1 Introduction

Let \(\mathscr{L}\left ( \mathscr{H}\right ) \) be the \(C^{*}\)-algebra of all bounded linear operators defined on a complex Hilbert space \(\left ( \mathscr{H},\left \langle \cdot ,\cdot \right \rangle \right ) \) with the identity operator \(I_{\mathscr{H}}\) in \(\mathscr{L}\left ( \mathscr{H}\right ) \). When \(\mathscr{H} = \mathbb{C}^{n}\), we identify \(\mathscr{L}\left ( \mathscr{H}\right )\) with the algebra \(\mathcal{M}_{n}(\mathbb{C})\) of \(n\)-by-\(n\) complex matrices.

A functional Hilbert space is the Hilbert space of complex-valued functions on some set \(\Theta \subseteq \mathbb{C}\) such that the evaluation functionals \(\varphi _{\tau}\left ( f\right ) =f\left ( \tau \right ) \), \(\tau \in \Theta \), are continuous on ℋ. Then, by the Riesz representation theorem there is a unique element \(k_{\tau}\in \mathscr{H}\) such that \(f\left ( \tau \right ) =\left \langle f,k_{\tau}\right \rangle \) for all \(f\in \mathscr{H}\) and every \(\tau \in \Theta \). The function \(k\) on \(\Theta \times \Theta \) defined by \(k\left ( z,\tau \right ) =k_{\tau}\left ( z\right ) \) is called the reproducing kernel of ℋ, see [2, 4, 5, 17] and references therein. It was shown that \(k_{\tau}\left ( z\right ) \) can be represented by

$$\begin{aligned} k_{\tau}\left ( z\right ) =\sum \limits _{n=1}^{\infty}{ \overline {e_{n}\left ( \tau \right ) }e_{n}\left ( z\right ) } \end{aligned}$$

for any orthonormal basis \(\{e_{n}\}_{n\geq 1}\) of ℋ, see [30]. For example, for the Hardy-Hilbert space \(\mathscr{H}^{2}=\mathscr{H}^{2}\left ( \mathbb{D}\right ) \) over the unit disc \(\mathbb{D}=\left \{ z\in \mathbb{C}:\vert z\vert <1\right \} \), \(\{z^{n}\}_{n\geq 1}\) is an orthonormal basis, therefore the reproducing kernel of \(\mathscr{H}^{2}\) is the function \(k_{\tau}\left ( z\right ) =\sum \limits _{n=1}^{\infty}{ \overline{\tau _{n}}z^{n}}=\left ( 1-\overline{\tau}z\right ) ^{-1}\), \(\tau \in \mathbb{D}\). Let \(\widehat{k}_{\tau}= \frac{{k_{\tau}}}{{\left \Vert {k_{\tau}}\right \Vert }}\) be the normalized reproducing kernel of the space ℋ. For a given a bounded linear operator \(X\) on ℋ, the Berezin symbol (or Berezin transform) of \(X\) is the bounded function \(\widetilde{X}\) on \(\Theta \) defined by

$$\begin{aligned} \widetilde{X}\left ( \tau \right ) =\left \langle {X\widehat{k}_{ \tau }\left ( z\right ) ,\widehat{k}_{\tau}\left ( z\right ) }\right \rangle ,\text{ }\tau \in \Theta . \end{aligned}$$

An important property of the Berezin symbol is that for all \(X,Y\in \mathscr{L}\left ( \mathscr{H}\right )\), if \(\widetilde{X}\left ( \tau \right ) =\widetilde{Y}\left ( \tau \right ) \) for all \(\tau \in \Theta \), then \(X=Y\) (at least when ℋ consists of analytic functions, see Zhu [31]). For more details, see [3, 6, 810, 1214, 16, 1829]. So, the map \(X\rightarrow \widetilde{X}\) is injective [15]. The Berezin set and the Berezin number(radius) of an operator \(X\) are defined, respectively, by

$$\begin{aligned} \textbf{Ber}\left ( X\right ) =\left \{ {\widetilde{X}\left ( \tau \right ) :\tau \in \Theta}\right \} =\mathrm{Range}\left ( { \widetilde{X}}\right ) \end{aligned}$$

and

$$\begin{aligned} \textbf{ber}\left ( X\right ) =\sup \left \{ {\left \vert \gamma \right \vert :\gamma \in \mathrm{Ber}\left ( X\right ) }\right \} = \sup _{\tau \in \Theta }\left \vert \widetilde{X}\left ( \tau \right ) \right \vert . \end{aligned}$$

The Berezin norm of an operator \(X\in \mathscr{L}\left ( \mathscr{H}\right ) \) is defined by

$$\begin{aligned} \left \Vert X\right \Vert _{\mathrm{ber}}:=\sup _{\tau \in \Theta} \big\Vert {X\widehat{k}_{\tau}}\big\Vert . \end{aligned}$$

For \(X,Y \in {\mathscr{L}}({\mathscr{H}})\), it is clear from the above definitions of the Berezin radius (or the Berezin number) and the Berezin norm that the following properties hold:

  1. (1)

    \(\textbf{ber}( t X)=\vert t\vert \textbf{ber}(X)\) for all \(t\in \mathbb{C}\);

  2. (2)

    \(\textbf{ber}(X+Y)\leqslant \textbf{ber}(X)+\textbf{ber}(Y)\);

  3. (3)

    \(\textbf{ber}(X)\leqslant \left \Vert X\right \Vert _{\mathrm{ber}}\) and \(\textbf{ber}(X)=\textbf{ber}(X^{*})\);

  4. (4)

    \(\left \Vert t X\right \Vert _{\mathrm{ber}}=\vert t\vert \left \Vert X\right \Vert _{\mathrm{ber}}\) for all \(t\in \mathbb{C}\);

  5. (5)

    \(\left \Vert X+Y\right \Vert _{\mathrm{ber}}\leq \left \Vert X\right \Vert _{\mathrm{ber}}+\left \Vert Y\right \Vert _{\mathrm{ber}}\).

In the recent paper [7], the authors defined the \(t\)-Berezin norm on \({\mathscr{L}}({\mathscr{H}})\) as follows:

$$\begin{aligned} \Vert X\Vert _{ t-\textbf{ber}}=\underset{\tau \in \Theta }{\sup}\sqrt{ t\big\vert \widetilde{X}\left ( \tau \right ) \big\vert ^{2}+(1- t)\big\Vert X\hat{k}_{\tau}\big\Vert ^{2}}. \end{aligned}$$

The \(t\)-Berezin norm is also a norm on \({\mathscr{L}}({\mathscr{H}})\) for \(t\in [0, 1)\), and for \(t=1\) it is a norm if the functional Hilbert space has the Ber property, i.e., for any two operators \(X, Y\in {\mathscr{L}}({\mathscr{H}})\) such that \(\widetilde{X}(\tau )=\widetilde{Y}(\tau )\) for all \(\tau \in \Theta \), we have \(X=Y\). Hence, the \(t\)-Berezin norm is a norm in the familiar functional for Hilbert spaces, for instance Hardy and Bergman spaces. The \(t\)-Berezin norm satisfies the following inequalities:

$$\begin{aligned} \mathbf{ber}(X)\leqslant \Vert X\Vert _{ t-\textbf{ber}}\leqslant \Vert X\Vert _{\mathbf{ber}} \quad \textrm{for}\,\, t\in [0, 1]. \end{aligned}$$

A binary function \(\sigma \) on \([0,+\infty )\) is called a mean, if the following conditions are satisfied:

  1. (i)

    If \(a\leqslant b\), then \(a\leqslant a\,\sigma \,b \leqslant b\);

  2. (ii)

    \(a\leqslant c\) and \(b\leqslant d \) imply \(a\,\sigma \,b\leq c\,\sigma \,d\);

  3. (iii)

    \(\sigma \) is continuous in both variables;

  4. (iv)

    \(t(a\,\sigma b)\leq (ta)\sigma (tb)\,\,(t>0)\).

For instance, if \(\mu \in (0,1)\), the weighted geometric mean is \(a\sharp _{\mu }b=a^{1-\mu}b^{\mu}\). The case \(\mu =1/2\) gives rise to the geometric mean \(a\sharp b\). A mean \(\sigma \) is symmetric if \(a\,\sigma \,b=b\,\sigma \,a\) for all positive numbers \(a\), \(b\). For a symmetric mean \(\sigma \), a parametrized mean \(\sigma _{t},\,\, 0 \leq t\leq 1\) is called an interpolational path for \(\sigma \) if it satisfies

  1. (1)

    \(a\,\sigma _{0} \,b=a\), \(a\,\sigma _{1/2}\,b=a\,\sigma \,b\), and \(a\,\sigma _{1}\,b=b\);

  2. (2)

    \((a\,\sigma _{p} \,b)\sigma (a\sigma _{q}\,b)=a\sigma _{\frac{p+q}{2}} \,b\) for all \(p,q\in [0,1]\);

  3. (3)

    The map \(t\in [0,1]\mapsto a\,\sigma _{t}\,b\) is continuous for each \(a\) and \(b\);

  4. (4)

    \(\sigma _{t}\) is increasing in each of its components for \(t\in [0, 1]\).

It is easy to see that the set of all \(r\in [0, 1]\) satisfying

$$\begin{aligned} (a\sigma _{p} b)\sigma _{r}(a\sigma _{q}b)=a\sigma _{rp+(1-r)q}b \end{aligned}$$
(1.1)

for all \(p\), \(q\) is a convex subset of \([0, 1]\) including 0 and 1. For instance, the power means

$$\begin{aligned} a \,m_{r}b=\left (\frac{a^{r}+b^{r}}{2}\right )^{\frac{1}{r}}\qquad (r \in [-1,1]) \end{aligned}$$

are some typical interpolational means. Their interpolational paths are

$$\begin{aligned} a\,m_{r,t}b=\left ({(1-t)a^{r}+t b^{r}}\right )^{\frac{1}{r}}\qquad (t \in [0,1]). \end{aligned}$$

In particular, \(a\,m_{1,t}b=a\nabla _{t} b=(1-t)a+tb\) is the weighted arithmetic mean, \(a\,m_{0,t}b=a\sharp _{t} b=a^{1-t}b^{t}\) is the weighted geometric mean and \(a\,m_{-1,t}b=a!_{t} b=\left ((1-t)a^{-1}+tb^{-1}\right )^{-1}\) is the weighted harmonic mean. It is well-known that \(a!_{t}b\leqslant a\sharp _{t} b\leqslant a\nabla _{t} b\) for positive numbers \(a\) and \(b\) and \(t\in [0, 1]\). For more information about means, see [25] and references therein.

In this paper, we define a new quantity and establish some related results. The main ideas of this paper are stimulated by [7] and [11].

2 Main Results

We begin this section with the following definition.

