1 Introduction

Basic algebras, which generalize both MV-algebras and orthomodular lattices, were introduced in Chajda et al. (2009) and Chajda et al. (2007) as a common base for axiomatization of many-valued propositional logics as well as of the logic of quantum mechanics. The relationship between basic algebras, MV-algebras, orthomodular lattices and lattice-ordered effect algebras was considered in Botur (2010), Botur and Halaš (2008), Chajda (2012; 2015), Chajda et al. (2009). One can mention that every MV-algebra is a basic algebra whose induced lattice is distributive (Chajda 2015, P. 18, Lemma 5.2). The sufficient and necessary condition for an orthomodular lattice to be a basic algebra has been obtained in Chajda (2015, P. 17, Theorem 4.3). Relation between lattice-ordered effect algebras and basic algebras was treated in Botur and Halaš (2008), Chajda (2012) by considering their common lattice structure (a lattice with section antitone involutions).

L-algebras, which are related to algebraic logic and quantum structures, were introduced by Rump (2008). Many examples shown that L-algebras are very useful. Yang and Rump (2012), characterized pseudo-MV-algebras and Bosbach’s non-commutative bricks as L-algebras. Wu and Yang (2020) proved that orthomodular lattices form a special class of L-algebras in different ways. It was shown that every lattice-ordered effect algebra has an underlying L-algebra structure in Wu et al. (2019).

In the present paper, we study the relationship between basic algebras and L-algebras. We prove that a basic algebra which satisfies

$$\begin{aligned} (z\oplus \lnot x)\oplus \lnot (y\oplus \lnot x)=(z\oplus \lnot y)\oplus \lnot (x\oplus \lnot y) \end{aligned}$$

can be converted into an L-algebra (Theorem 1). Conversely, if an L-algebra with 0 and relation given by (10) such that it is an involutive bounded lattice can be organized into a basic algebra, it must be a lattice-ordered effect algebra (Theorem 2). Finally, we construct a lattice-ordered effect algebra which improves (Chajda et al. 2009, P. 80, Example 5.3).

2 Preliminaries

Note that basic algebras were introduced in Chajda (2007; 2009), but the axiomatic system was extended by one more axiom which is dependent on the following axioms as shown in Chajda and Kolšík (2009).

Definition 1

A basic algebra is an algebra \({\mathcal {B}}=(B;~\oplus ,~\lnot , 0)\) of type (2, 1, 0) satisfying the following identities:

$$\begin{aligned} (BA1)~&x \oplus 0 = x,\\ (BA2)~&\lnot \lnot x=x,\\ (BA3)~&\lnot (\lnot x\oplus y)\oplus y=\lnot (\lnot y\oplus x )\oplus x,\\ (BA4)~&\lnot (\lnot (\lnot (x\oplus y)\oplus y)\oplus z)\oplus (x\oplus z)=\lnot 0. \end{aligned}$$

For the sake of brevity, we denote by \(1=:\lnot 0\).

Let \({\mathcal {B}}=(B,~\oplus ,~\lnot ,~0)\) be a basic algebra. The relation \(\le \) defined by

$$\begin{aligned} x\le y~~\text{ if } \text{ and } \text{ only } \text{ if }~\lnot x\oplus y =1 \end{aligned}$$
(1)

is a partial ordering on B such that 0 and 1 are the least and the greatest element of B, respectively.

In what follows, we need the following properties of basic algebras (cf. Chajda 2015; Chajda et al. 2009):

$$\begin{aligned}&x\oplus 1=1=1\oplus x. \end{aligned}$$
(2)
$$\begin{aligned}&~0\oplus x~=~x~. \end{aligned}$$
(3)
$$\begin{aligned}&~\lnot x\oplus x~=~1. \end{aligned}$$
(4)
$$\begin{aligned}&x\le y~\Rightarrow ~\lnot x\ge \lnot y. \end{aligned}$$
(5)
$$\begin{aligned}&x\le y \Rightarrow x\oplus z\le y\oplus z. \end{aligned}$$
(6)
$$\begin{aligned}&y\le x\oplus y. \end{aligned}$$
(7)

Lemma 1

(Chajda 2015, P. 69, Prop. 3.6) For every basic algebra \({\mathcal {B}}=(B,~\oplus ,~\lnot , 0)\), the poset \((B,~\le )\) is a bounded lattice in which the supremum \(x \vee y\) and the infimum \(x \wedge y\) are given by \(x\vee y= \lnot (\lnot x \oplus y) \oplus y\) and \(x \wedge y = \lnot (\lnot x \vee \lnot y)\), respectively.

