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Abstract
Let G and X be germs of holomorphic vector fields at 0 ∈ C

n . Consider the real
analytic map ψG,X : C

n → C defined by ψG,X (z) = 〈G(z), X(z)〉, where 〈·, ·〉
represents the usual Hermitian product. In this paper, we investigate the following
question: under which conditions on the germs of holomorphic vector fields G and X
is the real analytic hypersurface M = {F(z) = 2Re(ψG,X (z)) = 0} Levi-flat? This
problem was posed by Maria A. Soares Ruas.
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1 Introduction and Statement of Results

Let M be a real analytic hypersurface at the origin 0 ∈ C
n , n ≥ 2, defined by the

equation F(z1, . . . , zn) = 0, where F is a real analytic function vanishing at 0. We
say that M is nondegenerate if the Levi form

LF(z, z̄) =
∑

1≤α,β≤n

gαβ̄ z
α z̄β, gαβ̄ =

(
∂2F

∂zα∂ z̄β

)

0
(1)
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is nondegenerate at 0. Otherwise, we say that M is Levi-flat. The purpose of this paper
is to study the degeneracy of the Levi form of real analytic hypersurfaces obtained from
real singularities with a Milnor fibration. More precisely, Milnor proved in Milnor
(1968, Theorem 11.2) that if f : (Rn, 0) → (Rp, 0), n > p, is a real analytic map
whose derivative Df has rank p on a punctured neighborhood of 0 ∈ R

n , then, for
every sufficiently small sphere Sε ⊂ R

n , the mapping

ψ := f

‖ f ‖ : Sε − NK → S
p−1 (2)

is a locally trivial fibration, where K = f −1(0)∩Sε is the singularity link, and NK is a
tubular neighborhood of K in Sε . The mapψ can always be extended to Sε −K as the

projection of a fibration, but this extension is not necessarily as
f

‖ f ‖ . Follows Ruas et
al. (2002, Definition 1.1), we will say that f : (Rn, 0) → (Rp, 0), n > p, satisfies the
Milnor condition at 0 if Df has rank p on a punctured neighborhood of 0. When f

satisfies the Milnor condition at 0, and furthermore, the map
f

‖ f ‖ : Sε − K → S
p−1

is a fibration for every sufficiently small sphere Sε ⊂ R
n , we say that f satisfies the

strong Milnor condition at 0, see for instance (Ruas et al. 2002, Definition 2.5). Maps
of this type induce an open book decomposition on the sphere Sε . Milnor pointed out
in his book that is difficult to find examples satisfying the strongMilnor condition, (see
Milnor 1968, p. 100). In Seade (1997) and Seade (1996), Seade presented a method
for constructing families of nontrivial maps f : R2n → R

2 that satisfy the strong
Milnor condition at 0. This construction is given as follows: let χ(Cn, 0) denote the
space of all germs of holomorphic vector fields at 0 ∈ C

n , and let G, X be elements
in χ(Cn, 0). Consider the real analytic map

ψG,X : Cn ∼= R
2n → C ∼= R

2

defined by ψG,X (z) = 〈G(z), X(z)〉, where

〈G(z), X(z)〉 =
n∑

i=1

Gi (z) · Xi (z), (3)

is the usual Hermitian product. Note that the argument of i〈G(z), X(z)〉 is the angle
by which we rotate the field G so that it becomes orthogonal to the field X . Thus, the
real analytic variety ψ−1

G,X (0), called the polar variety of G and X , is the set of points
where G and X are orthogonal. Consequently, on the polar variety, the holomorphic
foliations defined by the fields G and X are transversal, and their intersection gives
rise to a foliation by real curves in ψ−1

G,X (0). In the particular case where X is the

gradient field of a real analytic function f : R2n → R
2, the polar variety is the set of

points where the foliations defined by the fieldG and the level curves of f are tangent.
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Furthermore, ψ−1
G,X (0) is a complete intersection defined by the equations

Re 〈G(z), X(z)〉 = Im 〈G(z), X(z)〉 = 0.

In Seade (1997), Seade proved that if X = (z1, . . . , zn) is the radial field and G =
(λ1z

a1
1 , . . . , λnz

an
n ), then ψG,X satisfies the Milnor condition for any λk ∈ C

∗ and
integers ak > 1. On the other hand, given σ ∈ Sn , a permutation of the set n :=
{1, . . . , n}, families of vector fields of the form G = (λ1z

a1
σ1 , . . . , λnz

an
σn ) and X =

(β1z
b1
1 , . . . , βnz

bn
n ) that satisfy the Milnor condition or the strong Milnor condition at

the origin were classified by Ruas–Seade–Verjovsky (Ruas et al. 2002, Theorem 2.7).
In this paper, we consider M = {F(z) = 0} defined by

F(z) := 2Re(ψG,X (z)) = ψG,X (z) + ψG,X (z), (4)

whereG, X ∈ χ(Cn, 0).A simple example in (C2, 0) iswhenweconsiderG(z1, z2) =
(z1, z2) and X = (z2,−z1). Then

M = {F(z1, z2) = 2Re(ψG,X (z)) = z1 z̄2 − z2 z̄1 = 0} (5)

is a real analytic Levi-flat hypersurface at 0 ∈ C
2 whose Levi foliation admits as

leaves the complex curves z1 = c · z2, where c ∈ C (see Burns and Gong 2003, p.
51). Motivated by this, M.A. Soares Ruas have posed the following problem:

Problem 1 Under which conditions on the germs of holomorphic vector fields G and
X is the real analytic hypersurface M = {F(z) = 2Re(ψG,X (z)) = 0} Levi-flat?
In order to answer Problem 1, we consider the vector fields G and X explored in Ruas
et al. (2002, pp. 203–211). More specifically, our first result is as follows:

Theorem A Let G and X be elements in χ(Cn, 0), n ≥ 2, of the form G(z) =
(za11 , . . . , zann ) and X(z) = (zb11 , . . . , zbnn ), where ak > bk ≥ 1 are positive integers,
for all k = 1, . . . , n. Then M = {F(z) = 2Re(ψG,X (z)) = 0}, i.e.,

M =
{
Re

(
n∑

k=1

zakk z̄bkk

)
= 0

}
.

is nondegenerate at 0 ∈ C
n.

Our second and third theorems are motivated by the example given in (5):

Theorem B Let G and X be elements in χ(Cn, 0), n ≥ 2, of the form G(z) = (za1, z
b
2)

and X(z) = (zb2, z
a
1)with a, b positive integers. Then M = {F(z) = 2Re(ψG,X (z)) =

0}, i.e.,

M =
{
Re

(
za1 z̄

b
2 + zb2 z̄

a
1

)
= 0

}

is a Levi-flat hypersurface at 0 ∈ C
2.
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Theorem C Let G and X be elements in χ(Cn, 0), n ≥ 2, of the form G = (za11 , za22 )

and X = (zb22 , zb11 ), where a1 ≥ b1 and a2 ≥ b2 are positive integers satisfying
a1b2 = a2b1. Then M = {F(z) = 2Re(ψG,X (z)) = 0}, i.e.,

M =
{
Re

(
za11 z̄b22 + za22 z̄b11

)
= 0

}

is Levi-flat if, and only if, a1 = b1 and a2 = b2.