Definition 2.1

Let \(X\in{\mathscr{L}}({\mathscr{H}})\) and \(\sigma _{t}\) be an interpolational path of a symmetric mean \(\sigma \). We define

$$\begin{aligned} \Vert X\Vert _{\sigma _{t}}=\underset{\tau \in \Theta }{\sup}\left \{\sqrt{\big\vert \widetilde{X}(\tau )\big\vert ^{2}\,\, \sigma _{t}\,\,\big\Vert X\widehat{k}_{\tau}\big\Vert ^{2} }\right \}\,\, \textrm{for}\,\,\,0\leqslant t\leqslant 1. \end{aligned}$$

Example 2.2

We consider the Hardy-Hilbert space, \(\mathscr{H}^{2}\left ( \mathbb{D}\right )\), defined over the unit disc \(\mathbb{D}=\left \{ z\in \mathbb{C}:\vert z\vert <1\right \} \) as follows:

$$ \mathscr{H}^{2}\left ( \mathbb{D}\right )=\{f: \mathbb{D}\to \mathbb{C}:f(z)=\sum _{n=0}^{\infty}a_{n}z^{n} \:\textrm{and}\: \sum _{n=0}^{\infty }|a_{n}|^{2}< \infty \}. $$

The inner product on \(\mathscr{H}^{2}\left ( \mathbb{D}\right )\) is defined by \(\langle f, g\rangle =\sum _{n=0}^{\infty} a_{n}\overline{b_{n}} \), for \(f(z)=\sum _{n=0}^{\infty}a_{n}z^{n}\) and \(g(z)=\sum _{n=0}^{\infty}b_{n}z^{n}\) and \(\{z^{n}\}_{n\geq 1}\) forms an orthonormal basis. We can identify \(\mathscr{H}^{2}\left ( \mathbb{D}\right )\) with \(l^{2}(\mathbb{N})\), since

$$ f(z)=\sum _{n=0}^{\infty}a_{n}z^{n} \leftrightarrow (a_{0}, a_{1}, a_{2}, \ldots ). $$

Therefore, the reproducing kernel of \(\mathscr{H}^{2}\left ( \mathbb{D}\right )\) is given by the function \(k_{\tau}\left ( z\right ) =\sum \limits _{n=1}^{\infty}{ \overline{\tau}^{n}z^{n}}=\left ( 1-\overline{\tau}z\right ) ^{-1}\), \(\tau \in \mathbb{D}\) and

$$ \|k_{\tau}\|^{2}=\langle k_{\tau}, k_{\tau}\rangle =k_{\tau}(\tau )= \left ( 1-\overline{\tau}\tau \right ) ^{-1}=\left ( 1-|\tau |^{2} \right ) ^{-1}, $$

for any \(\tau \in \mathbb{D}\).

On \(l^{2}(\mathbb{N})\), we consider the unilateral shift operator \(U\) defined by

$$ U(a_{0},a_{1},a_{2},a_{3},\ldots )=(0,a_{0},a_{1},a_{2},\ldots ) $$

for \((a_{0},a_{1},a_{2}, a_{3},\ldots )\in l^{2}(\mathbb{N})\). Thus, for any \(\tau \in \mathbb{D}\), we have

$$\begin{aligned} |\widetilde{U}\left ( \tau \right )|^{2} =&\left |\left \langle {U \widehat{k}_{\tau }\left ( z\right ) ,\widehat{k}_{\tau}\left ( z \right ) }\right \rangle \right |^{2} =\frac{1}{\|k_{\tau}\|^{4}} \left |\left \langle {U{k}_{\tau }\left ( z\right ) ,{k}_{\tau}\left ( z\right ) }\right \rangle \right |^{2} \\ =&\frac{1}{\|k_{\tau}\|^{4}}\left |\left \langle {U(1, \overline{\tau}, \overline{\tau}^{2},\ldots ),(1, \overline{\tau}, \overline{\tau}^{2},\ldots ) }\right \rangle \right |^{2} \\ =&\frac{1}{\|k_{\tau}\|^{4}}\left |\left \langle {(0, 1, \overline{\tau}, \overline{\tau}^{2},\ldots ),(1, \overline{\tau}, \overline{\tau}^{2},\ldots ) }\right \rangle \right |^{2} \\ =&\frac{1}{\|k_{\tau}\|^{4}}\left |\sum _{j=0}^{\infty} \overline{\tau}^{j}\tau ^{j+1} \right |^{2}= \frac{1}{\|k_{\tau}\|^{4}}\left (\frac{1}{1-|\tau |^{2}}|\tau | \right )^{2}=|\tau |^{2}, \ \end{aligned}$$

and due to the fact that \(U\) is an isometry, we conclude that

$$ \Vert U\widehat{k}_{\tau }\Vert ^{2}=\Vert \widehat{k}_{\tau }\Vert ^{2}=1. $$

Then, we obtain that

$$ |\widetilde{U}\left ( \tau \right )|^{2}\leq |\tau |^{2}< 1=\Vert U \widehat{k}_{\tau }\Vert ^{2}, $$
(2.1)

and by the monotonicity of \({\sigma _{t}}\), we have

$$\begin{aligned} 1=\sup _{\tau \in \mathbb{D} }|\tau |=\sup _{\tau \in \mathbb{D} } \left \vert \widetilde{U}\left ( \tau \right ) \right | \leq \underset{\tau \in \mathbb{D} }{\sup}\left \{\sqrt{\big\vert \widetilde{U}(\tau )\big\vert ^{2}\,\, \sigma _{t}\,\,\big\Vert U\widehat{k}_{\tau}\big\Vert ^{2} }\right \} \leq \sup _{\tau \in \mathbb{D} }\big\Vert {U\widehat{k}_{\tau}} \big\Vert =1 \end{aligned}$$
(2.2)

for \(t\in [0,1]\).

In conclusion, we have that \(\mathbf{ber}(U)\leqslant \Vert U\Vert _{\sigma _{t}}\leqslant \Vert U\Vert _{\mathbf{ber}} \), and in particular, \(\Vert U\Vert _{\sigma _{t}}=1\) for any \(t\in [0,1]\).

Following the ideas from the previous example and given that \(\left \vert \widetilde{X}\left ( \tau \right ) \right \vert \leq \big\Vert {X\widehat{k}_{\tau}}\big\Vert \), from the Cauchy-Schwartz inequality, we have that

$$\begin{aligned} \mathbf{ber}(X)\leqslant \Vert X\Vert _{\sigma _{t}}\leqslant \Vert X \Vert _{\mathbf{ber}} \end{aligned}$$

for \(t\in [0,1]\) and \(X\in{\mathscr{L}}({\mathscr{H}})\). It is easy to see that for the special case \(\sigma _{t}=\nabla _{t}\,\,(0\leqslant t \leqslant 1)\), we have \(\Vert \cdot \Vert _{\sigma _{t}}=\Vert \cdot \Vert _{ (1-t)- \textbf{ber}}\).

The next proposition shows some properties of \(\Vert \cdot \Vert _{\sigma _{t}}\).

Proposition 2.3

Let \(X\in{\mathscr{L}}({\mathscr{H}})\) and \(\sigma _{t}\), \(\tau _{\mu}\) be interpolational paths of symmetric means \(\sigma \) and \(\tau \). Then

  1. (1)

    \(\Vert X \Vert _{\sigma _{0}}=\mathbf{ber}(X)\) and \(\Vert X \Vert _{\sigma _{1}}=\Vert X\Vert _{\mathbf{ber}}\);

  2. (2)

    \(\Vert X \Vert _{\sigma _{t}}\leqslant \sqrt{\mathbf{ber}^{2}(X)\,\, \sigma _{t}\,\,\Vert X\Vert _{\mathbf{ber}}^{2}}\) for \(t\in [0,1]\);

  3. (3)

    \(\Vert \tau X \Vert _{\sigma _{t}}=\vert \tau \vert \Vert X \Vert _{ \sigma _{t}}\) for all \(\tau \in \mathbb{C}\);

  4. (4)

    If the functional Hilbert space has the Ber property and \(t\in [0,1)\), then \(\Vert X \Vert _{\sigma _{t}}=0\) if and only if \(X=0\);

  5. (5)

    If \(\sigma _{t}\leqslant \tau _{s}\), then \(\Vert X \Vert _{\sigma _{t}}\leqslant \Vert X \Vert _{\tau _{s}}\) for \(s,t\in [0,1]\).

Remark 2.4

If \(X\in{\mathscr{L}}({\mathscr{H}})\), then

$$\begin{aligned} \Vert \,\vert X\vert \,\Vert ^{2}_{\mathbf{ber}}&= \underset{\tau \in \Theta }{\sup}\big\Vert \vert X\vert \hat{k}_{\tau}\big\Vert ^{2}= \underset{\tau \in \Theta }{\sup}\langle \vert X\vert \hat{k}_{\tau}, \vert X\vert \hat{k}_{ \tau}\rangle \\ & =\underset{\tau \in \Theta }{\sup}\langle X^{*}X \hat{k}_{\tau}, \hat{k}_{\tau}\rangle = \underset{\tau \in \Theta }{\sup}\langle X \hat{k}_{\tau}, X\hat{k}_{\tau}\rangle = \underset{\tau \in \Theta }{\sup}\big\Vert X \hat{k}_{\tau}\big\Vert ^{2}=\Vert X\Vert ^{2}_{ \mathbf{ber}} \end{aligned}$$

and for a semi-hyponormal operator \(X\), i.e. \(\vert X^{*} \vert \leqslant \vert X \vert \), the mixed Cauchy-Schwarz inequality \(\big\vert \langle X\hat{k}_{\tau}, \hat{k}_{\tau}\rangle \big\vert ^{2} \leqslant \langle \vert X\vert \hat{k}_{\tau}, \hat{k}_{\tau}\rangle \langle \vert X^{*}\vert \hat{k}_{\tau}, \hat{k}_{\tau}\rangle \) implies that \(\big\vert \langle X\hat{k}_{\tau}, \hat{k}_{\tau}\rangle \big\vert ^{2} \leqslant \langle \vert X\vert \hat{k}_{\tau}, \hat{k}_{\tau}\rangle ^{2}\) for all \(\hat{k}_{\tau}\in{\mathscr{H}}\), and then

$$\begin{aligned} \mathbf{ber}(X)=\underset{\tau \in \Theta }{\sup}\big\vert \langle X\hat{k}_{\tau}, \hat{k}_{\tau}\rangle \big\vert \leqslant \underset{\tau \in \Theta }{\sup}\big\langle \vert X\vert \hat{k}_{\tau}, \hat{k}_{\tau} \big\rangle =\mathbf{ber}(\vert X\vert ). \end{aligned}$$

Using the definition of \(\Vert \cdot \Vert _{\sigma _{t}}\) and the monotonicity of \(\sigma _{t}\), we have the next result.

Theorem 2.5

Let \(X\in{\mathscr{L}}({\mathscr{H}})\) and \(\sigma _{t}\) be an interpolational path of a symmetric mean \(\sigma \) for all \(t \in [0,1]\). Then

  1. (1)

    If \(X\) is hyponormal, i.e., \(XX^{*} \leqslant X^{*}X\), then \(\Vert X^{*} \Vert _{\sigma _{t}}\leqslant \Vert X \Vert _{\sigma _{t}}\).

  2. (2)

    If \(X\) is co-hyponormal, i.e., \(X^{*}X \leqslant XX^{*}\), then \(\Vert X \Vert _{\sigma _{t}}\leqslant \Vert X^{*} \Vert _{\sigma _{t}}\).

  3. (3)

    If \(X\) is semi-hyponormal, i.e., \(\vert X^{*}\vert \leqslant \vert X\vert \), then \(\Vert X \Vert _{\sigma _{t}}\leqslant \Vert \,\vert X\vert \, \Vert _{\sigma _{t}}\).