An involutive bounded lattice (IBL) (Chiara and Giuntini 2002, P. 191, Def. 12.1) is a structure \((L,~\le ,~',~0,~1)\), where \((L,~\le ,~0,~1)\) is a lattice with minimum 0 and maximum 1, \('\) is a unary operation on L such that the following conditions are satisfied:

$$\begin{aligned} \text {(Involutive~law)}~~~&x=x.'' \end{aligned}$$
(8)
$$\begin{aligned} \text {(Antitony)}~~~&\text{ if }~x\le y,~\text{ then }~y'\le x'. \end{aligned}$$
(9)

According to (BA2), (5) and Lemma 1, every basic algebra is an IBL.

Lemma 2

(Chajda 2015, P. 70, Lemma 3.8) The identity

$$\begin{aligned} \lnot (\lnot (x\oplus y)\oplus y)\oplus y=x\oplus y \end{aligned}$$

is true in all basic algebras.

Corollary 1

The identity

$$\begin{aligned} (x\wedge \lnot y)\oplus y=x\oplus y \end{aligned}$$

is true in all basic algebras.

Proof

By Lemmas 1 and 2, \(x\oplus y=\lnot (\lnot (x\oplus y)\oplus y)\oplus y=\lnot (\lnot x\vee y)\oplus y=(x\wedge \lnot y)\oplus y\) is true in all basic algebras. \(\square \)

Definition 2

(Rump and Yang 2012, P. 122) An L-algebra is an algebra \((L,\rightarrow )\) of type (2, 0) satisfying

$$\begin{aligned} (L1)&x\rightarrow x=x\rightarrow 1=1,~1\rightarrow x=x \\ (L2)&(x\rightarrow y)\rightarrow (x\rightarrow z)=(y\rightarrow x)\rightarrow (y\rightarrow z) \\ (L3)&x\rightarrow y =y\rightarrow x =1~~\Rightarrow ~~x=y \end{aligned}$$

for all \(x,~y,~z\in L\)

There is a partial ordering by Rump (2008, P. 2332, Prop. 2)

$$\begin{aligned} x\le y~~\Leftrightarrow ~~x\rightarrow y=1 \end{aligned}$$
(10)

such that 1 is the greatest element of L. If L admits a smallest element 0, we speak of an L-algebra with 0.

Lemma 3

(Rump and Yang 2012, P. 123, Lemma 2.1) Let L be an L-algebra. Then, \(x \le y\) implies that \(z \rightarrow x \le z \rightarrow y\) for all \(x,~y,~z\in L\).

In particular, if L is an L-algebra with 0 and satisfies (8) for every \(x\in L\), then

$$\begin{aligned}&x\le x'\rightarrow y,~x'\le x\rightarrow y. \end{aligned}$$
(11)

3 L-algebras and basic algebras

In this section, we are interested in knowing the mutual relation between L-algebras and basic algebras. Assume that they have the same lattice structure. Firstly, we give three types of involutive bounded lattices which can be regarded as both L-algebras and basic algebras: MV-algebras, lattice-ordered effect algebras and orthomodular lattices.

Recall that an MV-algebra Chang (1958) is an algebra \(A = (A,~\oplus ,~',~0)\) of type (2,  1,  0) where \((A,~\oplus ,~0)\) is a commutative monoid satisfying (8) and the following identities:

$$\begin{aligned}&x\oplus 0'=0',\\&(x'\oplus y)'\oplus y=(y'\oplus x)'\oplus x. \end{aligned}$$

MV-algebras are both basic algebras and L-algebras (Chajda et al. 2009; Wu et al. 2019).

An effect algebra (Foulis and Bennett 1994, P. 1333, Def. 2.1) is a system \((E,~+,~0, 1)\) consisting of a set E with two special elements \(0,~1\in E\), called the zero and the unit, and with a partially defined binary operation \(+\) satisfying the following conditions for all \(p,~q,~r\in E\).

