ne 1\) is a root of \(x^{pq}+1\) and \(\beta ^p=1\), then \(l(\beta )=\beta ^q+\beta ^{-q}+\beta ^{jq}+\beta ^{-jq}\). Let \(w=\beta ^q+\beta ^{-q}\), then \(l(\beta )=w+w^{j}\), where \(j=2^l\) and \(w\ne 0, 1\). We claim that \(l(\beta )\ne 0\). Otherwise, we have \(w=w^{2^l}\). Since \(\mathrm{gcd}(2^l-1,2^n-1)=1\), \(w=0\) or 1, which is a contradiction.

If \(\beta \ne 1\) is a root of \(x^{pq}+1\) and \(\beta ^q=1\), then \(l(\beta )=1\ne 0\).

If \(\beta \ne 1\) is a root of \(x^{pq}+1\) and \(\beta ^p\ne 1\), \(\beta ^q\ne 1\), thus

$$\begin{aligned} l(\beta )=1+\beta ^q+\beta ^{-q}+\beta ^{jq}+\beta ^{-jq}. \end{aligned}$$

If \(l(\beta )=0\), then \(w+w^{2^l}=1\). Since n is odd, \({\mathrm{Tr}}_1^n(1)=1\). But \({\mathrm{Tr}}_1^n(w+w^{2^l})=0\), leading to a contradiction. Hence we also have \(l(\beta )\ne 0\) in this case.

From the analysis of above, we can see that \(\mathrm{gcd}(l(x),x^{pq}+1)=x+1\). Thus the rank of f(x) is \(n-1\), and this completes the proof.

Theorem 6

Let \(n=pq\), with pq odd and \(\mathrm{gcd}(p,q)=1\). Let \(j=2^{u-1}-2^{v-1}\) and \(k=2^{u-1}+2^{v-1}\), where uv are positive integers such that \(u>v\). Then

$$\begin{aligned} f(x)=\sum \limits _{i=1}^{\frac{q-1}{2}}{\mathrm{Tr}}_1^n\Big(x^{1+2^{pi}}\Big)+{\mathrm{Tr}}_1^n\Big(x^{1+2^{qj}}\Big)+{\mathrm{Tr}}_1^n\Big(x^{1+2^{qk}}\Big) \end{aligned}$$
(12)

is semi-bent on \(\mathbb {F}_{2^n}\).

Proof

From Lemma 1, in order to prove that f(x) is a semi-bent function, we just need to prove that the rank of f(x) is \(n-1\). By Eq. (12), we have

$$\begin{aligned} \begin{array}{rcl} f(x+y)&{}=&{}\sum \limits _{i=1}^{\frac{q-1}{2}}{\mathrm{Tr}}_1^n\Big((x+y)^{1+2^{pi}}\Big)+{\mathrm{Tr}}_1^n\Big((x+y)^{1+2^{qj}}\Big)+{\mathrm{Tr}}_1^n\Big((x+y)^{1+2^{qk}}\Big)\\ &{}=&{}\sum \limits _{i=1}^{\frac{q-1}{2}}{\mathrm{Tr}}_1^n\Big(x^{1+2^{pi}}+y^{1+2^{pi}}\Big)+\sum \limits _{i=1}^{\frac{q-1}{2}}{\mathrm{Tr}}_1^n\Big(x^{2^{pi}}y+y^{2^{pi}}x\Big)\\ &&+\,{\mathrm{Tr}}_1^n\Big(x^{1+2^{qj}}+y^{1+2^{qj}}+x^{2^{qj}}y+y^{2^{qj}}x\Big)\\ &&+\,{}{\mathrm{Tr}}_1^n\Big(x^{1+2^{qk}}+y^{1+2^{qk}}+x^{2^{qk}}y+y^{2^{qk}}x\Big). \end{array} \end{aligned}$$

Hence,

$$\begin{aligned} \begin{array}{rcl} \Omega _f(x;y)&{}=&{}f(0)+f(x)+f(y)+f(x+y)\\ &{}=&{}\sum \limits _{i=1}^{\frac{q-1}{2}}{\mathrm{Tr}}_1^n\Big(x^{2^{pi}}y+y^{2^{pi}}x\Big)+{\mathrm{Tr}}_1^n\Big(x^{2^{qj}}y+y^{2^{qj}}x\Big)\\ &&+\,{\mathrm{Tr}}_1^n\Big(x^{2^{qk}}y+y^{2^{qk}}x\Big)\\ &{}=&{}\sum \limits _{i=1}^{\frac{q-1}{2}}{\mathrm{Tr}}_1^n\Big(x^{2^{pi}}y+yx^{2^{pq-pi}}\Big)+{\mathrm{Tr}}_1^n\Big(x^{2^{qj}}y+yx^{2^{pq-qj}}\Big)\\ &&+\,{\mathrm{Tr}}_1^n\Big(x^{2^{qk}}y+yx^{2^{pq-qk}}\Big)\\ &{}=&{}{\mathrm{Tr}}_1^n\left(y\left(\sum \limits _{i=1}^{\frac{q-1}{2}}\Big(x^{2^{pi}}+x^{2^{pq-pi}}\Big)\right)\right)+{\mathrm{Tr}}_1^n\Big(y\Big(x^{2^{qj}}+x^{2^{pq-qj}}\Big)\Big)\\ &&+\,{\mathrm{Tr}}_1^n\Big(y\Big(x^{2^{qk}}+x^{2^{pq-qk}}\Big)\Big)\\ &{}=&{} {\mathrm{Tr}}_1^n\left(y\left(\sum \limits _{i=1}^{q-1}x^{2^{pi}}+x^{2^{qj}}+x^{2^{pq-qj}}+x^{2^{qk}}+x^{2^{pq-qk}}\right)\right). \end{array} \end{aligned}$$