  4. (4)

    If \(X\) is \((\alpha ,\beta )\)-normal, i.e., \(\alpha X^{*}X\leqslant XX^{*} \leqslant \beta X^{*}X\) for some positive real numbers \(\alpha \) and \(\beta \) with \(\alpha \leqslant 1\leqslant \beta \), then

    $$\begin{aligned} \alpha \Vert X \Vert _{\sigma _{t}}\leqslant \Vert X^{*} \Vert _{ \sigma _{t}}\leqslant \beta \Vert X \Vert _{\sigma _{t}}. \end{aligned}$$
  5. (5)

    If \(X\) is normal, then \(\Vert X^{*} \Vert _{\sigma _{t}}=\Vert X \Vert _{\sigma _{t}}\).

Proof

  1. (1)

    It follows from the hyponormality of \(X\) that \(\Vert X^{*} \widehat{k}_{\tau}\Vert \leqslant \Vert X \widehat{k}_{ \tau}\Vert \) for all \(\tau \in \Theta \). Moreover, \(\vert \langle X \widehat{k}_{\tau},\widehat{k}_{\tau}\rangle \vert = \vert \langle X^{*} \widehat{k}_{\tau},\widehat{k}_{\tau}\rangle \vert \) for all \(\tau \in \Theta \). Hence, by the monotonicity of \(\sigma _{t}\), we get

    $$\begin{aligned} \big\vert \langle X^{*} \widehat{k}_{\tau},\widehat{k}_{\tau}\rangle \big\vert ^{2} \sigma _{t}\Vert X^{*} \widehat{k}_{\tau}\Vert ^{2} \leqslant \big\vert \langle X \widehat{k}_{\tau},\widehat{k}_{\tau} \rangle \big\vert ^{2} \sigma _{t} \Vert X \widehat{k}_{\tau}\Vert ^{2} \quad \textrm{for all}\,\,\tau \in \Theta . \end{aligned}$$

    Then, by the definition of \({\Vert \cdot \Vert _{\sigma}}_{t}\), we have \({\Vert X^{*}\Vert _{\sigma}}_{t}\leqslant {\Vert X\Vert _{\sigma}}_{t}\).

  2. (2)

    The proof is similar to that of part (1).

  3. (3)

    The condition of semi-hyponormality and the mixed Cauchy-Schwarz inequality imply that \(\big\vert \langle X\hat{k}_{\tau}, \hat{k}_{\tau}\rangle \big\vert ^{2} \leqslant \langle \vert X\vert \hat{k}_{\tau}, \hat{k}_{\tau}\rangle ^{2} \) for all \(\hat{k}_{\tau}\in{\mathscr{H}}\). Also, \(\Vert X\hat{k}_{\tau }\Vert =\Vert \,\vert X\vert \,\hat{k}_{\tau } \Vert \) for all \(\hat{k}_{\tau}\in{\mathscr{H}}\). Therefore,

    $$\begin{aligned} \big\vert \langle X \widehat{k}_{\tau},\widehat{k}_{\tau}\rangle \big\vert ^{2} \sigma _{t}\Vert X \widehat{k}_{\tau}\Vert ^{2} \leqslant \langle \vert X \vert \widehat{k}_{\tau},\widehat{k}_{\tau} \rangle ^{2} \sigma _{t} \Vert \,\vert X\vert \, \widehat{k}_{\tau} \Vert ^{2}\quad \textrm{for all}\,\,\tau \in \Theta . \end{aligned}$$

    By taking the supremum over all \(\tau \in \Theta \), we get \({\Vert X\Vert _{\sigma}}_{t}\leqslant {\Vert \,\vert X\vert \, \Vert _{\sigma}}_{t}\).

  4. (4)

    Since \(X\) is \((\alpha ,\beta )\)-normal, we have \(\alpha \Vert X\hat{k}_{\tau }\Vert \leqslant \Vert X^{*}\hat{k}_{ \tau }\Vert \leqslant \beta \Vert X\hat{k}_{\tau }\Vert \) for all \(\tau \in \Theta \). It follows from the fact that \(\sigma _{t}\) is increasing in its both variables that

    $$\begin{aligned} \alpha ^{2}\big\vert \langle X \widehat{k}_{\tau},\widehat{k}_{\tau} \rangle \big\vert ^{2} \sigma _{t} \alpha ^{2}\Vert X \widehat{k}_{ \tau}\Vert ^{2} \leqslant \big\vert \langle X^{*} \widehat{k}_{\tau}, \widehat{k}_{\tau}\rangle \big\vert ^{2} \sigma _{t} \Vert X^{*} \widehat{k}_{\tau}\Vert ^{2} \leqslant \beta ^{2} \big\vert \langle X \widehat{k}_{\tau},\widehat{k}_{\tau}\rangle \big\vert ^{2} \sigma _{t} \beta ^{2}\Vert X \widehat{k}_{\tau}\Vert ^{2} \end{aligned}$$

    for all \(\tau \in \Theta \). Hence, \(\alpha{\Vert X\Vert _{\sigma}}_{t}\leqslant {\Vert X^{*}\Vert _{ \sigma}}_{t}\leqslant \beta{\Vert X\Vert _{\sigma}}_{t}\).

  5. (5)

    It follows from the normality of \(X\) that \(X\) is both hyponormanl and co-hyponormanl, and then by the parts (1) and (2) we have the desired result.

 □

Theorem 2.6

Let \(X\in{\mathscr{L}}({\mathscr{H}})\) and \(t\in [0,1]\). Then the following conditions are equivalent.

  1. (1)

    \(\Vert X\Vert ^{2}_{\sigma _{t}}=\mathbf{ber}^{2}(X)\,\sigma _{t} \Vert X\Vert _{\mathbf{ber}}^{2}\).

  2. (2)

    There exists a sequence \(\{\widehat{k}_{\tau _{n}}\}\) insuch that

    $$\begin{aligned} \lim _{n\rightarrow \infty} \big\vert \widetilde{X}({\tau _{n}}) \big\vert =\mathbf{ber}(X)\quad \textrm{and }\quad \lim _{n \rightarrow \infty}\big\Vert X\widehat{k}_{\tau _{n}} \big\Vert = \Vert X\Vert _{\mathbf{ber}}. \end{aligned}$$

Proof

We first prove that (1) implies (2). By the definition of the supremum, there exists a sequence \(\big\{\widehat{k}_{\tau _{n}}\big\}\) in ℋ such that

$$ \Vert X\Vert ^{2}_{\sigma _{t}}=\lim _{n\rightarrow \infty} \big\vert \widetilde{X}({\tau _{n}})\big\vert ^{2}\,\sigma _{t} \big\Vert {X}\widehat{k}_{\tau _{n}}\big\Vert ^{2}. $$

It follows from the boundedness of the sequences \(\big\{\big\vert \widetilde{X}({\tau _{n}})\big\vert \big\}\) and \(\big\{ \big\Vert {X}\widehat{k}_{\tau _{n}}\big\Vert \big\}\) that there exists a subsequence \(\big\{\widehat{k}_{{\tau _{n}}_{k}}\big\}\) such that \(\big\{\big\vert \widetilde{X}({\tau _{n}}_{k})\big\vert \big\}\) and \(\big\{ \big\Vert {X}\widehat{k}_{{\tau _{n}}_{k}}\big\Vert \big\}\) are convergent. Then, we have

$$\begin{aligned} \mathbf{ber}^{2}(X)\,\sigma _{t}\Vert X\Vert _{\mathbf{ber}}^{2} &= \Vert X\Vert ^{2}_{\sigma _{t}} \\ &=\lim _{n\rightarrow \infty}\left (\vert \widetilde{X}({{\tau _{n}}_{k}}) \vert ^{2}\,\sigma _{t}\Vert {X}\widehat{k}_{{\tau _{n}}_{k}}\Vert ^{2} \right ) \\ &\leqslant \mathbf{ber}^{2}(X)\sigma _{t} \Vert X\Vert _{ \mathbf{ber}}^{2}. \end{aligned}$$

Therefore,

$$\begin{aligned} \lim _{n\rightarrow \infty}\vert \widetilde{X}({{\tau _{n}}_{k}}) \vert =\mathbf{ber}(X)\quad \textrm{and }\quad \lim _{n\rightarrow \infty}\Vert {X}\widehat{k}_{{\tau _{n}}_{k}}\Vert =\Vert X\Vert _{ \mathbf{ber}}. \end{aligned}$$

Now, we prove that (2) implies (1). We have

$$\begin{aligned} \Vert X\Vert ^{2}_{\sigma _{t}}&=\underset{\tau \in \Theta }{\sup}\left \{{\vert \widetilde{X}(\tau )\vert ^{2}\,\, \sigma _{t} \,\,\Vert X\widehat{k}_{\tau}\Vert ^{2} }\right \} \\ &\geqslant \underset{n\rightarrow \infty }{\lim}\left \{{\vert \widetilde{X}{(\tau _{n})}\vert ^{2}\,\, \sigma _{t}\,\,\Vert X\widehat{k}_{\tau _{n}}\Vert ^{2} }\right \} \\ &=\mathbf{ber}^{2}(X)\,\, \sigma _{t}\,\,\Vert X\Vert _{\mathbf{ber}}^{2}. \end{aligned}$$

Hence, \(\Vert X\Vert ^{2}_{\sigma _{t}}=\mathbf{ber}^{2}(X)\,\sigma _{t} \Vert X\Vert _{\mathbf{ber}}^{2}\). □

We have seen in Proposition 2.3 that \(\Vert \cdot \Vert _{\sigma _{t}}\,\,(0\leqslant t\leqslant 1)\) fulfills the semi-norm properties, except possibly for the triangle inequality. In particular, when \(\sigma =\nabla _{t}\,\,(0\leqslant t\leqslant 1)\), we have the next proposition.

Proposition 2.7

Let \(X, Y\in{\mathscr{L}}({\mathscr{H}})\) and \(0\leqslant t\leqslant 1\). Then

$$\begin{aligned} \Vert X+Y\Vert _{\nabla _{t}}\leqslant {\Vert X\Vert _{\nabla _{t}}}+ \Vert Y\Vert _{\nabla _{t}}. \end{aligned}$$

Proof

Let \(\tau \in \Theta \) be a unit vector. Then

$$\begin{aligned} & t \vert \widetilde{(X+Y)}(\tau )\vert ^{2}+(1- t)\Vert (X+Y) \widehat{k}_{\tau}\Vert ^{2} \\ &\leqslant t \left (\vert \widetilde{X}(\tau )\vert +\vert \widetilde{Y}(\tau )\vert \right )^{2}+(1- t)\left (\Vert X \widehat{k}_{\tau}\Vert +\Vert Y\widehat{k}_{\tau}\Vert \right )^{2} \\ &= t \left (\vert \widetilde{X}(\tau )\vert ^{2}+\vert \widetilde{Y}( \tau )\vert ^{2}+2\vert \widetilde{X}(\tau )\vert \vert \widetilde{Y}( \tau )\vert \right ) \\ &\qquad \qquad \qquad +(1- t)\left (\Vert X\widehat{k}_{\tau}\Vert ^{2}+ \Vert Y\widehat{k}_{\tau}\Vert ^{2}+2\Vert X\widehat{k}_{\tau}\Vert \Vert Y\widehat{k}_{\tau}\Vert \right ) \\ &= t\vert \widetilde{X}(\tau )\vert ^{2}+(1- t)\Vert X\widehat{k}_{ \tau}\Vert ^{2}+ t\vert \widetilde{Y}(\tau )\vert ^{2}+(1- t)\Vert Y \widehat{k}_{\tau}\Vert ^{2} \\ &\qquad \qquad \qquad +2\left ( t\vert \widetilde{X}(\tau )\vert \vert \widetilde{Y}(\tau )\vert +(1- t)\Vert X\widehat{k}_{\tau} \Vert \Vert Y\widehat{k}_{\tau}\Vert \right ). \end{aligned}$$

