1 Introduction and Statement of Results

Let M be a real analytic hypersurface at the origin \(0\in {\mathbb {C}}^n\), \(n\ge 2\), defined by the equation \(F(z_1,\ldots ,z_n)=0\), where F is a real analytic function vanishing at 0. We say that M is nondegenerate if the Levi form

$$\begin{aligned} LF(z,\bar{z})=\sum _{1\le \alpha ,\beta \le n}g_{\alpha \bar{\beta }}z^{\alpha }\bar{z}^{\beta },\,\,\,\,\,g_{\alpha \bar{\beta }}=\left( \frac{\partial ^2 F}{\partial z^{\alpha }\partial \bar{z}^{\beta }}\right) _{0} \end{aligned}$$
(1)

is nondegenerate at 0. Otherwise, we say that M is Levi-flat. The purpose of this paper is to study the degeneracy of the Levi form of real analytic hypersurfaces obtained from real singularities with a Milnor fibration. More precisely, Milnor proved in Milnor (1968, Theorem 11.2) that if \(f:({\mathbb {R}}^n,0)\rightarrow ({\mathbb {R}}^p,0)\), \(n>p\), is a real analytic map whose derivative Df has rank p on a punctured neighborhood of \(0\in {\mathbb {R}}^n\), then, for every sufficiently small sphere \(\mathbb {S}_{\epsilon } \subset {\mathbb {R}}^n\), the mapping

$$\begin{aligned} \psi :=\frac{f}{\Vert f\Vert }: \mathbb {S}_{\epsilon }-N_K \rightarrow \mathbb {S}^{p-1} \end{aligned}$$
(2)

is a locally trivial fibration, where \(K=f^{-1}(0) \cap \mathbb {S}_{\epsilon }\) is the singularity link, and \(N_K\) is a tubular neighborhood of K in \(\mathbb {S}_{\epsilon }\). The map \(\psi \) can always be extended to \(\mathbb {S}_{\epsilon }-K\) as the projection of a fibration, but this extension is not necessarily as \(\dfrac{f}{\Vert f\Vert }\). Follows Ruas et al. (2002, Definition 1.1), we will say that \(f:({\mathbb {R}}^n,0)\rightarrow ({\mathbb {R}}^p,0)\), \(n>p\), satisfies the Milnor condition at 0 if Df has rank p on a punctured neighborhood of 0. When f satisfies the Milnor condition at 0, and furthermore, the map \(\dfrac{f}{\Vert f\Vert }: \mathbb {S}_{\epsilon }-K \rightarrow \mathbb {S}^{p-1}\) is a fibration for every sufficiently small sphere \(\mathbb {S}_{\epsilon } \subset {\mathbb {R}}^n\), we say that f satisfies the strong Milnor condition at 0, see for instance (Ruas et al. 2002, Definition 2.5). Maps of this type induce an open book decomposition on the sphere \(\mathbb {S}_{\epsilon }\). Milnor pointed out in his book that is difficult to find examples satisfying the strong Milnor condition, (see Milnor 1968, p. 100). In Seade (1997) and Seade (1996), Seade presented a method for constructing families of nontrivial maps \(f:{\mathbb {R}}^{2n} \rightarrow {\mathbb {R}}^2\) that satisfy the strong Milnor condition at 0. This construction is given as follows: let \(\chi ({\mathbb {C}}^n,0)\) denote the space of all germs of holomorphic vector fields at \(0\in {\mathbb {C}}^n\), and let G, X be elements in \(\chi ({\mathbb {C}}^n,0)\). Consider the real analytic map

$$\begin{aligned}\psi _{G,X}:{\mathbb {C}}^{n}\cong {\mathbb {R}}^{2n}\rightarrow {\mathbb {C}}\cong {\mathbb {R}}^2\end{aligned}$$

defined by \(\psi _{G,X}(z)=\langle G(z),X(z)\rangle \), where

$$\begin{aligned} \langle G(z),X(z)\rangle =\sum _{i=1}^{n}G_i(z)\cdot \overline{X}_i(z), \end{aligned}$$
(3)

is the usual Hermitian product. Note that the argument of \(i\langle G(z), X(z)\rangle \) is the angle by which we rotate the field G so that it becomes orthogonal to the field X. Thus, the real analytic variety \(\psi _{G,X}^{-1}(0)\), called the polar variety of G and X, is the set of points where G and X are orthogonal. Consequently, on the polar variety, the holomorphic foliations defined by the fields G and X are transversal, and their intersection gives rise to a foliation by real curves in \(\psi _{G,X}^{-1}(0)\). In the particular case where X is the gradient field of a real analytic function \(f:{\mathbb {R}}^{2n} \rightarrow {\mathbb {R}}^2\), the polar variety is the set of points where the foliations defined by the field G and the level curves of f are tangent. Furthermore, \(\psi _{G,X}^{-1}(0)\) is a complete intersection defined by the equations

$$\begin{aligned} {\textrm{Re}}\ \langle G(z), X(z)\rangle = {\textrm{Im}}\ \langle G(z), X(z)\rangle =0. \end{aligned}$$

In Seade (1997), Seade proved that if \(X=(z_1,\ldots ,z_n)\) is the radial field and \(G=(\lambda _1z_1^{a_1}, \ldots ,\lambda _nz_n^{a_n})\), then \(\psi _{G,X}\) satisfies the Milnor condition for any \(\lambda _k \in {\mathbb {C}}^*\) and integers \(a_k>1\). On the other hand, given \(\sigma \in S_n\), a permutation of the set \(\underline{n}:=\{1,\ldots ,n\}\), families of vector fields of the form \(G=(\lambda _1z_{\sigma _1}^{a_1}, \ldots , \lambda _nz_{\sigma _n}^{a_n})\) and \(X=(\beta _1z_1^{b_1}, \ldots , \beta _nz_n^{b_n})\) that satisfy the Milnor condition or the strong Milnor condition at the origin were classified by Ruas–Seade–Verjovsky (Ruas et al. 2002, Theorem 2.7).

In this paper, we consider \(M=\{F(z)=0\}\) defined by

$$\begin{aligned} F(z):=2{\textrm{Re}}(\psi _{G,X}(z))=\psi _{G,X}(z)+\overline{\psi _{G,X}(z)}, \end{aligned}$$
(4)

where \(G,X\in \chi ({\mathbb {C}}^n,0)\). A simple example in \(({\mathbb {C}}^2,0)\) is when we consider \(G(z_1,z_2)=(z_1,z_2)\) and \(X=(z_2,-z_1)\). Then

$$\begin{aligned} M=\{F(z_1,z_2)=2{\textrm{Re}}(\psi _{G,X}(z))=z_1\bar{z}_2-z_2\bar{z}_1=0\} \end{aligned}$$
(5)

is a real analytic Levi-flat hypersurface at \(0\in {\mathbb {C}}^2\) whose Levi foliation admits as leaves the complex curves \(z_1=c\cdot z_2\), where \(c\in {\mathbb {C}}\) (see Burns and Gong 2003, p. 51). Motivated by this, M.A. Soares Ruas have posed the following problem:

Problem 1

Under which conditions on the germs of holomorphic vector fields G and X is the real analytic hypersurface \(M=\{F(z)=2{\textrm{Re}}(\psi _{G,X}(z))=0\}\) Levi-flat?

In order to answer Problem 1, we consider the vector fields G and X explored in Ruas et al. (2002, pp. 203–211). More specifically, our first result is as follows:

Theorem A

Let G and X be elements in \(\chi ({\mathbb {C}}^ n,0)\), \(n\ge 2\), of the form \(G(z)=(z_1^{a_1},\ldots , z_n^{a_n})\) and \(X(z)=(z_1^{b_1},\ldots , z_n^{b_n})\), where \(a_k > b_k \ge 1\) are positive integers, for all \(k=1,\ldots ,n\). Then \(M=\{F(z)=2{\textrm{Re}}(\psi _{G,X}(z))=0\}\), i.e.,

$$\begin{aligned}M=\left\{ {\textrm{Re}}\left( \sum _{k=1}^{n} z_k^{a_k}\bar{z}_k^{b_k}\right) =0\right\} .\end{aligned}$$

is nondegenerate at \(0\in {\mathbb {C}}^n\).

Our second and third theorems are motivated by the example given in (5):

Theorem B

Let G and X be elements in \(\chi ({\mathbb {C}}^ n,0)\), \(n\ge 2\), of the form \(G(z)=(z_1^a,z_2^b)\) and \(X(z)=(z_2^b,z_1^a)\) with ab positive integers. Then \(M=\{F(z)=2{\textrm{Re}}(\psi _{G,X}(z))=0\}\), i.e.,

$$\begin{aligned}M=\left\{ {\textrm{Re}}\left( z_1^{a}\bar{z}_2^{b}+z_2^{b}\bar{z}_1^{a}\right) =0\right\} \end{aligned}$$

is a Levi-flat hypersurface at \(0\in {\mathbb {C}}^2\).

Theorem C

Let G and X be elements in \(\chi ({\mathbb {C}}^ n,0)\), \(n\ge 2\), of the form \(G=(z_1^{a_1},z_2^{a_2})\) and \(X=(z_2^{b_2},z_1^{b_1})\), where \(a_1\ge b_1\) and \(a_2 \ge b_2\) are positive integers satisfying \(a_1b_2=a_2b_1\). Then \(M=\{F(z)=2{\textrm{Re}}(\psi _{G,X}(z))=0\}\), i.e.,

$$\begin{aligned}M=\left\{ {\textrm{Re}}\left( z_1^{a_1}\bar{z}_2^{b_2}+z_2^{a_2}\bar{z}_1^{b_1}\right) =0\right\} \end{aligned}$$

is Levi-flat if, and only if, \(a_1=b_1\) and \(a_2=b_2\).

Finally, we consider a family of vector fields studied in Ruas et al. (2002, Theorem 2.1).

Theorem D

Let G and X be elements in \(\chi ({\mathbb {C}}^ n,0)\), \(n\ge 2\), of the form \(G=(z_1^{a_1},\ldots , z_n^{a_n})\) and \(X=(z_{\sigma _1}^{b_{\sigma _1}},\ldots , z_{\sigma _n}^{b_{\sigma _n}})\), where \(a_k\ge b_k\) are positive integers. Let us assume that for some \(\ell \in \underline{n}\), the integers \(a_{\ell }, b_{\ell }, a_{\sigma _{\ell }}, b_{\sigma _{\ell }}\) satisfy the following conditions: \(a_{\ell }>b_{\ell }\) and \(a_{\ell }b_{\sigma _{\ell }}=b_{\ell }a_{\sigma _{\ell }}\). Then, \(M=\{F(z)=2{\textrm{Re}}(\psi _{G,X}(z))=0\}\), i.e.,

$$\begin{aligned}M=\left\{ {\textrm{Re}}\left( \sum _{k=1}^{n} z_k^{a_k}\bar{z}_{\sigma _k}^{b_{\sigma _k}}\right) =0\right\} .\end{aligned}$$

is nondegenerate at \(0\in {\mathbb {C}}^n\).

