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Abstract

A functional Hilbert space is the Hilbert space #€ of complex-valued functions on some set

® C C such that the evaluation functionals ¢, (f) = f (t), T € ©, are continuous on F.

The Berezin number of an operator X is defined by ber(X) = sup|)~( (1')’ = sup‘ (X IGT, IQI)
)

7€ €O
where the operator X acts on the reproducing kernel Hilbert space # = #(®) over some

(non-empty) set ®. In this paper, we introduce a new family involving means || - ||, between
the Berezin radius and the Berezin norm. Among other results, it is shown that if X € £(#)
and f, g are two non-negative continuous functions defined on [0, co) such that f(#)g(¢) =
t, (t > 0), then

s

1 1
I1X1I7 < ber <Z(f4(|X|) +& (X)) + EIXIZ)

and

1
X113 < 5\/1361‘ (F4UXD +g2(1X1») ber (£2(1X ) + g*(1X*]),
where o is a mean dominated by the arithmetic mean V.
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1 Introduction

Let £ (F¢) be the C*-algebra of all bounded linear operators defined on a complex Hilbert
space (#, (-, -)) with the identity operator I in L (#). When # = C", we identify L (F)
with the algebra M,,(C) of n-by-n complex matrices.

A functional Hilbert space is the Hilbert space of complex-valued functions on some
set ® C C such that the evaluation functionals ¢, (f) = f (1), T € ©, are continuous on
J¢. Then, by the Riesz representation theorem there is a unique element k; € # such
that f (t) = (f, k;) for all f € # and every t € ®. The function k on ® x ® defined
by k (z, T) = k; () is called the reproducing kernel of #, see [2, 4, 5, 17] and references
therein. It was shown that &, (z) can be represented by

ke (@)= en(T)en (2)

n=I

for any orthonormal basis {e,},>1 of #, see [30]. For example, for the Hardy-Hilbert space

H?* = 32 (D) over the unitdisc D = {z € C : |z| < 1}, {z"},>1 is an orthonormal basis, there-
(o]

fore the reproducing kernel of #? is the function k. (z) = Y T,z" = (1 — 72)7 !, t eD. Let

n=1

ke = ”';—zu be the normalized reproducing kernel of the space #€. For a given a bounded linear

operator X on J¢, the Berezin symbol (or Berezin transform) of X is the bounded function

X on O defined by
X (1) =(Xk; (2) . k: (), T€O.

An important property of the Berezin symbol is that for all X, Y € £ (#), if X (r) = Y (1)
for all T € ®, then X =Y (at least when # consists of analytic functions, see Zhu [31]). For
more details, see [3, 6, 8-10, 12—14, 16, 18-29]. So, the map X — Xis injective [15]. The
Berezin set and the Berezin number(radius) of an operator X are defined, respectively, by

Ber (X) = {?(r) :7 € ®} =Range (i)
and

ber (X) =sup{|y|:y eBer(X)}:sup|)?(t)|.

T€®

The Berezin norm of an operator X € £ (#) is defined by

”X”ber ‘=sup ||X7€T ” .
€0

For X, Y € L(H#), itis clear from the above definitions of the Berezin radius (or the Berezin
number) and the Berezin norm that the following properties hold:

(1) ber(tX) = |t|ber(X) for all ¢t € C;

(2) ber(X +Y) < ber(X)+ ber(Y);

(3) ber(X) < || X|lper and ber(X) = ber(X*);
@ N2 X Nlper = 11 X llper for all 7 € C;

(5) 11X + Yller < 1 X llper + 1Y llper-

@ Springer



A New Family of Semi-Norms Between the Berezin Radius... Page30of18 3

In the recent paper [7], the authors defined the 7-Berezin norm on «£(#) as follows:

X -ber = supy/ 1| % (0) [+ (1 = )| X
TEW

The ¢-Berezin norm is also a norm on JL(#) for ¢t € [0, 1), and for t =1 it is a norm if
the functional Hilbert space has the Ber property, i.e., for any two operators X, Y € £L(#)
such that )~((r) = ?(r) for all T € ®, we have X =Y. Hence, the 7-Berezin norm is a norm
in the familiar functional for Hilbert spaces, for instance Hardy and Bergman spaces. The
t-Berezin norm satisfies the following inequalities:

ber(X) < || X|li—per < [ X|lper for z € [0, 1].