Moreover, the Cauchy-Schwarz inequality implies that

$$\begin{aligned} t\vert \widetilde{X}(\tau )\vert \vert \widetilde{Y}(\tau )\vert +&(1- t)\Vert X\widehat{k}_{\tau}\Vert \Vert Y\widehat{k}_{\tau}\Vert \\ &\leqslant \sqrt{ t\vert \widetilde{X}(\tau )\vert ^{2}+(1- t)\Vert X \widehat{k}_{\tau}\Vert ^{2}} \sqrt{ t\vert \widetilde{Y}(\tau ) \vert ^{2}+(1- t)\Vert Y\widehat{k}_{\tau}\Vert ^{2}}. \end{aligned}$$

Combining the above inequalities, we have

$$\begin{aligned} & t \vert \widetilde{(X+Y)}(\tau )\vert ^{2}+(1- t)\Vert (X+Y) \widehat{k}_{\tau}\Vert ^{2} \\ &\leqslant t\vert \widetilde{X}(\tau )\vert ^{2}+(1- t)\Vert X \widehat{k}_{\tau}\Vert ^{2}+ t\vert \widetilde{Y}(\tau )\vert ^{2}+(1- t)\Vert Y\widehat{k}_{\tau}\Vert ^{2} \\ &\qquad +2\sqrt{ t\vert \widetilde{X}(\tau )\vert ^{2}+(1- t)\Vert X \widehat{k}_{\tau}\Vert ^{2}} \sqrt{ t\vert \widetilde{Y}(\tau ) \vert ^{2}+(1- t)\Vert Y\widehat{k}_{\tau}\Vert ^{2}} \\ &\leqslant {\Vert X\Vert ^{2}_{\nabla _{t}}}+ {\Vert Y\Vert ^{2}_{ \nabla _{t}}}+2 {\Vert X\Vert _{\nabla _{t}}} {\Vert X\Vert _{ \nabla _{t}}}. \end{aligned}$$

Therefore,

$$\begin{aligned} \Vert X+Y\Vert ^{2}_{\nabla _{t}}= \underset{\tau \in \Theta }{\sup}\left \{ t \vert \widetilde{(X+Y)}(\tau )\vert ^{2}+(1- t) \Vert (X+Y)\widehat{k}_{\tau}\Vert ^{2}\right \} \leqslant \left ({ \Vert X\Vert _{\nabla _{t}}}+\Vert Y\Vert _{\nabla _{t}}\right )^{2}. \end{aligned}$$

 □

In the following theorem, we give an equivalent condition that \({\Vert X+Y\Vert _{\nabla _{t}}}= {\Vert X\Vert _{\nabla _{t}}}+{ \Vert Y\Vert _{\nabla _{t}}}\) for all \(X,Y\in{\mathscr{L}}({\mathscr{H}})\).

Theorem 2.8

Let \(X, Y\in{\mathscr{L}}({\mathscr{H}})\) and \(0< t<1\). Then the following conditions are equivalent.

  1. (1)

    \({\Vert X+Y\Vert _{\nabla _{t}}}= {\Vert X\Vert _{\nabla _{t}}}+{ \Vert Y\Vert _{\nabla _{t}}}\).

  2. (2)

    There exists a sequence \(\{\widehat{k}_{\tau _{n}}\}\) insuch that

    $$\begin{aligned} \underset{n\rightarrow \infty }{\lim}\Re \left ( t\widetilde{X^{*}}(\tau _{n})\widetilde{Y}(\tau _{n})+(1- t) \langle X\widehat{k}_{\tau _{n}},\widehat{k}_{\tau _{n}}\rangle \langle Y\widehat{k}_{\tau _{n}},\widehat{k}_{\tau _{n}}\rangle \right )={\Vert X\Vert _{\nabla _{t}}} {\Vert Y\Vert _{\nabla _{t}}}, \end{aligned}$$

    where \(\Re (z)\) denotes the real part of a complex number \(z\).

Proof

(1) ⇒ (2) Using the definition of the supremum and the hypothesis, there exists a sequence \(\{\widehat{k}_{\tau _{n}}\}\) in ℋ such that

$$\begin{aligned} \underset{n\rightarrow \infty }{\lim}\left ( t \vert \widetilde{(X+Y)}(\tau _{n})\vert ^{2}+(1- t) \Vert (X+Y)\widehat{k}_{\tau _{n}}\Vert ^{2}\right )=\left ({\Vert X \Vert _{\nabla _{t}}}+{\Vert Y\Vert _{\nabla _{t}}} \right )^{2}. \end{aligned}$$

Hence,

$$\begin{aligned} & t \vert \widetilde{(X+Y)}(\tau _{n})\vert ^{2}+(1- t)\Vert (X+Y) \widehat{k}_{\tau _{n}}\Vert ^{2} \\ &= t \left (\vert \widetilde{X}(\tau _{n})\vert ^{2}+\vert \widetilde{Y}(\tau _{n})\vert ^{2}+2\Re \left ( \widetilde{X^{*}}( \tau _{n})\widetilde{Y}(\tau _{n})\right )\right ) \\ &\qquad \qquad \qquad +(1- t)\left (\Vert X\widehat{k}_{\tau _{n}} \Vert ^{2}+\Vert Y\widehat{k}_{\tau _{n}}\Vert ^{2}+2\Re \left ( \langle X\widehat{k}_{\tau _{n}},\widehat{k}_{\tau _{n}}\rangle \langle Y\widehat{k}_{\tau _{n}},\widehat{k}_{\tau _{n}}\rangle \right )\right ) \\ &= t\vert \widetilde{X}(\tau _{n})\vert ^{2}+(1- t)\Vert X\widehat{k}_{ \tau _{n}}\Vert ^{2}+ t\vert \widetilde{Y}(\tau _{n})\vert ^{2}+(1- t) \Vert Y\widehat{k}_{\tau _{n}}\Vert ^{2} \\ &\qquad \qquad \qquad +2\Re \left ( t\widetilde{X^{*}}(\tau _{n}) \widetilde{Y}(\tau _{n})+ (1- t)\langle X\widehat{k}_{\tau _{n}}, \widehat{k}_{\tau _{n}}\rangle \langle Y\widehat{k}_{\tau _{n}}, \widehat{k}_{\tau _{n}}\rangle \right ) \\ &\leqslant {\Vert X\Vert ^{2}_{\nabla _{t}}}+ {\Vert Y\Vert ^{2}_{ \nabla _{t}}}+2\Re \left ( t \widetilde{X^{*}}(\tau _{n}) \widetilde{Y}(\tau _{n})+(1- t) \langle X\widehat{k}_{\tau _{n}}, \widehat{k}_{\tau _{n}}\rangle \langle Y\widehat{k}_{\tau _{n}}, \widehat{k}_{\tau _{n}}\rangle \right ) \\ &\leqslant {\Vert X\Vert ^{2}_{\nabla _{t}}}+ {\Vert Y\Vert ^{2}_{ \nabla _{t}}}+2\left ( t\vert \widetilde{X}(\tau _{n})\vert \vert \widetilde{Y}(\tau _{n})\vert + (1- t)\vert \langle X\widehat{k}_{ \tau _{n}},\widehat{k}_{\tau _{n}}\rangle \vert \vert \langle Y \widehat{k}_{\tau _{n}},\widehat{k}_{\tau _{n}}\rangle \vert \right ) \\ &\leqslant {\Vert X\Vert ^{2}_{\nabla _{t}}}+ {\Vert Y\Vert ^{2}_{ \nabla _{t}}}+2\left ( t\Vert X\widehat{k}_{\tau _{n}}\Vert \Vert Y \widehat{k}_{\tau _{n}}\Vert + (1- t)\vert \langle X\widehat{k}_{ \tau _{n}},\widehat{k}_{\tau _{n}}\rangle \vert \vert \langle Y \widehat{k}_{\tau _{n}},\widehat{k}_{\tau _{n}}\rangle \vert \right ) \\ &\leqslant {\Vert X\Vert ^{2}_{\nabla _{t}}}+ {\Vert Y\Vert ^{2}_{ \nabla _{t}}} +2\sqrt{ t\vert \widetilde{X}(\tau _{n})\vert ^{2}+(1- t) \Vert X\widehat{k}_{\tau _{n}}\Vert ^{2}} \sqrt{ t\vert \widetilde{Y}( \tau _{n})\vert ^{2}+(1- t)\Vert Y\widehat{k}_{\tau _{n}}\Vert ^{2}} \\ &\qquad \qquad \qquad \qquad \textrm{(by the Cauchy-Schwarz inequality)} \\ &\leqslant \left ({\Vert X\Vert _{\nabla _{t}}}+ {\Vert Y\Vert _{ \nabla _{t}}}\right )^{2}. \end{aligned}$$

Now, if we let \(n\rightarrow \infty \), we get

$$\begin{aligned} \underset{n\rightarrow \infty }{\lim}\Re \left ( t\widetilde{X^{*}}(\tau _{n})\widetilde{Y}(\tau _{n})+(1- t) \langle X\widehat{k}_{\tau _{n}},\widehat{k}_{\tau _{n}}\rangle \langle Y\widehat{k}_{\tau _{n}},\widehat{k}_{\tau _{n}}\rangle \right )={\Vert X\Vert _{\nabla _{t}}} {\Vert Y\Vert _{\nabla _{t}}}. \end{aligned}$$

(2) ⇒ (1) Suppose that there exists a sequence \(\{\widehat{k}_{\tau _{n}}\}\) in ℋ such that

$$\begin{aligned} \underset{n\rightarrow \infty }{\lim}\Re \left ( t\widetilde{X^{*}}(\tau _{n})\widetilde{Y}(\tau _{n})+ (1- t)\langle X\widehat{k}_{\tau _{n}},\widehat{k}_{\tau _{n}} \rangle \langle Y\widehat{k}_{\tau _{n}},\widehat{k}_{\tau _{n}} \rangle \right )={\Vert X\Vert _{\nabla _{t}}} {\Vert Y\Vert _{ \nabla _{t}}}. \end{aligned}$$