Following our results it seems that the property of M being Levi-flat is related to the property that the function \(\psi _{G,X}\) does not satisfy the Milnor condition, see Ruas et al. (2002, Theorem 2.1).

The paper is organized as follows: In Sect. 2, we introduce the concept of real analytic Levi-flat hypersurfaces at \((\mathbb {C}^n, 0)\), shedding light on essential properties that will play a pivotal role throughout the paper. Section 3 is dedicated to proving Theorem A. In Sect. 4, we establish the validity of Theorems B and C, while Sect. 5 focuses on the proof of Theorem D. Finally, in Sect. 6, we provide examples for further illustration.

2 Levi-Flat Hypersurfaces

In this section, we will discuss real analytic Levi-flat hypersurfaces at \(({\mathbb {C}}^n,0)\). These are real analytic hypersurfaces whose regular part is foliated by immersed complex submanifolds of codimension one. Levi-flat hypersurfaces naturally arise in the theory of foliations as invariant subsets. In general, germs of codimension one holomorphic foliations that leave invariant hypersurfaces of this type admit a meromorphic first integral (see Cerveau and Lins-Neto 2011, Theorem 1). On the other hand, there are examples of holomorphic webs that leave invariant Levi-flat hypersurfaces (see Da Silva and Fernández-Pérez 2023; Fernández-Pérez 2013; Shafikov and Sukhov 2015). Levi-flat hypersurfaces are a central focus of the development in this paper.

Let \(M=\{F(z)=0\}\) be a germ of real analytic hypersurface at \(0\in {\mathbb {C}}^n\), where \(F:({\mathbb {C}}^n,0)\rightarrow (\mathbb {R},0)\) is a real analytic function at \(0\in {\mathbb {C}}^n\). The singular set of M is denoted by \({\textsf {Sing}}(M)\) and defined by

$$\begin{aligned}{\textsf {Sing}}(M):=\{F(z)=0\}\cap \{dF(z)=0\}.\end{aligned}$$

We define the regular part of M as \(M^{*}:=\{F(z)=0\}{\setminus }\{dF(z)=0\}\). In \(M^{*}\), the Levi distribution is given by \(L_p:=Ker(\partial F(p)) \subset T_p M^{*}\), where \(p \in M^{*}\). Note that \(L_p\) is the unique complex hyperplane contained in \(T_p M^{*}\).

Definition 2.1

We say that M is Levi-flat if the Levi distribution on \(M^{*}\) is integrable. In this case, the Levi distribution induces a foliation on \(M^{*}\) called the Levi foliation, denoted by \(\mathcal {L}\).

The Levi distribution can also be given by the 1-form \(\eta =i(\partial {F}-\bar{\partial } F)\) called the Levi 1-form. Thus, the integrability of the Levi distribution is equivalent to the integrability of the form \(\eta \) in the sense of Frobenius, that is, \(\eta \) is integrable if and only if \(\left. \eta \wedge d\eta \right| _{M^*} \equiv 0\).

The simplest example of a Levi-flat hypersurface is given below.

Example 2.1

In \({\mathbb {C}}^n\) with coordinates \((z_1,\ldots ,z_n)\), consider \(M=\{Im(z_n)=0\}.\) Then M is a smooth Levi-flat real analytic hypersurface, meaning \({\textsf {Sing}}(M)=\emptyset \). The Levi distribution on M is given by \(L_p = \textrm{Ker} (dz_n(p))\), \( p \in M^*.\) The leaves of the Levi foliation on M are given by \(\{z_n=c\}\) where \(c\in {\mathbb {R}}\).

Let’s consider a slightly more elaborate example given by Brunella (2007, Example 1.2).

Example 2.2

With coordinates (zw) in \({\mathbb {C}}^2\) such that \(z=x+iy\) and \(w=s+it\), the real analytic hypersurface M given by

$$\begin{aligned}M=\{(z,w) \in {\mathbb {C}}^2: t^2=4(y^2+s)y^2\}\end{aligned}$$

is Levi-flat, with singular set \({\textsf {Sing}}(M)=\{t=y=0\}\). The leaves of the Levi foliation on \(M^*\) are given by \(L_c=\{w=(z+c)^2: Im(z)\ne 0\}\) with \(c \in {\mathbb {R}}\).

The next result provides the local form of a smooth Levi-flat hypersurface. Essentially, it tells us that, at regular points, every Levi-flat hypersurface is locally similar to the Example 2.1.

Theorem 2.1

[Cartan’s theorem (Cartan 1933)] Let \(M \subset {\mathbb {C}}^n\) be a real analytic Levi-flat hypersurface. In a neighborhood of each point \(p \in M^*\), there exists a holomorphic coordinate system \(z=(z_1, \ldots , z_n)\) such that \(M=\{Im(z_n)=0\}.\)

A criterion for the integrability of the Levi form is given in the next proposition.

Proposition 2.2

Let \(M=\{F(z)=0\}\) be a germ of a real analytic hypersurface at \(0\in {\mathbb {C}}^n\). Then, M is Levi-flat if and only if \(\partial F(p) \wedge \overline{\partial }F(p) \wedge \partial \overline{\partial } F(p) = 0\) for all \(p \in M\).

Proof

Let \(\eta =i(\partial F-\bar{\partial }F)\) denote the Levi 1-form of M. Assuming M is Levi-flat, this implies \(\eta \wedge d\eta |_{M^{*}}=0\), which is equivalent to \((\partial {F}-\bar{\partial }F)\wedge \partial \bar{\partial } F|_{M^{*}}=0\). Consequently, we have \(\bar{\partial }F\wedge \partial \bar{\partial } F|_{M^{*}}=\partial F\wedge \partial \bar{\partial } F|_{M^{*}}\). In particular, \(\partial F(p) \wedge \overline{\partial }F(p) \wedge \partial \overline{\partial } F(p) = 0\) for all \(p \in M\).

Conversely, the condition \(\partial F(p) \wedge \overline{\partial }F(p) \wedge \partial \overline{\partial } F(p) = 0\) for all \(p \in M\) is equivalent to \((\partial {F}-\bar{\partial }F)\wedge \partial \bar{\partial } F\wedge dF |_{M^{*}}=0\). Hence

$$\begin{aligned} (\partial {F}-\bar{\partial }F)\wedge \partial \bar{\partial } F\wedge dF=F\theta , \end{aligned}$$
(6)

where \(\theta \) is a 4-form in some open subset of \({\mathbb {C}}^n\). Since \(\theta \wedge dF=0\), we can express \(\theta \) as \(\theta =\beta \wedge dF\), where \(\beta \) is a 3-form in some open subset of \({\mathbb {C}}^n\). Substituting this into Eq. (6), we obtain

$$\begin{aligned} \left[ (\partial {F}-\bar{\partial }F)\wedge \partial \bar{\partial } F-F\beta \right] \wedge dF=0.\end{aligned}$$

Thus, there exists a 2-form \(\kappa \) such that

$$\begin{aligned}(\partial {F}-\bar{\partial }F)\wedge \partial \bar{\partial } F=F\beta +\kappa \wedge dF,\end{aligned}$$

this expression implies that \((\partial {F}-\bar{\partial }F)\wedge \partial \bar{\partial } F|_{M^{*}}=0\), leading to the integrability of \(\eta \). \(\square \)

Now, let’s verify that the regular part of M is mapped to the regular part of \(M'\) for M and \(M'\) being biholomorphic (not necessarily Levi-flat).

Lemma 2.3

Let \(u \in M'\). Then \(z=z(u) \in {\textsf {Sing}}(M)\) if and only if \(u \in {\textsf {Sing}}(M')\).

Proof

Denote \(M'= \{G(u)=0\}\) where \(G:({\mathbb {C}}^n, 0) \rightarrow ({\mathbb {R}}), 0\) is a real analytic function at \(0 \in {\mathbb {C}}^n\).

We have \(dG(u)=\partial G(u)+\overline{\partial }G(u)\), where

$$\begin{aligned} \partial G = \sum _{j=1}^n \frac{\partial G}{\partial u_j}du_j,\,\,\,\,\,\, \overline{\partial } G = \sum _{j=1}^n \frac{\partial G}{\partial \overline{u}_j}d\overline{u}_j. \end{aligned}$$

A point \(u \in M'\) belongs to the singular set Sing(\(M'\)) if and only if all partial derivatives \(\dfrac{\partial G}{\partial u_j}(u), \dfrac{\partial G}{\partial \bar{u}_j}(u)\) are identically zero. By the chain rule, we obtain

$$\begin{aligned}\frac{\partial G}{\partial u_j}(u)=\sum _{\alpha =1}^n \frac{\partial G}{\partial z_{\alpha }}(z(u))\frac{\partial z_{\alpha }}{\partial u_j}(u),\end{aligned}$$

thus, it follows that

$$\begin{aligned} \left( \begin{array}{ccc} \frac{\partial G}{\partial u_1}(u)&\cdots&\frac{\partial G}{\partial u_n}(u) \end{array}\right) = \left( \begin{array}{ccc} \frac{\partial G}{\partial z_1}(z(u))&\cdots&\frac{\partial G}{\partial z_n}(z(u))\end{array}\right) \left( \begin{array}{ccc} \frac{\partial z_1}{\partial u_1}(u) &{} \cdots &{} \frac{\partial z_1}{\partial u_n}(u)\\ \vdots &{} \ddots &{} \vdots \\ \frac{\partial z_n}{\partial u_1}(u) &{} \cdots &{} \frac{\partial z_n}{\partial u_n}(u)\\ \end{array}\right) . \end{aligned}$$

Since \(z=z(u)\) is a biholomorphism, the change of coordinates matrix is invertible, and therefore,

$$\begin{aligned}\left( \begin{array}{ccc} \frac{\partial G}{\partial u_1}(u)&\cdots&\frac{\partial G}{\partial u_n}(u) \end{array}\right) =0 \iff \left( \begin{array}{ccc} \frac{\partial G}{\partial z_1}(z(u))&\cdots&\frac{\partial G}{\partial z_n}(z(u))\end{array}\right) =0.\end{aligned}$$

\(\square \)

In the next proposition, we will see that the Levi-flat property is invariant under a change of coordinates. More specifically, we establish the following result.

Proposition 2.4

Let \(G: V \subset {\mathbb {C}}^n \rightarrow {\mathbb {R}}\) be a real-analytic function in coordinates \(z=(z_1,\ldots , z_n)\) and let \(z=z(u)\) be a change of coordinates, that is, a biholomorphism from the open set \(V \subset {\mathbb {C}}^n\) to an open set \(U \subset {\mathbb {C}}^n\). Then, the hypersurface \(M'=\{u \in U: G(u)=G(z(u))=0\}\) is Levi-flat if and only if \(M=\{z \in V: G(z)=0\}\) is Levi-flat.

