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Abstract
In this paper, we study the relation between L-algebras and basic algebras. In particular, we construct a lattice-ordered effect
algebra which improves an example of Chajda et al. (Algebra Univ 60(1), 63–90, 2009).
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1 Introduction

Basic algebras, which generalize both MV-algebras and
orthomodular lattices,were introduced inChajda et al. (2009)
andChajda et al. (2007) as a common base for axiomatization
of many-valued propositional logics as well as of the logic
of quantummechanics. The relationship between basic alge-
bras, MV-algebras, orthomodular lattices and lattice-ordered
effect algebras was considered in Botur (2010), Botur and
Halaš (2008), Chajda (2012; 2015), Chajda et al. (2009). One
can mention that every MV-algebra is a basic algebra whose
induced lattice is distributive (Chajda 2015, P. 18, Lemma
5.2). The sufficient and necessary condition for an orthomod-
ular lattice to be a basic algebra has been obtained in Chajda
(2015, P. 17, Theorem 4.3). Relation between lattice-ordered
effect algebras and basic algebras was treated in Botur and
Halaš (2008), Chajda (2012) by considering their common
lattice structure (a lattice with section antitone involutions).
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L-algebras, which are related to algebraic logic and quan-
tum structures, were introduced by Rump (2008). Many
examples shown that L-algebras are very useful. Yang and
Rump (2012), characterized pseudo-MV-algebras and Bos-
bach’s non-commutative bricks as L-algebras. Wu and Yang
(2020) proved that orthomodular lattices form a special class
of L-algebras in different ways. It was shown that every
lattice-ordered effect algebra has an underlying L-algebra
structure in Wu et al. (2019).

In the present paper, we study the relationship between
basic algebras and L-algebras. We prove that a basic algebra
which satisfies

(z ⊕ ¬x) ⊕ ¬(y ⊕ ¬x) = (z ⊕ ¬y) ⊕ ¬(x ⊕ ¬y)

can be converted into an L-algebra (Theorem 1). Conversely,
if an L-algebra with 0 and relation given by (10) such that it
is an involutive bounded lattice can be organized into a basic
algebra, it must be a lattice-ordered effect algebra (Theo-
rem 2). Finally, we construct a lattice-ordered effect algebra
which improves (Chajda et al. 2009, P. 80, Example 5.3).

2 Preliminaries

Note that basic algebras were introduced in Chajda (2007;
2009), but the axiomatic system was extended by one more
axiom which is dependent on the following axioms as shown
in Chajda and Kolšík (2009).

Definition 1 Abasic algebra is an algebraB = (B; ⊕, ¬, 0)
of type (2, 1, 0) satisfying the following identities:

(BA1) x ⊕ 0 = x,
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(BA2) ¬¬x = x,

(BA3) ¬(¬x ⊕ y) ⊕ y = ¬(¬y ⊕ x) ⊕ x,

(BA4) ¬(¬(¬(x ⊕ y) ⊕ y) ⊕ z) ⊕ (x ⊕ z) = ¬0.

For the sake of brevity, we denote by 1 =: ¬0.
Let B = (B, ⊕, ¬, 0) be a basic algebra. The relation ≤

defined by

x ≤ y if and only if ¬x ⊕ y = 1 (1)

is a partial ordering on B such that 0 and 1 are the least and
the greatest element of B, respectively.

In what follows, we need the following properties of basic
algebras (cf. Chajda 2015; Chajda et al. 2009):

x ⊕ 1 = 1 = 1 ⊕ x . (2)

0 ⊕ x = x . (3)

¬x ⊕ x = 1. (4)

x ≤ y ⇒ ¬x ≥ ¬y. (5)

x ≤ y ⇒ x ⊕ z ≤ y ⊕ z. (6)

y ≤ x ⊕ y. (7)

Lemma 1 (Chajda 2015, P. 69, Prop. 3.6) For every basic
algebra B = (B, ⊕, ¬, 0), the poset (B, ≤) is a bounded
lattice in which the supremum x∨y and the infimum x∧y are
given by x ∨ y = ¬(¬x ⊕ y)⊕ y and x ∧ y = ¬(¬x ∨¬y),
respectively.

An involutive bounded lattice (IBL) (Chiara and Giun-
tini 2002, P. 191, Def. 12.1) is a structure (L, ≤
, ′, 0, 1), where (L, ≤, 0, 1) is a lattice with mini-
mum 0 and maximum 1, ′ is a unary operation on L such
that the following conditions are satisfied:

(Involutive law) x = x .′′ (8)

(Antitony) if x ≤ y, then y′ ≤ x ′. (9)

According to (BA2), (5) andLemma1, everybasic algebra
is an IBL.