Finally, we consider a family of vector fields studied in Ruas et al. (2002, Theorem
2.1).

Theorem D Let G and X be elements in χ(Cn, 0), n ≥ 2, of the form G =
(za11 , . . . , zann ) and X = (z

bσ1
σ1 , . . . , z

bσn
σn ), where ak ≥ bk are positive integers. Let

us assume that for some 
 ∈ n, the integers a
, b
, aσ

, bσ


satisfy the following con-
ditions: a
 > b
 and a
bσ


= b
aσ

. Then, M = {F(z) = 2Re(ψG,X (z)) = 0},

i.e.,

M =
{
Re

(
n∑

k=1

zakk z̄
bσk
σk

)
= 0

}
.

is nondegenerate at 0 ∈ C
n.

Following our results it seems that the property of M being Levi-flat is related to the
property that the function ψG,X does not satisfy the Milnor condition, see Ruas et al.
(2002, Theorem 2.1).

The paper is organized as follows: In Sect. 2, we introduce the concept of real
analytic Levi-flat hypersurfaces at (Cn, 0), shedding light on essential properties that
will play a pivotal role throughout the paper. Section 3 is dedicated to proving Theorem
A. In Sect. 4, we establish the validity of Theorems B and C, while Sect. 5 focuses on
the proof ofTheoremD.Finally, in Sect. 6,we provide examples for further illustration.

2 Levi-Flat Hypersurfaces

In this section, we will discuss real analytic Levi-flat hypersurfaces at (Cn, 0). These
are real analytic hypersurfaces whose regular part is foliated by immersed complex
submanifolds of codimension one. Levi-flat hypersurfaces naturally arise in the theory
of foliations as invariant subsets. In general, germs of codimension one holomorphic
foliations that leave invariant hypersurfaces of this type admit a meromorphic first
integral (see Cerveau and Lins-Neto 2011, Theorem 1). On the other hand, there are
examples of holomorphic webs that leave invariant Levi-flat hypersurfaces (see Da
Silva and Fernández-Pérez 2023; Fernández-Pérez 2013; Shafikov and Sukhov 2015).
Levi-flat hypersurfaces are a central focus of the development in this paper.

Let M = {F(z) = 0} be a germ of real analytic hypersurface at 0 ∈ C
n , where

F : (Cn, 0) → (R, 0) is a real analytic function at 0 ∈ C
n . The singular set of M is
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denoted by Sing(M) and defined by

Sing(M) := {F(z) = 0} ∩ {dF(z) = 0}.

We define the regular part of M as M∗ := {F(z) = 0}\{dF(z) = 0}. In M∗, the Levi
distribution is given by L p := Ker(∂F(p)) ⊂ TpM∗, where p ∈ M∗. Note that L p

is the unique complex hyperplane contained in TpM∗.

Definition 2.1 We say that M is Levi-flat if the Levi distribution on M∗ is integrable.
In this case, the Levi distribution induces a foliation on M∗ called the Levi foliation,
denoted by L.

The Levi distribution can also be given by the 1-form η = i(∂F − ∂̄F) called
the Levi 1-form. Thus, the integrability of the Levi distribution is equivalent to the
integrability of the form η in the sense of Frobenius, that is, η is integrable if and only
if η ∧ dη|M∗ ≡ 0.

The simplest example of a Levi-flat hypersurface is given below.

Example 2.1 InCn with coordinates (z1, . . . , zn), consider M = {Im(zn) = 0}. Then
M is a smooth Levi-flat real analytic hypersurface, meaning Sing(M) = ∅. The Levi
distribution on M is given by L p = Ker(dzn(p)), p ∈ M∗. The leaves of the Levi
foliation on M are given by {zn = c} where c ∈ R.

Let’s consider a slightly more elaborate example given by Brunella (2007, Example
1.2).

Example 2.2 With coordinates (z, w) in C2 such that z = x + iy and w = s + i t , the
real analytic hypersurface M given by

M = {(z, w) ∈ C
2 : t2 = 4(y2 + s)y2}

is Levi-flat, with singular set Sing(M) = {t = y = 0}. The leaves of the Levi foliation
on M∗ are given by Lc = {w = (z + c)2 : Im(z) �= 0} with c ∈ R.

The next result provides the local form of a smooth Levi-flat hypersurface. Essen-
tially, it tells us that, at regular points, every Levi-flat hypersurface is locally similar
to the Example 2.1.

Theorem 2.1 [Cartan’s theorem (Cartan 1933)] Let M ⊂ C
n be a real analytic Levi-

flat hypersurface. In a neighborhood of each point p ∈ M∗, there exists a holomorphic
coordinate system z = (z1, . . . , zn) such that M = {Im(zn) = 0}.

A criterion for the integrability of the Levi form is given in the next proposition.

Proposition 2.2 Let M = {F(z) = 0} be a germ of a real analytic hypersurface at
0 ∈ C

n. Then, M is Levi-flat if and only if ∂F(p) ∧ ∂F(p) ∧ ∂∂F(p) = 0 for all
p ∈ M.
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Proof Let η = i(∂F−∂̄F) denote the Levi 1-form ofM . AssumingM is Levi-flat, this
impliesη∧dη|M∗ = 0,which is equivalent to (∂F−∂̄F)∧∂∂̄F |M∗ = 0.Consequently,
we have ∂̄F∧∂∂̄F |M∗ = ∂F∧∂∂̄F |M∗ . In particular, ∂F(p)∧∂F(p)∧∂∂F(p) = 0
for all p ∈ M .

Conversely, the condition ∂F(p)∧∂F(p)∧∂∂F(p) = 0 for all p ∈ M is equivalent
to (∂F − ∂̄F) ∧ ∂∂̄F ∧ dF |M∗ = 0. Hence

(∂F − ∂̄F) ∧ ∂∂̄F ∧ dF = Fθ, (6)

where θ is a 4-form in some open subset of Cn . Since θ ∧ dF = 0, we can express θ

as θ = β ∧ dF , where β is a 3-form in some open subset of Cn . Substituting this into
Eq. (6), we obtain

[
(∂F − ∂̄F) ∧ ∂∂̄F − Fβ

] ∧ dF = 0.

Thus, there exists a 2-form κ such that

(∂F − ∂̄F) ∧ ∂∂̄F = Fβ + κ ∧ dF,

this expression implies that (∂F − ∂̄F) ∧ ∂∂̄F |M∗ = 0, leading to the integrability of
η. ��
Now, let’s verify that the regular part of M is mapped to the regular part of M ′ for M
and M ′ being biholomorphic (not necessarily Levi-flat).