Proof

The partial derivatives of G in the coordinates \(z=(z_1,\ldots ,z_n)\) are given by

$$\begin{aligned} \partial G = \sum _{\alpha =1}^n \frac{\partial G}{\partial z_{\alpha }}dz_{\alpha },\,\,\,\,\,\,\, \overline{\partial } G = \sum _{\beta =1}^n \frac{\partial G}{\partial \overline{z}_{\beta }}d\overline{z}_{\beta },\,\,\,\,\, \partial \overline{\partial } G =\!\!\sum _{\delta ,\beta =1}^n\frac{\partial ^2 G}{\partial z_{\delta }\partial \overline{z}_{\beta }} d z_{\delta } \wedge d\overline{z}_{\beta }. \end{aligned}$$

Therefore, in coordinates \(z=(z_1, \ldots , z_n)\), we have

$$\begin{aligned} \partial G \wedge \overline{\partial } G\wedge \partial \overline{\partial } G = \sum _{\alpha , \beta , \gamma , \delta }\left( \frac{\partial G}{\partial z_{\alpha }}\frac{\partial G}{\partial \overline{z}_{\beta }}\frac{\partial ^2 G}{\partial z_{\delta } \partial \overline{z}_{\gamma }}\right) d z_{\alpha } \wedge d\overline{z}_{\beta } \wedge d z_{\delta } \wedge d\overline{z}_{\gamma }. \end{aligned}$$
(7)

Now, by making the change of coordinates \(z=z(u)\), we obtain

$$\begin{aligned} dz_{\alpha }=\sum _{j=1}^n \frac{\partial z_{\alpha }}{\partial u_j}du_j,\,\,\,\,\,\,\,\, d\overline{z}_{\beta }=\sum _{k=1}^n \frac{\partial \overline{z}_{\beta }}{\partial \overline{u}_k}d\overline{u}_k, \end{aligned}$$

from which it follows that

$$\begin{aligned}d z_{\alpha } \wedge d\overline{z}_{\beta } \wedge d z_{\delta } \wedge d\overline{z}_{\gamma }=\sum _{j,k,\ell ,m} \frac{\partial z_{\alpha }}{\partial u_j}\frac{\partial \overline{z}_{\beta }}{\partial \overline{u}_k}\frac{\partial z_{\delta }}{\partial u_{\ell }}\frac{\partial \overline{z}_{\gamma }}{\partial \overline{u}_m}du_j \wedge d\overline{u}_k\wedge du_{\ell } \wedge d\overline{u}_m.\end{aligned}$$

Hence, in coordinates \(u=(u_1,\ldots ,u_n)\),

$$\begin{aligned} \partial G \wedge \overline{\partial } G \wedge \partial \overline{\partial } G = \! \!\!\sum _{\alpha , \beta , \gamma , \delta }\!\left[ \!\!\left( \frac{\partial G}{\partial z_{\alpha }}\frac{\partial G}{\partial \overline{z}_{\beta }}\frac{\partial ^2 G}{\partial z_{\delta } \partial \overline{z}_{\gamma }}\right) \!\!\! \left( \sum _{j,k,\ell , m}\!\! \!\left( \frac{\partial z_{\alpha }}{\partial u_j}\frac{\partial \overline{z}_{\beta }}{\partial \overline{u}_k}\frac{\partial z_{\delta }}{\partial u_{\ell }}\frac{\partial \overline{z}_{\gamma }}{\partial \overline{u}_m}\right) \!d u_j \!\wedge \! d\overline{u}_k\! \wedge \! d u_{\ell }\! \wedge \! d\overline{u}_m\! \right) \!\!\right] . \end{aligned}$$

From the expression above, combined with Eq. (7), it follows that \(M'\) is Levi-flat if and only if M is Levi-flat. This concludes the proof of the Proposition 2.4. \(\square \)

2.1 Complexification

Let \(F:({\mathbb {C}}^n,0)\rightarrow (\mathbb {R},0)\) be a real analytic function at \(0\in {\mathbb {C}}^n\). The complexification of F is defined by

$$\begin{aligned}F_{{\mathbb {C}}}(z,w)=\sum _{\mu ,\nu }F_{\mu ,\nu }z^{\mu }w^{\nu },\end{aligned}$$

where \(F(z)=\sum _{\mu ,\nu }F_{\mu ,\nu }z^{\mu }\overline{z}^{\nu }\) is a power series of F convergent in a neighborhood of the origin. We observe that \(F_{{\mathbb {C}}}\) is holomorphic at \(({\mathbb {C}}^n\times {\mathbb {C}}^n,0)\). The complexification of M is defined as \(M_{{\mathbb {C}}}=\{F_{{\mathbb {C}}}=0\},\) and the complexification of the Levi 1-form is given by

$$\begin{aligned}\eta _{{\mathbb {C}}}=i\sum _{k=1}^n\left( \frac{\partial F_{{\mathbb {C}}}}{\partial z_k}dz_k - \frac{\partial F_{{\mathbb {C}}}}{\partial w_k}dw_k\right) .\end{aligned}$$

Given that \(\eta \) is integrable on \(M^{*}\), it follows that \(\eta _{{\mathbb {C}}}\) is also integrable on \(M_{{\mathbb {C}}}^{*}\). It’s worth noting that we can express \(dF_{{\mathbb {C}}}=\alpha + \beta \) and \(\eta _{{\mathbb {C}}}=i(\alpha - \beta )\), where

$$\begin{aligned} \alpha =\sum _{k=1}^n\frac{\partial F_{{\mathbb {C}}}}{\partial z_k}dz_k \, \text {and} \, \beta =\sum _{k=1}^n\frac{\partial F_{{\mathbb {C}}}}{\partial w_k}dw_k. \end{aligned}$$
(8)

Furthermore, we observe that \(\alpha \) and \(\beta \) define the same foliation as \(\eta _{{\mathbb {C}}}\) on \(M^*_{{\mathbb {C}}}\). Thus, the integrability of \(\eta _{{\mathbb {C}}}\) is equivalent to

$$\begin{aligned} \alpha (z,w)\wedge d\alpha (z,w)\wedge \beta (z,w)=0\,\,\,\,\,\text { for all}\,\,\,\, (z,w) \in M^{*}_{{\mathbb {C}}}. \end{aligned}$$
(9)

This condition will be used later to verify that the real part of a certain family of polar varieties is not Levi-flat.

3 Proof of Theorem A

Before proving Theorem A, we will make some considerations for the case where the vector fields G and X are given by \(G=(z_1^{a_1},\ldots , z_n^{a_n})\) and \(X=(z_1^{b_1},\ldots , z_n^{b_n})\), with \(a_k, b_k\) positive integers such that \(a_k\ge b_k\), for \(k \in \underline{n}\). In this case, the Hermitian product of G and X is given by

$$\begin{aligned}\langle G(z), X(z) \rangle = \sum _{k=1}^{n} z_{k}^{a_k} \overline{z}_{k}^{b_k}\end{aligned}$$

and

$$\begin{aligned} F(z)=2{\textrm{Re}}\langle G(z), X(z) \rangle = \sum _{k=1}^{n}z_{k}^{a_k} \overline{z}_{k}^{b_k} + z_{k}^{b_k} \overline{z}_{k}^{a_k}. \end{aligned}$$
(10)

Note that, if \(a_k=b_k\) for every \(k \in \underline{n}\), then \(M=\{F=0\}\) is a point. Indeed, if \(a_k=b_k\) for every \(k \in \underline{n}\), we have

$$\begin{aligned}F(z)=\sum _{k=1}^n2|z_k|^{a_k}\end{aligned}$$

and consequently, \(M=\{0\}\). Therefore, in the statement of Theorem A, we do not consider \(a_k=b_k\) for every \(k \in \underline{n}\).

Regarding the singular set of M, we have the following proposition:

Proposition 3.1

Let \(G=(z_1^{a_1}, \ldots , z_n^{a_n})\) and \(X=(z_1^{b_1}, \ldots , z_n^{b_n})\), with \(a_k\ge b_k\ge 1\), and \(M=\{F=0\}\), where \(F(z)=2{\textrm{Re}}\langle G(z), X(z) \rangle \). Then \({\textsf {Sing}}(M)=\{0\}\).

Proof

Taking the partial derivatives of F, we have

$$\begin{aligned}\partial F= \sum _{k=1}^{n} \left( a_{k}z_{k}^{(a_{k} -1)} \overline{z}_{k}^{b_k} + b_{k}z_{k}^{(b_{k} -1)} \overline{z}_{k}^{a_k} \right) dz_{k}\end{aligned}$$

and

$$\begin{aligned} \overline{\partial } F=\sum _{k=1}^{n} \left( b_{k}z_{k}^{a_{k}} \overline{z}_{k}^{(b_{k} -1)} + a_{k}z_{k}^{b_{k}} \overline{z}_{k}^{(a_{k}-1)} \right) dz_{k}.\end{aligned}$$

Then \(dF(z)= \partial F(z) + \overline{\partial } F(z)=0\) if and only if

$$\begin{aligned} \left\{ \begin{array}{cc} a_{1}z_{1}^{(a_{1} -1)} \overline{z}_{1}^{b_1} + b_{1}z_{1}^{(b_1-1)} \overline{z}_{1}^{a_1} &{} =0 \\ b_{1}z_{1}^{a_{1}} \overline{z}_{1}^{(b_{1} -1)} + a_{1}z_{1}^{b_{1}} \overline{z}_{1}^{(a_{1}-1)} &{} =0 \\ \vdots \\ a_{n}z_{n}^{(a_{n} -1)} \overline{z}_{n}^{b_n} + b_{n}z_{n}^{(b_{n} -1)} \overline{z}_{n}^{a_n}&{} =0 \\ b_{n}z_{n}^{a_{n}} \overline{z}_{n}^{(b_{n} -1)} + a_{n}z_{n}^{b_{n}} \overline{z}_{n}^{(a_{n}-1)} &{} =0 \end{array} \right. \end{aligned}$$

Clearly, \(0 \in \textrm{Sing}(M)\). Now let’s denote \(I:=\{k \in \underline{n}; a_k=b_k\}\) and \(J:=\{k \in \underline{n}; a_k>b_k\}\). We have \(\underline{n}=I \cup J\) and \(I \cap J=\emptyset \). Consider the following equations from the system above:

$$\begin{aligned} a_{k}z_{k}^{(a_{k} -1)} \overline{z}_{k}^{b_k} + b_{k}z_{k}^{(b_k-1)} \overline{z}_{k}^{a_k}&=0 \end{aligned}$$
(11)
$$\begin{aligned} b_{k}z_{k}^{a_{k}} \overline{z}_{k}^{(b_{k} -1)} + a_{k}z_{k}^{b_{k}} \overline{z}_{k}^{(a_{k}-1)}&=0 \end{aligned}$$
(12)

If \(k \in I\), the equations above are rewritten as:

$$\begin{aligned} 2a_{k}z_{k}^{(a_{k} -1)} \overline{z}_{k}^{a_k}&=0 \\ 2a_{k}z_{k}^{a_{k}} \overline{z}_{k}^{(a_{k}-1)}&=0 \end{aligned}$$

and it follows that \(z=(z_1,\ldots ,z_n) \in {\textsf {Sing}}(M)\) implies \(z_k=0\), for all \(k \in I\). Now, let’s assume that \(z=(z_1,\ldots , z_n) \in {\textsf {Sing}}(M)\) and \(z_k \ne 0\), for some \(k \in J\). From (11), we obtain

$$\begin{aligned}a_{k}z_{k}^{(a_{k} -1)} \overline{z}_{k}^{b_k} = -b_{k}z_{k}^{(b_k-1)} \overline{z}_{k}^{a_k},\end{aligned}$$

that yields,

$$\begin{aligned}\frac{a_k}{b_k}=-\left( \frac{\overline{z}_k}{z_k}\right) ^{c_k}.\end{aligned}$$

From (12) we get

$$\begin{aligned}b_{k}z_{k}^{a_{k}} \overline{z}_{k}^{(b_{k} -1)} = -a_{k}z_{k}^{b_{k}} \overline{z}_{k}^{(a_{k}-1)},\end{aligned}$$

that is,

$$\begin{aligned}\frac{b_k}{a_k}=-\left( \frac{\overline{z}_k}{z_k}\right) ^{c_k}.\end{aligned}$$

Thus, from (11) and (12), we deduce \(\frac{a_k}{b_k}= \frac{b_k}{a_k}\), but this is a contradiction, because \(a_k > b_k\). Hence, \({\textsf {Sing}}(M) = \{0\}\) and \(M^* = M - \{0\}.\) \(\square \)

Now, we prove a technical lemma that will be used in the proof of Theorem A.