Then, for every \(n\in \mathbb{N}\), we have

$$\begin{aligned} \Re ^{2}&\left ( t\widetilde{X^{*}}(\tau _{n})\widetilde{Y}(\tau _{n})+ (1- t)\langle X\widehat{k}_{\tau _{n}},\widehat{k}_{\tau _{n}} \rangle \langle Y\widehat{k}_{\tau _{n}},\widehat{k}_{\tau _{n}} \rangle \right ) \\ &\leqslant \big\vert (1- t)\widetilde{X}(\tau _{n}) \widetilde{Y}( \tau _{n})+ t\langle X\widehat{k}_{\tau _{n}},\widehat{k}_{\tau _{n}} \rangle \langle Y\widehat{k}_{\tau _{n}},\widehat{k}_{\tau _{n}} \rangle \big\vert ^{2} \\ &\qquad -\Im ^{2}\left ( t\widetilde{X^{*}}(\tau _{n})\widetilde{Y}( \tau _{n})+ (1- t)\langle X\widehat{k}_{\tau _{n}},\widehat{k}_{\tau _{n}} \rangle \langle Y\widehat{k}_{\tau _{n}},\widehat{k}_{\tau _{n}} \rangle \right ) \\ &\leqslant \big\vert (1- t)\widetilde{X}(\tau _{n}) \widetilde{Y}( \tau _{n})+ t\langle X\widehat{k}_{\tau _{n}},\widehat{k}_{\tau _{n}} \rangle \langle Y\widehat{k}_{\tau _{n}},\widehat{k}_{\tau _{n}} \rangle \big\vert ^{2}, \end{aligned}$$

where \(\Im (z)\) denotes the imaginary part of a complex number \(z\). Hence,

$$\begin{aligned} \Re &\left ( t\widetilde{X^{*}}(\tau _{n})\widetilde{Y}(\tau _{n})+ (1- t)\langle X\widehat{k}_{\tau _{n}},\widehat{k}_{\tau _{n}}\rangle \langle Y\widehat{k}_{\tau _{n}},\widehat{k}_{\tau _{n}}\rangle \right ) \\ &\leqslant \big\vert (1- t)\widetilde{X}(\tau _{n}) \widetilde{Y}( \tau _{n})+ t\langle X\widehat{k}_{\tau _{n}},\widehat{k}_{\tau _{n}} \rangle \langle Y\widehat{k}_{\tau _{n}},\widehat{k}_{\tau _{n}} \rangle \big\vert \\ &\leqslant (1- t)\vert \widetilde{X}(\tau _{n})\vert \vert \widetilde{Y}(\tau _{n})\vert + t\vert \langle X\widehat{k}_{\tau _{n}}, \widehat{k}_{\tau _{n}}\rangle \vert \vert \langle Y\widehat{k}_{ \tau _{n}},\widehat{k}_{\tau _{n}}\rangle \vert \\ &\leqslant \left ( (1- t)\Vert X\widehat{k}_{\tau _{n}}\Vert \Vert Y \widehat{k}_{\tau _{n}}\Vert + t\vert \langle X\widehat{k}_{\tau _{n}}, \widehat{k}_{\tau _{n}}\rangle \vert \vert \langle Y\widehat{k}_{ \tau _{n}},\widehat{k}_{\tau _{n}}\rangle \vert \right ) \\ &\leqslant \sqrt{ t\vert \widetilde{X}(\tau _{n})\vert ^{2}+(1- t) \Vert X\widehat{k}_{\tau _{n}}\Vert ^{2}} \sqrt{ t\vert \widetilde{Y}( \tau _{n})\vert ^{2}+(1- t)\Vert Y\widehat{k}_{\tau _{n}}\Vert ^{2}} \\ &\qquad \qquad \qquad \qquad \textrm{(by the Cauchy-Schwarz inequality)} \\ &\leqslant{\Vert X\Vert _{\nabla _{t}}} {\Vert Y\Vert _{\nabla _{t}}}. \end{aligned}$$
(2.3)

It follows from \({ t\vert \widetilde{X}(\tau _{n})\vert ^{2}+(1- t)\Vert X\widehat{k}_{ \tau _{n}}\Vert ^{2}}\leqslant {\Vert X\Vert ^{2}_{\nabla _{t}}}\) and \({ t\vert \widetilde{Y}(\tau _{n})\vert ^{2}+(1- t)\Vert Y\widehat{k}_{ \tau _{n}}\Vert ^{2}}\leqslant {\Vert Y\Vert ^{2}_{\nabla _{t}}}\) that

$$ \underset{n\rightarrow \infty }{\lim}\bigg({ t\vert \widetilde{X}(\tau _{n})\vert ^{2}+(1- t)\Vert X \widehat{k}_{\tau _{n}}\Vert ^{2}}\bigg)= {\Vert X\Vert ^{2}_{\nabla _{t}}} $$

and

$$ \underset{n\rightarrow \infty }{\lim}\bigg({ t\vert \widetilde{Y}(\tau _{n})\vert ^{2}+(1- t)\Vert Y \widehat{k}_{\tau _{n}}\Vert ^{2}}\bigg)= {\Vert Y\Vert ^{2}_{\nabla _{t}}}. $$

Therefore,

$$\begin{aligned} \left ({\Vert X\Vert _{\nabla _{t}}} +{\Vert Y\Vert _{\nabla _{t}}} \right )^{2} &={\Vert X\Vert ^{2}_{\nabla _{t}}} +{\Vert Y\Vert ^{2}_{ \nabla _{t}}}+2{\Vert X\Vert _{\nabla _{t}}} {\Vert Y\Vert _{ \nabla _{t}}} \\ &=\underset{n\rightarrow \infty }{\lim}\bigg( t\vert \widetilde{X}(\tau _{n})\vert ^{2}+(1- t)\Vert X \widehat{k}_{\tau _{n}}\Vert ^{2}\bigg)\\ &\qquad \qquad + \underset{n\rightarrow \infty }{\lim}\bigg( t\vert \widetilde{Y}(\tau _{n})\vert ^{2}+(1- t)\Vert Y \widehat{k}_{\tau _{n}}\Vert ^{2}\bigg) \\ &\qquad \qquad +2\underset{n\rightarrow \infty }{\lim}\Re \left ( t\widetilde{X^{*}}(\tau _{n})\widetilde{Y}(\tau _{n})+ (1- t)\langle X\widehat{k}_{\tau _{n}},\widehat{k}_{\tau _{n}} \rangle \langle Y\widehat{k}_{\tau _{n}},\widehat{k}_{\tau _{n}} \rangle \right ) \\ &=\underset{n\rightarrow \infty }{\lim}\bigg[ t \left (\vert \widetilde{X}(\tau _{n})\vert ^{2}+ \vert \widetilde{Y}(\tau _{n})\vert ^{2}+2\Re \left ( \widetilde{X^{*}}(\tau _{n})\widetilde{Y}(\tau _{n})\right )\right ) \\ &\qquad \quad +(1- t)\left (\Vert X\widehat{k}_{\tau _{n}}\Vert ^{2}+ \Vert Y\widehat{k}_{\tau _{n}}\Vert ^{2}+2\Re \left ( \langle X \widehat{k}_{\tau _{n}},\widehat{k}_{\tau _{n}}\rangle \langle Y \widehat{k}_{\tau _{n}},\widehat{k}_{\tau _{n}}\rangle \right ) \right )\bigg] \\ &=\underset{n\rightarrow \infty }{\lim}\bigg( t \vert \widetilde{(X+Y)}(\tau _{n})\vert ^{2}+(1- t) \Vert (X+Y)\widehat{k}_{\tau _{n}}\Vert ^{2}\bigg) \\ &={\Vert X+Y\Vert ^{2}_{\nabla _{t}}} \\ &\leqslant \left ({\Vert X\Vert _{\nabla _{t}}}+{\Vert Y\Vert _{ \nabla _{t}}}\right )^{2} \\ &\qquad \qquad \qquad \qquad (\textrm{by Proposition } 2.7). \end{aligned}$$

Hence, \({\Vert X+Y\Vert _{\nabla _{t}}}={\Vert X\Vert _{\nabla _{t}}}+{ \Vert Y\Vert _{\nabla _{t}}}\). □

Recently, Altwaijry et al. in [1], introduced the following generalization of \(\Vert \cdot \Vert _{ t-\textbf{ber}}\). Given non-negative real scalars \(\alpha \) and \(\beta \) such that \((\alpha , \beta )\neq (0, 0)\) and \(X\in{\mathscr{L}}({\mathscr{H}})\), let

$$\begin{aligned} \Vert X\Vert _{\alpha , \beta}^{\textbf{ber}}= \underset{\tau \in \Theta }{\sup}\left \{\sqrt{\beta \big\vert \widetilde{X}(\tau )\big\vert ^{2}+ \alpha \big\Vert X\widehat{k}_{\tau}\big\Vert ^{2} }\right \}. \end{aligned}$$
(2.4)

Then, we have

$$\begin{aligned} \frac{1}{\sqrt{\alpha +\beta}}\Vert X\Vert _{\alpha , \beta}^{ \textbf{ber}}&=\underset{\tau \in \Theta }{\sup}\left \{\sqrt{ \frac{\beta \big\vert \widetilde{X}(\tau )\big\vert ^{2}+\alpha \big\Vert X\widehat{k}_{\tau}\big\Vert ^{2} }{\alpha +\beta}} \right \} \\ &= \underset{\tau \in \Theta }{\sup}\left \{\sqrt{ \frac{\alpha}{\alpha +\beta}\big\Vert X\widehat{k}_{\tau}\big\Vert ^{2}+ \frac{\beta}{\alpha +\beta} \big\vert \widetilde{X}(\tau )\big\vert ^{2}} \right \}=\Vert X\Vert _{\nabla _{t_{0}}}=\Vert X\Vert _{\nabla _{t_{1}}}, \ \end{aligned}$$
(2.5)

where \(t_{0}=\frac{\alpha}{\alpha +\beta}\) and \(t_{1}=\frac{\beta}{\alpha +\beta}\).

As a consequence of Theorem 2.8 and the previous identity, we derive the following characterization of the equality in the triangle inequality for the norm \(\Vert \cdot \Vert _{\alpha , \beta}^{\textbf{ber}}\).

Corollary 2.9

[1, Theorem 10] Let \(X, Y\in{\mathscr{L}}({\mathscr{H}})\) and non-negative real scalars \(\alpha \) and \(\beta \) such that \((\alpha , \beta )\neq (0, 0)\). Then the following conditions are equivalent.

  1. (1)

    \({\Vert X+Y\Vert _{\alpha , \beta}^{\textbf{ber}}}= {\Vert X\Vert _{ \alpha , \beta}^{\textbf{ber}}}+{\Vert Y\Vert _{\alpha , \beta}^{ \textbf{ber}}}\).

  2. (2)

    There exists a sequence \(\{\widehat{k}_{\tau _{n}}\}\) insuch that

    $$\begin{aligned} \underset{n\rightarrow \infty }{\lim}\left ( t_{0}\widetilde{X^{*}}(\tau _{n})\widetilde{Y}(\tau _{n})+(1- t_{0}) \langle X\widehat{k}_{\tau _{n}},\widehat{k}_{\tau _{n}} \rangle \langle Y\widehat{k}_{\tau _{n}},\widehat{k}_{\tau _{n}} \rangle \right )=\Vert X\Vert _{\nabla _{t_{0}}}\Vert Y\Vert _{ \nabla _{t_{0}}}, \end{aligned}$$
    (2.6)

    where \(t_{0}=\frac{\alpha}{\alpha +\beta}\).