Lemma 2 (Chajda 2015, P. 70, Lemma 3.8) The identity

¬(¬(x ⊕ y) ⊕ y) ⊕ y = x ⊕ y

is true in all basic algebras.

Corollary 1 The identity

(x ∧ ¬y) ⊕ y = x ⊕ y

is true in all basic algebras.

Proof By Lemmas 1 and 2, x ⊕ y = ¬(¬(x ⊕ y)⊕ y)⊕ y =
¬(¬x ∨ y)⊕ y = (x ∧ ¬y)⊕ y is true in all basic algebras.

	

Definition 2 (Rump and Yang 2012, P. 122) An L-algebra is
an algebra (L,→) of type (2, 0) satisfying

(L1) x → x = x → 1 = 1, 1 → x = x

(L2) (x → y) → (x → z) = (y → x) → (y → z)

(L3) x → y = y → x = 1 ⇒ x = y

for all x, y, z ∈ L .

There is a partial ordering by Rump (2008, P. 2332, Prop. 2)

x ≤ y ⇔ x → y = 1 (10)

such that 1 is the greatest element of L . If L admits a smallest
element 0, we speak of an L-algebra with 0.

Lemma 3 (Rump and Yang 2012, P. 123, Lemma 2.1)
Let L be an L-algebra. Then, x ≤ y implies that z → x ≤
z → y for all x, y, z ∈ L.

In particular, if L is an L-algebra with 0 and satisfies (8)
for every x ∈ L , then

x ≤ x ′ → y, x ′ ≤ x → y. (11)

3 L-algebras and basic algebras

In this section, we are interested in knowing the mutual rela-
tion betweenL-algebras and basic algebras.Assume that they
have the same lattice structure. Firstly, we give three types
of involutive bounded lattices which can be regarded as both
L-algebras and basic algebras: MV-algebras, lattice-ordered
effect algebras and orthomodular lattices.

Recall that an MV-algebra Chang (1958) is an alge-
bra A = (A, ⊕, ′, 0) of type (2, 1, 0) where (A, ⊕, 0) is
a commutative monoid satisfying (8) and the following iden-
tities:

x ⊕ 0′ = 0′,
(x ′ ⊕ y)′ ⊕ y = (y′ ⊕ x)′ ⊕ x .

MV-algebras are both basic algebras and L-algebras (Cha-
jda et al. 2009; Wu et al. 2019).

An effect algebra (Foulis and Bennett 1994, P. 1333, Def.
2.1) is a system (E, +, 0, 1) consisting of a set E with
two special elements 0, 1 ∈ E , called the zero and the unit,
and with a partially defined binary operation+ satisfying the
following conditions for all p, q, r ∈ E .
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(E1) (Commutative law) If p+q is defined, then q+ p is
defined and p + q = q + p.

(E2) (Associative law) If p + q is defined and (p +
q) + r is defined, then q + r and p + (q + r) are defined
and p + (q + r) = (p + q) + r .

(E3) (Orthosupplement law) For every p ∈ E , there
exists a unique q ∈ E such that p + q is defined and p +
q = 1. The unique element q is written as p′ and called the
orthosupplement of p.

(E4) (Zero-one law) If p + 1 is defined, then p = 0.
Let (E, +, 0, 1) be an effect algebra. Define a binary

relation on E by

a ≤ b if for some c ∈ E, c + a = b (12)

which is a partial ordering on E such that 0 and 1 are the
smallest element and the greatest element of E , respec-
tively. If the poset (E, ≤) is a lattice, then E is called a
lattice-ordered effect algebra.

Lemmas 4 and 5 show that there is a mutual correspon-
dence between lattice-ordered effect algebras, basic algebras
and L-algebras.

Lemma 4 (Chajda2012, P. 8,Thm.12)LetE = (E, +, 0, 1)
be a lattice-ordered effect algebra. Define

x ⊕ y := (x ∧ y′) + y and ¬x := x ′. (13)

Then, B(E) = (E, ⊕, ¬, 0) is a basic algebra (whose
lattice order coincides with the original one).

Define x → y := (x ∧ y) + x ′.
Lemma 5 (Wu et al. 2019, P106, Thm. 3.3) Every lattice-
ordered effect algebra (E, +, 0, 1) gives rise to an
L-algebra (E, →) with negation such that x ′ = x → 0 is
exactly the orthosupplement of x in (E, +, 0, 1).

Let (L, +, 0, 1) be a lattice-ordered effect algebra.
Define

x ⊕ y := (x ∧ y′) + y,

and then, (L, ⊕, ¬, 0) is a basic algebra by Lemma 4. By
Lemma 5, (L, →, 0, 1) is an L-algebra, where

x → y := (x ∧ y) + x ′.