Lemma 3.2

Let \(M_{\mathbb {C}}\) be the complexification of \(M=\left\{ F(z)=\displaystyle 2{\textrm{Re}}\left( \sum _{k=1}^{n}z_{k}^{a_k} \overline{z}_{k}^{b_k}\right) =0\right\} \), \(n\ge 3\). Consider the functions

$$\begin{aligned} g_j(z,w)&=a_jw_j^{(a_j-1)}z_j^{b_j} + b_jw_j^{(b_j-1)}z_j^{a_j}\\ f_k(z,w)&=a_kz_k^{(a_k-1)}w_k^{b_k} + b_kz_k^{(b_k-1)}w_k^{a_k}\\ h_{\ell }(z,w)&=a_{\ell }b_{\ell }\left( z_{\ell }^{(a_{\ell }-1)}w_{\ell }^{(b_{\ell }-1)}+ z_{\ell }^{(b_{\ell }-1)}w_{\ell }^{(a_{\ell }-1)}\right) , \end{aligned}$$

where \(a_m> b_m\ge 1\) are integers for each \(m=1,\ldots ,n\), and \(n\ge 3\). For each triple \((j, k, \ell )\) of indices \(j,k,\ell =1,\ldots ,n\); there exists \((z_0,w_0) \in M_{{\mathbb {C}}}\) such that

$$\begin{aligned}f_k(z_0,w_0)g_j(z_0,w_0)h_{\ell }(z_0,w_0)\ne 0.\end{aligned}$$

Proof

In this case, the complexification of F is given by

$$\begin{aligned} F_{{\mathbb {C}}}(z,w)=\sum _{k=1}^n z_k^{a_k}w_k^{b_k}+w_k^{a_k}z_k^{b_k}. \end{aligned}$$
(13)

For each triple \((j, k, \ell )\), let’s choose \((z_0, w_0) = (z_1,\ldots , z_n, w_1,\ldots , w_n)\) satisfying:

  1. 1.

    \(z_j=z_k=z_{\ell }=w_j=w_k=1\),

  2. 2.

    \(w_{\ell }\) such that \(w_{\ell }^{b_{\ell }}+w_{\ell }^{a_{\ell }}=-4\),

  3. 3.

    \(z_m=w_m=0\) for the remaining indices.

We observe that \((z_0,w_0) \in M_{{\mathbb {C}}}\). In fact, we have

$$\begin{aligned} F_{{\mathbb {C}}}(z_0,w_0)&=z_j^{a_j}w_j^{b_j}+w_j^{a_j}z_j^{b_j}+z_k^{a_k}w_k^{b_k}+w_k^{a_k}z_k^{b_k}+ z_{\ell }^{a_{\ell }}w_{\ell }^{b_{\ell }}+w_{\ell }^{a_{\ell }}z_{\ell }^{b_{\ell }}\\&=4+w_{\ell }^{b_{\ell }}+w_{\ell }^{a_{\ell }} \end{aligned}$$

then \(F_{{\mathbb {C}}}(z_0,w_0)=0\) on \(M_{{\mathbb {C}}}^*\). From item (3) above, we obtain

$$\begin{aligned}w_{\ell }^{b_{\ell }-1}+w_{\ell }^{a_{\ell }-1}=-\frac{4}{w_{\ell }}.\end{aligned}$$

Furthermore, we have

$$\begin{aligned}g_j(z_0,w_0)=a_j+b_j,\end{aligned}$$
$$\begin{aligned}f_k(z_0,w_0)=a_k+b_k,\end{aligned}$$
$$\begin{aligned}h_{\ell }(z_0,w_0){} & {} =a_{\ell }b_{\ell }\left( w_{\ell }^{(b_{\ell }-1)}+w_{\ell }^{(a_{\ell }-1)}\right) \\{} & {} =-\frac{4a_{\ell }b_{\ell }}{w_{\ell }}.\end{aligned}$$

Hence

$$\begin{aligned}f_k(z_0,w_0)g_j(z_0,w_0)h_{\ell }(z_0,w_0){} & {} =-\frac{4a_{\ell }b_{\ell }}{w_{\ell }}(a_j+b_j)(a_k+b_k)\\{} & {} \ne 0.\end{aligned}$$

\(\square \)

Now, let’s restate Theorem A for completeness.

Theorem A

Let G and X be elements in \(\chi ({\mathbb {C}}^ n,0)\), \(n\ge 2\), of the form \(G(z)=(z_1^{a_1},\ldots , z_n^{a_n})\) and \(X(z)=(z_1^{b_1},\ldots , z_n^{b_n})\), where \(a_k > b_k \ge 1\) are positive integers, for all \(k=1,\ldots ,n\). Then \(M=\{F(z)=2{\textrm{Re}}(\psi _{G,X}(z))=0\}\), i.e.,

$$\begin{aligned}M=\left\{ {\textrm{Re}}\left( \sum _{k=1}^{n} z_k^{a_k}\bar{z}_k^{b_k}\right) =0\right\} .\end{aligned}$$

is nondegenerate at \(0\in {\mathbb {C}}^n\).

Proof

We divide the proof into two cases \(n=2\) and \(n\ge 3\). For \(n=2\), we examine the Eq. (9) associated to the complexification of \(M=\{F=0\}\), where

$$\begin{aligned} F(z)=z_1^{a_1}\overline{z}_1^{b_1}+z_2^{a_2}\overline{z}_2^{b_2}+\overline{z}_1^{a_1}z_1^{b_1}+\overline{z}_2^{a_2}z_2^{b_2}. \end{aligned}$$
(14)

Note that, the complexification of F is given by

$$\begin{aligned} F_{{\mathbb {C}}}(z,w)=z_1^{a_1}w_1^{b_1}+z_2^{a_2}w_2^{b_2}+w_1^{a_1}z_1^{b_1}+w_2^{a_2}z_2^{b_2} \end{aligned}$$
(15)

then \(dF_{{\mathbb {C}}}=\alpha + \beta \), where

$$\begin{aligned} \alpha&=(a_1z_1^{(a_1-1)}w_1^{b_1} + b_1z_1^{(b_1-1)}w_1^{a_1})dz_1 + (a_2z_2^{(a_2-1)}w_2^{b_2}+b_2z_2^{(b_2-1)}w_2^{a_2})dz_2, \\ \beta&=(a_1w_1^{(a_1-1)}z_1^{b_1} + b_1w_1^{(b_1-1)}z_1^{a_1})dw_1 + (a_2w_2^{(a_2-1)}z_2^{b_2}+b_2w_2^{(b_2-1)}z_2^{a_2})dw_2. \end{aligned}$$

Now we have

$$\begin{aligned}d\alpha= & {} a_1b_1\left( z_1^{(a_1-1)}w_1^{(b_1-1)}+ z_1^{(b_1-1)}w_1^{(a_1-1)})dw_1\wedge dz_1\right. \\{} & {} \left. + a_2b_2(z_2^{(a_2-1)}w_2^{(b_2-1)}+z_2^{(b_2-1)}w_2^{(a_2-1)}\right) dw_2\wedge dz_2.\end{aligned}$$

We use the following notations

$$\begin{aligned} \alpha _1&= \left( a_1z_1^{(a_1-1)}w_1^{b_1} + b_1z_1^{(b_1-1)}w_1^{a_1}\right) ,\\ \alpha _2&= \left( a_2z_2^{(a_2-1)}w_2^{b_2}+b_2z_2^{(b_2-1)}w_2^{a_2}\right) ,\\ \beta _1&= \left( a_1w_1^{(a_1-1)}z_1^{b_1} + b_1w_1^{(b_1-1)}z_1^{a_1}\right) ,\\ \beta _2&= \left( a_2w_2^{(a_2-1)}z_2^{b_2}+b_2w_2^{(b_2-1)}z_2^{a_2}\right) ,\\ g_1&= a_1b_1\left( z_1^{(a_1-1)}w_1^{(b_1-1)}+ z_1^{(b_1-1)}w_1^{(a_1-1)}\right) ,\\ g_2&= a_2b_2\left( z_2^{(a_2-1)}w_2^{(b_2-1)}+z_2^{(b_2-1)}w_2^{(a_2-1)}\right) . \end{aligned}$$

So, we have \(\alpha \wedge d\alpha \wedge \beta = (\alpha _1\beta _1 g_2 +\alpha _2 \beta _2 g_1) dz_1\wedge dz_2 \wedge dw_1 \wedge dw_2.\) Therefore,

$$\begin{aligned} \alpha _1\beta _1 g_2&= a_2b_2\left( a_1^2+b_1^2\right) \left( z_2^{(a_2-1)}w_2^{(b_2-1)}+z_2^{(b_2-1)}w_2^{(a_2-1)}\right) z_1^{(a_1+b_1-1)}w_1^{(a_1+b_1-1)}\\&\quad +a_1b_1a_2b_2\left( z_1^{(2a_1-1)}w_1^{(2b_1-1)}+z_1^{(2b_1-1)}w_1^{(2a_1-1)}\right) \left( z_2^{(a_2-1)}w_2^{(b_2-1)}+z_2^{(b_2-1)}w_2^{(a_2-1)}\right) ,\\ \alpha _2\beta _2 g_1&= a_1b_1\left( a_2^2+b_2^2\right) \left( z_1^{(a_1-1)}w_1^{(b_1-1)}+z_1^{(b_1-1)}w_1^{(a_1-1)}\right) z_2^{(a_2+b_2-1)}w_2^{(a_2+b_2-1)}\\&\quad +a_1b_1a_2b_2\left( z_2^{(2a_2-1)}w_2^{(2b_2-1)}+z_2^{(2b_2-1)}w_2^{(2a_2-1)}\right) \left( z_1^{(a_1-1)}w_1^{(b_1-1)}+z_1^{(b_1-1)}w_1^{(a_1-1)}\right) . \end{aligned}$$