(E1) (Commutative law)   If \(p+ q\) is defined, then \(q + p\) is defined and \(p + q = q + p.\)

(E2) (Associative law)   If \(p + q\) is defined and \((p + q ) + r\) is defined, then \(q + r\) and \(p + (q + r)\) are defined and \(p + (q + r) = (p + q) + r\).

(E3) (Orthosupplement law)   For every \(p \in E\), there exists a unique \(q \in E\) such that \(p + q\) is defined and \(p + q = 1.\) The unique element q is written as \(p'\) and called the orthosupplement of p.

(E4) (Zero-one law)    If \(p + 1\) is defined, then \(p=0.\)

Let \((E,~+,~0,~1)\) be an effect algebra. Define a binary relation on E by

$$\begin{aligned}&a\le b~~\text{ if } \text{ for } \text{ some }~c\in E,~c+ a=b \end{aligned}$$
(12)

which is a partial ordering on E such that 0 and 1 are the smallest element and the greatest element of E, respectively. If the poset \((E,~\le )\) is a lattice, then E is called a lattice-ordered effect algebra. 

Lemmas 4 and 5 show that there is a mutual correspondence between lattice-ordered effect algebras, basic algebras and L-algebras.

Lemma 4

(Chajda 2012, P. 8, Thm. 12) Let \({\mathcal {E}}=(E,~+,~0,~1)\) be a lattice-ordered effect algebra. Define

$$\begin{aligned}&x\oplus y:=(x\wedge y')+y~~and~~\lnot x:=x'. \end{aligned}$$
(13)

Then, \({\mathcal {B}}(E)=(E,~\oplus ,~\lnot ,~0)\) is a basic algebra (whose lattice order coincides with the original one).

Define \(x\rightarrow y:=(x\wedge y)+ x'\).

Lemma 5

(Wu et al. 2019, P106, Thm. 3.3) Every lattice-ordered effect algebra \((E,~+,~0,~1)\) gives rise to an L-algebra \((E,~\rightarrow )\) with negation such that \(x'=x\rightarrow 0\) is exactly the orthosupplement of x in \((E,~+,~0,~1)\).

Let \((L,~+,~0,~1)\) be a lattice-ordered effect algebra. Define

$$\begin{aligned} x\oplus y:=(x\wedge y')+ y, \end{aligned}$$

and then, \((L,~\oplus ,~\lnot ,~0)\) is a basic algebra by Lemma 4. By Lemma 5\((L,~\rightarrow ,~0,~1)\) is an L-algebra, where

$$\begin{aligned} x\rightarrow y:=(x\wedge y)+x'. \end{aligned}$$

Then, \(x\oplus y=y'\rightarrow x\).

An orthomodular lattice (OML) Kalmbach (1983) is an algebra \({\mathcal {L}}=(L,~\vee ,~\wedge ,~',~0,~1)\) of type (2, 2, 1, 0, 0) satisfying (8), (9) and the following axioms: (i) \((L,~\vee ,~\wedge ,~0,~1)\) is a bounded lattice. (ii) \(x\le y\) implies \(y=x\vee (y\wedge x').\)

In Chajda (2015), the author uses

$$\begin{aligned}&x\oplus y:=(x\wedge y')\vee y~~and~~\lnot x:= x' \end{aligned}$$
(14)

to convert an orthomodular lattice \((L,~\vee ,~\wedge ,~',~0,~1)\) into a basic algebra \((L,~\oplus ,~\lnot ,~0).\)

Define

$$\begin{aligned} ~&x\rightarrow y:=x'\vee (x\wedge y), \end{aligned}$$
(15)

then every orthomodular lattice L gives rise to an L-algebra \((L,\rightarrow )\) in [16]. Then, \(x\oplus y=y'\rightarrow x\).

Now, we will give a basic algebra which is also an L-algebra.

Example 1

Let \({\mathcal {B}}=(\{0,~a,~\lnot a,~1\},~\oplus ,~\lnot ,~0)\) be a basic algebra, where \(\oplus \) is given in Table 1.

Table 1 \(\oplus \) of Example 1

Define \(x\rightarrow y:=y\oplus \lnot x\) and \(x'=x\rightarrow 0:=\lnot x\); then, we have Table 2.

Table 2 \(\rightarrow \) of Example 1

An easy computation shows that \({\mathcal {B}}\) is also an L-algebra.

Next, we will give a characterization of basic algebras to be L-algebras.