Then, x ⊕ y = y′ → x .
An orthomodular lattice (OML) Kalmbach (1983) is an

algebra L = (L, ∨, ∧, ′, 0, 1) of type (2, 2, 1, 0, 0) satis-
fying (8), (9) and the following axioms: (i) (L, ∨, ∧, 0, 1)
is a bounded lattice. (ii) x ≤ y implies y = x ∨ (y ∧ x ′).

In Chajda (2015), the author uses

x ⊕ y := (x ∧ y′) ∨ y and ¬x := x ′ (14)

Table 1 ⊕ of Example 1 ⊕ 0 a ¬a 1

0 0 a ¬a 1

a a ¬a 1 1

¬a ¬a 1 1 1

1 1 1 1 1

Table 2 → of Example 1 → 0 a a′ 1

0 1 1 1 1

a a′ a 1 1

a′ a a′ 1 1

1 0 a a′ 1

to convert an orthomodular lattice (L, ∨, ∧, ′, 0, 1) into a
basic algebra (L, ⊕, ¬, 0).

Define

x → y := x ′ ∨ (x ∧ y), (15)

then every orthomodular lattice L gives rise to an L-
algebra (L,→) in [16]. Then, x ⊕ y = y′ → x .

Now, we will give a basic algebra which is also an L-
algebra.

Example 1 Let B = ({0, a, ¬a, 1}, ⊕, ¬, 0) be a basic
algebra, where ⊕ is given in Table 1.

Define x → y := y ⊕ ¬x and x ′ = x → 0 := ¬x ; then,
we have Table 2.

An easy computation shows that B is also an L-algebra.
Next, we will give a characterization of basic algebras to

be L-algebras.

Theorem 1 Let (B, ⊕, ¬, 0) be a basic algebra which sat-
isfies the following condition:

(z ⊕ ¬x) ⊕ ¬(y ⊕ ¬x) = (z ⊕ ¬y) ⊕ ¬(x ⊕ ¬y) (LB)

Then, (B, →) is an L-algebra.

Proof Define x → y := y ⊕ ¬x .
By (2), x → 1 = 1 ⊕ ¬x = 1. 1 → x = x ⊕ ¬1 =

x ⊕ 0 = x . By (4), x → x = x ⊕ ¬x = 1. This verifies
(L1).

(x → y) → (x → z) = (x → z) ⊕ ¬(x → y) =
(z ⊕ ¬x) ⊕ ¬(y ⊕ ¬x). Similarly, (y → x) → (y → z) =
(z ⊕ ¬y) ⊕ ¬(x ⊕ ¬y). By (LB), we have verified (L2) in
the definition of an L-algebra.

Assume that x → y = y → x = 1, then y ⊕ ¬x =
x ⊕ ¬y = 1. Since y ⊕ ¬x = 1 ⇔ ¬y ≤ ¬x ⇔ x ≤ y
by (5) and (BA2), then x ≤ y, y ≤ x . Hence, x = y. This
verifies (L3).

Then, (B, →) is an L-algebra. 	
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Table 3 ⊕ of Example 2 ⊕ 0 a b ¬b ¬a 1

0 0 a b ¬b ¬a 1

a a a b ¬a 1 1

b b a b 1 1 1

¬b ¬b b 1 ¬b ¬a 1

¬a ¬a 1 1 ¬b ¬a 1

1 1 1 1 1 1 1

There are many basic algebras which are not L-algebras
with respect to the original involutive bounded lattice struc-
ture.

Example 2 Let us consider the ortholattice O6 with the fol-
lowing Hasse diagram.

�
��

�
��

�
��

�
���

��
�

��

0

a b′

a′b

1

•

•

• •
• •

•

•

O6

By Corollary 1 and the properties of basic algebras, it is
routine to verify that (O6, ⊕, ¬, 0) is a basic algebra, where
¬x = x ′ and ⊕ is given in Table 3.

Assume O6 can be converted into an L-algebra with the
operation → . By (L2), (b → a) → b′ = (a → b) →
a′ = 1 → a′ = a′. Then, b → a = a′, since b′ ≤ b → a,
whence a′ → b′ = a′. However, a ≤ a′ → b′ = a′, which
is a contradiction. Thus, O6 is not an L-algebra.

Conversely, under what conditions can an L-algebra be
regarded as a basic algebra? Since every basic algebra is an
IBL, we are interested in the L-algebra L with 0 and relation
given by (10) such that the L is an IBL. Define x ⊕ y :=
y′ → x, and we have the following theorem:

Theorem 2 Let (L, →) be an L-algebra with 0 and relation
given by (10) such that L is an involutive bounded lattice,
where x ′ = x → 0. Define

x ⊕ y := y′ → x .