Lemma 2.3 Let u ∈ M ′. Then z = z(u) ∈ Sing(M) if and only if u ∈ Sing(M ′).
Proof Denote M ′ = {G(u) = 0} where G : (Cn, 0) → (R), 0 is a real analytic
function at 0 ∈ C

n .
We have dG(u) = ∂G(u) + ∂G(u), where

∂G =
n∑

j=1

∂G

∂u j
du j , ∂G =

n∑

j=1

∂G

∂u j
du j .

Apoint u ∈ M ′ belongs to the singular set Sing(M ′) if and only if all partial derivatives
∂G

∂u j
(u),

∂G

∂ ū j
(u) are identically zero. By the chain rule, we obtain

∂G

∂u j
(u) =

n∑

α=1

∂G

∂zα
(z(u))

∂zα
∂u j

(u),

thus, it follows that

(
∂G
∂u1

(u) · · · ∂G
∂un

(u)
)

=
(

∂G
∂z1

(z(u)) · · · ∂G
∂zn

(z(u))
)
⎛

⎜⎜⎝

∂z1
∂u1

(u) · · · ∂z1
∂un

(u)

...
. . .

...
∂zn
∂u1

(u) · · · ∂zn
∂un

(u)

⎞

⎟⎟⎠ .
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Since z = z(u) is a biholomorphism, the change of coordinates matrix is invertible,
and therefore,

(
∂G
∂u1

(u) · · · ∂G
∂un

(u)
)

= 0 ⇐⇒
(

∂G
∂z1

(z(u)) · · · ∂G
∂zn

(z(u))
)

= 0.

��
In the next proposition, we will see that the Levi-flat property is invariant under a

change of coordinates. More specifically, we establish the following result.

Proposition 2.4 Let G : V ⊂ C
n → R be a real-analytic function in coordinates z =

(z1, . . . , zn) and let z = z(u) be a change of coordinates, that is, a biholomorphism
from the open set V ⊂ C

n to an open set U ⊂ C
n. Then, the hypersurface M ′ = {u ∈

U : G(u) = G(z(u)) = 0} is Levi-flat if and only if M = {z ∈ V : G(z) = 0} is
Levi-flat.

Proof The partial derivatives of G in the coordinates z = (z1, . . . , zn) are given by

∂G =
n∑

α=1

∂G

∂zα
dzα, ∂G =

n∑

β=1

∂G

∂zβ
dzβ, ∂∂G =

n∑

δ,β=1

∂2G

∂zδ∂zβ
dzδ ∧ dzβ.

Therefore, in coordinates z = (z1, . . . , zn), we have

∂G ∧ ∂G ∧ ∂∂G =
∑

α,β,γ,δ

(
∂G

∂zα

∂G

∂zβ

∂2G

∂zδ∂zγ

)
dzα ∧ dzβ ∧ dzδ ∧ dzγ . (7)

Now, by making the change of coordinates z = z(u), we obtain

dzα =
n∑

j=1

∂zα
∂u j

du j , dzβ =
n∑

k=1

∂zβ
∂uk

duk,

from which it follows that

dzα ∧ dzβ ∧ dzδ ∧ dzγ =
∑

j,k,
,m

∂zα
∂u j

∂zβ
∂uk

∂zδ
∂u


∂zγ
∂um

du j ∧ duk ∧ du
 ∧ dum .

Hence, in coordinates u = (u1, . . . , un),

∂G∧∂G∧∂∂G =
∑

α,β,γ,δ

⎡

⎣
(

∂G

∂zα

∂G

∂zβ

∂2G

∂zδ∂zγ

)⎛

⎝
∑

j,k,
,m

(
∂zα
∂u j

∂zβ
∂uk

∂zδ
∂u


∂zγ
∂um

)
du j ∧duk∧du
∧dum

⎞

⎠

⎤

⎦ .

From the expression above, combined with Eq. (7), it follows that M ′ is Levi-flat if
and only if M is Levi-flat. This concludes the proof of the Proposition 2.4. ��
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2.1 Complexification

Let F : (Cn, 0) → (R, 0) be a real analytic function at 0 ∈ C
n . The complexification

of F is defined by

FC(z, w) =
∑

μ,ν

Fμ,νz
μwν,

where F(z) = ∑
μ,ν Fμ,νzμzν is a power series of F convergent in a neighborhood of

the origin. We observe that FC is holomorphic at (Cn ×C
n, 0). The complexification

of M is defined as MC = {FC = 0}, and the complexification of the Levi 1-form is
given by

ηC = i
n∑

k=1

(
∂FC
∂zk

dzk − ∂FC
∂wk

dwk

)
.

Given that η is integrable on M∗, it follows that ηC is also integrable on M∗
C
. It’s worth

noting that we can express dFC = α + β and ηC = i(α − β), where

α =
n∑

k=1

∂FC
∂zk

dzk and β =
n∑

k=1

∂FC
∂wk

dwk . (8)

Furthermore, we observe that α and β define the same foliation as ηC on M∗
C
. Thus,

the integrability of ηC is equivalent to

α(z, w) ∧ dα(z, w) ∧ β(z, w) = 0 for all (z, w) ∈ M∗
C
. (9)

This condition will be used later to verify that the real part of a certain family of polar
varieties is not Levi-flat.

3 Proof of Theorem A

Before proving Theorem A, we will make some considerations for the case where
the vector fields G and X are given by G = (za11 , . . . , zann ) and X = (zb11 , . . . , zbnn ),
with ak, bk positive integers such that ak ≥ bk , for k ∈ n. In this case, the Hermitian
product of G and X is given by

〈G(z), X(z)〉 =
n∑

k=1

zakk zbkk

and

F(z) = 2Re〈G(z), X(z)〉 =
n∑

k=1

zakk zbkk + zbkk zakk . (10)
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Note that, if ak = bk for every k ∈ n, then M = {F = 0} is a point. Indeed, if ak = bk
for every k ∈ n, we have

F(z) =
n∑

k=1

2|zk |ak

and consequently, M = {0}. Therefore, in the statement of Theorem A, we do not
consider ak = bk for every k ∈ n.

Regarding the singular set of M , we have the following proposition:

Proposition 3.1 Let G = (za11 , . . . , zann ) and X = (zb11 , . . . , zbnn ), with ak ≥ bk ≥ 1,
and M = {F = 0}, where F(z) = 2Re〈G(z), X(z)〉. Then Sing(M) = {0}.
Proof Taking the partial derivatives of F , we have

∂F =
n∑

k=1

(
akz

(ak−1)
k zbkk + bkz

(bk−1)
k zakk

)
dzk

and

∂F =
n∑

k=1

(
bkz

ak
k z(bk−1)

k + akz
bk
k z(ak−1)

k

)
dzk .