Proof

We note that from the equality (2.5), the condition (1) is equivalent to

$$\begin{aligned} \Vert X+Y\Vert _{\nabla _{t_{0}}}= {\Vert X\Vert _{\nabla _{t_{0}}}}+{ \Vert Y\Vert _{\nabla _{t_{0}}}}, \end{aligned}$$
(2.7)

with \(t_{0}=\frac{\alpha}{\alpha +\beta}\). Now, by Theorem 2.8, the condition (2.7) is equivalent to the existence of a sequence \(\{\widehat{k}_{\tau _{n}}\}\) in ℋ such that

$$\begin{aligned} \underset{n\rightarrow \infty }{\lim}\Re \left ( t_{0} \widetilde{X^{*}}(\tau _{n})\widetilde{Y}(\tau _{n})+(1- t_{0}) \langle X\widehat{k}_{\tau _{n}},\widehat{k}_{\tau _{n}}\rangle \langle Y\widehat{k}_{\tau _{n}},\widehat{k}_{\tau _{n}}\rangle \right )={\Vert X\Vert _{\nabla _{t_{0}}}} {\Vert Y\Vert _{\nabla _{t_{0}}}}. \end{aligned}$$
(2.8)

To finish the proof, it is enough to show that (2.8) is equivalent to

$$\begin{aligned} \underset{n\rightarrow \infty }{\lim}\left ( t_{0}\widetilde{X^{*}}( \tau _{n})\widetilde{Y}(\tau _{n})+(1- t_{0}) \langle X\widehat{k}_{ \tau _{n}},\widehat{k}_{\tau _{n}}\rangle \langle Y\widehat{k}_{\tau _{n}}, \widehat{k}_{\tau _{n}}\rangle \right )={\Vert X\Vert _{\nabla _{t_{0}}}} {\Vert Y\Vert _{\nabla _{t_{0}}}}. \end{aligned}$$
(2.9)

Indeed, if (2.9) holds, then

$$\begin{aligned} &\underset{n\rightarrow \infty }{\lim}\left ( t_{0}\widetilde{X^{*}}( \tau _{n})\widetilde{Y}(\tau _{n})+(1- t_{0}) \langle X\widehat{k}_{ \tau _{n}},\widehat{k}_{\tau _{n}}\rangle \langle Y\widehat{k}_{\tau _{n}}, \widehat{k}_{\tau _{n}}\rangle \right ) \\ &={\Vert X\Vert _{\nabla _{t_{0}}}} {\Vert Y\Vert _{\nabla _{t_{0}}}}= \frac{{\Vert X\Vert _{\nabla _{t_{0}}}} {\Vert Y\Vert _{\nabla _{t_{0}}}}+\overline{{\Vert X\Vert _{\nabla _{t_{0}}}} {\Vert Y\Vert _{\nabla _{t_{0}}}}}}{2} \\ &=\underset{n\rightarrow \infty }{\lim}\Re \left ( t_{0} \widetilde{X^{*}}(\tau _{n})\widetilde{Y}(\tau _{n})+(1- t_{0}) \langle X\widehat{k}_{\tau _{n}},\widehat{k}_{\tau _{n}}\rangle \langle Y\widehat{k}_{\tau _{n}},\widehat{k}_{\tau _{n}}\rangle \right ). \end{aligned}$$
(2.10)

On the other hand, by (2.3) for any \(n\in \mathbb{N}\), we have

$$ \begin{aligned} &\Re ^{2}\left ( t_{0}\widetilde{X}(\tau _{n})\widetilde{Y}(\tau _{n})+ (1-t_{0})\langle X\widehat{k}_{\tau _{n}},\widehat{k}_{\tau _{n}} \rangle \langle Y\widehat{k}_{\tau _{n}},\widehat{k}_{\tau _{n}} \rangle \right ) \\ &\leq \left (t_{0} \vert \widetilde{X}(\tau _{n})\vert \vert \widetilde{Y}(\tau _{n})\vert \left |+ (1-t_{0}) \right | \vert \langle X\widehat{k}_{\tau _{n}},\widehat{k}_{\tau _{n}}\rangle \vert \vert \langle Y\widehat{k}_{\tau _{n}},\widehat{k}_{\tau _{n}} \rangle \vert \right )^{2} \\ &\leqslant{\Vert X\Vert ^{2}_{\nabla _{t_{0}}}} {\Vert Y\Vert ^{2}_{ \nabla _{t_{0}}}}. \end{aligned} $$

Thus, if we assume that condition (2.8) is fulfilled, then we can conclude that

$$ \lim \limits _{n\to \infty}\Im \left ( t_{0}\widetilde{X}(\tau _{n}) \widetilde{Y}(\tau _{n})+ (1-t_{0})\langle X\widehat{k}_{\tau _{n}}, \widehat{k}_{\tau _{n}}\rangle \langle Y\widehat{k}_{\tau _{n}}, \widehat{k}_{\tau _{n}}\rangle \right )=0, $$

and

$$ \underset{n\rightarrow \infty }{\lim}\left ( t_{0}\widetilde{X^{*}}( \tau _{n})\widetilde{Y}(\tau _{n})+(1- t_{0}) \langle X\widehat{k}_{ \tau _{n}},\widehat{k}_{\tau _{n}}\rangle \langle Y\widehat{k}_{\tau _{n}}, \widehat{k}_{\tau _{n}}\rangle \right )={\Vert X\Vert _{\nabla _{t_{0}}}} {\Vert Y\Vert _{\nabla _{t_{0}}}}, $$

and this completes the proof. □

Remark 2.10

We note that condition (2.6) is equivalent to

(2’) There exists a sequence \(\{\widehat{k}_{\tau _{n}}\}\) in ℋ such that

$$\begin{aligned} \underset{n\rightarrow \infty }{\lim}\left ( \alpha \widetilde{X^{*}}( \tau _{n})\widetilde{Y}(\tau _{n})+\beta \langle X\widehat{k}_{\tau _{n}}, \widehat{k}_{\tau _{n}}\rangle \langle Y\widehat{k}_{\tau _{n}}, \widehat{k}_{\tau _{n}}\rangle \right )={\Vert X\Vert _{\alpha , \beta}^{\textbf{ber}}} {\Vert Y\Vert _{\alpha , \beta}^{\textbf{ber}}}. \end{aligned}$$

Indeed, if we denote by \(t_{0}=\frac{\alpha}{\alpha +\beta}\), then by (2.6)

$$\begin{aligned} {\Vert X\Vert _{\alpha , \beta}^{\textbf{ber}}} {\Vert Y\Vert _{ \alpha , \beta}^{\textbf{ber}}}&=\sqrt{\alpha +\beta}{\Vert X\Vert _{ \nabla _{t_{0}}}}\sqrt{\alpha +\beta} {\Vert Y\Vert _{\nabla _{t_{0}}}} \\ &=\underset{n\rightarrow \infty }{\lim}(\alpha +\beta )\left ( t_{0}\widetilde{X^{*}}(\tau _{n}) \widetilde{Y}(\tau _{n})+(1- t_{0}) \langle X\widehat{k}_{\tau _{n}}, \widehat{k}_{\tau _{n}}\rangle \langle Y\widehat{k}_{\tau _{n}}, \widehat{k}_{\tau _{n}}\rangle \right )= \\ &= \underset{n\rightarrow \infty }{\lim}\left ( \alpha \widetilde{X^{*}}(\tau _{n})\widetilde{Y}(\tau _{n})+\beta \langle X \widehat{k}_{\tau _{n}},\widehat{k}_{\tau _{n}}\rangle \langle Y \widehat{k}_{\tau _{n}},\widehat{k}_{\tau _{n}}\rangle \right ). \end{aligned}$$

Finally, we remark that in [1, Theorem 10], the authors obtained a similar characterization of the equality \({\Vert X+Y\Vert _{\alpha , \beta}^{\textbf{ber}}}= {\Vert X\Vert _{ \alpha , \beta}^{\textbf{ber}}}+{\Vert Y\Vert _{\alpha , \beta}^{ \textbf{ber}}}\).

3 Some Estimations for \(\Vert \cdot \Vert _{\sigma _{t}}\)

In this section, we present some upper and lower bounds for \(\Vert \cdot \Vert _{\sigma _{t}}\). The following well-known lemmas will be essential to prove our results.

Lemma 3.1

[25] Let \(X\in{\mathscr{L}}({\mathscr{H}})\) be a self-adjoint operator with spectrum in an interval \(J\) and \(\tau \in \Theta \).

  1. (1)

    If \(f : J \rightarrow \mathbb{R}\) is convex, then \(f \big(\langle X\widehat{k}_{\tau},\widehat{k}_{\tau}\rangle \big) \leqslant \langle f(X)\widehat{k}_{\tau}, \widehat{k}_{\tau}\rangle \).

  2. (2)

    If \(f : J \rightarrow \mathbb{R}\) is concave, then \(f \big(\langle X\widehat{k}_{\tau},\widehat{k}_{\tau}\rangle \big) \geqslant \langle f(X)\widehat{k}_{\tau}, \widehat{k}_{\tau}\rangle \).

Lemma 3.2

[24] Let \(X\in{\mathscr{L}}({\mathscr{H}})\) and \(f\), \(g\) be two non-negative continuous functions defined on \([0,\infty )\) such that \(f(t)g(t) = t\) for \(t\geqslant 0\). Then

$$\begin{aligned} \vert \widetilde{X}(\tau ) \vert \leqslant \vert \widetilde{f^{2}(\vert X\vert )}(\tau )\vert \vert \widetilde{g^{2}(\vert X^{*}\vert )}(\tau ) \vert \end{aligned}$$

for all \(\tau \in \Theta \).

For an operator \(X\in {\mathscr{L}}({\mathscr{H}})\), the Crawford Berezin number \(\widetilde{c}(X)\) is defined as \(\widetilde{c}(X)=\underset{\tau \in \Theta }{\inf}\vert \widetilde{X}(\tau )\vert \). In the following theorem, we obtain a lower bound for \(\Vert \cdot \Vert _{\sigma _{t}}\) in the terms of \(\widetilde{c}(\cdot )\).

Theorem 3.3

Let \(X\in{\mathscr{L}}({\mathscr{H}})\) and \(0\leqslant t\leqslant 1\). Then,

$$\begin{aligned} \Vert X\Vert _{\sigma _{t}}\geqslant \max \left \{\sqrt{\textbf{ber}^{2}(X) {\sigma _{t}}\widetilde{c}^{2}(X^{*}X)}\,,\,\sqrt{\widetilde{c}^{2}(X) {\sigma _{t}}\Vert X\Vert ^{2}_{\textbf{ber}} } \right \}. \end{aligned}$$

Proof

Let \({\tau}\in \Theta \) and \(0\leqslant t\leqslant 1\). Then

$$\begin{aligned} \Vert X\Vert ^{2}_{\sigma _{t}}&=\underset{\tau \in \Theta }{\sup}\{ \vert \widetilde{X}(\tau ) \vert ^{2} \sigma _{t} \Vert X( \widehat{k}_{\tau})\Vert ^{2} \} \\ &\geqslant \vert \widetilde{X}(\tau ) \vert ^{2} \sigma _{t} \Vert X( \widehat{k}_{\tau})\Vert ^{2} \\ &= \vert \widetilde{X}(\tau ) \vert ^{2} \sigma _{t} \vert \widetilde{X^{*}X}(\tau )\vert ^{2} \\ &\geqslant \vert \widetilde{X}(\tau ) \vert ^{2} \sigma _{t} \widetilde{c}^{2}(X^{*}X). \end{aligned}$$

Taking the supremum over all vectors \(\tau \in \Theta \), we get \(\Vert X\Vert ^{2}_{\sigma _{t}}\geqslant \textbf{ber}^{2}(X) \sigma _{t} \widetilde{c}^{2}(X^{*}X) \). Similarly, we have

$$\begin{aligned} \Vert X\Vert ^{2}_{\sigma _{t}}=\underset{\tau \in \Theta }{\sup}\{ \vert \widetilde{X}(\tau ) \vert ^{2} \sigma _{t} \Vert X( \widehat{k}_{\tau})\Vert ^{2} \} \geqslant \vert \widetilde{X}(\tau ) \vert ^{2} \sigma _{t} \Vert X(\widehat{k}_{\tau})\Vert ^{2} \geqslant \widetilde{c}^{2}(X) \sigma _{t} \Vert X(\widehat{k}_{\tau}) \Vert ^{2}, \end{aligned}$$

whence \(\Vert X\Vert ^{2}_{\sigma _{t}}\geqslant \widetilde{c}^{2}(X) \sigma _{t}\Vert X\Vert ^{2}_{\textbf{ber}} \). Combining the above inequalities, we get the desired result. □

In the next result, we get some special case of Theorem 3.3.