Now, using the expression (15), we obtain the following relationship on \(M_{{\mathbb {C}}}^*\):

$$\begin{aligned} \left( z_2^{(a_2-1)}w_2^{(b_2-1)}+z_2^{(b_2-1)}w_2^{(a_2-1)}\right)&= -\frac{z_1w_1}{z_2w_2}\left( z_1^{(a_1-1)}w_1^{(b_1-1)}+z_1^{(b_1-1)}w_1^{(a_1-1)}\right) . \end{aligned}$$

With this, we can rewrite

$$\begin{aligned} \alpha _1\beta _1 g_2&= \left( \frac{z_1^{(a_1-1)}w_1^{(b_1-1)}+z_1^{(b_1-1)}w_1^{(a_1-1)}}{z_2w_2}\right) \left[ -a_2b_2\left( a_1^2+b_1^2\right) z_1^{(a_1+b_1)}w_1^{(a_1+b_1)}\right. \\&\quad -\,\left. a_1b_1a_2b_2\left( z_1^{2a_1}w_1^{2b_1}+z_1^{2b_1}w_1^{2a_1}\right) \right] ,\\ \alpha _2\beta _2 g_1&= \left( \frac{z_1^{(a_1-1)}w_1^{(b_1-1)}+z_1^{(b_1-1)}w_1^{(a_1-1)}}{z_2w_2}\right) \left[ a_1b_1\left( a_2^2+b_2^2\right) z_2^{(a_2+b_2)}w_2^{(a_2+b_2)}\right. \\&\quad +\,\left. a_1b_1a_2b_2\left( z_2^{2a_2}w_2^{2b_2}+z_2^{2b_2}w_2^{2a_2}\right) \right] . \end{aligned}$$

In this way, we get

$$\begin{aligned} \alpha _2\beta _2 g_1 + \alpha _1\beta _1 g_2&= \left( \frac{z_1^{(a_1-1)}w_1^{(b_1-1)}+z_1^{(b_1-1)}w_1^{(a_1-1)}}{z_2w_2}\right) \left[ a_1b_1\left( a_2^2+b_2^2\right) z_2^{(a_2+b_2)}w_2^{(a_2+b_2)}\right. \\&\quad + a_1b_1a_2b_2\left( z_2^{2a_2}w_2^{2b_2}+z_2^{2b_2}w_2^{2a_2}-z_1^{2a_1}w_1^{2b_1}+z_1^{2b_1}w_1^{2a_1}\right) \\&\quad -\,\left. a_2b_2\left( a_1^2+b_1^2\right) z_1^{(a_1+b_1)}w_1^{(a_1+b_1)}\right] . \end{aligned}$$

Again using (15), we obtain

$$\begin{aligned}\left( z_2^{2a_2}w_2^{2b_2}+z_2^{2b_2}w_2^{2a_2}-z_1^{2a_1}w_1^{2b_1}-z_1^{2b_1}w_1^{2a_1}\right) =2\left( z_1^{(a_1+b_1)}w_1^{(a_1+b_1)}-z_2^{(a_2+b_2)}w_2^{(a_2+b_2)}\right) .\end{aligned}$$

Hence

$$\begin{aligned} \alpha _2\beta _2 g_1 + \alpha _1\beta _1 g_2&=\left( \frac{z_1^{(a_1-1)}w_1^{(b_1-1)}+z_1^{(b_1-1)}w_1^{(a_1-1)}}{z_2w_2}\right) \left[ a_1b_1\left( a_2^2+b_2^2\right) z_2^{(a_2+b_2)}w_2^{(a_2+b_2)}\right. \\&\quad + 2a_1b_1a_2b_2\left( z_1^{(a_1+b_1)}w_1^{(a_1+b_1)}-z_2^{(a_2+b_2)}w_2^{(a_2+b_2)}\right) \\&\quad -\,\left. a_2b_2\left( a_1^2+b_1^2\right) z_1^{(a_1+b_1)}w_1^{(a_1+b_1)}\right] , \end{aligned}$$

that is,

$$\begin{aligned} \alpha _2\beta _2 g_1 + \alpha _1\beta _1 g_2&= \left( \frac{z_1^{(a_1-1)}w_1^{(b_1-1)}+z_1^{(b_1-1)}w_1^{(a_1-1)}}{z_2w_2}\right) \left[ a_1b_1(a_2-b_2)^2\left( z_2^{(a_2+b_2)}w_2^{(a_2+b_2)}\right) \right. \\&\quad -\,\left. a_2b_2(a_1-b_1)^2\left( z_1^{(a_1+b_1)}w_1^{(a_1+b_1)}\right) \right] . \end{aligned}$$

Therefore, by (9), we conclude that \(\eta |_{M^{*}}\) is integrable if and only if \(a_1b_1(a_2-b_2)^2=0\) and \(a_2b_2(a_1-b_1)^2=0\), that is, \(a_2=b_2\) and \(a_1=b_1\). This completes the proof for \(n=2\).

Now, we consider \(n\ge 3\). With the notation introduced in Lemma 3.2, we can rewrite

$$\begin{aligned} \alpha = \sum _{k=1}^n f_kdz_k,\,\,\,\,\,\,\,\,\,\,\, \beta = \sum _{k=1}^n g_kdw_k. \end{aligned}$$

Then \(d\alpha =\sum _{\ell =1}^n h_{\ell }dw_{\ell }\wedge dz_{\ell }.\) Indeed, we have

$$\begin{aligned}d\alpha =\sum _{k,\ell =1}^n\frac{\partial f_k}{\partial z_{\ell }}dz_{\ell }\wedge dz_k+\sum _{k,\ell =1}^n\frac{\partial f_k}{\partial w_{\ell }}dw_{\ell }\wedge dz_k.\end{aligned}$$

Furthermore, we have the following relationships:

$$\begin{aligned} \frac{\partial f_k}{\partial z_{\ell }}&=0,\, \text{ for }\, k\ne \ell ,\\ \frac{\partial f_k}{\partial w_{\ell }}&=0,\, \text{ for }\, k\ne \ell ,\\ \frac{\partial f_{\ell }}{\partial w_{\ell }}&=a_{\ell }b_{\ell }\left( z_{\ell }^{(a_{\ell }-1)}w_{\ell }^{(b_{\ell }-1)}+ z_{\ell }^{(b_{\ell }-1)}w_{\ell }^{(a_{\ell }-1)}\right) . \end{aligned}$$

Hence, it follows that

$$\begin{aligned}d\alpha =\sum _{\ell =1}^n a_{\ell }b_{\ell }\left( z_{\ell }^{(a_{\ell }-1)}w_{\ell }^{(b_{\ell }-1)}+ z_{\ell }^{(b_{\ell }-1)}w_{\ell }^{(a_{\ell }-1)}\right) dw_{\ell }\wedge dz_{\ell }=\sum _{\ell =1}^n h_{\ell }\,dw_{\ell }\wedge dz_{\ell }.\end{aligned}$$

Thus, we have

$$\begin{aligned} \alpha \wedge d\alpha \wedge \beta = \sum _{\ell \ne j,k}f_k g_j h_{\ell }\ dz_k\wedge dw_{\ell } \wedge dz_{\ell } \wedge dw_j. \end{aligned}$$
(16)

We observe that for \(j \ne k\), the coefficient of the term \(dz_k\wedge dw_{\ell } \wedge dz_{\ell } \wedge dw_j\) in 4-form \(\alpha \wedge d\alpha \wedge \beta \) is exactly \(f_k g_j h_{\ell }\). In other words, if \(j \ne k\),

$$\begin{aligned}f_k g_j h_{\ell }\ dz_k\wedge dw_{\ell } \wedge dz_{\ell } \wedge dw_j\end{aligned}$$

is the only term in Eq. (16) that is of the form \(\rho \ dz_k\wedge dw_{\ell } \wedge dz_{\ell } \wedge dw_j.\) Thus, given a triple \((j, k, \ell )\) of pairwise distinct indices, by Lemma (3.2) there exists \((z_0,w_0) \in M_{{\mathbb {C}}}\) such that

$$\begin{aligned}\alpha (z_0,w_0)\wedge d\alpha (z_0,w_0) \wedge \beta (z_0,w_0) \ne 0.\end{aligned}$$

Therefore, M is not Levi-flat, and we conclude the proof of Theorem A. \(\square \)

4 The Case of Vector Fields \(G=(z_1^{a_1}, z_2^{a_2})\) and \(X=(z_{\sigma _1}^{b_{\sigma _1}}, z_{\sigma _2}^{b_{\sigma _2}})\)

In this section, we will explore some results regarding the singular set of the hypersurface. \(M=\{F(z)=0\}\), where \(F(z)=2{\textrm{Re}}\langle G(z),X(z) \rangle \), \(G=(z_1^{a_1}, z_2^{a_2})\), and \(X=(z_{\sigma _1}^{b_{\sigma _1}}, z_{\sigma _2}^{b_{\sigma _2}})\), where \(\sigma \in \mathcal {S}_n\) is a permutation of the set \(\{1, \dots , n\}\). Let’s start by considering the particular case where \(G=(z_1^a,z_2^b)\) and \(X=(z_2^b,z_1^a)\) with ab being positive integers. In this case, the Hermitian product of G with X is given by

$$\begin{aligned}\langle G,X \rangle = z_1^a \overline{z}_2^b + \overline{z}_1^a z_2^b.\end{aligned}$$

We observe that \(\langle G,X \rangle \in {\mathbb {R}}\). Therefore, let’s consider

$$\begin{aligned} M=\{F(z_1,z_2)=z_1^a \overline{z}_2^b + \overline{z}_1^a z_2^b=0\}. \end{aligned}$$
(17)

We observe that for these fields, the map \(\psi _{G,X}\) does not satisfy the Milnor condition, as stated in theorem (Ruas et al. 2002, Theorem 2.7). In this case, the hypersurface M will be Levi-flat, as we will show in Theorem B. First, we will verify the following result regarding the singular set of M.

Proposition 4.1

Let M be the hypersurface described in Eq. (17). Then we have the following options for \(\textrm{Sing}(M)\):

  1. 1.

    \(\textrm{Sing}(M)=\{0\}\), if \(b=a=1\),

  2. 2.

    \(\textrm{Sing}(M) =\{z_1=0\}\), if \(b=1\) and \(a>1\),

  3. 3.

    \(\textrm{Sing}(M)=\{z_2=0\}\), if \(a=1\) and \(b>1\),

  4. 4.