Then dF(z) = ∂F(z) + ∂F(z) = 0 if and only if

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

a1z
(a1−1)
1 zb11 + b1z

(b1−1)
1 za11 = 0

b1z
a1
1 z(b1−1)

1 + a1z
b1
1 z(a1−1)

1 = 0
...

anz
(an−1)
n zbnn + bnz

(bn−1)
n zann = 0

bnz
an
n z(bn−1)

n + anz
bn
n z(an−1)

n = 0

Clearly, 0 ∈ Sing(M). Now let’s denote I := {k ∈ n; ak = bk} and J := {k ∈ n; ak >

bk}. We have n = I ∪ J and I ∩ J = ∅. Consider the following equations from the
system above:

akz
(ak−1)
k zbkk + bkz

(bk−1)
k zakk = 0 (11)

bkz
ak
k z(bk−1)

k + akz
bk
k z(ak−1)

k = 0 (12)

If k ∈ I , the equations above are rewritten as:

2akz
(ak−1)
k zakk = 0

2akz
ak
k z(ak−1)

k = 0

123
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and it follows that z = (z1, . . . , zn) ∈ Sing(M) implies zk = 0, for all k ∈ I . Now,
let’s assume that z = (z1, . . . , zn) ∈ Sing(M) and zk �= 0, for some k ∈ J . From
(11), we obtain

akz
(ak−1)
k zbkk = −bkz

(bk−1)
k zakk ,

that yields,

ak
bk

= −
(
zk
zk

)ck
.

From (12) we get

bkz
ak
k z(bk−1)

k = −akz
bk
k z(ak−1)

k ,

that is,

bk
ak

= −
(
zk
zk

)ck
.

Thus, from (11) and (12), we deduce ak
bk

= bk
ak
, but this is a contradiction, because

ak > bk . Hence, Sing(M) = {0} and M∗ = M − {0}. ��
Now, we prove a technical lemma that will be used in the proof of Theorem A.

Lemma 3.2 Let MC be the complexificationof M =
{
F(z) = 2Re

(
n∑

k=1

zakk zbkk

)
= 0

}
,

n ≥ 3. Consider the functions

g j (z, w) = a jw
(a j−1)
j z

b j
j + b jw

(b j−1)
j z

a j
j

fk(z, w) = akz
(ak−1)
k w

bk
k + bkz

(bk−1)
k w

ak
k

h
(z, w) = a
b


(
z(a
−1)

 w

(b
−1)

 + z(b
−1)


 w
(a
−1)



)
,

where am > bm ≥ 1 are integers for each m = 1, . . . , n, and n ≥ 3. For each triple
( j, k, 
) of indices j, k, 
 = 1, . . . , n; there exists (z0, w0) ∈ MC such that

fk(z0, w0)g j (z0, w0)h
(z0, w0) �= 0.

Proof In this case, the complexification of F is given by

FC(z, w) =
n∑

k=1

zakk w
bk
k + w

ak
k zbkk . (13)

For each triple ( j, k, 
), let’s choose (z0, w0) = (z1, . . . , zn, w1, . . . , wn) satisfying:
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1. z j = zk = z
 = w j = wk = 1,

2. w
 such that wb



 + w
a



 = −4,
3. zm = wm = 0 for the remaining indices.

We observe that (z0, w0) ∈ MC. In fact, we have

FC(z0, w0) = z
a j
j w

b j
j + w

a j
j z

b j
j + zakk w

bk
k + w

ak
k zbkk + za



 w
b



 + w
a



 zb





= 4 + w
b



 + w
a





then FC(z0, w0) = 0 on M∗
C
. From item (3) above, we obtain

w
b
−1

 + w

a
−1

 = − 4

w


.

Furthermore, we have

g j (z0, w0) = a j + b j ,

fk(z0, w0) = ak + bk,

h
(z0, w0) = a
b


(
w

(b
−1)

 + w

(a
−1)



)

= −4a
b


w


.

Hence

fk(z0, w0)g j (z0, w0)h
(z0, w0) = −4a
b


w


(a j + b j )(ak + bk)

�= 0.

��
Now, let’s restate Theorem A for completeness.

Theorem A Let G and X be elements in χ(Cn, 0), n ≥ 2, of the form G(z) =
(za11 , . . . , zann ) and X(z) = (zb11 , . . . , zbnn ), where ak > bk ≥ 1 are positive integers,
for all k = 1, . . . , n. Then M = {F(z) = 2Re(ψG,X (z)) = 0}, i.e.,

M =
{
Re

(
n∑

k=1

zakk z̄bkk

)
= 0

}
.

is nondegenerate at 0 ∈ C
n.
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Proof We divide the proof into two cases n = 2 and n ≥ 3. For n = 2, we examine
the Eq. (9) associated to the complexification of M = {F = 0}, where

F(z) = za11 zb11 + za22 zb22 + za11 zb11 + za22 zb22 . (14)

Note that, the complexification of F is given by

FC(z, w) = za11 w
b1
1 + za22 w

b2
2 + w

a1
1 zb11 + w

a2
2 zb22 (15)

then dFC = α + β, where

α = (a1z
(a1−1)
1 w

b1
1 + b1z

(b1−1)
1 w

a1
1 )dz1 + (a2z

(a2−1)
2 w

b2
2 + b2z

(b2−1)
2 w

a2
2 )dz2,

β = (a1w
(a1−1)
1 zb11 + b1w

(b1−1)
1 za11 )dw1 + (a2w

(a2−1)
2 zb22 + b2w

(b2−1)
2 za22 )dw2.

Now we have

dα = a1b1
(
z(a1−1)
1 w

(b1−1)
1 + z(b1−1)

1 w
(a1−1)
1 )dw1 ∧ dz1

+a2b2(z
(a2−1)
2 w

(b2−1)
2 + z(b2−1)

2 w
(a2−1)
2

)
dw2 ∧ dz2.

We use the following notations

α1 =
(
a1z

(a1−1)
1 w

b1
1 + b1z

(b1−1)
1 w

a1
1

)
,

α2 =
(
a2z

(a2−1)
2 w

b2
2 + b2z

(b2−1)
2 w

a2
2

)
,

β1 =
(
a1w

(a1−1)
1 zb11 + b1w

(b1−1)
1 za11

)
,

β2 =
(
a2w

(a2−1)
2 zb22 + b2w

(b2−1)
2 za22

)
,

g1 = a1b1
(
z(a1−1)
1 w

(b1−1)
1 + z(b1−1)

1 w
(a1−1)
1

)
,

g2 = a2b2
(
z(a2−1)
2 w

(b2−1)
2 + z(b2−1)

2 w
(a2−1)
2

)
.