A binary function o on [0, +00) is called a mean, if the following conditions are satis-
fied:

(1) Ifa<b,thena <aob<b;

(i) a<candb<dimplyaoc b <cod,
(iii) o is continuous in both variables;
@iv) t(aob) < (ta)o(tb) (t > 0).

For instance, if u € (0, 1), the weighted geometric mean is aff, b = a'~*b*. The case pu =
1/2 gives rise to the geometric mean affb. A mean o is symmetric if aoc b = bo a for all
positive numbers a, b. For a symmetric mean o, a parametrized mean o,, 0 <t <1 is called
an interpolational path for o if it satisfies

(1) acob=a,aop,b=aob,andao, b=b;

(2) (ao,b)o(ao,b) =ao s b for all p,q € [0, 1];

(3) The map ¢ € [0, 1] +— a o, b is continuous for each a and b;
(4) oy is increasing in each of its components for 7 € [0, 1].

It is easy to see that the set of all r € [0, 1] satisfying
(aopb)o,(acyb) = ac,pr1—rgb (1.1)

for all p, g is a convex subset of [0, 1] including O and 1. For instance, the power means

amrb=<ar;br)7 (rel-1,1])

are some typical interpolational means. Their interpolational paths are
am,b=(1—na +1b')7 ([0, 1]).

In particular, am; ;b = aV,b = (1 — t)a + tb is the weighted arithmetic mean, am ;b =
at,b=a'"'b' is the weighted geometric meanandam_; b =al,b = ((1 —)a™' + tlf‘)f1
is the weighted harmonic mean. It is well-known that a!;b < at,b < aV,b for positive num-
bers a and b and ¢ € [0, 1]. For more information about means, see [25] and references
therein.

In this paper, we define a new quantity and establish some related results. The main ideas
of this paper are stimulated by [7] and [11].
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2 Main Results
We begin this section with the following definition.

Definition 2.1 Let X € L(#) and o, be an interpolational path of a symmetric mean o. We
define

X1, :sup{\/p?(r)}z o ||XE||2} for 0<r <1,
T€®

Example 2.2 We consider the Hardy-Hilbert space, #2 (D), defined over the unit disc D =
{z € C:|z| < 1} as follows:

[ee) o0
H D) ={f:D—>C:f)=) a2"and Y _ |a,|* < o0}.
n=0 n=0
The inner product on J#2 (D) is defined by (f, g) = Y oe(@nby, for f(z) =Y ooy anz"

and g(z) = Y no o byz" and {z"},>1 forms an orthonormal basis. We can identify #? (D)
with [2(N), since

f@= Zanz” < (ag,a,as, ...).

n=0
o0
Therefore, the reproducing kernel of #2 (D) is given by the function k, (z) = Y. 77" =
n=1
(1-7z)"',reDand
— —1
ke l? = (keo ke) = ke (D) = (1 =T0) ' = (1—|2f’) ",

for any 7 € D.
On [?(N), we consider the unilateral shift operator U defined by

Ulap,a1,a2,a3,...) =(0,a9,a1,as,...)

for (ag, ay, az, as, ...) € [*(N). Thus, for any 7 € D, we have

~ ~ o~ 1
U@ F =[{Uke @) ke @) = 1 (WUke @) ke @)
1 - = _ 2
=TT (va,z.72,..), (0, 7.7%,..)
1 = =2 - =2 2
:W|((0,1,r,r L0 (LT T L)
| T 1 g
=—— DT = <—|r|> =1zl
e [1# ;0 Ik f1* N1 = |z]?

and due to the fact that U is an isometry, we conclude that

1UK 1% = ke I = 1.
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Then, we obtain that
U @) P <t <1=|Uk|P, Q.1

and by the monotonicity of o;, we have

1 =sup|t| =sup|l7(1')’ < sup{\/|l7(t)‘2 o ”U']Er Hz} < sup ”UE H =1 (2.2)
teD teD teD teD

forr € [0, 1].
In conclusion, we have that ber(U) < |U|l5, < |U ||ber, and in particular, ||U||,, =1 for
any t € [0, 1].