Let \(L(x)=\sum \limits _{i=1}^{q-1}x^{2^{pi}}+x^{2^{qj}}+x^{2^{pq-qj}}+x^{2^{qk}}+x^{2^{pq-qk}}\), and it is easy to see that \(x^2+x\,|\,L(x)\). To prove that the rank of f(x) is \(n-1\), we need to show that \(\mathrm{gcd}(L(x),x^{2^{pq}}+x)=x^2+x\), which equals

$$\begin{aligned} \mathrm{gcd}(l(x), x^{pq}+1)=x+1 \end{aligned}$$

from Lemma 2, where \(l(x)=\sum \limits _{i=1}^{q-1}x^{pi}+x^{{qj}}+x^{pq-qj}+x^{qk}+x^{pq-qk}\).

If \(\beta \ne 1\) is a root of \(x^{pq}+1\) and \(\beta ^p=1\), then \(l(\beta )=\beta ^{qj}+\beta ^{-qj}+\beta ^{qk}+\beta ^{-qk}\). If \(l(\beta )=0\), then \(\phi (\beta ^{qj})=\phi (\beta ^{qk})\), where \(\phi\) is the function defined in Lemma 2. By Lemma 2, we have \(\beta ^{qj}=\beta ^{qk}\) or \(\beta ^{q(j+k)}=1\). Since \(\mathrm{gcd}(j\pm k,p)=1\), \(\beta ^p=1\) and \(\mathrm{gcd}(p,q)=1\), we have \(\beta =1\), which is a contradiction with the assumption \(\beta \ne 1\).

If \(\beta \ne 1\) is a root of \(x^{pq}+1\) and \(\beta ^q=1\), then \(l(\beta )=1\ne 0\).

If \(\beta \ne 1\) is a root of \(x^{pq}+1\) and \(\beta ^p\ne 1\), \(\beta ^q\ne 1\), thus

$$\begin{aligned} l(\beta )=1+\beta ^{qj}+\beta ^{-qj}+\beta ^{qk}+\beta ^{-qk}. \end{aligned}$$

If \(l(\beta )=0\), then

$$\begin{aligned} \beta ^{qj}+\beta ^{-qj}+\beta ^{qk}+\beta ^{-qk}=1 \end{aligned}$$
(13)

By Eq. (13), we have

$$\begin{aligned} \beta ^{q(j+k)}+\beta ^{q(k-j)}+\beta ^{2qk}+\beta ^{qk}=1. \end{aligned}$$
(14)

Since \(k+j=2^u\) and \(k-j=2^v\), Eq. (14) can be rewritten as

$$\begin{aligned} (\beta ^{q})^{2^u}+(\beta ^{q})^{2^v}+(\beta ^{qk})^2+\beta ^{qk}=1. \end{aligned}$$
(15)

It is clear that \({\mathrm{Tr}}_1^n((\beta ^{q})^{2^u}+(\beta ^{q})^{2^v}+(\beta ^{qk})^2+\beta ^{qk})=0\). But \({\mathrm{Tr}}_1^n(1)=1\), leading to a contradiction. Hence we also have \(l(\beta )\ne 0\) in this case.

From the analysis of above, we can see that \(\mathrm{gcd}(l(x),x^{pq}+1)=x+1\). Thus the rank of f(x) is \(n-1\), and this completes the proof.

Theorem 7

Let \(n=pq\), with pq odd and \(\mathrm{gcd}(p,q)=1\). Let \(j=2^u\) and \(k=2^v\), where uv are positive integers such that \(u>v\) and \(\mathrm{gcd}(u-v,n)=1\). Then

$$\begin{aligned} f(x)=\sum \limits _{i=1}^{\frac{q-1}{2}}{\mathrm{Tr}}_1^n\Big(x^{1+2^{pi}}\Big)+{\mathrm{Tr}}_1^n(x^{1+2^{qj}})+{\mathrm{Tr}}_1^n\Big(x^{1+2^{qk}}\Big) \end{aligned}$$
(16)

is semi-bent on \(\mathbb {F}_{2^n}\).

