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Abstract

Plateaued functions and their subclass semi-bent functions have useful applications in cryptography and communications.
In this paper we give new constructions of quadratic semi-bent functions in polynomial forms on the finite field [F,» for both
odd and even n. We also present some characterizations of e-plateaued functions with few trace terms when n is even.
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1 Introduction

In the 1960s and 1990s, two families of m-sequences
having low cross correlation were introduced by Gold [1]
and Boztas et al. [2] respectively. Each of them has period
2" — 1 and a plateaued cross-correlation spectra. That is,
for two such m-sequences u(r) =Tr{(o/) and
v(t) = Tr}(B'), where o« and f have order 2" — 1 in the
finite field F,», we have

2"-2

Cupl(t) = D (=170 {—1,—1 12%}‘

t=0

These families of sequences have the trace representations
%

flx) =Try (xw) (ged(i,n) =1) and f(x)=> Tr} <x1+2">
i=1

. 1 i .
respectively, where Tr}(x) = > " x*. Such families of
maximum-length sequences, whose cross-correlation
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spectra attain exactly the values above, have a wide range
of applications in cryptography and code-division multiple-
access communication systems [3, 4]. Such sequences can
be represented by Boolean functions which we call semi-
bent functions, using the terminology of Khoo et al. [5].
In order to construct more sequences having the nice
property as the above two sequences, Khoo et al. [6]
investigated the problem of determining the function

n—1
2 .

flx) = ZciTr'l' <x1+21), ci €k
i=1

defined on [F,» with n odd is semi-bent, where this sum has
more than one term. To such a function a cyclic code of
length 2" — 1 was associated, spanned by

)

c(x),xc(x),...,x"'e(x), where c(x) =

e (xi —+ x”7i>.

i=1

Then it was proved that f is semi-bent if and only if
gcd(c(x),x" + 1) =x+ 1. This gives a very convenient
tool for determining whether a function f having certain
number of trace terms is semi-bent or not.

Following this work, Charpin et al. studied the following
function [7]:

%) :
flx)= ZciTr’l’ (tzI), ¢ € Fy. (1)
i=1

When n is odd, they provide some semi-bent functions with
three or four trace terms. When n is even, they proved that
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f(x) is semi-bent if and only if ged(c(x),x" + 1) = x> + 1,
where ¢(x) = 7 1 ei(x' +x"77). Moreover, they found
that the concatenatlon of two suitably chosen such semi-
bent functions will yield a semi-bent function with higher
algebraic degrees. After this work, a lot of research has
been devoted to finding new families of quadratic semi-
bent and bent functions in the form of Eq. (1) [8-16]. In
2013, Dong et al. present some new constructions of
quadratic semi-bent functions. For odd n = pg with p(3 |/
p),q odd, they proved that the function

—1

I

'MNI

F) = 30T () 1 (62,

is semi-bent. For even n = 2m with odd m, a necessary and
sufficient condition for the function defined on [F,: by

m—

fx) =

M4

oTt! <ﬁ 1+22')

to be semi-bent is given. For some special cases of
ci(1 <i< m5Y), they proved that f is semi-bent.

Motivated by the paper [8], we present new construc-
tions of quadratic semi-bent and e-plateaued functions in
polynomial forms. We study the function defined by

w=iﬂﬁwﬂ+imﬂw%, 2)
i=1 =1

where c¢;,djeFy, 1<s< % 1<t< ‘%1, n=pq,
p, q odd, ged(p,g) = 1, and the function defined by

f T (p). ®)

where n=em, e=2', m is odd, ¢; € F, (1<i< 25,
p € F.. For odd n, we find five new classes of semi-bent
functions of the form Eq. (2) by choosing suitable vectors
(c1y...,¢5) € F and (di,...,d,) € F,. For even n, we give
a necessary and sufficient condition under which f{x) given
by Eq. (3) is e-plateaued and provide some new e-pla-
teaued and semi-bent functions with few trace terms.

To the best of our knowledge, we give a list of the
quadratic semi-bent functions on [F,. as follows:

When 7 is odd, the following functions are semi-bent.

M flx)
2 flx) = iTr’f(x'“i) [2].

n—1

2 .
3) f(x):;c,»Tr'l'(x”z'), ci€Fy for 1<i<ih

= T (x'*?), ged(i,n) = 1 [1].

n—1

gcd(Zc,(x o ) 1) =x+1[6].
1

@ Springer

@ fx) =T, ged(2a+ rd,n) = ged
i=0

(

(r+1)d,n) =1 [5].
(x) = Trj (") + Tr (2" *%), ged(i +j,n) = ged
i—j,n)=1I5]

(
& f
(i

© fo)- 5T (a2 4185 (+2"), n = pa. p(3 Y/
D),q arel;(;dd positive integers such that ged(p, ) =
1 [8].