Theorem 1

Let \((B,~\oplus ,~\lnot ,~0)\) be a basic algebra which satisfies the following condition:

figure a

Then, \((B,~\rightarrow )\) is an L-algebra.

Proof

Define \(x\rightarrow y:= y\oplus \lnot x.\)

By (2), \(x\rightarrow 1=1\oplus \lnot x=1\).\(~1\rightarrow x=x\oplus \lnot 1=x\oplus ~0=x\). By (4), \(x\rightarrow x=x\oplus \lnot x=1.\) This verifies (L1).

\((x\rightarrow y)\rightarrow (x\rightarrow z) =(x\rightarrow z)\oplus \lnot (x \rightarrow y)=(z\oplus \lnot x)\oplus \lnot (y\oplus \lnot x).\) Similarly, \((y\rightarrow x)\rightarrow (y\rightarrow z)=(z\oplus \lnot y)\oplus \lnot (x\oplus \lnot y).\) By (LB), we have verified (L2) in the definition of an L-algebra.

Assume that \(x\rightarrow y=y\rightarrow x=1,\) then \(y\oplus \lnot x=x\oplus \lnot y=1.\) Since \(y\oplus \lnot x=1\Leftrightarrow \lnot y\le \lnot x\Leftrightarrow x\le y\) by (5) and (BA2), then \(x\le y,~y\le x.\) Hence, \(x=y.\) This verifies (L3).

Then, \((B,~\rightarrow )\) is an L-algebra. \(\square \)

There are many basic algebras which are not L-algebras with respect to the original involutive bounded lattice structure.

Example 2

Let us consider the ortholattice \(O_6\) with the following Hasse diagram.

figure b

By Corollary 1 and the properties of basic algebras, it is routine to verify that \((O_6,~\oplus ,~\lnot ,~0)\) is a basic algebra, where \(\lnot x=x'\) and \(\oplus \) is given in Table 3.

Table 3 \(\oplus \) of Example 2

Assume \(O_6\) can be converted into an L-algebra with the operation \(\rightarrow .\) By (L2),  \((b\rightarrow a)\rightarrow b'=(a\rightarrow b)\rightarrow a'=1\rightarrow a'=a'.\) Then, \(b\rightarrow a=a'\), since \(b'\le b\rightarrow a\), whence \(a'\rightarrow b'=a'\). However, \(a\le a'\rightarrow b'=a'\), which is a contradiction. Thus, \(O_6\) is not an L-algebra.

Conversely, under what conditions can an L-algebra be regarded as a basic algebra? Since every basic algebra is an IBL, we are interested in the L-algebra L with 0 and relation given by (10) such that the L is an IBL. Define \(x\oplus y:=y'\rightarrow x,\) and we have the following theorem:

Theorem 2

Let \((L,~\rightarrow )\) be an L-algebra with 0 and relation given by (10) such that L is an involutive bounded lattice, where \(x'=x\rightarrow 0\). Define

$$\begin{aligned} x\oplus y:=y'\rightarrow x. \end{aligned}$$

If \((L,~\oplus ,~\lnot ,~0) \) is a basic algebra, then L must be a lattice-ordered effect algebra.

Proof

Since L is an involutive bounded lattice, then \(x''=x\) and \(x\le y\Rightarrow x'\ge y'\) for every \(x,~y\in L.\) Define \(x\oplus y:=y'\rightarrow x\), and then, \(x\vee y=y'\rightarrow (y'\rightarrow x')'\) by Lemma 1. Assume \(x\le y,\) then

$$\begin{aligned} \begin{aligned} y\rightarrow x=&(y\vee x)\rightarrow x\\ =\,&(x'\rightarrow (x'\rightarrow y')')\rightarrow x\\ =\,&(x'\rightarrow (x'\rightarrow y')')\rightarrow (x'\rightarrow 0)\quad by~(L2)\\ =\,&((x'\rightarrow y')'\rightarrow x')\rightarrow ((x'\rightarrow y')'\rightarrow 0)\\&by~(11)~and~(9)\\ =\,&1\rightarrow (x'\rightarrow y') \quad by~(L1)\\ =\,&x'\rightarrow y'. \end{aligned} \end{aligned}$$

Then by Theorem 3.9 in Wu et al. (2019), L is a lattice-ordered effect algebra. \(\square \)