Proof

From Lemma 1, in order to prove that f(x) is a semi-bent function, we just need to prove that the rank of f(x) is \(n-1\). Through similar calculations as Theorem 5, we have

$$\begin{aligned} \begin{array}{rcl} \Omega _f(x;y)&{}=&{}f(0)+f(x)+f(y)+f(x+y)\\ &{}=&{}\sum \limits _{i=1}^{\frac{q-1}{2}}{\mathrm{Tr}}_1^n\Big(x^{2^{pi}}y+y^{2^{pi}}x\Big)+{\mathrm{Tr}}_1^n\Big(x^{2^{qj}}y+y^{2^{qj}}x\Big)\\ &&+\,{\mathrm{Tr}}_1^n\Big(x^{2^{qk}}y+y^{2^{qk}}x\Big)\\ &{}=&{}\sum \limits _{i=1}^{\frac{q-1}{2}}{\mathrm{Tr}}_1^n\Big(x^{2^{pi}}y+yx^{2^{pq-pi}}\Big)+{\mathrm{Tr}}_1^n\Big(x^{2^{qj}}y+yx^{2^{pq-qj}}\Big)\\ &&+\,{\mathrm{Tr}}_1^n\Big(x^{2^{qk}}y+yx^{2^{pq-qk}}\Big)\\ &{}=&{}{\mathrm{Tr}}_1^n\left(y\left(\sum \limits _{i=1}^{\frac{q-1}{2}}\Big(x^{2^{pi}}+x^{2^{pq-pi}}\Big)\right)\right)+{\mathrm{Tr}}_1^n\Big(y(x^{2^{qj}}+x^{2^{pq-qj}})\Big)\\ &&+\,{\mathrm{Tr}}_1^n\Big(y\Big(x^{2^{qk}}+x^{2^{pq-qk}}\Big)\Big)\\ &{}=&{} {\mathrm{Tr}}_1^n\left(y\left(\sum \limits _{i=1}^{q-1}x^{2^{pi}}+x^{2^{qj}}+x^{2^{pq-qj}}+x^{2^{qk}}+x^{2^{pq-qk}}\right)\right). \end{array} \end{aligned}$$

Let \(L(x)=\sum \limits _{i=1}^{q-1}x^{2^{pi}}+x^{2^{qj}}+x^{2^{pq-qj}}+x^{2^{qk}}+x^{2^{pq-qk}}\), and it is easy to see that \(x^2+x\,|\,L(x)\). To prove that the rank of f(x) is \(n-1\), we need to show that \(\mathrm{gcd}(L(x),x^{2^{pq}}+x)=x^2+x\), which equals

$$\begin{aligned} \mathrm{gcd}(l(x), x^{pq}+1)=x+1 \end{aligned}$$

from Lemma 2, where \(l(x)=\sum \limits _{i=1}^{q-1}x^{pi}+x^{{qj}}+x^{pq-qj}+x^{qk}+x^{pq-qk}\).

If \(\beta \ne 1\) is a root of \(x^{pq}+1\) and \(\beta ^p=1\), then \(l(\beta )=\beta ^{qj}+\beta ^{-qj}+\beta ^{qk}+\beta ^{-qk}\). Let \(w=\beta ^q+\beta ^{-q}\), then \(l(\beta )=w^{2^u}+w^{2^v}\). If \(l(\beta )=0\), then \(w^{2^u}=w^{2^v}\). Note that \(w\ne 0\), then we have \(w^{2^u-2^v}=w^{2^v(2^{u-v}-1)}=1\). Since \(\mathrm{gcd}(2^v(2^{u-v}-1),2^n-1)=\mathrm{gcd}(2^{u-v}-1,2^n-1)=2^{\mathrm{gcd}(u-v,n)}-1=1\), we have \(w=1\). This is impossible, because the equality \(w=1\) will lead to \(\beta =1\), which is a contradiction with the assumption \(\beta \ne 1\).

If \(\beta \ne 1\) is a root of \(x^{pq}+1\) and \(\beta ^q=1\), then \(l(\beta )=1\ne 0\).

If \(\beta \ne 1\) is a root of \(x^{pq}+1\) and \(\beta ^p\ne 1\), \(\beta ^q\ne 1\), thus

$$\begin{aligned} l(\beta )=1+\beta ^{qj}+\beta ^{-qj}+\beta ^{qk}+\beta ^{-qk}=w^{2^u}+w^{2^v}. \end{aligned}$$

If \(l(\beta )=0\), then \(w^{2^u}+w^{2^v}=1\). Note that \({\mathrm{Tr}}_1^n(w^{2^u}+w^{2^v})=0\). But \({\mathrm{Tr}}_1^n(1)=1\), leading to a contradiction. Hence we also have \(l(\beta )\ne 0\) in this case.