    \(\textrm{Sing}(M)=\{z_1=0\} \cup \{z_2=0\}\), if \(a,b>1\).

Proof

The partial derivatives of F are given by

$$\begin{aligned} \partial F&= az_1^{(a-1)}\overline{z}_2^b dz_1+b\overline{z}_1^az_2^{(b-1)}dz_2,\\ \overline{ \partial }F&= a\overline{z}_1^{(a-1)}z_2^b d\overline{z}_1+ bz_1^a\overline{z}_2^{(b-1)}d\overline{z}_2. \end{aligned}$$

Thus, \((z_1,z_2) \in \textrm{Sing}(M)\) if and only if the following equations are satisfied:

$$\begin{aligned} az_1^{(a-1)}\overline{z}_2^b&= 0\\ b\overline{z}_1^az_2^{(b-1)}&= 0\\ a\overline{z}_1^{(a-1)}z_2^b&= 0\\ bz_1^a\overline{z}_2^{(b-1)}&=0 \end{aligned}$$

If \(a, b > 1\), it follows that \(\textrm{Sing}(M)=\{z_1=0\} \cup \{z_2=0\}\). If \(a=1\) or \(b=1\), we will have \(\textrm{Sing}(M)=\{z_2=0\}\) or \(\textrm{Sing}(M)=\{z_1=0\}\), respectively. Finally, if \(a=b=1\), we obtain \(\textrm{Sing}(M)=\{0\}\). \(\square \)

Let’s restate Theorem B for completeness.

Theorem B

Let G and X be elements in \(\chi ({\mathbb {C}}^ n,0)\), \(n\ge 2\), of the form \(G(z)=(z_1^a,z_2^b)\) and \(X(z)=(z_2^b,z_1^a)\) with ab positive integers. Then \(M=\{F(z)=2{\textrm{Re}}(\psi _{G,X}(z))=0\}\), i.e.,

$$\begin{aligned}M=\left\{ z_1^{a}\bar{z}_2^{b}+z_2^{b}\bar{z}_1^{a}=0\right\} \end{aligned}$$

is a Levi-flat hypersurface at \(0\in {\mathbb {C}}^2\).

Proof

In this case, F is given by \(F(z)=z_1^a \overline{z}_2^b + \overline{z}_1^a z_2^b\) and its complexification will be given by

$$\begin{aligned} F_{{\mathbb {C}}}(z,w)=z_1^a w_2^b + w_1^a z_2^b. \end{aligned}$$
(18)

Therefore, we have on \(M_{{\mathbb {C}}}^*\)

$$\begin{aligned} \alpha&= az_1^{(a-1)}w_2^b dz_1+bw_1^az_2^{(b-1)}dz_2,\\ \beta&= aw_1^{(a-1)}z_2^b dw_1+ bz_1^aw_2^{(b-1)}dw_2,\\ d\alpha&= abz_1^{(a-1)}w_2^{(b-1)} dw_2 \wedge dz_1+abw_1^{(a-1)}z_2^{(b-1)}dw_1\wedge dz_2. \end{aligned}$$

Hence

$$\begin{aligned} \alpha \wedge d\alpha \wedge \beta&= \left( a^2b^2 z_1^{(2a-1)}w_2^{(2b-1)}w_1^{(a-1)}z_2^{(b-1)}\right. \\&\quad +\, \left. a^2b^2 w_1^{(2a-1)}z_2^{(2b-1)}z_1^{(a-1)}w_2^{(b-1)}\right) dz_1 \wedge dw_1 \wedge dz_2 \wedge dw_2. \end{aligned}$$

From (18), we get

$$\begin{aligned}z_1^{(a-1)}w_2^{(b-1)}= - \left( \frac{w_1z_2}{z_1w_2}\right) w_1^{(a-1)}z_2^{(b-1)},\end{aligned}$$

which implies that \(\alpha \wedge d\alpha \wedge \beta \) is equal to

$$\begin{aligned}{} & {} \left[ a^2b^2z_1^{(2a-1)}w_2^{(2b-1)}w_1^{(a-1)}z_2^{(b-1)}\right. \\{} & {} \quad - \,\left. a^2b^2\left( \frac{w_1z_2}{z_1w_2}\right) w_1^{(2a-1)}z_2^{(2b-1)}w_1^{(a-1)}z_2^{(b-1)})dz_1\right] dz_1 \wedge dw_1 \wedge dz_2 \wedge dw_2,\end{aligned}$$

that is,

$$\begin{aligned}\alpha \wedge d\alpha \wedge \beta =\left[ a^2b^2 \frac{w_1^{(a-1)}z_2^{(b-1)}}{z_1w_2} \left( z_1^{2a}w_2^{2b}-w_1^{2a}z_2^{2b}\right) \right] dz_1 \wedge dw_1 \wedge dz_2 \wedge dw_2.\end{aligned}$$

Again, from (18), we have \(z_1^aw_2^b=-w_1^az_2^b\), which yields \(z_1^{2a}w_2^{2b}=w_1^{2a}z_2^{2b}\) in \(M_{{\mathbb {C}}}\). Thus, M is Levi-flat. \(\square \)

Now, we consider

$$\begin{aligned} M=\{F(z)={\textrm{Re}}(z_1^{a_1}\bar{z}_2^{b_2}+z_2^{a_2}\bar{z}^{b_1}_{1})=0\} \end{aligned}$$
(19)

In Proposition 4.1, we saw that \(\textrm{Sing}(M)=\{z_1=0\} \cup \{z_2=0\}\) in the case where \(a_1=b_1>1\) and \(a_2=b_2>1\). Now, let’s verify that this also occurs in the case where \(a_1>b_1>1\) and \(a_2>b_2>1\) (even without the assumption \(a_1b_2=a_2b_1\)).

Proposition 4.2

Let M be the hypersurface described in Eq. (19). Then, we have the following options for \(\textrm{Sing}(M)\):

  1. 1.

    \(\textrm{Sing}(M)=\{0\}\), if \(b_1=b_2=1\);

  2. 2.

    \(\textrm{Sing}(M)=\{z_1=0\}\), if \(b_2=1\) and \(b_1>1\);

  3. 3.

    \(\textrm{Sing}(M)=\{z_2=0\}\), if \(b_1=1\) and \(b_2>1\);

  4. 4.

    \(\textrm{Sing}(M)=\{z_1=0\} \cup \{z_2=0\}\) if \(b_1,b_2>1\).

Proof

We observe that F is given by

$$\begin{aligned}F(z)=z_1^{a_1}\overline{z}_2^{b_2}+\overline{z}_1^{a_1}z_2^{b_2}+z_2^{a_2}\overline{z}_1^{b_1}+\overline{z}_2^{a_2}z_1^{b_1 },\end{aligned}$$

and its partial derivatives are given by

$$\begin{aligned} \partial F&= \frac{1}{2}\left[ \left( a_1z_1^{(a_1-1)}\overline{z}_2^{b_2}+b_1z_1^{(b_1-1)}\overline{z}_2^{a_2}\right) dz_1+ \left( a_2z_2^{(a_2-1)}\overline{z}_1^{b_1}+b_2z_2^{(b_2-1)}\overline{z}_1^{a_1}\right) dz_2\right] ,\\ \overline{ \partial }F&= \frac{1}{2}\left[ \left( a_1\overline{z}_1^{(a_1-1)}z_2^{b_2}+b_1\overline{z}_1^{(b_1-1)}z_2^{a_2}\right) d\overline{z}_1+ \left( a_2\overline{z}_2^{(a_2-1)}z_1^{b_1}+b_2\overline{z}_2^{(b_2-1)}z_1^{a_1}\right) d\overline{z}_2\right] . \end{aligned}$$

Therefore, \((z_1,z_2) \in M\) belongs to the singular set if it satisfies the equations

$$\begin{aligned} a_1z_1^{(a_1-1)}\overline{z}_2^{b_2}+b_1z_1^{(b_1-1)}\overline{z}_2^{a_2}&= 0 \end{aligned}$$
(20)
$$\begin{aligned} a_1\overline{z}_1^{(a_1-1)}z_2^{b_2}+b_1\overline{z}_1^{(b_1-1)}z_2^{a_2}&= 0\end{aligned}$$
(21)
$$\begin{aligned} a_2z_2^{(a_2-1)}\overline{z}_1^{b_1}+b_2z_2^{(b_2-1)}\overline{z}_1^{a_1}&= 0\end{aligned}$$
(22)
$$\begin{aligned} a_2\overline{z}_2^{(a_2-1)}z_1^{b_1}+b_2\overline{z}_2^{(b_2-1)}z_1^{a_1}&= 0 \end{aligned}$$
(23)

Let’s assume that \(b_1, b_2 > 1\). Then we see that \(\{z_1=0\} \cup \{z_2=0\} \subset \textrm{Sing}(M)\). Now, suppose by contradiction that \((z_1,z_2) \in \textrm{Sing}(M)\) with \(z_1 \ne 0\) and \(z_2 \ne 0\). From Eq. (20), we obtain

$$\begin{aligned}\frac{a_1}{b_1}=-\frac{z_1^{(b_1-1)}\overline{z}_2^{a_2}}{z_1^{(a_1-1)}\overline{z}_2^{b_2}}=-\frac{\overline{z}_2^{(a_2-b_2)}}{z_1^{(a_1-b_1)}},\end{aligned}$$

and from Eq. (23), we obtain

$$\begin{aligned}\frac{a_2}{b_2}=-\frac{\overline{z}_2^{(b_2-1)}z_1^{a_1}}{\overline{z}_2^{(a_2-1)}z_1^{b_1}}=-\frac{z_1^{(a_1-b_1)}}{\overline{z}_2^{(a_2-b_2)}},\end{aligned}$$

which implies

$$\begin{aligned}\frac{a_1}{b_1}=\frac{b_2}{a_2},\end{aligned}$$

In other words, \(a_1a_2=b_1b_2\). This is absurd, since \(a_1>b_1\) and \(a_2>b_2\) by assumption. We conclude that \({\textsf {Sing}}(M)=\{z_1=0\} \cup \{z_2=0\}\), if \(b_1,b_2 >1\). Now let’s assume \(b_1=1\) and \(b_2>1\). Then, the equations for the singular set are given by

$$\begin{aligned} a_1z_1^{(a_1-1)}\overline{z}_2^{b_2}+\overline{z}_2^{a_2}&= 0 \end{aligned}$$
(24)
$$\begin{aligned} a_1\overline{z}_1^{(a_1-1)}z_2^{b_2}+z_2^{a_2}&= 0 \end{aligned}$$
(25)
$$\begin{aligned} a_2z_2^{(a_2-1)}\overline{z}_1+b_2z_2^{(b_2-1)}\overline{z}_1^{a_1}&= 0 \end{aligned}$$
(26)
$$\begin{aligned} a_2\overline{z}_2^{(a_2-1)}z_1+b_2\overline{z}_2^{(b_2-1)}z_1^{a_1}&= 0 \end{aligned}$$
(27)