If (L, ⊕, ¬, 0) is a basic algebra, then L must be a lattice-
ordered effect algebra.

Proof Since L is an involutive bounded lattice, then x ′′ = x
and x ≤ y ⇒ x ′ ≥ y′ for every x, y ∈ L. Define x ⊕ y :=
y′ → x , and then, x ∨ y = y′ → (y′ → x ′)′ by Lemma 1.

Assume x ≤ y, then

y → x =(y ∨ x) → x

= (x ′ → (x ′ → y′)′) → x

= (x ′ → (x ′ → y′)′) → (x ′ → 0) by (L2)

= ((x ′ → y′)′ → x ′) → ((x ′ → y′)′ → 0)

by (11) and (9)

= 1 → (x ′ → y′) by (L1)

= x ′ → y′.

Then by Theorem 3.9 in Wu et al. (2019), L is a lattice-
ordered effect algebra. 	


By Rump (2008, P. 2346, Example 1), every partially
ordered set with the greatest element 1 can be regarded as
an L-algebra. We have already known that every basic alge-
bra (B, ⊕, ¬, 0) is an IBL such that 1 is the greatest element
ofB, so it can be regarded as anL-algebra. Butwe are focused
on the L-algebra with 0 and relation given by (10) such that
it is an involutive bounded lattice, where x ′ = x → 0.

In conclusion, we get an interesting relationship diagram
as follows:

basic algebra

MV − algebra lattice − ordered e f f ect algebra OML

L − algebra

An involutive bounded latticewhich is neither a basic alge-
bra nor an L-algebra (relation given by (10) such that it is an
involutive bounded lattice) is given in the following.

Example 3 Let us consider the involutive bounded latticeG6.

�
��

�
��

�
��

�
��

0

y

x x ′

y′

1

•
•

• •

•

•

•

G6

Assume thatG6 can be converted into an L-algebra with 0
such that x ′ := x → 0. By (11), x ′ ≤ x → y, y ≤ y′ → x ,
then x → y = x ′ or y′(x ≥ y, x → y �= 1) and the possible
values of y′ → x are y, x, x ′, y′.
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By (L2) and (L1),

(x → y) → x ′ = (y → x) → (y → 0) = 1 → y′ = y′

(16)

and

x ′ = 1 → x ′ = (x → y′) → x ′ = (y′ → x) → y. (17)

If x → y = x ′, then 1 = x ′ → x ′ = y′ by (16), a
contradiction. Thus, x → y = y′ which implies that y′ →
x ′ = y′ by (16).

There are only four possible values of y′ → x : y, x, x ′, y′.

(i) If y′ → x = y, then y → y = x ′ by (17). However,
y → y = 1. Hence, y′ → x �= y.

(ii) Assume y′ → x = x , then x → y = x ′ by (17), which
contradicts x → y = y′.

(iii) If y′ → x = x ′, then x ′ → y = x ′ by (17). Since
x ≤ x ′ → y, then x ≤ x ′ → y = x ′. However, x is
uncomparable with x ′, and then, y′ → x �= x ′.

(iv) Assume y′ → x = y′, then y′ → y = x ′ by (17).
Nevertheless, x = 1 → x = (x ′ → y′) → x = (y′ →
x ′) → y = y′ → y = x ′, which is a contradiction.

The above shows that no matter how we define → on G6,

it cannot be converted into an L-algebra (the induced partial
ordering binary relation by (10) is an involutive bounded
lattice).

We will verify that G6 can also not be a basic algebra in
the following.

Assume G6 can be converted into a basic algebra with
operation ⊕ such that x ′ = ¬x . By Lemma 1,

x = x ∨ y = ¬(¬x ⊕ y) ⊕ y. (18)

Since y ≤ ¬x ⊕ y, y ≤ x and y ⊕ ¬y = 1, then the
possible values of ¬x ⊕ y are x, ¬x, ¬y.

By Lemma 1, we can obtain

¬x = ¬x ∨ y = ¬(x ⊕ y) ⊕ y (19)

and

¬y = ¬y ∨ y = ¬(y ⊕ y) ⊕ y. (20)

Thus, we get the possible values of x ⊕ y and y ⊕ y which
are also x, ¬x, ¬y.

We will divide into three cases to discuss the values of
¬x ⊕ y.

