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Abstract

Let G and X be germs of holomorphic vector fields at 0 € C". Consider the real
analytic map ¥ x : C* — C defined by V¢ x(z) = (G(z), X(2)), where (-, )
represents the usual Hermitian product. In this paper, we investigate the following
question: under which conditions on the germs of holomorphic vector fields G and X
is the real analytic hypersurface M = {F(z) = 2Re(¥/¢,x(z)) = 0} Levi-flat? This
problem was posed by Maria A. Soares Ruas.
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1 Introduction and Statement of Results

Let M be a real analytic hypersurface at the origin 0 € C", n > 2, defined by the
equation F(z1,...,2zn) = 0, where F is a real analytic function vanishing at 0. We
say that M is nondegenerate if the Levi form

) ) *F
LF(z,2) = Z gaﬁzazﬁ’ Sap = <3Z“3Zﬁ>o .
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is nondegenerate at 0. Otherwise, we say that M is Levi-flat. The purpose of this paper
is to study the degeneracy of the Levi form of real analytic hypersurfaces obtained from
real singularities with a Milnor fibration. More precisely, Milnor proved in Milnor
(1968, Theorem 11.2) that if f : (R",0) — (R”,0), n > p, is a real analytic map
whose derivative Df has rank p on a punctured neighborhood of 0 € R”, then, for
every sufficiently small sphere S¢ C R”, the mapping

U f Se — Ng — sP7! (2)

Zm

is alocally trivial fibration, where K = f~!(0) NS, is the singularity link, and N is a
tubular neighborhood of K in S. The map v can always be extended to S — K as the
projection of a fibration, but this extension is not necessarily as L Follows Ruas et

Al
al. (2002, Definition 1.1), we will say that f : (R", 0) — (R?,0),n > p, satisfies the

Milnor condition at O if Df has rank p on a punctured neighborhood of 0. When f
satisfies the Milnor condition at 0, and furthermore, the map L :Se — K — Sr!

A1

is a fibration for every sufficiently small sphere S¢ C R”, we say that f satisfies the
strong Milnor condition at 0, see for instance (Ruas et al. 2002, Definition 2.5). Maps
of this type induce an open book decomposition on the sphere S¢. Milnor pointed out
in his book that is difficult to find examples satisfying the strong Milnor condition, (see
Milnor 1968, p. 100). In Seade (1997) and Seade (1996), Seade presented a method
for constructing families of nontrivial maps f : R¥ — R? that satisfy the strong
Milnor condition at 0. This construction is given as follows: let x (C", 0) denote the
space of all germs of holomorphic vector fields at 0 € C", and let G, X be elements
in x (C", 0). Consider the real analytic map

Ve.x:C"=R” - C=R?

defined by V¢ x(2) = (G(z), X(2)), where

(G(2), X)) =Y Gi(2) Xi(2), 3)

i=1

is the usual Hermitian product. Note that the argument of i (G(z), X (z)) is the angle
by which we rotate the field G so that it becomes orthogonal to the field X. Thus, the
real analytic variety w(_;’lx (0), called the polar variety of G and X, is the set of points
where G and X are orthogonal. Consequently, on the polar variety, the holomorphic
foliations defined by the fields G and X are transversal, and their intersection gives
rise to a foliation by real curves in 1//5’1X (0). In the particular case where X is the
gradient field of a real analytic function f : R*?* — R, the polar variety is the set of
points where the foliations defined by the field G and the level curves of f are tangent.
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Furthermore, ¥ 1X (0) is a complete intersection defined by the equations

Re (G(z), X(2)) =1Im (G(z2), X (2)) =

In Seade (1997), Seade proved that if X = (z1, ..., z,) is the radial field and G =

(Mz(', ..., Anzn"), then Y x satisfies the Milnor condition for any A, € C* and
integers a; > 1. On the other hand, given o € S, a permutation of the set n :=
{1,...,n}, families of vector fields of the form G = (Az5., ..., AnZo') and X =
(,3111171 ey ﬁnzﬁ") that satisfy the Milnor condition or the strong Milnor condition at

the origin were classified by Ruas—Seade—Verjovsky (Ruas et al. 2002, Theorem 2.7).
In this paper, we consider M = {F(z) = 0} defined by

F(z) :=2Re(¥¢,x(2) = V¥6,x(2) + ¥, x(2), 4)

where G, X € x(C", 0). A simple example in (C2, 0) is when we consider G (z1, z2) =
(z1,22) and X = (z2, —z1). Then

= {F(z1,22) = 2Re(Y5,x(2)) = 2122 — 2221 = 0} (5)

is a real analytic Levi-flat hypersurface at 0 € C? whose Levi foliation admits as
leaves the complex curves z; = ¢ - z2, where ¢ € C (see Burns and Gong 2003, p.
51). Motivated by this, M.A. Soares Ruas have posed the following problem:

Problem 1 Under which conditions on the germs of holomorphic vector fields G and
X is the real analytic hypersurface M = {F (z) = 2Re(Y g x(z)) = 0} Levi-flat?

In order to answer Problem 1, we consider the vector fields G and X explored in Ruas
et al. (2002, pp. 203-211). More specifically, our first result is as follows:

Theorem A Let G and X be elements in x(C",0), n >

2, of the form G(z) =
(zcl”, oy and X(z) = (zlfl, e, zZ”), where ar > by > 1 are positive integers,
forallk =1,...,n. Then M = {F(z) = 2Re(¥¢.x(z)) =0}, i.e.,

_ {Re (Zzgszg) _ }

is nondegenerate at 0 € C".