M) f) =Te} (¥1*") + T (62), 0 = pg. p. q 0dd,
gcd(p,q) =1, and i, j are two positive integers

such that ged(i, q) = ged(j,p) = 1 (Theorem 3 of
this paper).

et
®) ) =2 T + Tri(x"**), n=pq, p(3Y
i=1
p),q are odd positive integers such that
gcd(p,q) =1, ged(j,p) =1 (Theorem 4 of this
paper).
g1
T .
©)  f(x) = LT () + Tr (x14+29) + Trj (¢,

=1

n=pq,p, qodd and gcd(p,q) = 1,j =2' and lis a
positive integer such that ged(l,n) = 1 (Theorem 5
of this paper).

a1

2 .
(10)  f(x) = 2 Tef(x"2") 4 Te (61 +27) + T (6 +27),
i=1
n=pq, p,qg odd and gcd(p,q) =1,
=201 ol k=201 421y > y> 1 (The-

orem 6 of this paper).
o

F) = ST 4 T ) 4 Ty 2),

n=pq, p, qodd and ged(p,q) = 1,j =2" k= 2",
u>v>1, ged(u—v,n) =1 (Theorem 7 of this
paper).
When n = 2m is even, the following functions are semi-
bent:

Y

n

2 .
= > aTri(x'*?),
i=1

(ST

-1
ged (D (¥ +
i=1

1 fx) ¢ € [y,

X+ 1) =22+ 1 [7].

() f(x) =T (ax'*?), o € F},, i even, m odd [10].

B fx) =T (x'?), ae{|xeFy}, i odd,
m even [10].

@ flx) =T (x'*?), o € {x* |x € F}.}, i odd, m odd

and ged(i,m) = 1 [10].

G)  fx)=TE"Y) + T (), m odd, 1<i<j
<m, ged(i+j,n) =ged(j—i,n) =1 or ged(i +
J.n) =ged(j —i,n) =2 [10].
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©) flx)= fTr';(ﬁle"), m odd, § € F; [8].

M flx) =

m) x4+ 1) =x+ 1 [8].

®) flx)= i r(p ), BeF, m o odd, d>1,
1 <k< ’”T, ged(k + 1,m) = ged(k,m) =
gcd(d,m) =1 [8].

) fx) =T (Bx" 4+ px'¥), peF:, m odd,
1<i<j<|3], ged(i+j,m)=ged(j—im)=1
[8].

(10)  f(x) = Trj(Bx"** + px ¥ 4 px ™), e,
m odd, 1<i<j<t<|[}], i+j=1t ged(i,m)=
gcd(j,m) = ged(t,m) = 1 [8].

(1) f(x) = T (B + B+ 4 pal+4), peF;
m odd, 1<i<j<t<|%], i+j=2t, j—i=23"p,
3 |p, n=3%q, 3 |/q, gcd(2t,m) = 1, h >k [8].

(12) f(x) — Tr’f(ﬁx”“[ + ﬁx1+4f + ﬁxl+4’)’ ﬁ cF,
m odd, 1<i<j<t<|§], j—i=2t, t#i,
J+i=3"p, 3|/p, n=73"¢, 3|/, gcd(2t,m) =1,
u>v [8].

(13) f(x) _ Tr’f(ﬁxH“i + ﬁxl+4/ + ﬁxl+4’ + ﬁxl+4“')’
B e F, modd, 1<ijts<|f], i<j, t<s,
i+j=t+s=r, t# i, ged(r, m) =
ged(s — i, m) = ged(s — j,m) = 1[8].

(14)  f(x) =T (Bx'*?), 1<i<m—1, ged(i,m) =1
and m odd (Corollary 5 of this paper).

(15) f(x) _ Trflz(ﬁxl+22’ + ﬁxl+22f + ﬁx1+22’)’ B €,
modd, | <i<j<t<m—1,i+j=2t, ged(t,m) =
1 (Corollary 9 of this paper).

(16) f(x) _ Tr’l'(ﬁtzZi + ﬁx1+22f + ﬁx1+22'), B € F,

modd, | <i<j<t<m—1,j—i=2t ged(t,m) =
1 (Corollary 10 of this paper).

2 Preliminaries

Let [,» be the finite field with 2" elements, and we use B,
to denote the set of Boolean functions from [y to [F». In
this paper, we mainly investigate the Boolean function of
the form

il t
o= S () o S o).
i=1 =

where c¢;,di€F;, 1<s< % 1<t< ’%1 n=pgq,
p, q odd, ged(p,g) = 1, and the function defined by

m—1

_ 2_; oTt! (ﬁx'+2”) 7

where n=em, e=2', m is odd, ¢; € F, (1<i<”l),
p € F;.. The Walsh transform of f at 4 € F is given by
Wp(2) = (=10t
x€Fon

Definition 1 ([17]) Let f(x) € B,. For any A € Fo, if
Wi (1) € {0,£2""}, for some fixed r, r =0, 1,...,n, then
fix) is called r-plateaued. O-plateaued (when n is even)
functions are called bent. 1-plateaued (when »n is odd) and

2-plateaued (when n is even) functions are called semi-
bent.