Corollary 3.4

Let \(X\in{\mathscr{L}}({\mathscr{H}})\), \(r\in [-1,1]\) and \(0\leqslant \mu \leqslant 1\). Then

$$\begin{aligned} \Vert X\Vert _{m_{r,\mu}}\geqslant \max \left \{ \sqrt[2r]{\frac{(1-\mu )\textbf{ber}^{r}(X)+\mu \widetilde{c}^{r}(X^{*}X)}{2}} \,,\, \sqrt[2r]{\frac{(1-\mu )\widetilde{c}^{r}(X) +\mu \Vert X\Vert ^{r}_{\textbf{ber}} }{2}} \right \}. \end{aligned}$$

In particular,

$$\begin{aligned} \Vert X\Vert _{\nabla _{\mu}}\geqslant \max \left \{\sqrt{{(1-\mu ) \textbf{ber}^{2}(X)+\mu \widetilde{c}^{2}(X^{*}X)}}\,,\,\sqrt{{(1-\mu ) \widetilde{c}^{2}(X) +\mu \Vert X\Vert ^{2}_{\textbf{ber}}} } \right \} \end{aligned}$$

and

$$\begin{aligned} \Vert X\Vert _{\sharp _{\mu}}\geqslant \max \left \{{\textbf{ber}^{(1- \mu )}(X) \widetilde{c}^{\mu}(X^{*}X)}\,,\,{\widetilde{c}^{(1-\mu )}(X) \Vert X\Vert ^{\mu}_{\textbf{ber}} } \right \}. \end{aligned}$$

Proof

Letting \(\sigma _{t}\) be the interpolational paths of the power means \(m_{r,\mu}\) for \(r\in [-1,1]\) and \(0\leqslant \mu \leqslant 1\) in Theorem 3.3, we have the first inequality. If we take the weighted arithmetic mean \(\nabla _{\mu}\) and the weighted geometric mean \(\sharp _{\mu}\), \((0\leqslant \mu \leqslant 1)\) in Theorem 3.3, then we have the second and the third inequalities, respectively. □

Theorem 3.5

Let \(X\in{\mathscr{L}}({\mathscr{H}})\), and let \(f\), \(g\) be two non-negative continuous functions defined on \([0,\infty )\) such that \(f(t)g(t) = t\) for \(t\geqslant 0\). If \(\sigma \) is a mean dominated by the arithmetic mean \(\nabla \), then

$$\begin{aligned} \Vert X\Vert ^{2}_{\sigma}\leqslant \textbf{ber}\left (\frac{1}{4}(f^{4}( \vert X\vert )+g^{4}(\vert X^{*}\vert ))+\frac{1}{2}\vert X\vert ^{2} \right ) \end{aligned}$$

and

$$\begin{aligned} \Vert X\Vert ^{2}_{\sigma}\leqslant \frac{1}{2}\sqrt{\textbf{ber} \left (f^{4}(\vert X\vert )+g^{2}(\vert X\vert ^{2})\right ) \textbf{ber}\left (f^{2}(\vert X\vert ^{2})+g^{4}(\vert X^{*}\vert ) \right )}. \end{aligned}$$

Proof

Let \(\tau \in \Theta \). Then

$$\begin{aligned} \vert \widetilde{X}(\tau )\vert ^{2}\sigma \Vert X\widehat{k}_{\tau} \Vert ^{2} &= \vert \widetilde{X}(\tau )\vert ^{2}\sigma \vert \widetilde{X^{*}X}(\tau )\vert \\ & \leqslant \vert \widetilde{f^{2}(\vert X\vert})(\tau )\vert \vert \widetilde{g^{2}(\vert X^{*}\vert})(\tau )\vert \sigma \vert \widetilde{X^{*}X}(\tau )\vert \\ &\qquad \qquad \qquad (\textrm{by Lemma }3.2) \\ & \leqslant \frac{1}{2}\left (\vert \widetilde{f^{2}(\vert X\vert })( \tau )\vert ^{2}+\vert \widetilde{g^{2}(\vert X^{*}\vert})(\tau ) \vert ^{2}\right )\sigma \vert \widetilde{X^{*}X}(\tau )\vert \\ & \leqslant \frac{1}{2}\left (\vert \widetilde{f^{4}(\vert X\vert})( \tau )\vert +\vert \widetilde{g^{4}(\vert X^{*}\vert})(\tau )\vert \right )\sigma \vert \widetilde{X^{*}X}(\tau )\vert \\ &\qquad \qquad \qquad (\textrm{by Lemma }3.1) \\ &= \frac{1}{2}\left (\vert \widetilde{f^{4}(\vert X\vert )+g^{4}(\vert X^{*}\vert})(\tau )\vert \right )\sigma \vert \widetilde{\vert X\vert ^{2}}(\tau )\vert . \end{aligned}$$

It follows from \(\sigma \leqslant \nabla \) and the above inequalities that

$$\begin{aligned} \vert \widetilde{X}(\tau )\vert ^{2}\sigma \Vert X\widehat{k}_{\tau} \Vert ^{2} &\leqslant \frac{1}{2}\left (\vert \widetilde{f^{4}(\vert X\vert )+g^{4}(\vert X^{*}\vert})(\tau )\vert \right )\sigma \vert \widetilde{\vert X\vert ^{2}}(\tau )\vert \\ &\leqslant \frac{1}{2}\left [\frac{1}{2}\left (\vert \widetilde{f^{4}(\vert X\vert )+g^{4}(\vert X^{*}\vert})(\tau )\vert \right )+ \vert \widetilde{\vert X\vert ^{2}}(\tau )\vert \right ] \\ &\leqslant \bigg\vert \big( \widetilde{\frac{1}{4}\left (f^{4}(\vert X\vert )+g^{4}(\vert X^{*}\vert )\right )+ \frac{1}{2}\vert X\vert ^{2}} \big)(\tau )\bigg\vert \\ &\leqslant \textbf{ber}\left (\frac{1}{4}\left (f^{4}(\vert X\vert )+g^{4}( \vert X^{*}\vert )\right )+ \frac{1}{2}\vert X\vert ^{2}\right ). \end{aligned}$$

Then, by taking the supremum over \(\tau \in \Theta \), we get the first result. For the second inequality, we have

$$\begin{aligned} \vert \widetilde{X}(\tau )\vert ^{2}\sigma \Vert X\widehat{k}_{\tau} \Vert ^{2} &= \vert \widetilde{X}(\tau )\vert ^{2}\sigma \vert \vert \widetilde{X}\vert ^{2}(\tau )\vert \\ & \leqslant \vert \widetilde{f^{2}(\vert X\vert})(\tau )\vert \vert \widetilde{g^{2}(\vert X^{*}\vert})(\tau )\vert \sigma \sqrt{\vert \widetilde{f^{2}(\vert X\vert ^{2}})(\tau )\vert \vert \widetilde{g^{2}(\vert X\vert ^{2}})(\tau )\vert} \\ & = \sqrt{\vert \widetilde{f^{2}(\vert X\vert})(\tau )\vert ^{2} \vert \widetilde{g^{2}(\vert X^{*}\vert})(\tau )\vert ^{2}}\sigma \sqrt{\vert \widetilde{f^{2}(\vert X\vert ^{2}})(\tau )\vert \vert \widetilde{g^{2}(\vert X\vert ^{2}})(\tau )\vert} \\ & \leqslant \sqrt{\vert \widetilde{f^{4}(\vert X\vert})(\tau )\vert \vert \widetilde{g^{4}(\vert X^{*}\vert})(\tau )\vert}\sigma \sqrt{ \vert \widetilde{f^{2}(\vert X\vert ^{2}})(\tau )\vert \vert \widetilde{g^{2}(\vert X\vert ^{2}})(\tau )\vert} \end{aligned}$$
$$\begin{aligned} &\leqslant \frac{1}{2}\left (\sqrt{\vert \widetilde{f^{4}(\vert X\vert})(\tau )\vert \vert \widetilde{g^{4}(\vert X^{*}\vert})(\tau )\vert}+ \sqrt{\vert \widetilde{f^{2}(\vert X\vert ^{2}})(\tau )\vert \vert \widetilde{g^{2}(\vert X\vert ^{2}})(\tau )\vert}\right ) \\ & \leqslant \frac{1}{2}\left (\sqrt{\vert \widetilde{f^{4}(\vert X\vert})(\tau )\vert +\vert \widetilde{g^{2}(\vert X\vert ^{2}})(\tau )\vert} \sqrt{\vert \widetilde{f^{2}(\vert X\vert ^{2}}(\tau )\vert +\vert \widetilde{g^{4}(\vert X^{*}\vert})(\tau )\vert})\right ) \\ &\qquad \qquad \qquad (\textrm{by the Cauchy-Schwarz inequality}\,\, \sqrt{ab}+\sqrt{cd}\leqslant \sqrt{a+c}\,\sqrt{b+d}) \\ &\leqslant \frac{1}{2}\left (\sqrt{\vert \big( \widetilde{f^{4}(\vert X\vert )+g^{2}(\vert X\vert ^{2}})\big)(\tau ) \vert \vert \widetilde{f^{2}(\vert X\vert ^{2})+g^{4}(\vert X^{*}\vert})(\tau ) \vert}\right ) \\ &\leqslant \frac{1}{2}\sqrt{\textbf{ber}\left (f^{4}(\vert X\vert )+g^{2}( \vert X\vert ^{2})\right )\textbf{ber}\left (f^{2}(\vert X\vert ^{2})+g^{4}( \vert X^{*}\vert )\right )}. \end{aligned}$$

Therefore,

$$\begin{aligned} \Vert X\Vert ^{2}_{\sigma}\leqslant \frac{1}{2}\sqrt{\textbf{ber} \left (f^{4}(\vert X\vert )+g^{2}(\vert X\vert ^{2})\right ) \textbf{ber}\left (f^{2}(\vert X\vert ^{2})+g^{4}(\vert X^{*}\vert ) \right )}. \end{aligned}$$

 □

For the special case \(f(t)=g(t) = \sqrt{t}\), we have the following result.

Corollary 3.6

Let \(X\in{\mathscr{L}}({\mathscr{H}})\) and let \(\sigma \) is a mean dominated by the arithmetic mean \(\nabla \). Then

$$\begin{aligned} \Vert X\Vert ^{2}_{\sigma}\leqslant \textbf{ber}\left (\frac{3}{4} \vert X\vert ^{2}+\frac{1}{4}\vert X^{*}\vert ^{2} \right ) \end{aligned}$$
(3.1)

and

$$\begin{aligned} \Vert X\Vert ^{2}_{\sigma}\leqslant \frac{1}{2}\sqrt{2\textbf{ber} \left (\vert X\vert ^{2}\right )\textbf{ber}\left (\vert X\vert ^{2}+ \vert X^{*}\vert ^{2}\right )}. \end{aligned}$$

Remark 3.7

If \(X\in{\mathscr{L}}({\mathscr{H}})\) and \(\sigma \leqslant \nabla \), then by the inequality (3.1) and also the subadditivity of the Berezin radius, we have

$$\begin{aligned} \Vert X\Vert ^{2}_{\sigma}&\leqslant \textbf{ber}\left (\frac{3}{4} \vert X\vert ^{2}+\frac{1}{4}\vert X^{*}\vert ^{2} \right ) \\ &\leqslant \frac{3}{4}\textbf{ber}\left (\vert X\vert ^{2}\right )+ \frac{1}{4}\textbf{ber}\left (\vert X^{*}\vert ^{2} \right ). \end{aligned}$$

Now, if \(X\) is normal, then by the definition of the Berezin radius, we get \(\textbf{ber}(\vert X^{*}\vert )=\textbf{ber}(\vert X\vert )\). Hence, we have

$$\begin{aligned} \Vert X\Vert ^{2}_{\sigma}&\leqslant \frac{3}{4}\textbf{ber}\left ( \vert X\vert ^{2}\right )+\frac{1}{4}\textbf{ber}\left (\vert X^{*} \vert ^{2} \right ) \\ &\leqslant \textbf{ber}\left (\vert X\vert ^{2}\right ) \\ &\leqslant \textbf{ber}^{2}\left (\vert X\vert \right )\quad ( \textrm{by Lemma }3.1) \end{aligned}$$
(3.2)

Moreover, if \(X\) is positive, then the inequality (3.2) and the fact that \(\textbf{ber}(X)\leqslant \Vert X\Vert _{\sigma}\) imply that \(\Vert X\Vert _{\sigma}=\textbf{ber}(X)\).