Our second and third theorems are motivated by the example given in (5):

Theorem B Let G and X be elements in x (C",0), n > 2, of the form G (z) = (2§, 112’)
and X (z) = (zé’, z{) with a, b positive integers. Then M = {F (z) = 2Re(¥G,x (2)) =
0}, i.e.,

M = {Re (242 + 2421 ) = 0}

is a Levi-flat hypersurface at 0 € C2.
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Theorem C Let G and X be elements in x (C",0), n > 2, of the form G = (Z(f1 , Z(zlz)
and X = (zgz, zif'), where a; > by and ay > by are positive integers satisfying
aiby = axby. Then M = {F (z) = 2Re(V¥¢.x(z)) = 0}, i.e.,

M ={Re (12 + 222 = o)
is Levi-flat if, and only if, a; = by and ay = b.

Finally, we consider a family of vector fields studied in Ruas et al. (2002, Theorem
2.1).

TheoremD Let G and X be elements in x(C",0), n > 2, of the form G =
b - ..
(z?l, oz and X = (zml, R zgn” ), where ay > by are positive integers. Let

us assume that for some £ € n, the integers ay, by, as,, bs, satisfy the following con-
ditions: ag > by and a¢bs, = byas,. Then, M = {F(z) = 2Re(¥g x(z)) = 0},

ie.,
~ b
M = iRe (Zzzkz(,?) = O} .
k=1

is nondegenerate at 0 € C".

Following our results it seems that the property of M being Levi-flat is related to the
property that the function g, x does not satisfy the Milnor condition, see Ruas et al.
(2002, Theorem 2.1).

The paper is organized as follows: In Sect. 2, we introduce the concept of real
analytic Levi-flat hypersurfaces at (C", 0), shedding light on essential properties that
will play a pivotal role throughout the paper. Section 3 is dedicated to proving Theorem
A. In Sect. 4, we establish the validity of Theorems B and C, while Sect. 5 focuses on
the proof of Theorem D. Finally, in Sect. 6, we provide examples for further illustration.

2 Levi-Flat Hypersurfaces

In this section, we will discuss real analytic Levi-flat hypersurfaces at (C", 0). These
are real analytic hypersurfaces whose regular part is foliated by immersed complex
submanifolds of codimension one. Levi-flat hypersurfaces naturally arise in the theory
of foliations as invariant subsets. In general, germs of codimension one holomorphic
foliations that leave invariant hypersurfaces of this type admit a meromorphic first
integral (see Cerveau and Lins-Neto 2011, Theorem 1). On the other hand, there are
examples of holomorphic webs that leave invariant Levi-flat hypersurfaces (see Da
Silva and Fernandez-Pérez 2023; Ferndndez-Pérez 2013; Shafikov and Sukhov 2015).
Levi-flat hypersurfaces are a central focus of the development in this paper.

Let M = {F(z) = 0} be a germ of real analytic hypersurface at 0 € C", where
F : (C",0) — (R, 0) is a real analytic function at 0 € C". The singular set of M is
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denoted by Sing(M) and defined by
Sing(M) := {F(z) = 0} N{dF(z) = 0}.

We define the regular part of M as M* := {F(z) = O}\{d F(z) = 0}. In M*, the Levi
distribution is given by L, := Ker(dF (p)) C T,M*, where p € M*. Note that L,
is the unique complex hyperplane contained in 7, M*.

Definition 2.1 We say that M is Levi-flat if the Levi distribution on M* is integrable.
In this case, the Levi distribution induces a foliation on M* called the Levi foliation,
denoted by L.

The Levi distribution can also be given by the 1-form n = i(3F — dF) called
the Levi I-form. Thus, the integrability of the Levi distribution is equivalent to the
integrability of the form 7 in the sense of Frobenius, that is, 7 is integrable if and only
if n Adnly=0.

The simplest example of a Levi-flat hypersurface is given below.

Example 2.1 In C" with coordinates (zy, ..., z,), consider M = {Im(z,) = 0}. Then
M is a smooth Levi-flat real analytic hypersurface, meaning Sing(M) = ¢. The Levi
distribution on M is given by L, = Ker(dz,(p)), p € M*. The leaves of the Levi
foliation on M are given by {z, = ¢} where ¢ € R.

Let’s consider a slightly more elaborate example given by Brunella (2007, Example
1.2).

Example 2.2 With coordinates (z, w) in CZ suchthat 7 = x + iyand w = s + it, the
real analytic hypersurface M given by

M ={(z w) € C: 1> =4(y* +5)y%)
is Levi-flat, with singular set Sing(M) = {t = y = 0}. The leaves of the Levi foliation
on M* are givenby L. = {w = (z + ¢)? : Im(z) # 0} with ¢ € R.

The next result provides the local form of a smooth Levi-flat hypersurface. Essen-
tially, it tells us that, at regular points, every Levi-flat hypersurface is locally similar
to the Example 2.1.

Theorem 2.1 [Cartan’s theorem (Cartan 1933)] Let M C C”" be a real analytic Levi-
flat hypersurface. In a neighborhood of each point p € M*, there exists a holomorphic
coordinate system z = (21, ..., Zn) such that M = {Im(z,) = 0}.

A criterion for the integrability of the Levi form is given in the next proposition.

Proposition 2.2 Let M = {F(z) = 0} be a germ of a real analytic hypersurface at
0 € C". Then, M is Levi-flat if and only if dF (p) A 0F (p) A d00F (p) = 0 for all
pEM.
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Proof Letn = i (3 F —dF) denote the Levi 1-form of M. Assuming M is Levi-flat, this
implies nAdn|y+ = 0, whichis equivalentto (9 F—3d F)Add F |+ = 0. Consequently,
we have 9 F AJJF |y = dF A F |y~ In particular, d F(p) AOF(p) AdIF (p) =0
forall p e M.