The r-plateaued functions exist only when n — r is even,
or equivalently, if n and r have the same parity [18]. It is
well-known that all the quadratic functions are plateaued
[19].

The quadratic Boolean functions on Fp: are as follows:

5] _
X) = ZCITI'I; (XH_Z/), ¢ €.
i=1

Any such Boolean function with n variables has rank
2t with 0 <t < |5] [3], and the rank can be found as fol-
lows. Let

Q) =f(0) +f(x) +f(y) +f(x+y). (4)
Then the rank of f{x) is 2¢ if and only if the equation
Qs(x;y) =0, for any y € Fo

in x just has 2"~ solutions. The rank of quadratic Boolean
functions is connected with the distribution of its Walsh

transform values. Furthermore, the following theorem
holds.
Lemma 1 ([3]) Let f(x) € B, is a quadratic function, and

the rank of f{x) is 27, 0 <t < |4/, then the distribution of its
Walsh transform values is given by

n=t 221 4 21 times,
Wy (L) = 0, 22 times,
—on=t 2=l _ 21 times.

From the above theorem, it is easy to see that a quadratic
Boolean function is semi-bent if and only if the rank of
fix) is n — 2 when n is even, or the rank of fx) is n — 1
when n is odd.

@ Springer
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Definition 2 ([20]) The polynomials /(x) = Y a;x’ and

n

i=0
n .

L(x) =Y aix? over Fn (q is a prime integer) are called g-
i=0

associates of each other. More specifically, I(x) is the

conventional g-associate of L(x) and L(x) is the linearized

g-associate of I(x).

Lemma2 ([20]) Let L;(x) and L(x) be g-polynomials over
F, with conventional g-associates [;(x) and [(x). Then
L;(x) divides L(x) holds if and only if /; (x) divides /(x).

Lemma3 Let ¢(x) = x + L be a function defined over [3,.
Then the following two statements hold.

) If ¢(x) = ¢(y) for two elements x and y in [,, then
x=yorxy=1.
(ii)) ¢(x) =0if and only if x = 1.

Proof
i) If ¢(x) = ¢p(y) for x,y € F3,, ie.,
1 1
xX+-= y + )
X y
then

Xy +y=xy" 41,
which implies
(x+y)(xy+1)=0.

Therefore x =y or xy = 1.

(i) ¢(x)=0 if and only if x+1=0, which is
equivalent to x> = 1. Since ged(2,2" —1)=1,
the equation x> = 1 has only one solution x = 1
in 5.

Lemma 4 Let p, g and i, j be positive integers satisfying
that p,gq are odd and gcd(p,g) =1 and
ged(i,q) = ged(j,p) = 1. Then ged(pg, pi £ gj) = 1.

Proof 1If gcd(pgq,pi £ gj) # 1, then there exists a prime
integer ¢ such that ¢ | ged(pg, pi £ gj), i.e.,

t|pq or t|pi+gqj. (5)

Since 7 is a prime, by Eq. (5) we have ¢|p or t]q.

If ¢| p, then by Eq. (5), we have 7| gj. Therefore, ¢ | g or
t|j. If t| g, then 7| ged(p,q) = 1, which is impossible. If
t|j, then 7| ged(j, p) = 1, which is also a contradiction with
the assumption that # is a prime.

If ¢ | g, we can similarly deduce that ¢t = 1, a contradic-
tion. This completes the proof.

@ Springer

3 New constructions of semi-bent functions
on [>» with n odd

In this section, several classes of semi-bent functions are
constructed on F,., where n = pg and p, g are odd integers
such that ged(p,q) = 1.

Theorem 3 Let n = pg with p, ¢ odd and ged(p,q) = 1.
Then the function defined on [y by

f(x) = Tr! (x1+2"’) T (x1+2'”’) (6)

is semi-bent, where i, j are two positive integers such that
ged(i, g) = ged(j,p) = 1.

Proof By Lemma 1, in order to prove that f{x) is a semi-
bent function, we just need to prove that the rank of f{x) is
n — 1. By Eq. (4), we have

Qf(x;y) = Tr] (y (xzp[ + 22 4 xzp"ﬂ”)) .

Let L(x) = x¥" +x"7" +x* +x¥"*, and it is easy to see
that x*> + x | L(x). To prove that the rank of f(x) isn — 1, we
need to show that L(x) has two solutions in Fy» or equiv-
alently to prove gcd(L(x), x*” +x) = x*> + x. By Lemma 2,
we need to show

ged(I(x), 1 + 1) =x+1,

where [(x) = xP + xP9P 4 x¥ + xP779, To do this, we
divide the remaining proof into three cases.

If f#1 is root of x“+1 and f" =1, then
I(B)=pY + 9 #0. Otherwise, if [(f)=0, then
p*% =1. Since ged(2,2" —1)=1, we have p%=1.
Recall that ¥ =1, ged(p,q) =1 and ged(p,j) =1, we
have f§ = 1, which is a contradiction with the assumption

p#1

If § # 1isaroot of x*7 4+ 1 and 3 = 1, we can similarly
deduce that I(f) = p' 4 77" # 0.