From the analysis of above, we can see that \(\mathrm{gcd}(l(x),x^{pq}+1)=x+1\). Thus the rank of f(x) is \(n-1\), and this completes the proof.

4 New constructions of e-plateaued and semi-bent functions on \(\mathbb {F}_{2^n}\) with n even

In this section, we give some new constructions of quadratic e-plateaued and semi-bent functions in polynomial forms with even n. We suppose \(n=em\), where e and m are even and odd positive integers respectively in this section.

Theorem 8

For any \(\beta \in \mathbb {F}_{2^e}^{*}\), the function defined on \(\mathbb {F}_{2^n}\) by

$$\begin{aligned} f(x)=\sum \limits _{i=1}^{\frac{m-1}{2}}{\mathrm{Tr}}_1^{n}\Big(\beta x^{1+2^{ei}}\Big) \end{aligned}$$
(17)

is e-plateaued.

Proof

By Lemma 1, in order to prove that f(x) is an e-plateaued function, we just need to prove that the rank of f(x) is \(n-e\). By Eq. (17), we have

$$\begin{aligned} \begin{array}{rcl} \Omega _f(x;y)&{}=&{}f(0)+f(x)+f(y)+f(x+y)\\ {} &{}=&{}\sum \limits _{i=1}^{\frac{m-1}{2}}{\mathrm{Tr}}_1^n\Big(\beta xy^{2^{ei}}+\beta x^{2^{ei}}y\Big)\\ {} &{}=&{}\sum \limits _{i=1}^{\frac{m-1}{2}}{\mathrm{Tr}}_1^n\Big(\beta x^{2^{em-ei}}y+\beta x^{2^{ei}}y\Big)\\ {} &{}=&{}\sum \limits _{i=1}^{\frac{m-1}{2}}{\mathrm{Tr}}_1^n\Big(\beta x^{2^{em-ei}}y+\beta x^{2^{ei}}y\Big)\\ {} &{}=&{}\sum \limits _{i=1}^{m-1}{\mathrm{Tr}}_1^{n}\Big(\beta yx^{2^{ei}}\Big)\\ {} &{}=&{}{\mathrm{Tr}}_1^n\Big(\beta y\Big({\mathrm{Tr}}_e^n(x)+x\Big)\Big).\end{array} \end{aligned}$$

It follows that

$$\begin{aligned} \Omega _f(x;y)=0, \;\text{ for } \text{ any }\;y\in \mathbb {F}_{2^n} \end{aligned}$$
(18)

holds if and only if

$$\begin{aligned} {\mathrm{Tr}}_e^n(x)+x=0. \end{aligned}$$

So \(x={\mathrm{Tr}}_e^n(x)\in \mathbb {F}_{2^e}\), and for any \(x\in \mathbb {F}_{2^e}\), \({\mathrm{Tr}}_e^n(x)=x{\mathrm{Tr}}_e^n(1)=x\). This implies that \({\mathrm{Tr}}_e^n(x)+x=0\) holds if and only if \(x\in \mathbb {F}_{2^e}\). Hence Eq. (18) has only \(2^e\) solutions, so the rank of f(x) is \(n-e\). By Lemma 1 and Definition 1, f(x) is an e-plateaued function.

For \(e=2\), we have the following corollary.

Corollary 3

([8]) For any \(\beta \in \mathbb {F}_{2^2}^{*}\), the function defined on \(\mathbb {F}_{2^n}\) by

$$\begin{aligned} f(x)=\sum \limits _{i=1}^{\frac{m-1}{2}}{\mathrm{Tr}}_1^n\Big(\beta x^{1+2^{2i}}\Big) \end{aligned}$$

is a semi-bent function.

Now we consider the general case. We study the function defined by

$$\begin{aligned} f(x)=\sum \limits _{i=1}^{\frac{m-1}{2}}c_i{\mathrm{Tr}}_1^n\Big(\beta x^{1+2^{ei}}\Big), \end{aligned}$$
(19)

where \(c_i\in \mathbb {F}_2, \;(1\le i\le \frac{m-1}{2}),\,\beta \in \mathbb {F}_{2^e}^{*}\).