Conversely, the condition d F (p) Ad F (p) Add F (p) = Oforall p € M is equivalent
to (OF —3dF) AJJIF AdF|y+ = 0. Hence

(OF —9F) N33dF ANdF = F0, 6)

where 6 is a 4-form in some open subset of C". Since 8 A dF = 0, we can express
as ® = B AdF, where B is a 3-form in some open subset of C". Substituting this into
Eq. (6), we obtain

[@F —3dF) A0dF — FB] AdF =0.
Thus, there exists a 2-form « such that
(OF —3F) ANQOF = FB+« NdF,
this expression implies that (3 F — 3 F) A 89 F |+ = 0, leading to the integrability of

. O

Now, let’s verify that the regular part of M is mapped to the regular part of M’ for M
and M’ being biholomorphic (not necessarily Levi-flat).

Lemma2.3 Letu € M'. Then z = z(u) € Sing(M) if and only if u € Sing(M").

Proof Denote M’ = {G(u) = 0} where G : (C",0) — (R), 0 is a real analytic
function at 0 € C". _
We have dG (1) = G (u) + 0G (1), where

n
G - 0G
G = —duj, 090G = —du
Z ouj " Z ouj i
j=1 j=1
A point u e M’ belongs to the singular set Sing(M”) if and only if all partial derivatives

—(u) — (u) are identically zero. By the chain rule, we obtain
uj

n

0G 0Zq
96 = ; E(Z(u))ﬁj(u),

ouj

thus, it follows that

§Zi<u> 323,(")
(3¢@ - fw)=(ew - Cew)
g;q<u> 3%)
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Since z = z(u) is a biholomorphism, the change of coordinates matrix is invertible,
and therefore,

(%(w) %(w))zo = (%(z(w)) %(Z(u)))zo.
|

In the next proposition, we will see that the Levi-flat property is invariant under a
change of coordinates. More specifically, we establish the following result.

Proposition2.4 Let G : V C C" — R be a real-analytic function in coordinates 7 =
(z1,...,2n) and let z = z(u) be a change of coordinates, that is, a biholomorphism
from the open set V.C C" to an open set U C C". Then, the hypersurface M' = {u €
U:Gu) = G(z(u)) = 0} is Levi-flat ifand only if M = {z € V : G(z) = 0} is
Levi-flat.

Proof The partial derivatives of G in the coordinates z = (z1, ..., z,) are given by

o 5pml dz50

n n n 2
G - 0G — 0°G
0G = —dzy, 0G = —dzg, 00G = —dzs NdZp.
> 5 2 5z, 2 oz, 00 N
a=1 p=1
Therefore, in coordinates z = (z1, ..., 2, ), we have

9G 3G 9*G
02y 0Zp 02507y

dG AIG A JIG = Z (

> dzg NdzZg Ndzs Ndzy,.  (T7)
o, B,y,8

Now, by making the change of coordinates z = z(u), we obtain

n n

aZa _ 3213 —
dzg = ) —duj, dzg= ) —duy,
o ]X_; ouj t K ]; Uk Mk

from which it follows that

92a 92p 925 02y

dzq Ndzg Ndzs NdZ, = Z Qu; duy dug Ou,
Jj m

jAdug ANdug A duy,.

J.k.t,m
Hence, in coordinates u = (uy, ..., uy),
- - 3G G 9°G 9zy 07 025 07
0GAIGAIIG = Y (oo T 3D (o TR 5 T ) g Adm ndug AdEy ||
07y 0Zp 92597y J\ . Ouj duy dug Oy
a,B,y.8 J.k.tm

From the expression above, combined with Eq. (7), it follows that M’ is Levi-flat if
and only if M is Levi-flat. This concludes the proof of the Proposition 2.4. O
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2.1 Complexification

Let F : (C",0) — (R, 0) be a real analytic function at 0 € C". The complexification
of F is defined by

Fe(zow) =) Fuo2'w’,
v

where F(z) = ) unv F u,v2"Z" is a power series of F* convergent in a neighborhood of
the origin. We observe that Fg is holomorphic at (C" x C", 0). The complexification
of M is defined as M¢c = {Fc = 0}, and the complexification of the Levi 1-form is
given by

Given that 7 is integrable on M*, it follows that nc is also integrable on M. It’s worth
noting that we can express d Fc = « +  and nc = i(a — ), where

n n
dFr JdF¢
= —d dp = —dwy. 8
o kE_l P 7 and B kE_l dun Wy (®)

Furthermore, we observe that o and 8 define the same foliation as n¢ on ME. Thus,
the integrability of nc is equivalent to

a(z, w) Ada(z, w) A B(z,w) =0 forall (z,w) € M. )

This condition will be used later to verify that the real part of a certain family of polar
varieties is not Levi-flat.

3 Proof of Theorem A
Before proving Theorem A, we will make some considerations for the case where
the vector fields G and X are given by G = ({',...,z,") and X = (zlf‘, sz,

with ay, by positive integers such that ay > by, for k € n. In this case, the Hermitian
product of G and X is given by

(GR). X@) =Y 7"
k=1

and

F(z) =2Re(G(2), X(2)) = Y 202k + 27k (10)
k=1
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Note that, if a = by for every k € n,then M = {F = 0} is a point. Indeed, if a; = bx
for every k € n, we have

F@) =) 2z

and consequently, M = {0}. Therefore, in the statement of Theorem A, we do not
consider a; = by for every k € n.
Regarding the singular set of M, we have the following proposition:

Proposition 3.1 Let G = (z%',...,z0") and X = (22, ..., 20", with ax > by > 1,
and M = {F = 0}, where F(z) = 2Re(G(2), X(2)). Then Sing(M) = {0}.