If f#1is aroot of ¥+ 1 and ¥ # 1, 7 # 1, then
IB)=P +B " +p7+p % If 1P =0 ie,
d(B") = p(BY), where ¢(x) is the function defined in
Lemma 2. By Lemma 2, we have

ﬁpi — ﬁqj or ﬁpi-wj =1. (7)

Since ged(p,g) =1 and ged(i,q) = ged(j,p) =1, by
Lemma 4 we have gcd(pg,pi+qj) =1. Recall that
B4 = 1, then by Eq. (7), we have f = edParita) — 1 or
B = peedrari=a) — 1 poth of which contradict with the
assumption f§ # 1.

From the analysis of above, we can see that
ged(l(x), %" + 1) = x + 1. Thus the rank of fix) is n — 1,
and this completes the proof.
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Corollary 1 Let n=pg with p, g distinct odd prime
integers. Then the function defined on F»: by

fx) =Tt} (x1+2,),-) + Tr} (x“’ij) (8)
is semi-bent for any integers i, j.

Theorem 4 Let n = pg with p, ¢ odd, gcd(p,q) = 1 and
3 |/p. Then the function defined on F,. by

-1

I

fx) =

)

Tr] (tzpi) + Tr} (tzqj) 9)

i=1

is semi-bent, where j is a positive integer such that
ged(j,p) = 1.

Proof From Lemma 1, in order to prove that f(x) is a semi-
bent function, we just need to prove that the rank of f{x) is
n — 1. By Eq. (9), we have

IS

flx+y) =

NG

Try (x + ) T (et y)”zw)

ot =l
2 2
=T (tzp, + szm) + > Tt} (xz’"y + yzp'x>
i=1 i=1
+ T (x1+2w 4yl +x2qiy+yzq’x).

Hence,

Qi (x;y) =£(0) +f(x) +£(y) +f(x+Y)

_ T I,ll (xzniy 4 yzmx) i Tl"ll <x2qjy + yijx)
q—1

g-1
_ Z ¢ (x2/”y + yxzanm) T (xzq/y + yx2/urw>

— Tr’f <y <Z (XZI"' n x2ﬂfHﬂ'> ) ) + Tl"TI"ll (y (x2lll + x2ﬂz/fq/'>>
i=1

q-1 .
(oS ),

i=1

q—1 . .
Let L(x) = > x¥ +x*" +x%" ", and it is easy to see that
i=1
x? + x| L(x). To prove that the rank of f(x) is n — 1, we
need to show that ged(L(x),x*" + x) = x*> 4+ x, which is
equivalent to show that

ged(I(x), ¥ +1) =x+1
-1l . .
from Lemma 2, where I(x) = > X" +x¥ + x"1" 9.
If B#1 is a root of ¥¥+1 and B’ =1, then
I(B) = B + B4 + 0. Otherwise, we have %9 = 1. Since
gcd(2,2" — 1) =1, f = 1. From the conditions S’ = 1

and ged(j, p) = 1, we have § = 1, which is a contradiction
with the assumption.
If f#1 is a root of x4+ 1 and 7 =1, then

1) =i + B0+ T =12 0.

If B #11is aroot of ¥+ 1 and ¥ # 1, 7 # 1, thus
B+ B
IB) =——
pr+1
If [(f)=0, then ¥ =1. Since f* =1, 3|p and
ged(j,p) = 1, ﬁng(an—*th — ﬁng(P-,3j)q =p?=1, which
contradicts with the assumption 7 # 1. Hence we also
have /(ff) # 0 in this case.
From the analysis of above, we can see that
ged(I(x),x* + 1) = x + 1. Thus the rank of fix) is n — 1,
and this completes the proof.

For j=1 in Theorem 4, we have the following
corollary.

Corollary 2 ([8]) Let n = pq with p, g odd, ged(p,q) =1
and 3 |/p. Then the function defined on Fy by

flx) = i Tr| (tz,,[) + Tr (x1+2q> (10)
i=1

is semi-bent.

Theorem 5 Let n = pg with p, ¢ odd and ged(p,q) = 1.
Then the function defined on [y by

q-1
£ = DT (142) 1 (6 2) 4 1 (1 2)
i=1
(11)

is semi-bent, where j = 2/ and [ is a positive integer such
that ged(l,n) = 1.

Proof From Lemma 1, in order to prove that f{x) is a semi-
bent function, we just need to prove that the rank of f{x) is
n — 1. By Eq. (11), we have

a1
2 pi q
Pl = LTk ) TR ) + T () )

g1

=y (12 oy 2 4 Z: T (2 + ')
P

+Trrlt(xl+2" +yl+2" +x2"y _,’_yZ"x)
+Trrlt(x1+2‘/f +yl+2‘” +x2‘”y +y2“/x).