Following the ideas from the previous example and given that ’3? (r)‘ < H Xk, |, from the

Cauchy-Schwartz inequality, we have that
ber(X) < [[Xllo, < I X lIber

for t € [0, 1] and X € L(H). It is easy to see that for the special case o, =V, (0<t < 1),
we have || - [lo, = | la—n—ber-
The next proposition shows some properties of || - ||, .

Proposition 2.3 Let X € L(H) and oy, T, be interpolational paths of symmetric means
and t. Then

(D) 11X llo, =ber(X) and || Xllo; = | XlIver;

) 1Xllo, < /ber’(X) o, X |3 for t € [0, 1;

3) It Xllo, = Izl X6, for all T € C;

(4) If the functional Hilbert space has the Ber property and t € [0, 1), then || X|l,, =0 if
and only if X =0;

(5) If o < v, then || X, < 1 XI5, for s, t €0, 1].

Remark 2.4 If X € L(JF), then

A 2 A A
11X | ler = supl| X Ike |~ = sup(|X ke, | X|kc)
7€ ®

T€d

= sup(X* Xk, k;) = sup(Xke, Xkt ) = sup | Xk ||” = 11X 1Zr
T€® T€® T€®

and for a semi-hyponormal operator X, i.e. |X*| < |X|, the mixed Cauchy-Schwarz in-
equality [(Xkr, ko) [* < (X ke, ko) (X [fe, ke) implies that [(Xke, kc)|” < (X |k, kr)? for
all 12, € J¢, and then

ber(X) = sup|(Xk., k.)| < sup(|X k., k) = ber(|X]).

T€® T€®

Using the definition of || - ||, and the monotonicity of o,, we have the next result.

Theorem 2.5 Let X € L(H) and o, be an interpolational path of a symmetric mean o for
allt € [0, 1]. Then

(1) If X is hyponormal, i.e., XX* < X* X, then || X*||o, < | X|lo, .
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(2) If X is co-hyponormal, i.e., X*X < XX*, then || X ||o, < | X*|lo;-

(3) If X is semi-hyponormal, i.e., | X*| < |X|, then | X|ls, < || X] o -

@) If X is (a, B)-normal, i.e., aX*X < XX* < BX*X for some positive real numbers o
and B with o < 1< B, then

o[ X o, < NX Mo, < BlIX o, -
(5) If X is normal, then | X*||s, = | X |5, -

Proof (1) It follows from the hyponormality of X that || X *EH < ||X7<\r|| for all T € ©.
Moreover, |(Xk., k:)| = [(X" k., k.)| for all T € ®. Hence, by the monotonicity of o;,
we get

o~ o~

(X e ko) [P0 XK |2 < (X ) [P0, [ X, |2 forall 7 € ©.

Then, by the definition of || - ||5,, we have || X*|l;;, < [ X|ls;-

(2) The proof is similar to that of part (1).

(3) The condition of semi-hyponormality and the mixed Cauchy-Schwarz inequality imply
that |(XE, k)| < (IX|k., k,)? for all &, € J¢. Also, || Xk, || = || IX| k.|| for all &, € J¢.
Therefore,

o~

|(Xke, ko) 00 I XE 12 < (1 X ke, ko) 20 | 1X T |2 forall T € ©.

By taking the supremum over all T € ®, we get ||X||a, < | X ||a,
(4) Since X is («, B)-normal, we have al Xk, || < 1 X%k, || < Bl Xk, | for all T € . It fol-
lows from the fact that o, is increasing in its both variables that

o~ o~ o~ o~ o~

~ 2 ~ 2 ~ 2 ~
& [(Xke, ko) |"0002 | X e |1 < (X e, ko) |00 | X e 12 < B2 [( Xk K ) |00 B2 (| X ke |1

forall T € ®. Hence, a|| X|lo; < 1 X* |6, < BIXo,-
(5) It follows from the normality of X that X is both hyponormanl and co-hyponormanl,
and then by the parts (1) and (2) we have the desired result. O

Theorem 2.6 Let X € L(H) and t € [0, 1]. Then the following conditions are equivalent.
(1) X2, =ber’(X) o;[| X |-