Proof Taking the partial derivatives of F, we have

n
OF = Z (akz,((ak_l)fzk + bkz,((b"_l)ZZ") dzk
k=1

and

n
= Z(bkzzk DDy g U) dzk.

Then dF(z) = dF(z) + dF(z) = 0 if and only if

(al D bl 1+ by z(b‘_l)Z‘f] -0
b lell ibl 1)+Cl ?lzgal_l) =0

(an—Dzh, +b 2on= 1)—a,, —0

ann
—(by— by =(a,
bnzzn Zfz + ap nnZ,(/l " == O

Clearly, 0 € Sing(M).Now let’sdenote [ := {k € n; ay = by}and J := {k € n; a; >
br}. Wehaven = I U J and I N J = . Consider the following equations from the
system above:

ak (ar— 1)—bk +b Z(hk 1)—ZI< =0 (11)

bkzzkz,(f’" 1)+a 27V =0 (12)

If k € I, the equations above are rewritten as:

2akZ(ak 1)—ak _ 0
a7k 1) =0
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and it follows that z = (z1, ..., z,) € Sing(M) implies zx = O, for all k € . Now,
let’s assume that z = (z1,...,2,) € Sing(M) and z; # 0, for some k € J. From
(11), we obtain

(ar—=1) bk — —bkz(bl‘ D=ar

axzy, 2y s
that yields,
ax 7\
i (5)
From (12) we get
kaZk—(bk 1) akZbl\Z]((ak_l),

that is,

by <Zk>c"

ar  \z/)
Thus, from (11) and (12), we deduce Z—’; = 2—:, but this is a contradiction, because
ay > by. Hence, Sing(M) = {0} and M* = M — {0}. O

Now, we prove a technical lemma that will be used in the proof of Theorem A.

n
Lemma 3.2 Let Mc be the complexification of M = {F(z) = 2Re (Z zZ"Zi") = O},
k=1
n > 3. Consider the functions

(aj—1) bj —-1) a;
gj(z, w) =ajw;’ ’+b zj’

fe(zow) = arzf™Dwlk + by z(b" D

he(z, w) = agby ( (ae— 1) (bt’—]) + Zéb(_l)wéak_l)) ’

where a,, > by, > 1 are integers for eachm =1, ...,n, and n > 3. For each triple
(j, k, &) of indices j,k, L =1, ..., n, there exists (zg, wo) € Mc such that

fi(zo, wo) g (zo, wo)he(zo, wo) # 0.

Proof In this case, the complexification of F is given by
n
Fc(z,w) = sz wik + ik, (13)

For each triple (j, k, £), let’s choose (zo, wo) = (21, - -, Zn, W1, - .., Wy) satisfying:
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1. Zj:ZkzleijU)kzl,
2. wy such that w?‘ + wz“" = —4,
3. zm = wy, = 0 for the remaining indices.

We observe that (zg, wo) € Mc. In fact, we have

b b
Fe(zo, wo)—Z w +w Z Tyt wk + w4 2y we C+wytey
:4—i—w,Z +we

then F(zo, wo) = 0 on M. From item (3) above, we obtain

be—1 —1 4
w, +wjzm =
wy

Furthermore, we have

gj(zo, wo) = aj + bj,
fi(zo, wo) = ax + by,

he(zo, wo) =aebz< e gy (al 1))
4a(bg
Wy '

Hence

4azbg

fi(zo, wo)gj (2o, wo)he(zo, wo) = (a, + bj)(ar + by)

£0.

Now, let’s restate Theorem A for completeness.

Theorem A Let G and X be elements in x(C",0), n > 2, of the form G(z) =
(Z‘fl, oo and X(z) = (zll”, ceey zﬁ” ), where a; > by > 1 are positive integers,
forallk =1,...,n. Then M = {F(z) = 2Re(¥¢.x(z)) = 0}, i.e.,

_ {Re (Zzgkzgk> _ }

is nondegenerate at 0 € C".
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Proof We divide the proof into two cases n = 2 and n > 3. For n = 2, we examine
the Eq. (9) associated to the complexification of M = {F = 0}, where

F2) = 2{'20 + 257 + 700 + 25225 (14)
Note that, the complexification of F is given by

Fo(zw) = 2{'w + 25 w3 + wi'z]" + w§?z3? (15)

then d Fo = o + B, where

o = (a1z('“ bl +b Z(bl—l)wal)dzl + (a2z(a2 ) + sz(bz az)de,
/3 (a w(al 1) bl +b w -1 al)dwl +(a2w(a2 1) b2 +b w(bZ 1) a2)dw2

Now we have

do = aib; ( (a1— )wgbl 1)+ (b1—1) (al ]))dw1 Adz

—i—azbz(z(az D (bz 1)+ (b2—1) (az 1)) dws A dzo.
We use the following notations
o) = (alzgal w! —i—blzibl w!

oy = (azzéaz_l)wgz + bzzébz w 2)

131 = (alwg -b bl +b w(b]
By = (a2w§“2 ) b2 + by w(bz ) &
g1 = aiby ( (@1 =1)y, (1= +z§”“”w§“1‘”),

& = ab (zg” ébz Dy z(b2 b §”2*1)> .