Clearly, \(\{z_2=0\} \subset \textrm{Sing}(M)\). Now suppose \(z_2\ne 0\), then we necessarily have \(z_1\ne 0\) by Eq. (24). Thus, it follows from Eqs. (24) and (27):

$$\begin{aligned} a_1&=-\frac{\overline{z}_2^{(a_2-b_2)}}{z_1^{(a_1-1)}},\\ \frac{a_2}{b_2}&=-\frac{z_1^{(a_1-1)}}{\overline{z}_2^{(a_2-b_2)}}, \end{aligned}$$

which implies \(a_1=\frac{b_2}{a_2}\), that is, \(a_1a_2=b_2\). However, this contradicts \(a_2>b_2\) and \(a_1>1\). Therefore, \({\textsf {Sing}}(M)=\{z_2=0\}\) if \(b_1=1\) and \(b_2>1\). In a similar way we obtain \({\textsf {Sing}}(M)=\{z_1=0\}\) if \(b_2=1\) and \(b_1>1\), and we also obtain \({\textsf {Sing}}(M)=\{ 0\}\) if \(b_1=b_2=1\). \(\square \)

To prove Theorem C, we will use the following lemma

Lemma 4.3

Let \(M_{{\mathbb {C}}}\) be the complexification of

$$\begin{aligned}M=\{F(z)=z_1^{a_1}\overline{z}_2^{b_2}+\overline{z}_1^{a_1}z_2^{b_2}+z_2^{a_2}\overline{z}_1^{b_1}+\overline{z}_2^{a_2}z_1^{b_1 }=0\},\end{aligned}$$

we have \(\alpha \wedge d\alpha \wedge \beta = h\ dz_1 \wedge dw_1 \wedge dz_2 \wedge dw_2\), where

$$\begin{aligned}h&= c(a_1a_2+b_1b_1-2c)\left( z_1^{a_1+b_1}w_2^{a_2+b_2}\right. \\&\quad -\,\left. z_2^{(a_2+b_2)}w_1^{(a_1+b_1)}\right) \left( \frac{z_2^{(a_2-1)}w_1^{(b_1-1)}+z_2^{(b_2-1)}w_1^{(a_1-1)}}{z_1w_2}\right) \end{aligned}$$

and \(c=a_1b_2=a_2b_1\).

Proof

The complexification of F is given by

$$\begin{aligned}F_{{\mathbb {C}}}=z_1^{a_1}w_2^{b_2}+w_1^{a_1}z_2^{b_2}+z_2^{a_2}w_1^{b_1}+w_2^{a_2}z_1^{b_1}.\end{aligned}$$

Therefore, we have

$$\begin{aligned} \alpha&=\left( a_1z_1^{(a_1-1)}w_2^{b_2}+b_1z_1^{(b_1-1)}w_2^{a_2}\right) dz_1+ \left( a_2z_2^{(a_2-1)}w_1^{b_1}+b_2z_2^{(b_2-1)}w_1^{a_1}\right) dz_2,\\ \beta&= \left( a_1w_1^{(a_1-1)}z_2^{b_2}+b_1w_1^{(b_1-1)}z_2^{a_2}\right) dw_1+ \left( a_2w_2^{(a_2-1)}z_1^{b_1}+b_2w_2^{(b_2-1)}z_1^{a_1}\right) dw_2,\\ d\alpha&= \left( a_1b_2z_1^{(a_1-1)}w_2^{(b_2-1)}+a_2b_1z_1^{(b_1-1)}w_2^{(a_2-1)}\right) dw_2 \wedge dz_1\\&\quad +\left( a_2b_1z_2^{(a_2-1)}w_1^{(b_1-1)}+a_1b_2z_2^{(b_2-1)}w_1^{(a_1-1)}\right) dw_1 \wedge dz_2. \end{aligned}$$

We will use the notations

$$\begin{aligned} \alpha _1&= a_1z_1^{(a_1-1)}w_2^{b_2}+b_1z_1^{(b_1-1)}w_2^{a_2};\\ \alpha _2&= a_2w_1^{b_1}z_2^{(a_2-1)}+b_2w_1^{a_1}z_2^{(b_2-1)};\\ \beta _1&= a_1w_1^{(a_1-1)}z_2^{b_2}+b_1w_1^{(b_1-1)}z_2^{a_2};\\ \beta _2&= a_2z_1^{b_1}w_2^{(a_2-1)}+b_2z_1^{a_1}w_2^{(b_2-1)};\\ g_1&= a_1b_2z_1^{(a_1-1)}w_2^{(b_2-1)}+a_2b_1z_1^{(b_1-1)}w_2^{(a_2-1)};\\ g_2&= a_2b_1w_1^{(b_1-1)}z_2^{(a_2-1)}+a_1b_2w_1^{(a_1-1)}z_2^{(b_2-1)}. \end{aligned}$$

so that we can write:

$$\begin{aligned} \alpha&= \alpha _1dz_1+\alpha _2dz_2;\\ \beta&= \beta _1dw_1+\beta _2dw_2;\\ d\alpha&= g_1 dw_2 \wedge dz_1+g_2 dw_1 \wedge dz_2. \end{aligned}$$

With these notations, we get

$$\begin{aligned}\alpha \wedge d\alpha \wedge \beta = (\alpha _1 \beta _2g_2+\alpha _2\beta _1g_1)dz_1 \wedge dw_1 \wedge dz_2 \wedge dw_2.\end{aligned}$$

In \(M_{{\mathbb {C}}}\), we have

$$\begin{aligned} z_1^{a_1}w_2^{b_2}+z_1^{b_1}w_2^{a_2}=-(w_1^{a_1}z_2^{b_2}+w_1^{b_1}z_2^{a_2}), \end{aligned}$$
(28)

which implies on \(M_{{\mathbb {C}}}^*\)

$$\begin{aligned} z_1^{(a_1-1)}w_2^{(b_2-1)}+z_1^{(b_1-1)}w_2^{(a_2-1)} =-\left( \frac{w_1z_2}{z_1w_2}\right) (w_1^{(a_1-1)}z_2^{(b_2-1)}+w_1^{(b_1-1)}z_2^{(a_2-1)}).\end{aligned}$$

Taking \(c=a_1b_2=b_1a_2\), we have

$$\begin{aligned}g_1=c( z_1^{(a_1-1)}w_2^{(b_2-1)}+z_1^{(b_1-1)}w_2^{(a_2-1)})=-c\left( \frac{w_1z_2}{z_1w_2}\right) (w_1^{(a_1-1)}z_2^{(b_2-1)}+w_1^{(b_1-1)}z_2^{(a_2-1)}),\end{aligned}$$

and it follows that

$$\begin{aligned} g_1=-\left( \frac{w_1z_2}{z_1w_2}\right) g_2. \end{aligned}$$

Therefore, on \(M_{{\mathbb {C}}}^*\), we obtain

$$\begin{aligned}\alpha _1 \beta _2g_2+\alpha _2\beta _1g_1=\alpha _1 \beta _2g_2-\alpha _2\beta _1\left( \frac{w_1z_2}{z_1w_2}\right) g_2 =\frac{g_2}{z_1w_2}(z_1w_2\alpha _1 \beta _2-w_1z_2\alpha _2\beta _1),\end{aligned}$$

thus

$$\begin{aligned} \alpha \wedge d\alpha \wedge \beta =\left[ \frac{g_2}{z_1w_2}(z_1w_2\alpha _1 \beta _2-w_1z_2\alpha _2\beta _1)\right] dz_1 \wedge dw_1 \wedge dz_2 \wedge dw_2. \end{aligned}$$
(29)

Now, we observe

$$\begin{aligned} \alpha _1 \beta _2&=\left( a_1z_1^{(a_1-1)}w_2^{b_2}+b_1z_1^{(b_1-1)}w_2^{a_2}\right) \left( a_2z_1^{b_1}w_2^{(a_2-1)}+b_2z_1^{a_1}w_2^{(b_2-1)}\right) \\&=\left( a_1a_2+b_1b_2\right) z_1^{(a_1+b_1-1)}w_2^{(a_2+b_2-1)}+c\left( z_1^{(2a_1-1)}w_2^{(2b_2-1)}+z_1^{(2b_1-1)}w_2^{(2a_2-1)}\right) , \end{aligned}$$

which implies

$$\begin{aligned} z_1w_2\alpha _1 \beta _2= \left( a_1a_2+b_1b_2\right) z_1^{(a_1+b_1)}w_2^{(a_2+b_2)}+c\left( z_1^{2a_1}w_2^{2b_2}+z_1^{2b_1}w_2^{2a_2}\right) . \end{aligned}$$

Similarly, we obtain

$$\begin{aligned} w_1z_2\alpha _2\beta _1=(a_1a_2+b_1b_2)w_1^{(a_1+b_1)}z_2^{(a_2+b_2)}+c(w_1^{2b_1}z_2^{2a_2}+w_1^{2a_1}z_2^{2b_2}), \end{aligned}$$

so that \(z_1w_2\alpha _1 \beta _2-w_1z_2\alpha _2\beta _1\) is equal to

$$\begin{aligned}&(a_1a_2+b_1b_2)\left( z_1^{(a_1+b_1)}w_2^{(a_2+b_2)}-w_1^{(a_1+b_1)}z_2^{(a_2+b_2)}\right) \\&\quad +c\left( z_1^{2a_1}w_2^{2b_2}+z_1^{2b_1}w_2^{2a_2}-w_1^{2b_1}z_2^{2a_2}-w_1^{2a_1}z_2^{2b_2}\right) .\end{aligned}$$

Again, from Eq. (28), on \(M_{{\mathbb {C}}}^*\) we have:

$$\begin{aligned}(z_1^{a_1}w_2^{b_2}+z_1^{b_1}w_2^{a_2})^2=(w_1^{a_1}z_2^{b_2}+w_1^{b_1}z_2^{a_2})^2,\end{aligned}$$

that is,

$$\begin{aligned}2(w_1^{(a_1\!+\!b_1)}z_2^{(a_2\!+\!b_2)}-z_1^{(a_1\!+\!b_1)}w_2^{(a_2\!+\!b_2)})=z_1^{2a_1}w_2^{2b_2}\!+\!z_1^{2b_1}w_2^{2a_2}\!-\!w_1^{2b_1}z_2^{2a_2}\!-\!w_1^{2a_1}z_2^{2b_2},\end{aligned}$$

which implies that \(z_1w_2\alpha _1 \beta _2-w_1z_2\alpha _2\beta _1\) is equal to

$$\begin{aligned}&(a_1a_2+b_1b_2)\left( z_1^{(a_1+b_1)}w_2^{(a_2+b_2)}-w_1^{(a_1+b_1)}z_2^{(a_2+b_2)}\right) \\&\quad +2c\left( w_1^{(a_1+b_1)}z_2^{(a_2+b_2)}-z_1^{(a_1+b_1)}w_2^{(a_2+b_2)}\right) . \end{aligned}$$

So, \(z_1w_2\alpha _1 \beta _2-w_1z_2\alpha _2\beta _1\) is equal to

$$\begin{aligned}(a_1a_2+b_1b_2-2c)\left( z_1^{(a_1+b_1)}w_2^{(a_2+b_2)}-w_1^{(a_1+b_1)}z_2^{(a_2+b_2)}\right) .\end{aligned}$$

Finally, we conclude

$$\begin{aligned} \frac{g_2}{z_1w_2}\left( z_1w_2\alpha _1 \beta _2-w_1z_2\alpha _2\beta _1\right){} & {} = \frac{g_2}{z_1w_2}\left( a_1a_2+b_1b_2-2c\right) \\{} & {} \quad \left( z_1^{(a_1+b_1)}w_2^{(a_2+b_2)}-w_1^{(a_1+b_1)}z_2^{(a_2+b_2)}\right) \end{aligned}$$

and the lemma follows by substituting the above expression and the expression for \(g_2\) into Eq. (29). \(\square \)

Now, we prove Theorem C.