(2) There exists a sequence {'k;n} in J such that

lim |X(z,)| =ber(X) and lim || Xk, | = X lIper-
n—o0 n—oQ

Proof We first prove that (1) implies (2). By the definition of the supremum, there exists a
sequence {k, } in #¢ such that

1X12 = 1im [X(@)|* o0 | XK ||
n—00

It follows from the boundedness of the sequences {W (T) ‘} and { H X’k\z"
a subsequence {k,nk} such that {’X(rnk)u and {H Xk,

} that there exists
} are convergent. Then, we have

Tnk

ber’ (X) o, | X |[per = 1 X117,
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= lim (X (@)l 011 Xkr,, I)
<ber’ (X)o; || X [lper-
Therefore,
lim [X (5,0l =ber(X) and  lim | X&e,, || = X llber-
Now, we prove that (2) implies (1). We have
I1X112, = sup {|X (D) o || Xk |17}
T€®
> lim {|X(z)* o0 | Xkr, |17}
n—oo
=ber*(X) o, | X|I,,-
Hence, | X |12, =ber’(X) o[ X [,- a

We have seen in Proposition 2.3 that || - ||, (0 <7 < 1) fulfills the semi-norm properties,
except possibly for the triangle inequality. In particular, when o =V, (0 <t < 1), we have

the next proposition.

Proposition 2.7 Let X, Y € L(H) and 0 <t < 1. Then
IX + Yy, <IXllv, + 1Y llv,-
Proof Let t € ® be a unit vector. Then
HX + V@R + 1 =DIX + Yk |
<t (IXOI+ 1T @) + A =0 (IXk | + 1Y 1)
=t (IX@P + 1Y (@O +2X@Y (D))
+ (1= 1) (XK |2 + 1Yo P + 201 XEe |11 Ve )
= 11X () + (1 = DXk > + 1Y (@ + (1= )| Yk, |12
+2(XONY @]+ (1 = D Xk | YE-]) -
Moreover, the Cauchy-Schwarz inequality implies that

HX@ONY @)+ = )| Xk 1Y e |

<JHIR@P + (1 = DI XE AT @R + (1= 0 YR
Combining the above inequalities, we have

NX F V@R + = DlI(X + k|
<HX@P + A =D)IXk 2+ 1Y @O + (1= )| Ve |
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3 Page80of18 M. Bakherad et al.

+21R @ + (1 = DI XE 1T + (1 — 0 YE |2
<UXIS, + YIS, + 20X 1y, 1 Xlv, -

Therefore,

— ~ 2
1X + Y IR, =sup [(lX F)@F + (1 = DI X+ DRI} < (1K, + 1Y 1)
€0 ]

In the following theorem, we give an equivalent condition that | X + Y|y, = | X|lv, +
1Yy, forall X,Y e L(#).

Theorem 2.8 Ler X,Y € L(H) and O < t < 1. Then the following conditions are equiva-
lent.

M I1IX+Ylv, =1Xllv, + 11X+,
(2) There exists a sequence {k,} in J such that

Tim 9% (X ()Y (5) + (1= 0)(Xke, &y, ) (Yo, Ki,) = 1 X D 1Y v,
where N(z) denotes the real part of a complex number .

Proof (1) = (2) Using the definition of the supremum and the hypothesis, there exists a
sequence {k.,} in ¢ such that

Tim (11X +)@)E + (1= DK + )k, 12) = (1X s, + 1Y Il,)”
Hence,

N+ V) @)P + (1= DIIX + Vs, I
=t (X @)P + 1T @) +29% (X ()Y (1))

(1= 1) (11X, 17+ 1V Eer, 1> 4 29% ((XEr, , o) (YR, o)) )
= 11X (@) + (1= D) 1XEs, I2 + 1T (@) 2 + (1 — 1) | Yy, |12

+ 20 (1K (1) F(5) + (1= 1) (XEy, Ko, ) (Y, Kry)

~

SUXIZ, + 1Y I3, +29% (1 X (@)Y (5) + (1 — 0)(Xky,, ke, ) (Ve o ks, ))