So, we have o Ada A B = (18182 + a2B2g1)dz1 Adzo A dwy A dw,. Therefore,

a1Brgr = arbs (al +b2> ( (a2—1) ;hz—l) +Z§h271)w§a271)) Z§a|+b|—l)w§a]+h171)
+ aibraxb; (z(lzm—wwgsz]) + ZEZhl*])w?al*])) (Zgazfl)wébzfl) n Z;bzfl)w§a271)> ’
a2fag1 = arby (a% + b%) (zﬁ“‘fl)wﬁb“” + ng‘fl)wg‘”*]v ytba )y (atha=D)

+ aybyashy (Z;2az—l)w§2b2—l) n Z§2b2—1)w§2a2—1)) (Zgal—nwibl—l) +z§b‘_“w{‘“‘”> .
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Now, using the expression (15), we obtain the following relationship on M:

_ — — — 1w _ _
(Zéaz l)wébz 1)+Z§h2 l)wéaz 1)>:_ 1 1<(a1 D (b1—1)

b1—1 ar—1
Zl wl +Z§ ! )wi ! )> .

With this, we can rewrite

Z(ﬂl—l)w(bl—1)+ (bi1—1) (al—l) , ,
a1pi1g2 = 1 ! azbz al ~|—b2> (ar+ 1)w§a|+ 1)
W2
2b 217
- alb1a2b2( wi! 'w ‘)]
(111—1) (b1—1)+ (b1—=1) (al—l) , ,
wprg1 = albl az +b2> (a2tb2), (artb2)
22W2
+ aibiaxby <Z§a2 w%bz %bz w%’h)

In this way, we get

(a=1)_  (b1—1) (bi=1)_ (a1—1)
< w +z w » b
arfagr +a1fig2 = ( l ! ! ! ) [albl (az +b2> (2tb2) (a2 +b2)

22W2
2oy 2 | 202 2ar. 2b1 | 2by . 2
+a1b102b2( “Pwy? 425 twy? — M w4 2 ‘wl‘“)

— wbs (a% + b%) Zgawhl)w;awh])] .
Again using (15), we obtain

(ZZaz 2by +z 2b2 2a2 ZZal w2b1 _ z%bl w%al) -2 (z§a1+b1)w§a1+b1) _ Z;az+h2)w§a2+bz)> )

2 Wy " =2y 1
Hence
arpagr +a1figr = (Zial_l)wibl_t;}jgbl_ )wial )) [mb] (a% +b§> Zéaﬁb”w;"ﬁbz)
+ 2a1b1azby <Z§“1+bl)w§a1+b1) _ Z§a2+b2)w§az+b2))
— wb (“12 +b%) Zgal-%—b])wiaﬁ—bl):l ’
that is,

(al—l) (bl—l) (bi=1)  (a1—1)
+z; w
axfag1 +ai1figr = ( I o : )[

— wby(a; — b1)2( (a1+b1) ial"'bl))]'

aibi(ay — by)? (z;a”bZ)wé"”bZJ)
22W2
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Therefore, by (9), we conclude that 1|+ is integrable if and only if a1 by (a2 — b)) =0
and axby(a; — by)? = 0, that is, a» = by and a; = b;. This completes the proof for
n=2.

Now, we consider n > 3. With the notation introduced in Lemma 3.2, we can
rewrite

n n
a Zkadzk, B :ngdwk-
k=1 k=1

Then do = Y ,_, hedwy A dzy. Indeed, we have

0 fi 0 fi
da = Z ——dze Ndzr + Z ——dwy N dzg.
o 9z o dwe

Furthermore, we have the following relationships:

3

Wk 0. fork £ ¢,

0zZ¢

0

ﬁ =0, fork # ¢,

ng

3 fe (a—1), (be=1) | _(be=1). (ag—1)
a_w = ayby (Zeaz w) 1 + 2z i weae ) )

Hence, it follows that

n n
do = Zalbi (Zéae—l)wéb(—l) +Z§he—l)wéae—1)> dwe Ndzp = th dwe Ndzg.
(=1 =1

Thus, we have

andaAB = Z Jxgihe dzi Adwe ANdze A dw). (16)
4]k

We observe that for j # k, the coefficient of the term dzx A dwg A dzy A dw; in
4-forma A da A B is exactly frgjhe. In other words, if j # k,

fkgj/’lg dzi ANdwg ANdze A dwj
is the only term in Eq. (16) that is of the form p dzx Adw¢ Adze Adw ;. Thus, given a
triple (j, k, £) of pairwise distinct indices, by Lemma (3.2) there exists (zo, wo) € M¢
such that

a(zo, wo) A da(zo, wo) A B(zo, wo) # 0.

Therefore, M is not Levi-flat, and we conclude the proof of Theorem A. O
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by, b
4 The Case of Vector Fields G = (27, z;?) and X = (za:71 , 26:2)

In this section, we will explore some results regarding the singular set of the hyper-

surface. M = {F(z) = 0}, where F(z) = 2Re(G(2), X(2)), G = (z1 ,122) and

bo be. . .
= (Zo’ll , Zo‘zz), where o € S, is a permutation of the set {1, ..., n}. Let’s start by

considering the particular case where G = (z{, zg) and X = (zlz’ ,z7) with a, b being
positive integers. In this case, the Hermitian product of G with X is given by

(G, X) = 2925 + 7928,
We observe that (G, X) € R. Therefore, let’s consider
={F(z1,22) = 2{75 +7{z5 = 0}. (17)

We observe that for these fields, the map ¥, x does not satisfy the Milnor condition,
as stated in theorem (Ruas et al. 2002, Theorem 2.7). In this case, the hypersurface M
will be Levi-flat, as we will show in Theorem B. First, we will verify the following
result regarding the singular set of M.