Theorem 9

If \(e=2^l\) for some positive integer l, then for any \(\beta \in \mathbb {F}_{2^e}^{*}\), the function defined on \(\mathbb {F}_{2^n}\) by Eq. (19) is e-plateaued if and only if

$$\begin{aligned} \mathrm{gcd}\left( \sum \limits _{i=1}^{\frac{m-1}{2}}c_i(x^{{i}}+x^{{m-i}}), x^{m}+1\right) =x+1. \end{aligned}$$

Proof

By Lemma 1, we only need to prove that the rank of f(x) is \(n-e\). Similar to the proof of Theorem 7, the rank of f(x) is \(n-e\) if and only if the equation

$$\begin{aligned} \sum \limits _{i=1}^{\frac{m-1}{2}}c_i\Big(x^{2^{ei}}+x^{2^{em-ei}}\Big) \end{aligned}$$
(20)

has only \(2^e\) solutions in \(\mathbb {F}_{2^n}\). For any \(x\in \mathbb {F}_{2^e}\), it is obvious that \(x^{2^{ei}}+x^{2^{em-ei}}=0\,(1\le i\le \frac{m-1}{2})\) holds. So

$$\begin{aligned} x^{2^e}+x\,|\,\sum \limits _{i=1}^{\frac{m-1}{2}}c_i\Big(x^{2^{ei}}+x^{2^{em-ei}}\Big). \end{aligned}$$

In order to show that Eq. (20) has only \(2^e\) solutions in \(\mathbb {F}_{2^n}\), we just need to prove that

$$\begin{aligned} \mathrm{gcd}\left( \sum \limits _{i=1}^{\frac{m-1}{2}}c_i\Big(x^{2^{ei}}+x^{2^{em-ei}}\Big), x^{2^n}+x\right) =x^{2^e}+x\end{aligned}$$
(21)

holds. By Lemma 3, Eq. (21) holds if and only if

$$\begin{aligned} \mathrm{gcd}\left( \sum \limits _{i=1}^{\frac{m-1}{2}}c_i\Big(x^{{ei}}+x^{{em-ei}}\Big), x^{em}+1\right) =x^{e}+1=(x+1)^e. \end{aligned}$$
(22)

Eq. (22) holds if and only if

$$\begin{aligned} \mathrm{gcd}\left( \sum \limits _{i=1}^{\frac{m-1}{2}}c_i\Big(x^{{i}}+x^{{m-i}}\Big), x^{m}+1\right) =x+1. \end{aligned}$$

Theorem 10

If \(e=2^l\) for some positive integer l, then for any \(\beta \in \mathbb {F}_{2^e}^{*}\), \(r\ge 1\), \(1\le k\le \frac{m-1}{2}\), the function defined on \(\mathbb {F}_{2^n}\) by

$$\begin{aligned} f(x)=\sum \limits _{i=1}^k{\mathrm{Tr}}_1^n\Big(\beta x^{1+2^{eri}}\Big) \end{aligned}$$

is e-plateaued if and only if

$$\begin{aligned} \mathrm{gcd}(k+1,m)=\mathrm{gcd}(k,m)=\mathrm{gcd}(r,m)=1. \end{aligned}$$

Proof

Similar to the proof of Theorem 8, f(x) is e-plateaued if and only if

$$\begin{aligned} \mathrm{gcd}(L(x), x^m+1)=x+1, \;\;\text{ where }\;L(x)=\sum \limits _{i=1}^k\Big(x^{ri}+x^{m-ri}\Big). \end{aligned}$$

We have

$$\begin{aligned} \begin{array}{rcl} L(x)&{}=&{}\sum \limits _{i=1}^k\Big(x^{ri}+x^{-ri}\Big)\\ {} &{}=&{}\sum \limits _{i=0}^{2k}\frac{x^{ri}}{x^{rk}}+1\\ &{}=&{} \frac{x^{(2k+1)r}+1}{x^{rk}(x^r+1)}+1\\ {} &{}=&{}\frac{x^{(2k+1)r}+x^{rk+r}+x^{rk}+1}{x^{rk}(x^r+1)} \\ &{}=&{}\frac{(x^{rk+r}+1)(x^{rk}+1)}{x^{rk}(x^r+1)}. \end{array} \end{aligned}$$

Thus,

$$\begin{aligned} \mathrm{gcd}(L(x),x^m+1)=\mathrm{gcd}\left( \frac{(x^{rk+r}+1)(x^{rk}+1)}{x^{rk}(x^r+1)}, x^m+1\right) =x+1 \end{aligned}$$

holds if and only if

$$\begin{aligned} \mathrm{gcd}(r(k+1),m)=\mathrm{gcd}(rk,m)=\mathrm{gcd}(r,m)=1, \end{aligned}$$

which equals

$$\begin{aligned} \mathrm{gcd}(k+1,m)=\mathrm{gcd}(k,m)=\mathrm{gcd}(r,m)=1. \end{aligned}$$

Corollary 4

([8]) For any \(\beta \in \mathbb {F}_{2^2}^{*}\), \(r\ge 1\), \(1\le k\le \frac{m-1}{2}\), the function defined on \(\mathbb {F}_{2^n}\) by

$$\begin{aligned} f(x)=\sum \limits _{i=1}^k{\mathrm{Tr}}_1^n\Big(\beta x^{1+2^{2ri}}\Big) \end{aligned}$$

is semi-bent if and only if

$$\begin{aligned} \mathrm{gcd}(k+1,m)=\mathrm{gcd}(k,m)=\mathrm{gcd}(r,m)=1. \end{aligned}$$

Theorem 11

If \(e=2^l\) for some positive integer l, then for any \(\beta \in \mathbb {F}_{2^e}^{*}\), the function defined on \(\mathbb {F}_{2^n}\) by \(f(x)={\mathrm{Tr}}_1^n(\beta x^{1+2^{ei}})\,(1\le i\le m-1)\) is e-plateaued if and only if \(\mathrm{gcd}(i,m)=1\) and m is odd.