So, we have α ∧ dα ∧ β = (α1β1g2 + α2β2g1)dz1 ∧ dz2 ∧ dw1 ∧ dw2. Therefore,

α1β1g2 = a2b2
(
a21 + b21

) (
z(a2−1)
2 w

(b2−1)
2 + z(b2−1)

2 w
(a2−1)
2

)
z(a1+b1−1)
1 w

(a1+b1−1)
1

+ a1b1a2b2
(
z(2a1−1)
1 w

(2b1−1)
1 + z(2b1−1)

1 w
(2a1−1)
1

) (
z(a2−1)
2 w

(b2−1)
2 + z(b2−1)

2 w
(a2−1)
2

)
,

α2β2g1 = a1b1
(
a22 + b22

) (
z(a1−1)
1 w

(b1−1)
1 + z(b1−1)

1 w
(a1−1)
1

)
z(a2+b2−1)
2 w

(a2+b2−1)
2

+ a1b1a2b2
(
z(2a2−1)
2 w

(2b2−1)
2 + z(2b2−1)

2 w
(2a2−1)
2

) (
z(a1−1)
1 w

(b1−1)
1 + z(b1−1)

1 w
(a1−1)
1

)
.
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Now, using the expression (15), we obtain the following relationship on M∗
C
:

(
z(a2−1)
2 w

(b2−1)
2 + z(b2−1)

2 w
(a2−1)
2

)
= − z1w1

z2w2

(
z(a1−1)
1 w

(b1−1)
1 + z(b1−1)

1 w
(a1−1)
1

)
.

With this, we can rewrite

α1β1g2 =
(
z(a1−1)
1 w

(b1−1)
1 + z(b1−1)

1 w
(a1−1)
1

z2w2

)[
−a2b2

(
a21 + b21

)
z(a1+b1)
1 w

(a1+b1)
1

− a1b1a2b2
(
z2a11 w

2b1
1 + z2b11 w

2a1
1

)]
,

α2β2g1 =
(
z(a1−1)
1 w

(b1−1)
1 + z(b1−1)

1 w
(a1−1)
1

z2w2

)[
a1b1

(
a22 + b22

)
z(a2+b2)
2 w

(a2+b2)
2

+ a1b1a2b2
(
z2a22 w

2b2
2 + z2b22 w

2a2
2

)]
.

In this way, we get

α2β2g1 + α1β1g2 =
(
z(a1−1)
1 w

(b1−1)
1 + z(b1−1)

1 w
(a1−1)
1

z2w2

)[
a1b1

(
a22 + b22

)
z(a2+b2)
2 w

(a2+b2)
2

+ a1b1a2b2
(
z2a22 w

2b2
2 + z2b22 w

2a2
2 − z2a11 w

2b1
1 + z2b11 w

2a1
1

)

− a2b2
(
a21 + b21

)
z(a1+b1)
1 w

(a1+b1)
1

]
.

Again using (15), we obtain

(
z2a22 w

2b2
2 + z2b22 w

2a2
2 − z2a11 w

2b1
1 − z2b11 w

2a1
1

)
= 2

(
z(a1+b1)
1 w

(a1+b1)
1 − z(a2+b2)

2 w
(a2+b2)
2

)
.

Hence

α2β2g1 + α1β1g2 =
(
z(a1−1)
1 w

(b1−1)
1 + z(b1−1)

1 w
(a1−1)
1

z2w2

)[
a1b1

(
a22 + b22

)
z(a2+b2)
2 w

(a2+b2)
2

+ 2a1b1a2b2
(
z(a1+b1)
1 w

(a1+b1)
1 − z(a2+b2)

2 w
(a2+b2)
2

)

− a2b2
(
a21 + b21

)
z(a1+b1)
1 w

(a1+b1)
1

]
,

that is,

α2β2g1 + α1β1g2 =
(
z(a1−1)
1 w

(b1−1)
1 + z(b1−1)

1 w
(a1−1)
1

z2w2

)[
a1b1(a2 − b2)

2
(
z(a2+b2)
2 w

(a2+b2)
2

)

− a2b2(a1 − b1)
2
(
z(a1+b1)
1 w

(a1+b1)
1

)]
.
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Therefore, by (9), we conclude that η|M∗ is integrable if and only if a1b1(a2−b2)2 = 0
and a2b2(a1 − b1)2 = 0, that is, a2 = b2 and a1 = b1. This completes the proof for
n = 2.

Now, we consider n ≥ 3. With the notation introduced in Lemma 3.2, we can
rewrite

α =
n∑

k=1

fkdzk, β =
n∑

k=1

gkdwk .

Then dα = ∑n

=1 h
dw
 ∧ dz
. Indeed, we have

dα =
n∑

k,
=1

∂ fk
∂z


dz
 ∧ dzk +
n∑

k,
=1

∂ fk
∂w


dw
 ∧ dzk .

Furthermore, we have the following relationships:

∂ fk
∂z


= 0, for k �= 
,

∂ fk
∂w


= 0, for k �= 
,

∂ f

∂w


= a
b


(
z(a
−1)

 w

(b
−1)

 + z(b
−1)


 w
(a
−1)



)
.

Hence, it follows that

dα =
n∑


=1

a
b


(
z(a
−1)

 w

(b
−1)

 + z(b
−1)


 w
(a
−1)



)
dw
 ∧ dz
 =

n∑


=1

h
 dw
 ∧ dz
.

Thus, we have

α ∧ dα ∧ β =
∑


 �= j,k

fkg j h
 dzk ∧ dw
 ∧ dz
 ∧ dw j . (16)

We observe that for j �= k, the coefficient of the term dzk ∧ dw
 ∧ dz
 ∧ dw j in
4-form α ∧ dα ∧ β is exactly fkg j h
. In other words, if j �= k,

fkg j h
 dzk ∧ dw
 ∧ dz
 ∧ dw j

is the only term in Eq. (16) that is of the form ρ dzk ∧dw
 ∧dz
 ∧dw j . Thus, given a
triple ( j, k, 
) of pairwise distinct indices, by Lemma (3.2) there exists (z0, w0) ∈ MC

such that

α(z0, w0) ∧ dα(z0, w0) ∧ β(z0, w0) �= 0.

Therefore, M is not Levi-flat, and we conclude the proof of Theorem A. ��
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4 The Case of Vector FieldsG = (za11 , za22 ) and X = (z
b�1
�1

, z
b�2
�2

)

In this section, we will explore some results regarding the singular set of the hyper-
surface. M = {F(z) = 0}, where F(z) = 2Re〈G(z), X(z)〉, G = (za11 , za22 ), and

X = (z
bσ1
σ1 , z

bσ2
σ2 ), where σ ∈ Sn is a permutation of the set {1, . . . , n}. Let’s start by

considering the particular case where G = (za1, z
b
2) and X = (zb2, z

a
1) with a, b being

positive integers. In this case, the Hermitian product of G with X is given by

〈G, X〉 = za1z
b
2 + za1z

b
2.

We observe that 〈G, X〉 ∈ R. Therefore, let’s consider

M = {F(z1, z2) = za1z
b
2 + za1z

b
2 = 0}. (17)

We observe that for these fields, the map ψG,X does not satisfy the Milnor condition,
as stated in theorem (Ruas et al. 2002, Theorem 2.7). In this case, the hypersurface M
will be Levi-flat, as we will show in Theorem B. First, we will verify the following
result regarding the singular set of M .

Proposition 4.1 Let M be the hypersurface described in Eq. (17). Then we have the
following options for Sing(M):

1. Sing(M) = {0}, if b = a = 1,
2. Sing(M) = {z1 = 0}, if b = 1 and a > 1,
3. Sing(M) = {z2 = 0}, if a = 1 and b > 1,
4. Sing(M) = {z1 = 0} ∪ {z2 = 0}, if a, b > 1.