SUXIZ, + 1Y I3, +2 (X @Y (@)l + (1= D(Xke, . ke, )Yy, , ko))
SUXIZ, + IV I3, +2 (61 XEe, 1Y g, Il + (1 — D](Xke, ke, ) 1Y hr, , Ko, V)

<X, + Y15, +2\/r|f<(rn)|2 + (1= 1)|| Xk, ||2\/r|?<rn>|2 + (1= Yk, |2
(by the Cauchy-Schwarz inequality)
< (IXllv, + 1Y 1l5,)*
Now, if we let n — oo, we get

o~

Tim 0t (1 X7 (0) Y (5) + (1= 0{Xke, ke, ) (Yo, Ki,)) = Xl 1Y s, -
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(2) = (1) Suppose that there exists a sequence {75,,1} in ¢ such that

Tim 9t (1 X (0) Y (1) + (1= 0){Xke, ke, ) (Yo, Ki,) = X1, Y s, -

Then, for every n € N, we have

N2 (1 X% (2) Y (2,) + (1 = 1)( Xk, , Ky ) (Y, , Kry))

o~

<A =X @)Y (@) + 1(Xy,, Kooy ) (Y K|

o~

— 32 (1 X* () Y (1) + (1 = 1) (X, , k) (Yr, . Kz, ))

2

’

< |1 =X @)Y (7)) + 1(Xky,, ko) (Y, oy )

where J(z) denotes the imaginary part of a complex number z. Hence,
R (EXF(1)Y (1) + (1 — 1) Xk, . Ky, ) (Y, . Kr,))
<[ =DX @)Y (@) +1(Xky, ke, ) (Y, Ky, )

<A =DIX @Y @)+ 11{Xky, , ke (Y Ky, , K, )|
< = )| Xeg, N1V Ky, | 4 11X Ko, s o)1 (Y ey, K ) 1)

<R @P + (1= 0 1XE, 11T @) P + (1 = DIYE, 12
(by the Cauchy-Schwarz inequality)
<IXlv 1Y I, 2.3)

It follows from ¢|X(r,)|> + (1 — )| Xky, [> < X113, and #|Y (x,)]> + (1 — )| Yk, ||> <
(Y3, that

lim (ru?(rn)F + (1= 0| Xk, ||2> = IXII,
and
nlgrgo<r|?<rn>|2 +(1=D)[Yk, ||2) =Yg,

Therefore,

2
(IXllv, + 1Y llv,)” = 1XII3, + 1Y 1%, + 21X v, 1Y v,

lim (tu?(rn)ﬁ + (1 —1)|| Xk, ||2>
n—oo

+ lim (rﬁ(rn)ﬁ +(1 =Yk, ||2)

-~

+21im R (1 X () ¥ (@) + (1= 0)(Xky, Ky, )Yy, Ki,)

lim [z (IX @) +17 @) +29 (X*(m)Y (1))

@ Springer



3 Page 100f 18 M. Bakherad et al.

+ (1= 1) (| XFeq, 2 + 1 Yk, |12 + 290 (<XE,,,EW><YEWE”>))]

= lim (t|(m)(r,,>|2 + (1= DI (X + )k, ||2>

IX+ Y3

2
< (IXllv, + 1Y)
(by Proposition 2.7).

Hence, | X + Y|y, = I X|lv, + IYllv,. O

Recently, Altwaijry et al. in [1], introduced the following generalization of || - ||;—per-
Given non-negative real scalars « and § such that (¢, 8) # (0,0) and X € L(F), let

||X||';e;=sup{\/ﬂ\}?(r)\2+a||XEH2}. 24)

Then, we have

/m%awﬁanxauz

X|IPC = su
X [2%% = sup p

1
\/Ol—i-ﬂ T€®

—~ B~
—sup[\/ +ﬂH kfuz+myxm\2]=||X||v,0=||xnv,_ 2.5)

where 1) = ﬁ and t; = afﬂ.

As a consequence of Theorem 2.8 and the previous identity, we derive the following
characterization of the equality in the triangle inequality for the norm || - ||2i§.

Corollary 2.9 [1, Theorem 10] Let X, Y € L(H) and non-negative real scalars o and B such
that (a, B) # (0, 0). Then the following conditions are equivalent.