Proposition 4.1 Let M be the hypersurface described in Eq. (17). Then we have the
following options for Sing(M):

1. Sing(M) ={0}, ifb=a =1,

2. Sing(M) ={z1 =0}, ifb=1anda > 1,

3. Sing(M) ={zo =0}, ifa=1andb > 1,

4. Sing(M) ={z1 =0} U{zo =0}, ifa,b > 1.

Proof The partial derivatives of F are given by
oF _azga Dz bdZ] +b2122 Dz,
OF = a ga 1)11276121 +bz?z(h l)dzz.

Thus, (z1, z2) € Sing(M) if and only if the following equations are satisfied:

(a=D=b

azy ;=
pis D Z g
aZ(la I)Zg =0
bzl_(b D=0

If a,b > 1, it follows that Sing(M) = {z1 = 0} U{zp =0}. Ifa =1lorb =1,
we will have Sing(M) = {zo = 0} or Sing(M) = {z; = 0}, respectively. Finally, if
a = b =1, we obtain Sing(M) = {0}. O

Let’s restate Theorem B for completeness.
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Theorem B Let G and X be elements in x (C",0), n > 2, of the form G(z) = (z{, zlz’)
and X (z) = (z’z’, z{) with a, b positive integers. Then M = {F (z) = 2Re(Y'G,x(2)) =
0}, i.e,

M = {213 + 5z =0}

is a Levi-flat hypersurface at 0 € C2.
Proof In this case, F is given by F(z) = z‘{Zé’ + Z?zlz’ and its complexification will be
given by

Fe(z, w) = z‘fwlz’ + w‘fzg. (18)

Therefore, we have on M(E

(a—

a = az\ Vwbdz + bwizd Y

dzo,
B = aw%”fl)zgdwl + bz‘llwéb*l)dwz,

doa = abzi‘lil)wébfl)dwz Adzi + abwgafl)zébfl)dwl Adzo.
Hence

a ndanp= (azbzz?“—‘)wf"—l)wga—l)éb—l)

+ a2b2w§2”71)152b71)z§a71)w§b71)) dzi Adwy Adzp A dw;.

From (18), we get

(a=1)_  (b—1) WIZZ) (a=1)_(b—-1)
Z w =—\—)w < ,
1 2 (le2 1 2

which implies that @ A da A B is equal to

I:azbzz§2a—l)w§2b—l)w§a—1)2§b—l)

wiz _ _ D
— a’p? <1—2) w?a 1)25217 l)w}a l)zéb 1))dzl] dzi Adwy Adzo A dws,
Z1w?

that is,
(a—1)_(b—1)

w Z
andanB = [a2b24 (z%“w%b - w%ang):| dzy Adwy Adzy A dw,.
Z1w2

Again, from (18), we have z{ wé’ = —u)’lez’, which yields z%“w%b = w%"z%b in Mc.

Thus, M is Levi-flat. O
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Now, we consider
= (F(2) = Re({'Zy + 2270y = 0} (19)

In Proposition 4.1, we saw that Sing(M) = {z;1 = 0} U {zo = 0} in the case where
a; = by > land ay = by > 1. Now, let’s verify that this also occurs in the case where
a; > by > land ay > by > 1 (even without the assumption a;by = asby).

Proposition 4.2 Let M be the hypersurface described in Eq. (19). Then, we have the
following options for Sing(M):

1. Sing(M) = {0}, ifby = b = 1;

2. Sing(M) ={z1 =0}, ifbp =land by > 1;

3. Sing(M) ={z2 =0}, ifby =l and by > 1;

4. Sing(M) = {z1 =0} U{z2 =0} if by, by > 1.

Proof We observe that F is given by

ay=b b »—b b
F(Z)=Zl 222+Z7 Z22+22 le +Z§2Z11,

and its partial derivatives are given by

1
oF = 3 [(alzgfll )] bz + by Z(hl 1)—az> dzi + (azzgaz D b1 +bzz(b2 1)—a1)dZ2]
- 1
IF = 3 [(a Z(lal D bz 1 by Z(171 D az) dz) + (azzgaz D bl 1+ by Z(bz D dl)dzz]

Therefore, (21, z2) € M belongs to the singular set if it satisfies the equations

(a1 1) bz + by Z(b1—1)—az -0 (20)
alzwl b b2+b V=0 @1
ar2§> V7 + by zwz bz~ 22)
DD D g @3)

Let’s assume that by, b, > 1. Then we see that {z; = 0} U {zo = 0} C Sing(M). Now,
suppose by contradiction that (z, z2) € Sing(M) with z; # 0 and zo # 0. From Eq.
(20), we obtain

a ghl—l)zgz B _Zgaz—hz)

by Zgal—l)zgz Zgal—bl) ’
and from Eq. (23), we obtain

@ Eébz_l)zi” B Zgal—bl)

by Zéaz—l)zlln Zéaz—bz) ’
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which implies

ar b

by ar
In other words, ajas = b1b>. Thisis absurd, sincea; > bj anda, > b, by assumption.