Proof

Let \(l(x)=x^i+x^{m-i}\). By Theorem 8, the function is e-plateaued if and only if \(\mathrm{gcd}(l(x),x^m+1)=x+1\). As \(x^i+x^{m-i}=x^i(x^{m-2i}+1)\) and \(\mathrm{gcd}(x^i,x^m+1)=1\). The equality \(\mathrm{gcd}(l(x),x^m+1)=x+1\) holds if and only if \(\mathrm{gcd}(i,m)=1\) and m is odd.

Corollary 5

For any \(\beta \in \mathbb {F}_{2^2}^{*}\), the function defined by \(f(x)={\mathrm{Tr}}_1^n(\beta x^{1+2^{2i}})\)\((1\le i\le m-1)\), is semi-bent if and only if \(\mathrm{gcd}(i, m)=1\) and m odd.

When \(k=1\) and \(r=1\) in Theorem 10, we have the following corollary.

Corollary 6

If \(e=2^l\) for some positive integer l, then for any \(\beta \in \mathbb {F}_{2^e}^{*}\), the function defined on \(\mathbb {F}_{2^n}\) by \(f(x)={\mathrm{Tr}}_1^n(\beta x^{1+2^{ei}}+\beta x^{1+2^{ej}})\,(1\le i<j\le \lfloor \frac{n}{4}\rfloor )\) is e-plateaued if and only if \(\mathrm{gcd}(m,j+i)=1\), \(\mathrm{gcd}(m,j-i)=1\) and m is odd.

Corollary 7

If \(e=2^l\) for some positive integer l, then for any \(\beta \in \mathbb {F}_{2^e}^{*}\), the function defined on \(\mathbb {F}_{2^n}\) by \(f(x)={\mathrm{Tr}}_1^n(\beta x^{1+2^{ei}}+\beta x^{1+2^{ej}})\) is e-plateaued for any ij with \(1\le i<j\le \lfloor \frac{n}{4}\rfloor\) if and only if m is an odd prime integer.

Corollary 8

([8]) For any \(\beta \in \mathbb {F}_{2^2}^{*}\), the function defined on \(\mathbb {F}_{2^n}\) by \(f(x)={\mathrm{Tr}}_1^n(\beta x^{1+2^{2i}}+\beta x^{1+2^{2j}})\,(1\le i<j\le \lfloor \frac{n}{4}\rfloor )\) is semi-bent if and only if \(\mathrm{gcd}(m,j+i)=1\), \(\mathrm{gcd}(m,j-i)=1\) and m is odd.

Theorem 12

If \(e=2^l\) for some positive integer l, then for any \(\beta \in \mathbb {F}_{2^e}^{*}\), the function defined on \(\mathbb {F}_{2^n}\) by \(f(x)={\mathrm{Tr}}_1^n(\beta x^{1+2^{ei}}+\beta x^{1+2^{ej}}+\beta x^{1+2^{et}})\,(1\le i<j<t\le \lfloor \frac{n}{4}\rfloor , i+j=t)\) is e-plateaued if and only if \(\mathrm{gcd}(m,i)=1\), \(\mathrm{gcd}(m,j)=1\) and \(\mathrm{gcd}(m,t)=1\).

Proof

Let \(l(x)=x^{i}+x^{m-i}+x^{j}+x^{m-j}+x^{t}+x^{m-t}\). By Theorem 8, the function is e-plateaued if and only if \(\mathrm{gcd}(l(x),x^m+1)=x+1\). Note that

$$\begin{aligned} \begin{array}{rcl} l(x)&{}=&{}(1+x^i)(1+x^j)+1+x^m+x^m(1+x^{-i})(1+x^{-j})\\ {} &{}=&{}(1+x^i)(1+x^j)(1+x^{m-i-j})+1+x^m. \end{array} \end{aligned}$$

Then the equality \(\mathrm{gcd}(l(x),x^m+1)=x+1\) holds if and only if \(\mathrm{gcd}(m,i)=1\), \(\mathrm{gcd}(m,j)=1\) and \(\mathrm{gcd}(m,t)=1\).