(D 1X + Y lleth = 1X o + [V Ia%-
(2) There exists a sequence {kz”} in # such that

o~ o~ o~

Tim (10 X* (@)Y (@) + (1= 10) (X, Ko, /Yoy, K, ) = 1 X D [V 9,y (26)

where ty = ﬁ

Proof We note that from the equality (2.5), the condition (1) is equivalent to
IX + Y llv, = 1Xllv, + 1Y llv, - @.7)

with 7y = ﬁ Now, by Theorem 2.8, the condition (2.7) is equivalent to the existence of a
sequence {En} in J€ such that

o~ o~ o~

Tim 9t (10X (27 (1) + (1 = 1) (XK, K, ) (Y, K ) = XD Y e 28)

o
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To finish the proof, it is enough to show that (2.8) is equivalent to
lim (10X* (@)Y (@) + (1 = 10) (Xky, K, ) (Yoo, K, ) = 1 X Dlw, Y Dlw,, - (29)
Indeed, if (2.9) holds, then
lim (10X (0 () + (1 = 10)(Xky, K, ) (¥, K, )

1Xllv,, 1Y llv,, + TX v 17T,

=1 Xllv, IYllv, = 5
= 1im R (10X * (7)Y (z,) + (1 — 1) (Xkr, , Ky, ) (Y, , Ky ) - (2.10)

On the other hand, by (2.3) for any n € N, we have

o~ o~ o~

N2 (10X (1) Y (2,) + (1 — 1) (X, , k) (Yr, , K, ))

o~

A -~ 2
(tO|X(Tn)||Y(Tn)||+(1_t0)||< Tn r,,)“( Tnvk‘l'n>|)
<X VIR, -

Thus, if we assume that condition (2.8) is fulfilled, then we can conclude that

o~ o~

Tim 3 (10X (0)¥ () + (1 = 10)(Xkr, ke, /Yy, i, ) = 0,

and
lim (10X* (@)Y (5) + (1= 10) (Xky, Ky, ) (Yoo, K, ) = 1 X D, 1Y v
and this completes the proof. ]

Remark 2.10 We note that cotlglition (2.6) is equivalent to
(2’) There exists a sequence {k, } in # such that

o~

lim (@X*(0)Y (5) + B(Xke, ke, ) (Vs i, )) = XIS Y105

Indeed, if we denote by #) = then by (2.6)

@
a+p’
IXUeEIY N2 = Ve + Bl X llv, vV + BIY I,

= lim (o + B) (10X* (@)Y (00) + (1 = 10) (Xky, Ky, ) (Y, &y, )) =

)

= lim (aX*(tn)Y(t,,) + B(Xky, ky, ) (Y, ks,)) .

n—oo

Finally, we remark that in [1, Theorem 10], the authors obtained a similar characterization

of the equality [ X + Y2 = I X [12% + 1Y 125

3 Some Estimations for | - |5,

In this section, we present some upper and lower bounds for || - ||5,. The following well-
known lemmas will be essential to prove our results.
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3 Page120f18 M. Bakherad et al.

Lemma 3.1 [25] Let X € L(H) be a self-adjoint operator with spectrum in an interval J
and T € ©.

(1) If f : J — Ris convex, then f((Xkr, ko)) < (f(X)ke, k).

-~

() If f : J — R is concave, then f(<X?,, ) = (f Xke, ko).

Lemma3.2 [24] Let X € L(FH) and f, g be two non-negative continuous functions defined
on [0, 0o) such that f(t)g(t) =t fort > 0. Then

X (@) < IF20XDON2(X D ()]
forall T € ®.

For an operator X € L(J), the Crawford Berezin number ¢(X) is defined as ¢(X) =
in{) | X (t)]. In the following theorem, we obtain a lower bound for || - ||, in the terms of ¢(-).
TEW

Theorem 3.3 Let X € L(H) and 0 <t < 1. Then,

1Xllo, > max {\/ ber* (X)o,&(X*X), z2(x>a[||x||§e,} .

Proof Lett1 € ® and 0 <t < 1. Then

X112, = sup{| X () Po; | X (ko) [1%)
T€O

> X (0) oI X (k) |12
= 1X(0) o | X*X (7) 2

> |X(0)?0, 2 (X*X).