By Rump (2008, P. 2346, Example 1), every partially ordered set with the greatest element 1 can be regarded as an L-algebra. We have already known that every basic algebra \((B,~\oplus ,~\lnot ,~0)\) is an IBL such that 1 is the greatest element of B, so it can be regarded as an L-algebra. But we are focused on the L-algebra with 0 and relation given by (10) such that it is an involutive bounded lattice, where \(x'=x\rightarrow 0.\)

In conclusion, we get an interesting relationship diagram as follows:

An involutive bounded lattice which is neither a basic algebra nor an L-algebra (relation given by (10) such that it is an involutive bounded lattice) is given in the following.

Example 3

Let us consider the involutive bounded lattice \(G_6\).

figure c

Assume that \(G_6\) can be converted into an L-algebra with 0 such that \(x':=x\rightarrow 0\). By (11), \(x'\le x\rightarrow y,~y\le y'\rightarrow x\), then \(x\rightarrow y= x'\) or \(y'(x\ge y,x\rightarrow y \ne 1)\) and the possible values of \(y'\rightarrow x\) are \(y,~x,~x',~y'.\)

By (L2) and (L1),

$$\begin{aligned} (x\rightarrow y)\rightarrow x'=(y\rightarrow x)\rightarrow (y\rightarrow 0)=1\rightarrow y'=y' \end{aligned}$$
(16)

and

$$\begin{aligned} x'=1\rightarrow x'=(x\rightarrow y')\rightarrow x'=(y'\rightarrow x)\rightarrow y. \end{aligned}$$
(17)

If \(x\rightarrow y=x',\) then \(1=x'\rightarrow x'=y'\) by (16), a contradiction. Thus, \(x\rightarrow y=y'\) which implies that \(y'\rightarrow x'=y'\) by (16).

There are only four possible values of \(y'\rightarrow x\): \(y,~x,~x',~y'.\)

  1. (i)

    If \(y'\rightarrow x=y,\) then \(y\rightarrow y=x'\) by (17). However, \(y\rightarrow y=1.\) Hence, \(y'\rightarrow x\ne y.\)

  2. (ii)

    Assume \(y'\rightarrow x=x\), then \(x\rightarrow y=x'\) by (17), which contradicts \(x\rightarrow y=y'.\)

  3. (iii)

    If \(y'\rightarrow x= x'\), then \(x'\rightarrow y=x'\) by (17). Since \(x\le x'\rightarrow y\), then \(x\le x'\rightarrow y=x'\). However, x is uncomparable with \(x'\), and  then, \(y'\rightarrow x\ne x'.\)

  4. (iv)

    Assume \(y'\rightarrow x=y'\), then \(y'\rightarrow y=x'\) by (17). Nevertheless, \(x=1\rightarrow x=(x'\rightarrow y')\rightarrow x=(y'\rightarrow x')\rightarrow y=y'\rightarrow y=x',\) which is a contradiction.

The above shows that no matter how we define \(\rightarrow \) on \(G_6,\) it cannot be converted into an L-algebra (the induced partial ordering binary relation by (10) is an involutive bounded lattice).

We will verify that \(G_6\) can also not be a basic algebra in the following.

Assume \(G_6\) can be converted into a basic algebra with operation \(\oplus \) such that \(x'=\lnot x\). By Lemma 1,

$$\begin{aligned} x=x\vee y=\lnot (\lnot x\oplus y)\oplus y. \end{aligned}$$
(18)

Since \(y\le \lnot x~\oplus y\), \(y\le x\) and \(y\oplus \lnot y=1,\) then the possible values of \(\lnot x~\oplus y\) are \(x,~\lnot x,~\lnot y.\)

By Lemma 1, we can obtain

$$\begin{aligned} \lnot x=\lnot x\vee y=\lnot (x\oplus y)\oplus y \end{aligned}$$
(19)

and

$$\begin{aligned} \lnot y=\lnot y\vee y=\lnot (y\oplus y)\oplus y. \end{aligned}$$
(20)

Thus, we get the possible values of \(x\oplus y\) and \(y\oplus y\) which are also \(x,~\lnot x,~\lnot y.\)

We will divide into three cases to discuss the values of \(\lnot x\oplus y.\)

  1. (i)

    If \(\lnot x\oplus y=\lnot x,\) then \(x\oplus y=x\) by (18). Since \(y\le x,\) then \(y \oplus y \le x \oplus y=x\) by (6). Then, \(y\oplus y=x.\) By (20), \(\lnot x\oplus y=\lnot y\ne \lnot x\), a contradiction.