(i) If ¬x ⊕ y = ¬x, then x ⊕ y = x by (18). Since y ≤ x,
then y ⊕ y ≤ x ⊕ y = x by (6). Then, y ⊕ y = x . By
(20), ¬x ⊕ y = ¬y �= ¬x , a contradiction.

(ii) If ¬x ⊕ y = x and x ⊕ y = x , then ¬x ⊕ y = ¬x by
(19). This contradicts the assumption. If x ⊕ y = ¬x,
since y ⊕ y ≤ x ⊕ y = ¬x , then y ⊕ y = ¬x . Thus
by (20), x ⊕ y = ¬y �= ¬x . So x ⊕ y = ¬y, which
implies y ⊕ y = ¬x . But x = ¬x ⊕ y ≥ y ⊕ y = ¬x ,
which is impossible.

(iii) If ¬x ⊕ y = ¬y, then y ⊕ y = x by (18). Suppose
that x ⊕ y = x , then ¬x ⊕ y = ¬x �= ¬y by (19). If
x ⊕ y = ¬y, then y ⊕ y = ¬x �= x . So x ⊕ y = ¬x .
However, ¬x = x ⊕ y ≥ y ⊕ y = x , which is absurd.

None of the above cases is satisfied, which means G6 can
also not be considered as a basic algebra.

4 A lattice-ordered effect algebra with
different basic algebra structures

In this section, we construct a lattice-ordered effect algebra
with two different basic algebra structures and improve (Cha-
jda et al. 2009, P. 80,Example 5.3) which stated as follows:

Let us consider the lattice from Fig. 1 with the antitone
involution on the section [b, 1] defined by bb = 1, (¬b)b =
¬b, (¬a)b = ¬a, 1b = b.

An easy inspection shows that the derived basic alge-
bra A = (A, ⊕, ¬, 0) is not a lattice-ordered effect
algebra [because it does not fulfill (21)], where A =
{0, a, b, ¬a, ¬b, 1} and the addition⊕ is given in Table 4:

x ≤ ¬y and x ⊕ y ≤ ¬z ⇒ x ⊕ (z ⊕ y) = (x ⊕ y) ⊕ z.

(21)

It is easily seen that when x = 0, y = b and z = a,
x ⊕ (z ⊕ y) = 0⊕ (a ⊕ b) = a ⊕ b = ¬a �= ¬b = b⊕ a =
(0 ⊕ b) ⊕ a = (x ⊕ y) ⊕ z. Hence, A does not fulfill (21).

However, using the same (A, ⊕, ¬, 0) as in Fig. 1 and
Table 4, we consider

0

a

¬a¬b

b

1

•

•
•

• •
•

Fig. 1 Lattice of Example 5.3 in Chajda et al. (2009)
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Table 4 ⊕ of Example 5.3 in
Chajda et al. (2009) ⊕ 0 a b ¬b ¬a 1

0 0 a b ¬b ¬a 1

a a a ¬a ¬b 1 1

b b ¬b ¬b 1 ¬a 1

¬b ¬b ¬b 1 1 1 1

¬a ¬a 1 ¬b 1 ¬a 1

1 1 1 1 1 1 1

Table 5 ⊕ of Example 4 + 0 a b b′ a′ 1

0 0 a b b′ a′ 1

a a − b′ − 1 −
b b b′ a′ 1 − −
b′ b′ − 1 − − −
a′ a′ 1 − − − −
1 1 − − − − −

Table 6 ⊕∗ of Remark 1 ⊕∗ 0 a b ¬b ¬a 1

0 0 a b ¬b ¬a 1

a a a ¬b ¬b 1 1

b b ¬b ¬a 1 ¬a 1

¬b ¬b ¬b 1 1 1 1

¬a ¬a 1 ¬a 1 ¬a 1

1 1 1 1 1 1 1

Example 4 Thebasic algebraA = (A, ⊕, ¬, 0) canbe con-
verted into a lattice-ordered effect algebra ({0, a, b, a′, b′,
1}, +, ′, 0) whose operation is given in Table 5. If x + y is
undefined for x, y ∈ {0, a, b, a′, b′, 1}, we denote it by
“−.”

Remark 1 In Chajda et al. (2009) [P. 75, Prop. 4.5], lattice-
ordered effect algebras can be viewed as basic algebras. We
can obtain the derived basic algebra of the lattice-ordered
effect algebra (A, +) from Example 4.

Define x ⊕∗ y := (x ∧ y′) ⊕ y and ¬x := x ′. Then,
A∗ = (A∗, ⊕∗, ¬, 0) is a basic algebra with ⊕∗ given in
Table 6.

Hence, we obtain two different basic algebra structures
whose operations are given in Tables 4 and 6 from the same
lattice-ordered algebra from Example 4.
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