IS
)

Hence,
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Qs (x;y)

gq—1

= ZTr

i=1

=f(0) +£(x) +f () +f(x+)
1 (xz'"y + y2"1x> + Tr} (xzq y+ yqu>

+Tr] (xijy + y2”x>

5 .
=3 T <x2'” y+ yxzpw')

+TI’ (xztfy + yxzqur/> + TI‘” (xzny +yx2ﬂ’/ q/)

=Tr ()’ (IXZI: (x2 +x "i>> > + T <y<x2‘f I xz’"’f")>
o)

- T r,], (y (qil xzpi + xzq + lenrcz + xzw + le’fi"l/) ) )

i=1

Pa—q qj Pq—qj . .
22 4P and it s

g=1
=Y ¥+ +x
i=1
easy to see that x*> + x|L(x). To prove that the rank of
fx) s need to show that

ged(L(x),x* + x) = x* + x, which equals
ged(l(x), X +

Let L(x)
n—1, we

)=x+1
-1

from Lemma 2, where I(x)= qz: AP x4 xPI
XU 4 xPI—4, i=1

If f#1 is a root of x4+ 1 and f =1, then
I(B) =PI+ p 1+ 9+ p7. Let w=pI+p9 then
I(B) = w +w/, where j =2' and w # 0, 1. We claim that
I(B) #0. Otherwise, we w=w?.
ged(2 — 1,2 — 1) = 1,
contradiction.

If $#1 is a root of ¥+ 1 and 7 =1,

(B)=1=#£0.

If f#11isaroot of X7+ 1 and p” # 1, p7 # 1, thus
I(B) =1+ 7+ B+ 7+ p7.
If [(B) = 0, then w +w* = 1. Since n is odd, Tr’(1) =
But Tr’(w +w?) = 0, leading to a contradiction. Hence
we also have I(f) # 0 in this case.

From the analysis of above, we can see that
gcd(I(x),x*7 + 1) = x + 1. Thus the rank of f{x) is n — 1,
and this completes the proof.

have Since

w=0 or 1, which is a

then

Theorem 6 Let n = pg, with p, g odd and ged(p,q) = 1.
Let j=2"1—2""1 and k =2*"!' 4 2""!, where u, v are
positive integers such that u > v. Then

;11< 1+2/"‘) +Trrll(x1+2"j) +Tr'f(xl+zqk)

—1

S

MN|
=

fx) =

B (12)

is semi-bent on [Fsx.

@ Springer

Proof From Lemma 1, in order to prove that f{x) is a semi-
bent function, we just need to prove that the rank of f(x) is
n — 1. By Eq. (12), we have

—1

5

2 i i
Pty = L))+ ()
+Te (G +3)' ")
= ST (x4 ) 4 2T (#'y +57'x)

i=1

T <x1+2~/ oyl 20y x)
+ T (x1+24k I S I yzqu).

Hence,

L
=
=
NS
=
I

FO)+f(x) +f() +f(x+)

= i Tr} (lely +5? x) + Tr (x y+ yzq'x)
+Te (" +5%x)

Z (X y _|_yx2rq m) + Trl( y _'_yXZP‘I*flf)

T (x”“y + yx”“k)

g—1

=T <y (Z (xzp' + xzww))) + T (y (x24f + xzquq/)>
i=1
+ T (v (2 )

—1
= Tr| (y <qz D R AP T xz”"Wk) ) '
i=1

q_l i j —q —gK . .
=S 4 2 2 P and it s
i=1
easy to see that x> + x| L(x). To prove that the rank of
Jx) is need to show that

ged(L(x),x* + x) = x* + x, which equals
ged(l(x), x4 +

Let L(x)
n—1, we

)=x+1
=l A .
from Lemma 2, where I(x)= > x"+x¥ + "9+

XT& 4 xpa—ak, i=1

If 41 is a root of ¥+ 1 and f£ =1, then
IB)=BY+B Y +p*+p* If If)=0, then
d(pY) = $(B™), where ¢ is the function defined in
Lemma 2. By Lemma 2, we have p%=p% or
BVt = 1. Since ged(jtk,p)=1, =1 and
gcd(p,q) = 1, we have =1, which is a contradiction
with the assumption f§ # 1.

If f#1 is a root of ¥4+ 1 and p?=1,
(By=1+#0.

If f#1is aroot of ¥+ 1 and ¥ # 1, f? # 1, thus

then
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U(B) =1+ BY + p7 + B+ p.

If I(f) = 0, then

BU B4 =1 (13)
By Eq. (13), we have
ﬁq(j+k) + I[;Q(k*j) 4 ﬁqu + ﬁqk =1. (14)

Since k +j = 2" and k —j = 2", Eq. (14) can be rewritten
as

(B> + (B + (B*)* + p* = 1. (15)

It is clear that Tr! ((87)* + (B9)* + (B™)* + %) = 0. But
Tr{(1) = 1, leading to a contradiction. Hence we also have
1(B) # 0 in this case.