Proof The partial derivatives of F are given by

∂F = az(a−1)
1 zb2dz1 + bza1z

(b−1)
2 dz2,

∂F = az(a−1)
1 zb2dz1 + bza1z

(b−1)
2 dz2.

Thus, (z1, z2) ∈ Sing(M) if and only if the following equations are satisfied:

az(a−1)
1 zb2 = 0

bza1z
(b−1)
2 = 0

az(a−1)
1 zb2 = 0

bza1z
(b−1)
2 = 0

If a, b > 1, it follows that Sing(M) = {z1 = 0} ∪ {z2 = 0}. If a = 1 or b = 1,
we will have Sing(M) = {z2 = 0} or Sing(M) = {z1 = 0}, respectively. Finally, if
a = b = 1, we obtain Sing(M) = {0}. ��

Let’s restate Theorem B for completeness.
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Theorem B Let G and X be elements in χ(Cn, 0), n ≥ 2, of the form G(z) = (za1, z
b
2)

and X(z) = (zb2, z
a
1)with a, b positive integers. Then M = {F(z) = 2Re(ψG,X (z)) =

0}, i.e.,

M =
{
za1 z̄

b
2 + zb2 z̄

a
1 = 0

}

is a Levi-flat hypersurface at 0 ∈ C
2.

Proof In this case, F is given by F(z) = za1z
b
2 + za1z

b
2 and its complexification will be

given by
FC(z, w) = za1w

b
2 + wa

1 z
b
2. (18)

Therefore, we have on M∗
C

α = az(a−1)
1 wb

2dz1 + bwa
1 z

(b−1)
2 dz2,

β = aw
(a−1)
1 zb2dw1 + bza1w

(b−1)
2 dw2,

dα = abz(a−1)
1 w

(b−1)
2 dw2 ∧ dz1 + abw(a−1)

1 z(b−1)
2 dw1 ∧ dz2.

Hence

α ∧ dα ∧ β =
(
a2b2z(2a−1)

1 w
(2b−1)
2 w

(a−1)
1 z(b−1)

2

+ a2b2w(2a−1)
1 z(2b−1)

2 z(a−1)
1 w

(b−1)
2

)
dz1 ∧ dw1 ∧ dz2 ∧ dw2.

From (18), we get

z(a−1)
1 w

(b−1)
2 = −

(
w1z2
z1w2

)
w

(a−1)
1 z(b−1)

2 ,

which implies that α ∧ dα ∧ β is equal to

[
a2b2z(2a−1)

1 w
(2b−1)
2 w

(a−1)
1 z(b−1)

2

− a2b2
(

w1z2
z1w2

)
w

(2a−1)
1 z(2b−1)

2 w
(a−1)
1 z(b−1)

2 )dz1

]
dz1 ∧ dw1 ∧ dz2 ∧ dw2,

that is,

α ∧ dα ∧ β =
[
a2b2

w
(a−1)
1 z(b−1)

2

z1w2

(
z2a1 w2b

2 − w2a
1 z2b2

)]
dz1 ∧ dw1 ∧ dz2 ∧ dw2.

Again, from (18), we have za1w
b
2 = −wa

1 z
b
2, which yields z2a1 w2b

2 = w2a
1 z2b2 in MC.

Thus, M is Levi-flat. ��
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Now, we consider

M = {F(z) = Re(za11 z̄b22 + za22 z̄b11 ) = 0} (19)

In Proposition 4.1, we saw that Sing(M) = {z1 = 0} ∪ {z2 = 0} in the case where
a1 = b1 > 1 and a2 = b2 > 1. Now, let’s verify that this also occurs in the case where
a1 > b1 > 1 and a2 > b2 > 1 (even without the assumption a1b2 = a2b1).

Proposition 4.2 Let M be the hypersurface described in Eq. (19). Then, we have the
following options for Sing(M):

1. Sing(M) = {0}, if b1 = b2 = 1;
2. Sing(M) = {z1 = 0}, if b2 = 1 and b1 > 1;
3. Sing(M) = {z2 = 0}, if b1 = 1 and b2 > 1;
4. Sing(M) = {z1 = 0} ∪ {z2 = 0} if b1, b2 > 1.

Proof We observe that F is given by

F(z) = za11 zb22 + za11 zb22 + za22 zb11 + za22 zb11 ,

and its partial derivatives are given by

∂F = 1

2

[(
a1z

(a1−1)
1 zb22 + b1z

(b1−1)
1 za22

)
dz1 +

(
a2z

(a2−1)
2 zb11 + b2z

(b2−1)
2 za11

)
dz2

]
,

∂F = 1

2

[(
a1z

(a1−1)
1 zb22 + b1z

(b1−1)
1 za22

)
dz1 +

(
a2z

(a2−1)
2 zb11 + b2z

(b2−1)
2 za11

)
dz2

]
.

Therefore, (z1, z2) ∈ M belongs to the singular set if it satisfies the equations

a1z
(a1−1)
1 zb22 + b1z

(b1−1)
1 za22 = 0 (20)

a1z
(a1−1)
1 zb22 + b1z

(b1−1)
1 za22 = 0 (21)

a2z
(a2−1)
2 zb11 + b2z

(b2−1)
2 za11 = 0 (22)

a2z
(a2−1)
2 zb11 + b2z

(b2−1)
2 za11 = 0 (23)

Let’s assume that b1, b2 > 1. Then we see that {z1 = 0}∪ {z2 = 0} ⊂ Sing(M). Now,
suppose by contradiction that (z1, z2) ∈ Sing(M) with z1 �= 0 and z2 �= 0. From Eq.
(20), we obtain

a1
b1

= − z(b1−1)
1 za22
z(a1−1)
1 zb22

= − z(a2−b2)
2

z(a1−b1)
1

,

and from Eq. (23), we obtain

a2
b2

= − z(b2−1)
2 za11
z(a2−1)
2 zb11

= − z(a1−b1)
1

z(a2−b2)
2

,
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which implies

a1
b1

= b2
a2

,

In otherwords, a1a2 = b1b2. This is absurd, since a1 > b1 and a2 > b2 by assumption.
We conclude that Sing(M) = {z1 = 0} ∪ {z2 = 0}, if b1, b2 > 1. Now let’s assume
b1 = 1 and b2 > 1. Then, the equations for the singular set are given by

a1z
(a1−1)
1 zb22 + za22 = 0 (24)

a1z
(a1−1)
1 zb22 + za22 = 0 (25)

a2z
(a2−1)
2 z1 + b2z

(b2−1)
2 za11 = 0 (26)

a2z
(a2−1)
2 z1 + b2z

(b2−1)
2 za11 = 0 (27)