We conclude that Sing(M) = {z1 = 0} U {zo = 0}, if b1, b» > 1. Now let’s assume
by = 1 and by > 1. Then, the equations for the singular set are given by

a4z =0 (24)
a4 =0 (25)
a2 V7 + b2V =0 (26)
a7 Pz + bz Ve =0 27

Clearly, {zo = 0} C Sing(M). Now suppose z2 # 0, then we necessarily have z; # 0
by Eq. (24). Thus, it follows from Eqgs. (24) and (27):

—(a2—b2)
=2
! @-1"°

2

-1

aj _ Zia] )
by  =laa—b2)’
2 Z2

which implies a; = %’ that is, ajar = b,. However, this contradicts a, > b and
a; > 1. Therefore, Sing(M) = {zp = 0}if by = 1 and b > 1. In a similar way we
obtain Sing(M) = {z; = 0} if b, = 1 and by > 1, and we also obtain Sing(M) = {0}
if by = by = 1. O

To prove Theorem C, we will use the following lemma
Lemma 4.3 Let Mc be the complexification of

b b b b
M ={F(2) = z{'2 +7{'25* + 23’ +25°2]' =0},

we have a Ada A B =hdzi ANdwy A dza A dwy, where

h = c(aay + b1by — 2¢) (Ztll1+b1 w;2+b2

(a2—1)  (b1—1) (by—=1)  (a1—1)
_ (aa+b) (a1+b1)> (Zz Wy +2 Wy )
2 W

w2
and ¢ = a by = axb;.
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Proof The complexification of F is given by

ay by az bl

Fg =z’ wz +wi'zy +25° wl +w,
Therefore, we have

o= (alzi‘l“l)w}z’z bz )d21 + (azz2 bz ‘f‘) dza,
g = (alwg‘” 1) bz 1 by w(bl 1)) az) dwy + (azwéaz 1] bl +b2w(b2 1] ﬂl)dwz’
da = (albgzga'_l)wébz_l) + azblzghl_l)w§a2_1)> dwy Ndzy

(azblz(az )wgb' D4 aby z(b2 wgal )dw] ANdz.

We will use the notations

-1 b b1—1
a1=a1Z§al ) 2+bz(l )w?;
a = azwblzéaz 1] T+ bow al (172 1)

B =a1w§al 1) bz —{—blw(b' I)Zgz;

2 =a27; W + z w

}17 5 1) by 1)
g1 = a1b2z( D ébz D4 aoby 7 ﬁl)wé"rl);
&= azb1w(b1 D 23 D¢ ab, w1 1)Z§b271)

so that we can write:

o = a1dz) + ordzo;
B = pirdw; + Brdwz;
do = gidwy Adz) + godwy A dzs.

With these notations, we get
aANda AP = (x1f2g2+arB181)dz1 ANdwy Adzo Adws.

In Mc, we have

b b
zllw2 +z1 wy? = —(wi'zy? + wi'z5), (28)
which implies on M
-1 (b1 b1—1 -1 w122 —1)_(ha—1 b1—1 -1
Zgu. )wéz )+z§’ )wé‘” )=_< )(wgal )zéz )_i_wgl )Zg’z )).
1wz
Taking ¢ = a;by = bias, we have
w122
g1 = @@ Vp®D 4 0Dy ey (lez)( (@D br=1) o (b1=D) @Dy
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w122
81=—\—"—"7"-)8
21wy

w122 &2
a1frgr +axfigr = a1fagr — aafi ( ) &= (zywaa1 B2 — wiz2a281),
Z1w2 Z1w2

and it follows that

Therefore, on M, we obtain

thus
aANda NP = [Zg—;(zlwzalﬁz — wlzzazﬁl)] dzi Adwy ANdzp Adwy. (29)
(w2
Now, we observe

a1 = (alzgal w?? +blng1*1)w§12) (azz WD | pyz 1))

(a1a2+b1b2)z(a1+b1—l) (ay+br— 1)+ ((12111—1)w§2b2—1)+Z§2b1_1)w§242_1)>

which implies

b b 2 2b 2b 2
1w B = (a1ar + b]bz)zga1+ 1)w(a2+ 2) + C( a 2+ 7] 1w2a2) .

Similarly, we obtain

b b 2by 2 2 2b.
wiz200p1 = (a1a2 +b1b2)w(al+ 1) (az+ 2) +c(w Iy az + w1a1Z2 2),

so that zjwoa1 B2 — wizo02 By 18 equal to

b b b b
(ala2 +b]b2) < (a1+b1) §a2+ 2) _ wgal'i‘ 1)Z§a2+ 2))
2 2b 2by . 2 2by 2, 2ay _2b
+C( alw22+Z1 lwzaZ_wl IZZHZ_U}lalZ2 2>.

Again, from Eq. (28), on M{ we have:
b b b 2
(@ wy? + 2" w3 = ' 23? + wy' 5,
that is,

+b +b 2 2b. 2b 2 2b 2 2 2b
z(w}al 1)Z§az+b2) _ Zgal 1)w§a2+bz)) _ Zlal 2+ 1 az w? 1Z202_w1a1Z2 2

which implies that zj w01 82 — w2202 81 18 equal to

(ajas + byby) ( (a1+b1) (az+b2) . w§a1+b1)2§az+b2))

+2c( (a1+b1) (rl2+b2) Z§a1+b1)w§a2+b2)>_
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So, zjwaa1 B2 — wizoa2 By is equal to
(ajay + b1by — 2¢) (chll+b|)w§a2+b2) _ wial+b1)Z§a2+b2)> .

Finally, we conclude

82 82
—— (z1iw201 B2 — wiz2a2B1) = (a1az + biby — 20)
Ziwy Ziwy
(Zgal-‘rbl)w;az-&-hz) _ w§a1+b1)zga2+b2))

and the lemma follows by substituting the above expression and the expression for g,
into Eq. (29). O

Now, we prove Theorem C.

Theorem C Let G and X be elements in x (C",0), n > 2, of the form G = (z?l , Z;z)
and X = (zgz, zllj'), where ay > by and ay > by are positive integers satisfying

aiby = axby. Then M = {F(z) = 2Re(Y ¢ x(z)) = 0}, i.e.,
M = {Re (zT‘Z}z’z + z‘fz’fl) = ()]
is Levi-flat if, and only if, a1 = by and ay = b;.