From the analysis of above, we can see that
ged(I(x),x* + 1) = x + 1. Thus the rank of fix) is n — 1,
and this completes the proof.

Theorem 7 Let n = pq, with p, ¢ odd and ged(p,q) = 1.
Letj = 2* and k = 2", where u, v are positive integers such
that u > v and ged(u — v,n) = 1. Then

-t
flx) = Z Tr| (tz,,[) + T (6" + Tx) (x1+2qk>
i=1
(16)
is semi-bent on [Fy.

Proof From Lemma 1, in order to prove that f(x) is a semi-
bent function, we just need to prove that the rank of f(x) is
n — 1. Through similar calculations as Theorem 5, we have

Q(xy) =f(0) +(x) +0) +f(x+)

-1

<

I
03+

Tl”rll (xzm'y n y2p1x> i Tr,][ (xzqu + yzqz‘x>
1

+ Tr} (xzqk y+ yzqu)

<

|
0+

Trrlt (xz”’y + yxzwrw) +T r}il (lelfy + y. XZM*II/)

i=i
+Tr} (xzqk y+ yxz'"'*qk)

g1

=Tr} <y (ZZ:I (xzﬁi n xmm))) L Tr (y(xM I xzpq—qJ‘))
+Tr} (y (xzé'k + xz”‘“”k) )

Ui i j —qj pq—q
— Tr,ll <y (Z xzw + xzqz + le"l qj + xzqk + xz/ k)) ]

i=1

q71 pi j pg—qj pg—

Let L(x) = S x¥ + 22 422" + 2" 42" and it is
i=1

easy to see that x* + x|L(x). To prove that the rank of

fx) is n—1, we need to show that

ged(L(x),x*™ +x) = x> + x, which equals
ged(I(x), 1 +1)=x+1

from Lemma 2, where [(x)= qix”i + XY 4 (P
XK - ypa—ak, i=1

If f#1 is a root of ¥7+1 and f” =1, then [(f)
=PV 4 Y 4 gL % Let w=p7+ 9, then I(f)
=w¥ +w¥ . If [(B) = 0, then w?* = w*. Note that w # 0,
then we have w? =2 = w?@"=1) = . Since gcd(2"(2*"
—1),2" — 1) = ged(27" — 1,2" — 1) = 2ecdlwvn) 1 — |,
we have w = 1. This is impossible, because the equality
w =1 will lead to = 1, which is a contradiction with the
assumption f§ # 1.

If f#1 is a root of x4+ 1 and f? =1, then
I(f)=1#0.

If f#11isaroot of ¥7 4+ 1 and f* # 1, p? # 1, thus
[(ﬁ) =1+ Bllj =+ ﬂ—qj + ﬁqk + ﬁ_qk — n "

If (B)=0, then w*+w* =1. Note that
T} (w?* +w?) = 0. But Trj(1) = 1, leading to a contra-
diction. Hence we also have /() # 0 in this case.

From the analysis of above, we can see that
gcd(l(x),x*7 + 1) = x + 1. Thus the rank of f{x) is n — 1,
and this completes the proof.

4 New constructions of e-plateaued
and semi-bent functions on [n
with n even

In this section, we give some new constructions of quad-
ratic e-plateaued and semi-bent functions in polynomial
forms with even n. We suppose n = em, where e and m are
even and odd positive integers respectively in this section.

Theorem 8 For any f§ € [, the function defined on [y
by

=3 (")

i=1

(17)

is e-plateaued.

Proof By Lemma 1, in order to prove that f(x) is an e-
plateaued function, we just need to prove that the rank of
fix) is n — e. By Eq. (17), we have

@ Springer
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It follows that

Qr(x;y) =0, for any y e Fp (18)
holds if and only if

T (x) +x = 0.

So x=Trl(x)€Fe, and for any x¢€ Fp,

Tr!(x) = xTr}(1) = x. This implies that Tri(x) +x =0
holds if and only if x € F,.. Hence Eq. (18) has only 2°¢
solutions, so the rank of fix) is n — e. By Lemma 1 and
Definition 1, f(x) is an e-plateaued function.

For e = 2, we have the following corollary.

Corollary 3  ([8]) For any 5 € [,, the function defined on
”:2»1 by

flx) = i T} (b 2)
i=1

is a semi-bent function.

Now we consider the general case. We study the func-
tion defined by

fx) = i T (B 27),
i=1

where ¢; € Fp, (1<i< ’"T’l), p e ..