Taking the supremum over all vectors 7 € ©, we get || X ||(2,1 > ber?(X)o, 2 (X*X). Similarly,
we have

IX112 = sug{|)?<r)|2af||X<E>||2} > X ()20, |1 X (ko) 1> = S (X) o |1 X (ko) I,
TEW

whence || X ||(2,t > (X)X ||l2Jer' Combining the above inequalities, we get the desired re-
sult. O

In the next result, we get some special case of Theorem 3.3.

Corollary 3.4 Let X € L(FH),r € [—1,11and 0 < u < 1. Then

1Xlln,,, > max: Z\f/<1 — wber’ (X) + u& (X*X) 2\,/(1 — )7 (X) +u||xnzer}
mpy & 5 ’ s .

In particular,

Xy, > max {\/ (1= wber(X) + U@ (X*X) . (1 = )@(X) + unxn,%e,}
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and
I1X1lz, > max {ber' ™ (X)&*(X*X), e XX lp,, } -

Proof Letting o; be the interpolational paths of the power means m, , for r € [—1, 1] and
0 < u <1 in Theorem 3.3, we have the first inequality. If we take the weighted arithmetic
mean V,, and the weighted geometric mean f,,, (0 < u < 1) in Theorem 3.3, then we have
the second and the third inequalities, respectively. a

Theorem 3.5 Let X € L(H), and let f, g be two non-negative continuous functions defined
on [0, 00) such that f(t)g(t) =t fort > 0. If o is a mean dominated by the arithmetic mean
V, then

1 1
X2 < ber (Z(fmxn +g* (X)) + §|X|2)

and

1
X175 < 5\/ber (F4AXD + 21X 1) ber (f2(1X12) + g*(1X*])).

Proof Let t € ®. Then
1X (00 | Xk |? = 1X (D)0 | XX (7)]
<IL20XD@IIg2 (XN (D)o | XX (7)]
(by Lemma 3.2)

<5 (IPXDOP +182(XD@)F ) o XX (@)

P

<5 (IFXDOI+18 (X DO1) o1 XX (D)

N = N =

(by Lemma 3.1)
= 2 (170X ¥ g XD (@) o KT
= 2 g .

It follows from o < V and the above inequalities that

~ - 1 — —
X () Pol| Xk I* < 3 <|f4(|X|) +g4(|X*|)(T)|)GIIX|2(f)|

[

1 o _
<3 [5 (1740XD + g ax*D(@)1) + ||X|2<r>|}

1 T 1
< ‘(Z (F*UXD + g*(X*)) + EIXIZ)(t)

1 1
< ber <Z (FHaxn +g*ax*n) + §|X|2> .
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3 Page 140f 18 M. Bakherad et al.

Then, by taking the supremum over t € ®, we get the first result. For the second inequality,
we have

IX(0)Po || Xk |1? = |X (0) P || X (7))

<IPIXDONRIX D@0 L LIXD@N2IX D)

P @ P20 D@ Py LI D@12 (XD )]

<IFIXD @ 0X D@y LX) IX D )]

<

N =

(\/|F(\|§|)(r)||g4f(|35|><r)| + \/|f7(|7|2><r)||g7<ﬁ2>(r)|)

<

<\/|f4?|§|)(r>| 2IXPOW IR+ |g4/(|7*|)(r>|>)

N =

(by the Cauchy-Schwarz inequality v ab + v'cd < v/a+cvb+d)

1 —~— ——
<3 (\/I(f4(|X|) +22(1XP) @I 21X +g4(|X*|)(T)|)

1
< 5\/ber (F44XD + g2(X 1)) ber (f2(1X2) + g*(1X*])).

Therefore,

1
X115 < 5\/ber (F40XD + g2(X 1)) ber (f2(1X[?) + g*(| X

For the special case f(t) = g(t) = +/t, we have the following result.

Corollary 3.6 Let X € L(H) and let o is a mean dominated by the arithmetic mean V. Then
2 3 Ligep
1 X1I5 < ber ZIXI +Z|X | (3.1

and

IXI2 < 5y/2ber (1XP) ber (IXP+ 1X°F).