  2. (ii)

    If \(\lnot x\oplus y=x\) and \(x\oplus y=x\), then \(\lnot x\oplus y=\lnot x\) by (19). This contradicts the assumption. If \(x\oplus y=\lnot x,\) since \(y\oplus y\le x\oplus y=\lnot x\), then \(y\oplus y=\lnot x.\) Thus by (20), \(x\oplus y=\lnot y\ne \lnot x\). So \(x\oplus y=\lnot y\), which implies \(y\oplus y =\lnot x.\) But \(x=\lnot x\oplus y\ge y\oplus y=\lnot x\), which is impossible.

  3. (iii)

    If \(\lnot x\oplus y=\lnot y,\) then \(y\oplus y=x\) by (18). Suppose that \(x\oplus y=x\), then \(\lnot x\oplus y=\lnot x\ne \lnot y\) by (19). If \(x\oplus y=\lnot y\), then \(y\oplus y=\lnot x\ne x.\) So \(x\oplus y=\lnot x.\) However, \(\lnot x=x\oplus y\ge y\oplus y=x\), which is absurd.

None of the above cases is satisfied, which means \(G_6\) can also not be considered as a basic algebra.

4 A lattice-ordered effect algebra with different basic algebra structures

In this section, we construct a lattice-ordered effect algebra with two different basic algebra structures and improve (Chajda et al. 2009, P. 80,Example 5.3) which stated as follows:

Fig. 1
figure 1

Lattice of Example 5.3 in Chajda et al. (2009)

Let us consider the lattice from Fig. 1 with the antitone involution on the section [b,  1] defined by \(b^b=1,~(\lnot b)^b=\lnot b,~(\lnot a)^b=\lnot a,~1^b=b\).

An easy inspection shows that the derived basic algebra \({\mathcal {A}}=(A,~\oplus ,~\lnot ,~0)\) is not a lattice-ordered effect algebra [because it does not fulfill (21)], where \(A=\{0,~a,~b,~\lnot a,~\lnot b,~1\}\) and the addition \(\oplus \) is given in Table 4:

$$\begin{aligned} x\le \lnot y~~and~~x\oplus y\le \lnot z \Rightarrow x\oplus (z\oplus y)=(x\oplus y)\oplus z.\nonumber \\ \end{aligned}$$
(21)
Table 4 \(\oplus \) of Example 5.3 in Chajda et al. (2009)

It is easily seen that when \(x=0,~y=b\) and \(z=a,\)\(x\oplus (z\oplus y)=0\oplus (a\oplus b)=a\oplus b=\lnot a\ne \lnot b=b\oplus a=(0\oplus b)\oplus a=(x\oplus y)\oplus z\). Hence, A does not fulfill (21).

However, using the same \((A,~\oplus ,~\lnot ,~0)\) as in Fig. 1 and Table 4, we consider

Example 4

The basic algebra \({\mathcal {A}}=({A,~\oplus ,~\lnot ,~0})\) can be converted into a lattice-ordered effect algebra \((\{0,~a,~b,~a',~b', ~1\},~+,~',~0)\) whose operation is given in Table 5. If \(x+y\) is undefined for \(x,~y\in \{0,~a,~b,~a',~b',~1\}\), we denote it by “−.”

Table 5 \(\oplus \) of Example 4

Remark 1

In Chajda et al. (2009) [P. 75, Prop. 4.5], lattice-ordered effect algebras can be viewed as basic algebras. We can obtain the derived basic algebra of the lattice-ordered effect algebra \((A,~+)\) from Example 4.

Define \(x\oplus ^{*} y:=(x\wedge y')\oplus y\) and \(\lnot x:=x'\). Then, \(\mathcal {A^*}=(A^*,~\oplus ^{*},~\lnot ,~0)\) is a basic algebra with \(\oplus ^{*}\) given in Table 6.

Table 6 \(\oplus ^{*}\) of Remark 1

Hence, we obtain two different basic algebra structures whose operations are given in Tables 4 and 6 from the same lattice-ordered algebra from Example 4.