Theorem 13

If \(e=2^l\) for some positive integer l, then for any \(\beta \in \mathbb {F}_{2^e}^{*}\), the function defined on \(\mathbb {F}_{2^n}\) by \(f(x)={\mathrm{Tr}}_1^n(\beta x^{1+2^{ei}}+\beta x^{1+2^{ej}}+\beta x^{1+2^{et}})\,(1\le i<j\le m-1, i+j=2t)\) is e-plateaued if and only if \(\mathrm{gcd}(t,m)=1\).

Proof

Let \(L(x)=x^{i}+x^{m-i}+x^{j}+x^{m-j}+x^{t}+x^{m-t}\). By Theorem 8, the function is e-plateaued if and only if \(\mathrm{gcd}(L(x),x^m+1)=x+1\). Note that

$$\begin{aligned} \begin{array}{rcl} L(x)&{}=&{}x^i+x^j+x^{\frac{i+j}{2}}+x^{m-i}+x^{m-j}+x^{m-\frac{i+j}{2}}\\ &{}=&{}x^i+x^j+x^{\frac{i+j}{2}}+x^{m-(i+j)}\Big(x^i+x^j+x^{\frac{i+j}{2}}\Big)\\ &{}=&{}x^i\Big(1+x^{j-i}+x^{\frac{j-i}{2}}\Big)\Big(1+x^{m-(i+j)}\Big), \end{array} \end{aligned}$$
(23)

and \(\mathrm{gcd}(x^i, x^m+1)=1\), we have \(\mathrm{gcd}(L(x), x^m+1)=\mathrm{gcd}((1+x^{j-i}+x^{\frac{j-i}{2}})(1+x^{m-(i+j)}), x^m+1)\). Since m is odd, \({\mathrm{Tr}}_1^m(1)=1\). Consequently, \({\mathrm{Tr}}_1^m(1+x^{j-i}+x^{\frac{j-i}{2}})=1\). That is, for any \(a\in \mathbb {F}_{2^m}\), \(1+a^{j-i}+a^{\frac{j-i}{2}}\ne 0\). Hence, \(\mathrm{gcd}(x+x^{2^{j-i}}+x^{2^{\frac{j-i}{2}}}, x^{2^m}+x)=1\). By Lemma 2, we have \(\mathrm{gcd}(1+x^{j-i}+x^{\frac{j-i}{2}}, x^m+1)=1\). Therefore, \(\mathrm{gcd}(L(x), x^m+1)=\mathrm{gcd}(x^{m-(i+j)}+1, x^m+1)\). By Theorem 8, f(x) is e-plateaued if and only if \(\mathrm{gcd}(x^{m-(i+j)}+1, x^m+1)=x+1\), which is equivalent to the condition \(\mathrm{gcd}(i+j, m)=\mathrm{gcd}(2t, m)=\mathrm{gcd}(t, m)=1\).

Corollary 9

If \(n=2m\) with \(m(>1)\) odd, then for any \(\beta \in \mathbb {F}_{2^2}^{*}\),

$$\begin{aligned} f(x)={\mathrm{Tr}}_1^n\Big(\beta x^{1+2^{2i}}+\beta x^{1+2^{2j}}+\beta x^{1+2^{2t}}\Big) \end{aligned}$$

\((i+j=2t, 1\le i<j\le m-1)\) is semi-bent if and only if \(\mathrm{gcd}(t, m)=1\).

Theorem 14

If \(e=2^l\) for some positive integer l, then for any \(\beta \in \mathbb {F}_{2^e}^{*}\), the function defined on \(\mathbb {F}_{2^n}\) by \(f(x)={\mathrm{Tr}}_1^n(\beta x^{1+2^{ei}}+\beta x^{1+2^{ej}}+\beta x^{1+2^{et}})\,(1\le i<j\le m-1, j-i=2t)\) is e-plateaued if and only if \(\mathrm{gcd}(t, m)=1\).

Proof

Let \(L(x)=x^{i}+x^{m-i}+x^{j}+x^{m-j}+x^{t}+x^{m-t}\). By Theorem 8, the function is e-plateaued if and only if \(\mathrm{gcd}(L(x),x^m+1)=x+1\). Consider

$$\begin{aligned} \begin{array}{rcl} x^tL(x)&{}=&{}x^{t+i}+x^{t+j}+x^{2t}+x^{m-i+t}+x^{m-j+t}+x^{m} \\ &{}=&{}x^{t+j}+x^{m-i+t}+x^{2t}+x^{t+i}+x^{m-(j-t)}+x^m\\ &{}=&{}x^{t+j}+x^{m-i+t}+x^{2t}+x^{\frac{i+j}{2}}+x^{m-\frac{i+j}{2}}+x^m\\ &{}=&{}\Big(x^{2t}+1)(x^{\frac{i+j}{2}}+x^{m-\frac{i+j}{2}}+1\Big)+x^m+1. \end{array} \end{aligned}$$
(24)