(19)

Theorem 9 If ¢ = 2/ for some positive integer /, then for
any f € F5., the function defined on Fx by Eq. (19) is
e-plateaued if and only if

m=1
2

gcd Zci(xi XA =x+ 1
i=1

Proof By Lemma 1, we only need to prove that the rank
of f(x) is n — e. Similar to the proof of Theorem 7, the rank
of f(x) is n — e if and only if the equation

@ Springer

m—1

el em—ei
E Ci (x2 +x2 )

2
i=1

(20)

has only 2¢ solutions in F,.. For any x € Fy, it is obvious
that x** 4+ x =0(1<i< =) holds. So

m—1
-
e ei em—ei
K+ x| E c,(x2 + x? )
i=1

In order to show that Eq. (20) has only 2¢ solutions in [y,
we just need to prove that

em—ei
2

n—

ged (21)

g2

ei em—ei n e
c,~()c2 —l—x2 ),x2 +x = +x
1

holds. By Lemma 3, Eq. (21) holds if and only if

n—

ged ¢ (xei —l—xem_ei),xem +1]=x+1=(x+1)"
[

I\)|

(22)
Eq. (22) holds if and only if

m—1

2
gcd Zc,-(x"—&—xm”‘),xm—i—l =x+ 1.
i1

Theorem 10 If ¢ = 2/ for some positive integer /, then for
any € F,r>1,1<k< mT_l, the function defined on F,»
by

k

fe) =D (g2

i=1
is e-plateaued if and only if
ged(k + 1,m) = ged(k,m) = ged(r,m) = 1.
Proof Similar to the proof of Theorem 8, f(x) is e-pla-

teaued if and only if

ged(L(x),x" +1) =x+1, where L(x) = Z <x”l +xm7”'>.

i=1

We have
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- xrk(xr +1)
x@eDr ke 4k
X*(x + 1)
(X 1) (% + 1)
xrk(xr + ])

Thus,

(xrk+r+ 1)(xrk+ 1)
L mT+1) = 4+
ged(L(x),x™ + 1) gcd( G+ 1) X"+

=x+1

holds if and only if

ged(r(k + 1),m) = ged(rk,m) = ged(r,m) = 1,

which equals

ged(k + 1, m) = ged(k,m) = ged(r,m) = 1.

Corollary 4 ([8]) For any f € 5, r>1, 1 <k < ’”T’l the

function defined on [y by
k

flx) = Z Tr} (ﬁx““zz”)

i=1
is semi-bent if and only if
ged(k + 1,m) = ged(k,m) = ged(r,m) = 1.

Theorem 11 If ¢ = 2 for some positive integer /, then for
any f €[5, the function defined on Fx by f(x)=
Tef(Bx'2") (1 <i<m — 1) is e-plateaued if and only if

ged(i,m) = 1 and m is odd.

Proof Let [(x) = x' +x™'. By Theorem 8, the function is
e-plateaved if and only if ged(/(x),x" + 1) =x+ 1. As
xf = X2 + 1) and ged(x,x" 4+ 1) =1. The
equality gcd(I(x),x" + 1) =x+ 1 holds if and only if
gcd(i,m) = 1 and m is odd.

Corollary 5 For any f €[5, the function defined by
fx) =Tr(Bx'2") (1<i<m—1), is semi-bent if and
only if ged(i,m) = 1 and m odd.

When k=1 and r =1 in Theorem 10, we have the
following corollary.

Corollary 6 If e = 2! for some positive integer /, then for
any f§ €[5, the function defined on Fx by f(x)=

Te! (B2 4 27 (1<i<j< |4]) is e-plateaued if and

only if gcd(m,j + i) = 1, ged(m,j — i) = 1 and m is odd.

Corollary 7 If ¢ = 2! for some positive integer I, then for
any f € [F5., the function defined on Fy by f(x)=
Tr (Bx' 2" + px'2”) is e-plateaued for any i, with
1 <i<j<|4]) if and only if m is an odd prime integer.

Corollary 8 ([8]) For any f§ € [,, the function defined on
Fa by fla) =Trj(fa"> + ') (1<i<j<[§)) is
semi-bent if and only if ged(m,j+ i) = 1, ged(m,j — i) =

1 and m is odd.

Theorem 12 If ¢ = 2/ for some positive integer /, then for
any f € F5., the function defined on Fy by f(x) = Tr}

(ﬁxl+2ﬂl + ﬁx1+2”f + ﬁx1+2ﬂz) (1 S1<J<Z‘S L%J,l+] _ [) iS

e-plateaved if and only if ged(m, i) = 1, ged(m,j) = 1 and

ged(m, 1) = 1.

Proof Let I(x)=x'+x""+x/ +x"7 +x' +x"'. By

Theorem 8, the function is e-plateaued if and only if

ged(I(x),x™ + 1) = x + 1. Note that

I(x) =1+ +5)+1+x"+2(1 +x7H(1 +x7)
=(1+x)(1 4+ )1 4+ x") 414 2™,

Then the equality ged(I(x),x™ + 1) =x+ 1 holds if and

only if ged(m,i) = 1, ged(m,j) = 1 and ged(m, 1) = 1.

Theorem 13 If ¢ = 2/ for some positive integer /, then for

any f € F5., the function defined on Fy by f(x) = Tr}

betax' " + B!t 4 px?) (1<i<j<m—1, i+j=

2t) is e-plateaued if and only if ged(f,m) = 1.