Example 3.8

Consider for \(\mathbb{C}^{2}\) the standard orthonormal basis \(\big\{ e_{1}, e_{1} \big\}\) as a RKHS on the set \(\big\{ 1,2 \big\}\). Then for the self-adjoint matrix \(X= \begin{bmatrix} 2 & 1 \cr 1& -2 \cr \end{bmatrix} \), which is not positive, we have

$$\begin{aligned} \textbf{ber}(X)=2\lneqq \Vert X\Vert _{\sigma}=\sqrt{5}. \end{aligned}$$

Theorem 3.9

Let \(X\in{\mathscr{L}}({\mathscr{H}})\), and let \(\sigma \) is a mean dominated by the arithmetic mean \(\nabla \) and \(0\leqslant \mu \leqslant 1\). Then

$$\begin{aligned} \Vert X\Vert ^{2}_{\sigma}\leqslant \frac{1}{2} \textbf{ber}\big((1+ \mu )\vert X\vert ^{2}+(1-\mu )\vert X^{*}\vert ^{2}\big). \end{aligned}$$

In particular,

$$\begin{aligned} \Vert X\Vert ^{2}_{\sigma}\leqslant \frac{1}{2} \textbf{ber}\big( \vert X\vert ^{2}+\vert X^{*}\vert ^{2}\big). \end{aligned}$$

Proof

Let \(\tau \in \Theta \). Then

$$\begin{aligned} \vert \widetilde{X}(\tau )\vert ^{2}\sigma \,\Vert X\widehat{k}_{\tau} \Vert ^{2} &= \vert \widetilde{X}(\tau )\vert ^{2}\sigma \, \vert \vert \widetilde{X}\vert ^{2}(\tau )\vert \\ & \leqslant \vert \widetilde{\vert X\vert ^{2\mu}}(\tau )\vert \vert \widetilde{\vert X^{*}\vert ^{2(1-\mu )}}(\tau )\vert \sigma \, \vert \vert \widetilde{X}\vert ^{2}(\tau )\vert \\ & \leqslant \vert \widetilde{\vert X\vert ^{2}}(\tau )\vert ^{\mu} \vert \widetilde{\vert X^{*}\vert ^{2}}(\tau )\vert ^{(1-\mu )} \sigma \, \vert \vert \widetilde{X}\vert ^{2}(\tau )\vert \\ &\qquad \qquad \qquad (\textrm{by Lemma }3.1) \\ & \leqslant \big\vert \widetilde{({\mu}\vert X\vert ^{2}+ {(1-\mu )}\vert X^{*}\vert ^{2}})( \tau )\big\vert \sigma \, \vert \vert \widetilde{X}\vert ^{2}(\tau ) \vert \\ &\qquad \qquad \qquad ( \textrm{by the weighted arithmetic-geometric mean inequality}) \\ & \leqslant \frac{1}{2}\left (\big\vert \widetilde{({\mu}\vert X\vert ^{2}+ {(1-\mu )}\vert X^{*}\vert ^{2}})( \tau )\big\vert + \vert \vert \widetilde{X}\vert ^{2}(\tau )\vert \right ) \\ & = \frac{1}{2}\left (\big\vert \widetilde{{((1+\mu )}\vert X\vert ^{2}+ {(1-\mu )}\vert X^{*}\vert ^{2}})( \tau )\big\vert \right ) \\ &\leqslant \frac{1}{2} \textbf{ber}\big((1+\mu )\vert X\vert ^{2}+(1- \mu )\vert X^{*}\vert ^{2}\big). \end{aligned}$$

Taking the supremum over all \(\tau \in \Theta \), we get

$$\begin{aligned} \Vert X\Vert ^{2}_{\sigma}\leqslant \frac{1}{2} \textbf{ber}\big((1+ \mu )\vert X\vert ^{2}+(1-\mu )\vert X^{*}\vert ^{2}\big). \end{aligned}$$

If we put \(\mu =0\), then we have the second inequality. □

Theorem 3.10

Let \(X\in{\mathscr{L}}({\mathscr{H}})\) and \(0\leqslant t \leqslant 1\). Then

$$\begin{aligned} \Vert X\Vert _{\nabla _{t}}\leqslant \underset{\lambda \in [0, 1] }{\inf}\sqrt{\lambda \left \Vert X\right \Vert _{\mathrm{ber}}^{2} +(1- \lambda ) \left \Vert X\right \Vert _{\mathrm{ber}}\Bigl((1-t)\left \Vert X\right \Vert _{\mathrm{ber}}+t\: \textbf{ber}\left ( X\right ) \Bigr)}. \end{aligned}$$

Proof

Given \(u, v \in \mathscr{H}\) and \(\lambda \in [0, 1]\), we have the following refinement of the classical Cauchy-Schwarz inequality:

$$\begin{aligned} \vert \langle u, v \rangle \vert ^{2}&=[(1-\lambda )+\lambda ]\vert \langle u, v \rangle \vert ^{2} \\ &\leq (1-\lambda )\vert \langle u, v \rangle \vert ^{2}+\lambda \Vert u\Vert ^{2}\Vert v\Vert ^{2} \\ &\leq (1-\lambda )\Vert u\Vert \Vert v\Vert \:\vert \langle u, v \rangle \vert + \lambda \Vert u\Vert ^{2}\Vert v\Vert ^{2}. \ \end{aligned}$$
(3.3)

Utilizing the inequality (3.3), yields

$$\begin{aligned} (1-t)\vert \langle u, v \rangle \vert ^{2}&\leq (1-t)(1-\lambda ) \Vert u\Vert \Vert v\Vert \:\vert \langle u, v \rangle \vert + (1-t) \lambda \Vert u\Vert ^{2}\Vert v\Vert ^{2}, \ \end{aligned}$$
(3.4)

and

$$\begin{aligned} t\vert \langle u, w \rangle \vert ^{2}&\leq t(1-\lambda )\Vert u \Vert \Vert w\Vert \:\vert \langle u, w \rangle \vert + t\lambda \Vert u\Vert ^{2}\Vert w\Vert ^{2}, \ \end{aligned}$$
(3.5)

for all \(u, v, w \in \mathscr{H}\) and \(t\in [0, 1]\). Adding the relations (3.4), (3.5) and replacing \(v\) with \(\frac{u}{\Vert v\Vert }\), we obtain

$$\begin{aligned} \begin{aligned} (1-t)\Vert u \Vert ^{2}+t\vert \langle u, w \rangle \vert ^{2}&\leq \lambda \Vert u\Vert ^{2}\left ((1-t)+t\Vert w\Vert ^{2}\right ) \\ &\quad +(1- \lambda ) \Vert u\Vert \left ((1-t)\Vert u\Vert +t \Vert w\Vert \: \vert \langle u, w \rangle \vert \right ). \end{aligned} \end{aligned}$$
(3.6)

By substituting \(u\) for \(X\hat{k}_{\tau}\) and \(w\) for \(\hat{k}_{\tau}\), we have

$$\begin{aligned} \begin{aligned} (1-t)\Vert X\hat{k}_{\tau}\Vert ^{2}+t\vert \langle X\hat{k}_{\tau}, \hat{k}_{\tau }\rangle \vert ^{2}&\leq \lambda \Vert X\hat{k}_{\tau} \Vert ^{2} \\ &\quad +(1-\lambda ) \Vert X\hat{k}_{\tau}\Vert \left ((1-t) \Vert X\hat{k}_{\tau}\Vert +t \vert \langle X\hat{k}_{\tau}, \hat{k}_{ \tau }\rangle \vert \right ). \end{aligned} \end{aligned}$$
(3.7)

Taking the supremum over all \(\tau \in \Theta \), we have

$$\begin{aligned} \Vert X\Vert _{\nabla _{t}}^{2}&=\underset{\tau \in \Theta }{\sup} \left \{(1-t)\Vert X\hat{k}_{\tau}\Vert ^{2}+t\vert \langle X\hat{k}_{ \tau}, \hat{k}_{\tau }\rangle \vert ^{2}\right \} \\ &\leq \underset{\tau \in \Theta }{\sup}\left \{\lambda \Vert X\hat{k}_{ \tau}\Vert ^{2} +(1-\lambda ) \Vert X\hat{k}_{\tau}\Vert \left ((1-t) \Vert X\hat{k}_{\tau}\Vert +t \vert \langle X\hat{k}_{\tau}, \hat{k}_{ \tau }\rangle \vert \right )\right \} \\ &\leq \lambda \left \Vert X\right \Vert _{\mathrm{ber}}^{2} +(1- \lambda ) \left \Vert X\right \Vert _{\mathrm{ber}}\Bigl((1-t)\left \Vert X\right \Vert _{\mathrm{ber}}+t\: \textbf{ber}\left ( X\right ) \Bigr), \ \end{aligned}$$

for any \(\lambda \in [0,1]\). □

Remark 3.11

Taking \(\lambda =\frac {1}{3}\) in Theorem 3.10, we have a refinement of [1, Theorem 6]. Moreover, from the relation (2.5) and Theorem 3.10, we obtain for any pair of non-negative real numbers \(\alpha \), \(\beta \) such that \((\alpha , \beta )\neq (0, 0)\),

$$\begin{aligned} \Vert X\Vert _{\alpha , \beta}^{\textbf{ber}}&= \sqrt{\alpha +\beta}\: \Vert X\Vert _{\nabla _{t_{1}}} \\ &\leq \sqrt{\alpha +\beta} \underset{\lambda \in [0, 1] }{\inf}\sqrt{\lambda \left \Vert X\right \Vert _{\mathrm{ber}}^{2} +(1- \lambda ) \left \Vert X\right \Vert _{\mathrm{ber}}\Bigl((1-t_{1}) \left \Vert X\right \Vert _{\mathrm{ber}}+t_{1}\: \textbf{ber}\left ( X \right ) \Bigr)} \\ &=\underset{\lambda \in [0, 1] }{\inf}\sqrt{(\alpha +\beta )\lambda \left \Vert X\right \Vert _{ \mathrm{ber}}^{2} +(1-\lambda ) \left \Vert X\right \Vert _{ \mathrm{ber}}\Bigl(\alpha \left \Vert X\right \Vert _{\mathrm{ber}}+ \beta \: \textbf{ber}\left ( X\right ) \Bigr)} \end{aligned}$$

where \(t_{1}=\frac{\beta}{\alpha +\beta}\).