Proof From Lemma 4.3, we have a(z, w) A B(z, w) A da(z, w) = 0 forall (z, w) €
Mc if, and only if, ajas + b1by — 2¢ = 0, i.e., 2c = ajar + b1by. Using the fact
¢ = a1by = bjay, it follows that

2c=ajar+b1by < aibr+biay=ajar+bi1by <= bi(ar—br)=aji(ar — by).

Therefore, M¢ is Levi-flat if, and only if, @; = b and a» = b,. This concludes the
proof of Theorem C. O

Remark 4.1 From the above result, we conclude that for n = 2, the hypersurface M
will not Levi-flat precisely when the map ¥/ x satisfies the Milnor condition at the
origin.

5 Proof of Theorem D

Now, we study the case with permutations in higher dimensions. Consider o € S,
a permutation on the set n := {1, ..., n}, and let’s use the notation o} := o (k). We
employ a transversality argument, along with the dimension 2 case (see Theorem C),
to obtain the following result:

TheoremD Let G and X be elements in x(C",0), n > 2, of the form G =
bo o e
(z‘l”, oy and X = (Zo' s s Zz,," ), where ay > by are positive integers. Let
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us assume that for some £ € n, the integers ay, by, as,, bs, satisfy the following con-
ditions: ag > by and a¢bs, = byas,. Then, M = {F(z) = 2Re(¥g x(z)) = 0},

ie.,
" b
M= {Re (Zzzkzazk) - o} .
k=1

is nondegenerate at 0 € C".

Proof Let’s assume by contradiction that M is Levi-flat. Therefore, the regular part
M* is foliated by complex submanifolds of (complex) dimension n — 1. Thus, we can
choose i : C? < C” to be a transversal embedding to M (see Cerveau and Lins-Neto
2011, Corollary 3.3), so that the regular part of i ~! (M) is also foliated by complex
submanifolds of dimension 1 (Riemann surfaces). Without loss of generality, we can
assume that o (1) = 2 and that ay, b1, az, b> are the integers satisfying the conditions
in the statement. Making a change of coordinates and using the fact that the Levi-flat
property is invariant under biholomorphisms (Proposition 2.4), we can assume that
the embedding i : C?2 - C"is givenbyi : (z1, z2) — (21, 22,0, ...,0). We observe

- b b b b
iT'M) = {(z1,22) € C?: 27 + 2027 + 2520 + 752z, = 0).

But by Theorem C, i ! (M) does not have the regular part foliated by complex sub-
manifolds. Therefore, M is not Levi-flat. O

6 Examples

In this section, we will explore examples where the fields G and X do not satisfy the
Milnor condition. In these examples, our hypersurfaces are all Levi-flat.

Example 6.1 Given the Pham—Brieskorn polynomial f : C> — C defined by f(z) =
z 4+ 23, where p, ¢ > 2. Consider the holomorphic vector field

Gz) = (af(z)7 _af(z)> _ (qzéq—l)7 _ngp—l))

022 071

whose solutions represent the fibers of f. Also, take the vector field X = (aj, a2).
Thus, the Hermitian product of G and X is given by

_ —1 _ 1
We.x(2) = (G(2), X(2)) = a1gz ™" —azpz\P V.

Clearly, W, x does not satisfy the Milnor fibration condition at the origin. Now we
take

M = {F(z) = 2Re¥; x(z) = 0}.

Since W¢_ x is a holomorphic function, then M is Levi-flat.
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Example 6.2 Let G = (z1,iz2, (—1 —i)z3) and X = (z1, 22, 23)- According to Seade
(1997, Theorem 1), ¥, x does not satisfy the Milnor fibration condition at the origin.
The Hermitian product of G and X is given by

(G, X) =171 +iz222 + (=1 —1)z373.

Consider M = {F(z) = 2Re (G(2), X(2)) = z1Z1 — 2323 = 0}. Let’s us verify that
M is Levi-flat. First, we note that F'(z) = z121 — 2323, and the partial derivatives of
F are given by

oF =71dz) — 73dz3,

F = zdz) — z3dZ3.
Then, Sing(M) = {(0, z2,0) € C3 : z5 € C}. Clearly, dimg Sing(M) = 2. Moreover,
M* ={(z1,22,23) € C* : 2121 — 2373 = 0,71 # 0 and z3 # O}.
We have 30 F = dz) AdZ) —dz3 A dZ3, and
IF NOF = z171dz1 AdZ) — Zizadzy A dZ3 — Z321d23 A dZ) + 232ad2s A dzs,

that yields 0F A 0F A 09F = (2323 — 2121)d21 A dZ1 Adz3 A dZ3. Thus, 0 F (p) A
dF (p) AN90F(p) =0 for all p € M and therefore, M is Levi-flat.

Example 6.3 Let G(z) = (21, z2) and X (z) = (—iz», iz1). Then
M = {F(z) = 2Re (G(2), X(2)) = i(z221 — z122) = 0}
is clearly Levi-flat whose singular set is Sing(M) = {0}.

In general, when G(z) = (z1, z2) is the radial vector field, X = (A1z1, A222), and if
Re(Ar) # O for k = 1, 2, then the singular set of M = {2Re (G (z), X (z)) = 0} is just
the origin 0 € C2, and M is Levi-flat. However, in this case, the map ¥, x also does
not satisfy the Milnor fibration condition at the origin, see Seade (1996, Example 3.4).
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