Clearly, {z2 = 0} ⊂ Sing(M). Now suppose z2 �= 0, then we necessarily have z1 �= 0
by Eq. (24). Thus, it follows from Eqs. (24) and (27):

a1 = − z(a2−b2)
2

z(a1−1)
1

,

a2
b2

= − z(a1−1)
1

z(a2−b2)
2

,

which implies a1 = b2
a2
, that is, a1a2 = b2. However, this contradicts a2 > b2 and

a1 > 1. Therefore, Sing(M) = {z2 = 0} if b1 = 1 and b2 > 1. In a similar way we
obtain Sing(M) = {z1 = 0} if b2 = 1 and b1 > 1, and we also obtain Sing(M) = {0}
if b1 = b2 = 1. ��

To prove Theorem C, we will use the following lemma

Lemma 4.3 Let MC be the complexification of

M = {F(z) = za11 zb22 + za11 zb22 + za22 zb11 + za22 zb11 = 0},

we have α ∧ dα ∧ β = h dz1 ∧ dw1 ∧ dz2 ∧ dw2, where

h = c(a1a2 + b1b1 − 2c)
(
za1+b1
1 w

a2+b2
2

− z(a2+b2)
2 w

(a1+b1)
1

)( z(a2−1)
2 w

(b1−1)
1 + z(b2−1)

2 w
(a1−1)
1

z1w2

)

and c = a1b2 = a2b1.
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Proof The complexification of F is given by

FC = za11 w
b2
2 + w

a1
1 zb22 + za22 w

b1
1 + w

a2
2 zb11 .

Therefore, we have

α =
(
a1z

(a1−1)
1 w

b2
2 + b1z

(b1−1)
1 w

a2
2

)
dz1 +

(
a2z

(a2−1)
2 w

b1
1 + b2z

(b2−1)
2 w

a1
1

)
dz2,

β =
(
a1w

(a1−1)
1 zb22 + b1w

(b1−1)
1 za22

)
dw1 +

(
a2w

(a2−1)
2 zb11 + b2w

(b2−1)
2 za11

)
dw2,

dα =
(
a1b2z

(a1−1)
1 w

(b2−1)
2 + a2b1z

(b1−1)
1 w

(a2−1)
2

)
dw2 ∧ dz1

+
(
a2b1z

(a2−1)
2 w

(b1−1)
1 + a1b2z

(b2−1)
2 w

(a1−1)
1

)
dw1 ∧ dz2.

We will use the notations

α1 = a1z
(a1−1)
1 w

b2
2 + b1z

(b1−1)
1 w

a2
2 ;

α2 = a2w
b1
1 z(a2−1)

2 + b2w
a1
1 z(b2−1)

2 ;
β1 = a1w

(a1−1)
1 zb22 + b1w

(b1−1)
1 za22 ;

β2 = a2z
b1
1 w

(a2−1)
2 + b2z

a1
1 w

(b2−1)
2 ;

g1 = a1b2z
(a1−1)
1 w

(b2−1)
2 + a2b1z

(b1−1)
1 w

(a2−1)
2 ;

g2 = a2b1w
(b1−1)
1 z(a2−1)

2 + a1b2w
(a1−1)
1 z(b2−1)

2 .

so that we can write:

α = α1dz1 + α2dz2;
β = β1dw1 + β2dw2;

dα = g1dw2 ∧ dz1 + g2dw1 ∧ dz2.

With these notations, we get

α ∧ dα ∧ β = (α1β2g2 + α2β1g1)dz1 ∧ dw1 ∧ dz2 ∧ dw2.

In MC, we have
za11 w

b2
2 + zb11 w

a2
2 = −(w

a1
1 zb22 + w

b1
1 za22 ), (28)

which implies on M∗
C

z(a1−1)
1 w

(b2−1)
2 + z(b1−1)

1 w
(a2−1)
2 = −

(
w1z2
z1w2

)
(w

(a1−1)
1 z(b2−1)

2 + w
(b1−1)
1 z(a2−1)

2 ).

Taking c = a1b2 = b1a2, we have

g1 = c(z(a1−1)
1 w

(b2−1)
2 + z(b1−1)

1 w
(a2−1)
2 ) = −c

(
w1z2
z1w2

)
(w

(a1−1)
1 z(b2−1)

2 + w
(b1−1)
1 z(a2−1)

2 ),
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and it follows that

g1 = −
(

w1z2
z1w2

)
g2.

Therefore, on M∗
C
, we obtain

α1β2g2 + α2β1g1 = α1β2g2 − α2β1

(
w1z2
z1w2

)
g2 = g2

z1w2
(z1w2α1β2 − w1z2α2β1),

thus

α ∧ dα ∧ β =
[

g2
z1w2

(z1w2α1β2 − w1z2α2β1)

]
dz1 ∧ dw1 ∧ dz2 ∧ dw2. (29)

Now, we observe

α1β2 =
(
a1z

(a1−1)
1 w

b2
2 + b1z

(b1−1)
1 w

a2
2

) (
a2z

b1
1 w

(a2−1)
2 + b2z

a1
1 w

(b2−1)
2

)

= (a1a2 + b1b2) z
(a1+b1−1)
1 w

(a2+b2−1)
2 + c

(
z(2a1−1)
1 w

(2b2−1)
2 + z(2b1−1)

1 w
(2a2−1)
2

)
,

which implies

z1w2α1β2 = (a1a2 + b1b2) z
(a1+b1)
1 w

(a2+b2)
2 + c

(
z2a11 w

2b2
2 + z2b11 w

2a2
2

)
.

Similarly, we obtain

w1z2α2β1 = (a1a2 + b1b2)w
(a1+b1)
1 z(a2+b2)

2 + c(w2b1
1 z2a22 + w

2a1
1 z2b22 ),

so that z1w2α1β2 − w1z2α2β1 is equal to

(a1a2 + b1b2)
(
z(a1+b1)
1 w

(a2+b2)
2 − w

(a1+b1)
1 z(a2+b2)

2

)

+ c
(
z2a11 w

2b2
2 + z2b11 w

2a2
2 − w

2b1
1 z2a22 − w

2a1
1 z2b22

)
.

Again, from Eq. (28), on M∗
C
we have:

(za11 w
b2
2 + zb11 w

a2
2 )2 = (w

a1
1 zb22 + w

b1
1 za22 )2,

that is,

2(w(a1+b1)
1 z(a2+b2)2 − z(a1+b1)1 w

(a2+b2)
2 ) = z2a11 w

2b2
2 +z2b11 w

2a2
2 −w

2b1
1 z2a22 −w

2a1
1 z2b22 ,

which implies that z1w2α1β2 − w1z2α2β1 is equal to

(a1a2 + b1b2)
(
z(a1+b1)
1 w

(a2+b2)
2 − w

(a1+b1)
1 z(a2+b2)

2

)

+2c
(
w

(a1+b1)
1 z(a2+b2)

2 − z(a1+b1)
1 w

(a2+b2)
2

)
.
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So, z1w2α1β2 − w1z2α2β1 is equal to

(a1a2 + b1b2 − 2c)
(
z(a1+b1)
1 w

(a2+b2)
2 − w

(a1+b1)
1 z(a2+b2)

2

)
.