Proof Let L(x)=x +x""+x/ +x"7 +x' +x""'. By

Theorem 8, the function is e-plateaued if and only if

ged(L(x),x™ + 1) = x + 1. Note that

L(x) — X b X7 g  n

= x4 ¥ 4 x7 4 xm(H) (xi + ¥ +x%) (23)
= xi(l + ¥ —i—xj;zi) (1 —|—x’"’(i+j>),

and ged(x’,x"+1)=1, we have gcd(L(x),x™+1)
= ged((1 + ¥+ x7)(1 + xm=(#)) x" 4 1). Since m is
odd, Tr"(1) = 1. Consequently, Tr"(1 + ¥~ + x7) = I.
That is, for any a € Fan, 1+a@~ +d= #0. Hence,

ged(x + 22 —&—xzjz_,,xzm—i— x) = 1. By Lemma 2, we have
ged(1 + % 4+ x7, " + 1) = 1. Therefore, ged(L(x), x" +
1) =ged (x" )4 1,x"+1). By Theorem 8, f(x) is
e-plateaued if and only if ged(x ) £ 1,x" +1) =
x + 1, which is equivalent to the condition ged(i + j,m) =
ged (2t,m) = ged(z,m) = 1.

@ Springer
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Corollary 9 If n =2m with m( > 1) odd, then for any
ﬁ € F*z,

Sy = T (a2 o g2 )
(i+j=2t,1<i<j<m—1) is semi-bent if and only if
ged(t,m) = 1.

Theorem 14 If ¢ = 2 for some positive integer /, then for
any f8 € F}., the function defined on Fax by f(x) = Tr}(px!

426 4 B2 B (1<i<j<m—1,j—i=2t) is
e-plateaued if and only if ged(z,m) = 1.

Proof Let L(x)=x'+x""+x/ +x"7 +x' +x"'. By
Theorem 8, the function is e-plateaued if and only if
ged(L(x),x™ + 1) = x + 1. Consider

)CIL()C) — xt+i +xt+j +x2[ _’_xmfl#t _’_xm7j+t 4 X"
S + it _|_x2t +xt+i _|_xm7(jft) 4oxm
— xt+j + xmfiﬂ + x2t +XH£_] +xm7% +xm
= (xZ’ F S 1) +am 41
(24)
Since ged(x',x™ + 1) = 1, we have
ged(L(x),x™ + 1) = ged(x'L(x),x™ 4+ 1)
= gcd((x2’ + 1)()6% + x4 1),x’" + 1).

Suppose that a is a root of X'L(x), a € F, and ™ = 1, then

ar + a7 +1#0. Otherwise, we have
a%(a% +amF 1) =0, ie.,
1+d7 +d" =0. (25)

Note that Tr"(1) =1, and Tr"(a* + ) =0. This
induces a contradiction with Eq. (25).

By the analysis above, we have
ged(L(x),x" +1) = ged(x¥L(x),x™" + 1)

= ged(x¥ + 1,x" +1).

Consequently, f(x) 1is e-plateaued if and only if
ged(x® + 1,8 + 1) = x + 1, which is equivalent to the
condition gecd(f,m) = 1.

Since m is odd, Tr]'(1) =1. Consequently, Tr(1+
x4+ x7) =1. That is, for any a € Fpn, 1+~ +d7

# 0. Hence, ged(x 4 x2 +x2171,x2m +x) = 1. By Lemma
2, we have ged(1+x¥7" +xj°%i,x’" +1) = 1. Therefore,
ged(L(x), ¥ 4+ 1) = ged(¥"~*) 4 1,x" +1). By Theo-
rem 8, fix) 1is e-platcaued if and only if
ged(x(H) 4 1,x" 4 1) = x 4+ 1, which is equivalent to
the condition gcd(i + j,m) = ged(2t,m) = ged(t,m) = 1.

@ Springer

Corollary 10 If n = 2m with m( > 1) odd, then for any
ﬁ € F*z,

f(x) _ Trr]z(ﬁxl+22i + ﬁxl+22j + ﬁx1+22’)

—i=211<i<j<m—1) is semi-bent if and only i
=2 1<i<j<m—1) i i-bent if and only if
ged(t,m) = 1.

5 Concluding remarks

In this paper, we study the function defined by

1 p=1

) 2 )
¢;Tr| (xu.zm) + Z diTr} (x1+2q') ,
i=1

where ¢;,d; € Fp, 1 <i< %, 1<j< p%l,n:pq,p, q odd,
gcd(p,q) = 1, and the function defined by

S

M4

flx) =

)= Y et (),
i=1

where n=em, e=2', m is odd, ¢; € F, (1<i< 2,
p € F5.. We prove that these two kinds of functions contain
semi-bent ones in certain cases. Moreover, we present
some characterizations of e-plateaued functions with few
trace terms when n is even. Furthermore, their are still
some problems that need to be studied such as how to
obtain semi-bent functions with higher degree by the pri-
mary constructions.
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