Remark 3.7 If X € L(F#) and o < V, then by the inequality (3.1) and also the subadditivity
of the Berezin radius, we have

3 1
X2 <b JiIxi2 4 S 1x*?
1X1l5 el'<4| I +4| I)

E 2 l *2
< 4ber(|X| )+ 4ber(|X ).

Now, if X is normal, then by the definition of the Berezin radius, we get ber(|X*|) =
ber(| X|). Hence, we have

IXI2 < Zber (1X?) + Ther (1X° 1)
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< ber (1X]%)
< ber? (1X]) (by Lemma 3.1) 3.2)

Moreover, if X is positive, then the inequality (3.2) and the fact that ber(X) < || X ||, imply
that || X ||, = ber(X).

Example 3.8 Consider for C? the standard orthonormal basis {e;, e;} as a RKHS on the set

{1,2}. Then for the self-adjoint matrix X = [? _12] , which is not positive, we have

ber(X) =25 || X|l, = V5.

Theorem 3.9 Let X € L(FH), and let o is a mean dominated by the arithmetic mean V and
0< u<1. Then

1
X112 < Eber((l + WIX*+ 1= wIX*P).

In particular,
, 1 2 )2
X105 < Eber(lXI +1X*7).

Proof Let t € ®. Then
1X ()P0 | Xk |1 = 1 X () o [|X ()]
< IXPA @)X P9 (0o | X ()]
<IXP@PIXR@ e | K1)
(by Lemma 3.1)
<|@IXP 1= wIX*P)(@]o X))

(by the weighted arithmetic-geometric mean inequality)

1

<5 (leixe + a = wix-po)| + I1XP!1)

N = N = N

(I + wIxX P+ (1 = wIx @) )
< sber((1+ 01X + (1 — )| X*).
Taking the supremum over all T € ®, we get

21 2 )
XI5 < Eber((l +WIXPP+ A= w)IX*P).

If we put u = 0, then we have the second inequality. O
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Theorem 3.10 Let X € L(H) and 0 <t < 1. Then

1Xls, < xeiﬁ)fl]\/)\ 1X 1+ (1= 2 DX e (1= 0) 1X e + 1 ber (X) ).

Proof Given u,v € # and A € [0, 1], we have the following refinement of the classical
Cauchy-Schwarz inequality:

[, )P = [(1 = 2) + Al (e, v) 2
< (=), v)[* + Al 0]
< =) llullvll [, v} + Al vl (3.3)
Utilizing the inequality (3.3), yields
(=), v)* < (A=) (A = D) lullllv]l [, v)] + A = Orul (o], (3.4
and
t G, w) P < e (1 =W llullllwll [, w)] + xful*lwl)?, (3.5)

for all u, v, w € # and ¢t € [0, 1]. Adding the relations (3.4), (3.5) and replacing v with ﬁ,
we obtain

(=)l + G, w)* < Alul® (1 = 1) + ] w]?)

(3.6)
+ (=)l (1 =D flull +ellwl) [, w)]) -
By substituting u for X k. and w for k., we have
(= )| Xke | + 11X ke ko) > < A Xk ||
R R A 3.7
(= IXE (=Dl Xkl + 11Xk k) )
Taking the supremum over all T € ®, we have
1XIR, = sup | (1 = DI Xkel? + 11(Xkr, &)
T€EO
< sup {21k + (1 = XD (= DXkl + 11Xk R}
7€
< X e+ (1= 2) X lher (1= 0) X lg +1 ber (X)),
for any X € [0, 1]. O

Remark 3.11 Taking A = % in Theorem 3.10, we have a refinement of [1, Theorem 6]. More-
over, from the relation (2.5) and Theorem 3.10, we obtain for any pair of non-negative real
numbers «, § such that (o, 8) # (0, 0),

IX1e% = Ve + B l1Xllv,

@ Springer



A New Family of Semi-Norms Between the Berezin Radius... Page170f18 3

=Va+ ﬂkei%fl]\/k X e+ (1= 2) X e (1= 12) X e + 11 D (X))

- Aé%%fu\/ (@ + BV X I+ (1= 2) 1X e (@ 1 X e + B ber (X))

where 1} = B

a+p’
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