Since \(\mathrm{gcd}(x^t, x^m+1)=1\), we have

$$\begin{aligned} \begin{array}{rcl} \mathrm{gcd}(L(x), x^m+1)&{}=&{}\mathrm{gcd}(x^tL(x), x^m+1)\\ {} &{}=&{}\mathrm{gcd}\Big((x^{2t}+1)\Big(x^{\frac{i+j}{2}}+x^{m-\frac{i+j}{2}}+1\Big), x^m+1\Big). \end{array} \end{aligned}$$

Suppose that a is a root of \(x^tL(x)\), \(a\notin \mathbb {F}_2\) and \(a^m=1\), then \(a^{\frac{i+j}{2}}+a^{m-\frac{i+j}{2}}+1\ne 0\). Otherwise, we have \(a^{\frac{i+j}{2}}(a^{\frac{i+j}{2}}+a^{m-\frac{i+j}{2}}+1)=0\), i.e.,

$$\begin{aligned} 1+a^{\frac{i+j}{2}}+a^{i+j}=0. \end{aligned}$$
(25)

Note that \({\mathrm{Tr}}_1^m(1)=1\), and \({\mathrm{Tr}}_1^m(a^{\frac{i+j}{2}}+a^{i+j})=0\). This induces a contradiction with Eq. (25).

By the analysis above, we have

$$\begin{aligned} \begin{array}{rcl} \mathrm{gcd}(L(x),x^m+1)&{}=&{}\mathrm{gcd}(x^tL(x), x^m+1)\\ {} &{}=&{}\mathrm{gcd}(x^{2t}+1, x^m+1). \end{array} \end{aligned}$$

Consequently, f(x) is e-plateaued if and only if \(\mathrm{gcd}(x^{2t}+1, x^m+1)=x+1\), which is equivalent to the condition \(\mathrm{gcd}(t, m)=1\).

Since m is odd, \({\mathrm{Tr}}_1^m(1)=1\). Consequently, \({\mathrm{Tr}}_1^m(1+x^{j-i}+x^{\frac{j-i}{2}})=1\). That is, for any \(a\in \mathbb {F}_{2^m}\), \(1+a^{j-i}+a^{\frac{j-i}{2}}\ne 0\). Hence, \(\mathrm{gcd}(x+x^{2^{j-i}}+x^{2^{\frac{j-i}{2}}}, x^{2^m}+x)=1\). By Lemma 2, we have \(\mathrm{gcd}(1+x^{j-i}+x^{\frac{j-i}{2}}, x^m+1)=1\). Therefore, \(\mathrm{gcd}(L(x), x^m+1)=\mathrm{gcd}(x^{m-(i+j)}+1, x^m+1)\). By Theorem 8, f(x) is e-plateaued if and only if \(\mathrm{gcd}(x^{m-(i+j)}+1, x^m+1)=x+1\), which is equivalent to the condition \(\mathrm{gcd}(i+j, m)=\mathrm{gcd}(2t, m)=\mathrm{gcd}(t, m)=1\).

Corollary 10

If \(n=2m\) with \(m(>1)\) odd, then for any \(\beta \in \mathbb {F}_{2^2}^{*}\),

$$\begin{aligned} f(x)={\mathrm{Tr}}_1^n(\beta x^{1+2^{2i}}+\beta x^{1+2^{2j}}+\beta x^{1+2^{2t}}) \end{aligned}$$

\((j-i=2t, 1\le i<j\le m-1)\) is semi-bent if and only if \(\mathrm{gcd}(t, m)=1\).

5 Concluding remarks

In this paper, we study the function defined by

$$\begin{aligned} f(x)=\sum \limits _{i=1}^{\frac{q-1}{2}}c_i{\mathrm{Tr}}_1^n\Big(x^{1+2^{pi}}\Big)+\sum \limits _{i=1}^{\frac{p-1}{2}}d_i{\mathrm{Tr}}_1^n\Big( x^{1+2^{qi}}\Big), \end{aligned}$$

where \(c_i, d_j\in \mathbb {F}_2\), \(1\le i\le \frac{q-1}{2}\), \(1\le j\le \frac{p-1}{2}\), \(n=pq\), pq odd, \(\mathrm{gcd}(p, q)=1\), and the function defined by

$$\begin{aligned} f(x)=\sum \limits _{i=1}^{\frac{m-1}{2}}c_i{\mathrm{Tr}}_1^n\Big(\beta x^{1+2^{ei}}\Big), \end{aligned}$$

where \(n=em\), \(e=2^l\), m is odd, \(c_i\in \mathbb {F}_2\)\((1\le i\le \frac{m-1}{2})\), \(\beta \in \mathbb {F}_{2^e}^{*}\). We prove that these two kinds of functions contain semi-bent ones in certain cases. Moreover, we present some characterizations of e-plateaued functions with few trace terms when n is even. Furthermore, their are still some problems that need to be studied such as how to obtain semi-bent functions with higher degree by the primary constructions.