Theorem C

Let G and X be elements in \(\chi ({\mathbb {C}}^ n,0)\), \(n\ge 2\), of the form \(G=(z_1^{a_1},z_2^{a_2})\) and \(X=(z_2^{b_2},z_1^{b_1})\), where \(a_1\ge b_1\) and \(a_2 \ge b_2\) are positive integers satisfying \(a_1b_2=a_2b_1\). Then \(M=\{F(z)=2{\textrm{Re}}(\psi _{G,X}(z))=0\}\), i.e.,

$$\begin{aligned}M=\left\{ {\textrm{Re}}\left( z_1^{a_1}\bar{z}_2^{b_2}+z_2^{a_2}\bar{z}_1^{b_1}\right) =0\right\} \end{aligned}$$

is Levi-flat if, and only if, \(a_1=b_1\) and \(a_2=b_2\).

Proof

From Lemma 4.3, we have \(\alpha (z,w)\wedge \beta (z,w)\wedge d\alpha (z,w)=0\) for all \((z,w) \in M_{{\mathbb {C}}}\) if, and only if, \(a_1a_2+b_1b_2-2c=0\), i.e., \(2c=a_1a_2+b_1b_2\). Using the fact \(c=a_1b_2=b_1a_2\), it follows that

$$\begin{aligned}2c\!=\!a_1a_2\!+\!b_1b_2\iff a_1b_2\!+\!b_1a_2\!=\!a_1a_2\!+\!b_1b_2\iff b_1(a_2\!-\!b_2)\!=\!a_1(a_2-b_2).\end{aligned}$$

Therefore, \(M_{{\mathbb {C}}}\) is Levi-flat if, and only if, \(a_1=b_1\) and \(a_2=b_2\). This concludes the proof of Theorem C. \(\square \)

Remark 4.1

From the above result, we conclude that for \(n=2\), the hypersurface M will not Levi-flat precisely when the map \(\psi _{G,X}\) satisfies the Milnor condition at the origin.

5 Proof of Theorem D

Now, we study the case with permutations in higher dimensions. Consider \(\sigma \in S_n\) a permutation on the set \(\underline{n}:=\{1,\ldots ,n\}\), and let’s use the notation \(\sigma _k:=\sigma (k)\). We employ a transversality argument, along with the dimension 2 case (see Theorem C), to obtain the following result:

Theorem D

Let G and X be elements in \(\chi ({\mathbb {C}}^ n,0)\), \(n\ge 2\), of the form \(G=(z_1^{a_1},\ldots , z_n^{a_n})\) and \(X=(z_{\sigma _1}^{b_{\sigma _1}},\ldots , z_{\sigma _n}^{b_{\sigma _n}})\), where \(a_k\ge b_k\) are positive integers. Let us assume that for some \(\ell \in \underline{n}\), the integers \(a_{\ell }, b_{\ell }, a_{\sigma _{\ell }}, b_{\sigma _{\ell }}\) satisfy the following conditions: \(a_{\ell }>b_{\ell }\) and \(a_{\ell }b_{\sigma _{\ell }}=b_{\ell }a_{\sigma _{\ell }}\). Then, \(M=\{F(z)=2{\textrm{Re}}(\psi _{G,X}(z))=0\}\), i.e.,

$$\begin{aligned}M=\left\{ {\textrm{Re}}\left( \sum _{k=1}^{n} z_k^{a_k}\bar{z}_{\sigma _k}^{b_{\sigma _k}}\right) =0\right\} .\end{aligned}$$

is nondegenerate at \(0\in {\mathbb {C}}^n\).

Proof

Let’s assume by contradiction that M is Levi-flat. Therefore, the regular part \(M^*\) is foliated by complex submanifolds of (complex) dimension \(n-1\). Thus, we can choose \(i: {\mathbb {C}}^2 \hookrightarrow {\mathbb {C}}^n\) to be a transversal embedding to M (see Cerveau and Lins-Neto 2011, Corollary 3.3), so that the regular part of \(i^{-1}(M)\) is also foliated by complex submanifolds of dimension 1 (Riemann surfaces). Without loss of generality, we can assume that \(\sigma (1) = 2\) and that \(a_1, b_1, a_2, b_2\) are the integers satisfying the conditions in the statement. Making a change of coordinates and using the fact that the Levi-flat property is invariant under biholomorphisms (Proposition 2.4), we can assume that the embedding \(i:{\mathbb {C}}^2\rightarrow {\mathbb {C}}^n\) is given by \(i: (z_1, z_2) \mapsto (z_1, z_2, 0,\ldots ,0).\) We observe

$$\begin{aligned}i^{-1}(M)=\{(z_1,z_2) \in {\mathbb {C}}^2: z_1^{a_1}\overline{z}_2^{b_2}+\overline{z}_1^{a_1}z_2^{b_2}+z_2^{a_2}\overline{z}_1^{b_1}+\overline{z}_2^{a_2}z_1^{b_1}=0\}.\end{aligned}$$

But by Theorem C, \(i^{-1}(M)\) does not have the regular part foliated by complex submanifolds. Therefore, M is not Levi-flat. \(\square \)

6 Examples

In this section, we will explore examples where the fields G and X do not satisfy the Milnor condition. In these examples, our hypersurfaces are all Levi-flat.

Example 6.1

Given the Pham–Brieskorn polynomial \(f:{\mathbb {C}}^2\rightarrow {\mathbb {C}}\) defined by \(f(z)=z_1^p+z_2^q\), where \(p,q>2\). Consider the holomorphic vector field

$$\begin{aligned}G(z)=\left( \frac{\partial f(z)}{\partial z_2},-\frac{\partial f(z)}{\partial z_1}\right) =\left( qz_2^{(q-1)}, -pz_1^{(p-1)}\right) \end{aligned}$$

whose solutions represent the fibers of f. Also, take the vector field \(X=(a_1,a_2)\). Thus, the Hermitian product of G and X is given by

$$\begin{aligned}\Psi _{G,X}(z)=\langle G(z),X(z) \rangle =\overline{a}_1qz_2^{(q-1)}-\overline{a_2}pz_1^{(p-1)}.\end{aligned}$$

Clearly, \(\Psi _{G,X}\) does not satisfy the Milnor fibration condition at the origin. Now we take

$$\begin{aligned}M=\{F(z)=2{\textrm{Re}}{\Psi _{G,X}(z)}=0\}.\end{aligned}$$

Since \(\Psi _{G,X}\) is a holomorphic function, then M is Levi-flat.

Example 6.2

Let \(G=(z_1,iz_2,(-1-i)z_3)\) and \(X=(z_1,z_2,z_3)\). According to Seade (1997, Theorem 1), \(\psi _{G,X}\) does not satisfy the Milnor fibration condition at the origin. The Hermitian product of G and X is given by

$$\begin{aligned}\langle G,X \rangle =z_1\overline{z}_1+iz_2\overline{z}_2+(-1-i)z_3\overline{z}_3.\end{aligned}$$

Consider \(M=\{F(z)=2{\textrm{Re}}\ \langle G(z),X(z) \rangle =z_1\overline{z}_1-z_3\overline{z}_3=0\}\). Let’s us verify that M is Levi-flat. First, we note that \(F(z)=z_1\overline{z}_1-z_3\overline{z}_3\), and the partial derivatives of F are given by

$$\begin{aligned} \partial F&= \overline{z}_1dz_1-\overline{z}_3dz_3,\\ \overline{\partial }F&= z_1d\overline{z}_1-z_3d\overline{z}_3. \end{aligned}$$

Then, \({\textsf {Sing}}(M)=\{(0,z_2,0) \in {\mathbb {C}}^3:z_2\in {\mathbb {C}}\}\). Clearly, \(\dim _{{\mathbb {R}}}{\textsf {Sing}}(M)=2\). Moreover,

$$\begin{aligned}M^*=\{(z_1,z_2,z_3) \in {\mathbb {C}}^3: z_1\overline{z}_1- z_3\overline{z}_3=0, z_1\ne 0 \;\text{ and }\; z_3\ne 0\}.\end{aligned}$$

We have \(\partial \overline{\partial }F= dz_1\wedge d\overline{z}_1-dz_3\wedge d\overline{z}_3,\) and

$$\begin{aligned} \partial F \wedge \overline{\partial } F&= z_1\overline{z}_1dz_1\wedge d\overline{z}_1 - \overline{z}_1z_3 dz_1 \wedge d\overline{z}_3 -\overline{z}_3z_1 dz_3 \wedge d\overline{z}_1 + z_3\overline{z}_3 dz_3\wedge d\overline{z}_3, \end{aligned}$$

that yields \(\partial F \wedge \overline{\partial } F \wedge \partial \overline{\partial } F=(z_3\overline{z}_3-z_1\overline{z}_1)dz_1\wedge d\overline{z}_1\wedge dz_3\wedge d\overline{z}_3.\) Thus, \(\partial F(p) \wedge \overline{\partial }F (p)\wedge \partial \overline{\partial }F(p)=0\) for all \(p \in M\) and therefore, M is Levi-flat.

Example 6.3

Let \(G(z)=(z_1,z_2)\) and \(X(z)=(-iz_2,iz_1)\). Then

$$\begin{aligned}M=\{F(z)=2{\textrm{Re}}\ \langle G(z),X(z)\rangle =i(z_2\overline{z}_1-z_1\overline{z}_2)=0\}\end{aligned}$$

is clearly Levi-flat whose singular set is \({\textsf {Sing}}(M)=\{0\}\).

In general, when \(G(z)=(z_1,z_2)\) is the radial vector field, \(X=(\lambda _1z_1, \lambda _2z_2)\), and if \({\textrm{Re}}(\lambda _k)\ne 0\) for \(k=1,2\), then the singular set of \(M=\{2{\textrm{Re}}\ \langle G(z),X(z)\rangle =0\}\) is just the origin \(0 \in {\mathbb {C}}^2\), and M is Levi-flat. However, in this case, the map \(\psi _{G,X}\) also does not satisfy the Milnor fibration condition at the origin, see Seade (1996, Example 3.4).