Finally, we conclude

g2
z1w2

(z1w2α1β2 − w1z2α2β1) = g2
z1w2

(a1a2 + b1b2 − 2c)
(
z(a1+b1)
1 w

(a2+b2)
2 − w

(a1+b1)
1 z(a2+b2)

2

)

and the lemma follows by substituting the above expression and the expression for g2
into Eq. (29). ��

Now, we prove Theorem C.

Theorem C Let G and X be elements in χ(Cn, 0), n ≥ 2, of the form G = (za11 , za22 )

and X = (zb22 , zb11 ), where a1 ≥ b1 and a2 ≥ b2 are positive integers satisfying
a1b2 = a2b1. Then M = {F(z) = 2Re(ψG,X (z)) = 0}, i.e.,

M =
{
Re

(
za11 z̄b22 + za22 z̄b11

)
= 0

}

is Levi-flat if, and only if, a1 = b1 and a2 = b2.

Proof From Lemma 4.3, we have α(z, w) ∧ β(z, w) ∧ dα(z, w) = 0 for all (z, w) ∈
MC if, and only if, a1a2 + b1b2 − 2c = 0, i.e., 2c = a1a2 + b1b2. Using the fact
c = a1b2 = b1a2, it follows that

2c=a1a2+b1b2 ⇐⇒ a1b2+b1a2=a1a2+b1b2 ⇐⇒ b1(a2−b2)=a1(a2 − b2).

Therefore, MC is Levi-flat if, and only if, a1 = b1 and a2 = b2. This concludes the
proof of Theorem C. ��
Remark 4.1 From the above result, we conclude that for n = 2, the hypersurface M
will not Levi-flat precisely when the map ψG,X satisfies the Milnor condition at the
origin.

5 Proof of TheoremD

Now, we study the case with permutations in higher dimensions. Consider σ ∈ Sn
a permutation on the set n := {1, . . . , n}, and let’s use the notation σk := σ(k). We
employ a transversality argument, along with the dimension 2 case (see Theorem C),
to obtain the following result:

Theorem D Let G and X be elements in χ(Cn, 0), n ≥ 2, of the form G =
(za11 , . . . , zann ) and X = (z

bσ1
σ1 , . . . , z

bσn
σn ), where ak ≥ bk are positive integers. Let
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us assume that for some 
 ∈ n, the integers a
, b
, aσ

, bσ


satisfy the following con-
ditions: a
 > b
 and a
bσ


= b
aσ

. Then, M = {F(z) = 2Re(ψG,X (z)) = 0},

i.e.,

M =
{
Re

(
n∑

k=1

zakk z̄
bσk
σk

)
= 0

}
.

is nondegenerate at 0 ∈ C
n.

Proof Let’s assume by contradiction that M is Levi-flat. Therefore, the regular part
M∗ is foliated by complex submanifolds of (complex) dimension n− 1. Thus, we can
choose i : C2 ↪→ C

n to be a transversal embedding to M (see Cerveau and Lins-Neto
2011, Corollary 3.3), so that the regular part of i−1(M) is also foliated by complex
submanifolds of dimension 1 (Riemann surfaces). Without loss of generality, we can
assume that σ(1) = 2 and that a1, b1, a2, b2 are the integers satisfying the conditions
in the statement. Making a change of coordinates and using the fact that the Levi-flat
property is invariant under biholomorphisms (Proposition 2.4), we can assume that
the embedding i : C2 → C

n is given by i : (z1, z2) �→ (z1, z2, 0, . . . , 0).We observe

i−1(M) = {(z1, z2) ∈ C
2 : za11 zb22 + za11 zb22 + za22 zb11 + za22 zb11 = 0}.

But by Theorem C, i−1(M) does not have the regular part foliated by complex sub-
manifolds. Therefore, M is not Levi-flat. ��

6 Examples

In this section, we will explore examples where the fields G and X do not satisfy the
Milnor condition. In these examples, our hypersurfaces are all Levi-flat.

Example 6.1 Given the Pham–Brieskorn polynomial f : C2 → C defined by f (z) =
z p1 + zq2 , where p, q > 2. Consider the holomorphic vector field

G(z) =
(

∂ f (z)

∂z2
,−∂ f (z)

∂z1

)
=
(
qz(q−1)

2 ,−pz(p−1)
1

)

whose solutions represent the fibers of f . Also, take the vector field X = (a1, a2).
Thus, the Hermitian product of G and X is given by

�G,X (z) = 〈G(z), X(z)〉 = a1qz
(q−1)
2 − a2 pz

(p−1)
1 .

Clearly, �G,X does not satisfy the Milnor fibration condition at the origin. Now we
take

M = {F(z) = 2Re�G,X (z) = 0}.

Since �G,X is a holomorphic function, then M is Levi-flat.
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Example 6.2 Let G = (z1, i z2, (−1− i)z3) and X = (z1, z2, z3). According to Seade
(1997, Theorem 1), ψG,X does not satisfy the Milnor fibration condition at the origin.
The Hermitian product of G and X is given by

〈G, X〉 = z1z1 + i z2z2 + (−1 − i)z3z3.

Consider M = {F(z) = 2Re 〈G(z), X(z)〉 = z1z1 − z3z3 = 0}. Let’s us verify that
M is Levi-flat. First, we note that F(z) = z1z1 − z3z3, and the partial derivatives of
F are given by

∂F = z1dz1 − z3dz3,

∂F = z1dz1 − z3dz3.

Then, Sing(M) = {(0, z2, 0) ∈ C
3 : z2 ∈ C}. Clearly, dimR Sing(M) = 2.Moreover,

M∗ = {(z1, z2, z3) ∈ C
3 : z1z1 − z3z3 = 0, z1 �= 0 and z3 �= 0}.

We have ∂∂F = dz1 ∧ dz1 − dz3 ∧ dz3, and

∂F ∧ ∂F = z1z1dz1 ∧ dz1 − z1z3dz1 ∧ dz3 − z3z1dz3 ∧ dz1 + z3z3dz3 ∧ dz3,

that yields ∂F ∧ ∂F ∧ ∂∂F = (z3z3 − z1z1)dz1 ∧ dz1 ∧ dz3 ∧ dz3. Thus, ∂F(p) ∧
∂F(p) ∧ ∂∂F(p) = 0 for all p ∈ M and therefore, M is Levi-flat.

Example 6.3 Let G(z) = (z1, z2) and X(z) = (−i z2, i z1). Then

M = {F(z) = 2Re 〈G(z), X(z)〉 = i(z2z1 − z1z2) = 0}

is clearly Levi-flat whose singular set is Sing(M) = {0}.
In general, when G(z) = (z1, z2) is the radial vector field, X = (λ1z1, λ2z2), and if
Re(λk) �= 0 for k = 1, 2, then the singular set of M = {2Re 〈G(z), X(z)〉 = 0} is just
the origin 0 ∈ C

2, and M is Levi-flat. However, in this case, the map ψG,X also does
not satisfy the Milnor fibration condition at the origin, see Seade (1996, Example 3.4).
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