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In this paper, we study the relation between L-algebras and basic algebras. In particular, we construct a lattice-ordered effect
algebra which improves an example of Chajda et al. (Algebra Univ 60(1), 63-90, 2009).
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1 Introduction

Basic algebras, which generalize both MV-algebras and
orthomodular lattices, were introduced in Chajda et al. (2009)
and Chajdaet al. (2007) as acommon base for axiomatization
of many-valued propositional logics as well as of the logic
of quantum mechanics. The relationship between basic alge-
bras, M V-algebras, orthomodular lattices and lattice-ordered
effect algebras was considered in Botur (2010), Botur and
Halas (2008), Chajda (2012; 2015), Chajda et al. (2009). One
can mention that every MV-algebra is a basic algebra whose
induced lattice is distributive (Chajda 2015, P. 18, Lemma
5.2). The sufficient and necessary condition for an orthomod-
ular lattice to be a basic algebra has been obtained in Chajda
(2015, P. 17, Theorem 4.3). Relation between lattice-ordered
effect algebras and basic algebras was treated in Botur and
Halas$ (2008), Chajda (2012) by considering their common
lattice structure (a lattice with section antitone involutions).
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L-algebras, which are related to algebraic logic and quan-
tum structures, were introduced by Rump (2008). Many
examples shown that L-algebras are very useful. Yang and
Rump (2012), characterized pseudo-MV-algebras and Bos-
bach’s non-commutative bricks as L-algebras. Wu and Yang
(2020) proved that orthomodular lattices form a special class
of L-algebras in different ways. It was shown that every
lattice-ordered effect algebra has an underlying L-algebra
structure in Wu et al. (2019).

In the present paper, we study the relationship between
basic algebras and L-algebras. We prove that a basic algebra
which satisfies

e X)O-(DxX)=zP—y) & —~(xD—y)

can be converted into an L-algebra (Theorem 1). Conversely,
if an L-algebra with O and relation given by (10) such that it
is an involutive bounded lattice can be organized into a basic
algebra, it must be a lattice-ordered effect algebra (Theo-
rem 2). Finally, we construct a lattice-ordered effect algebra
which improves (Chajda et al. 2009, P. 80, Example 5.3).

2 Preliminaries

Note that basic algebras were introduced in Chajda (2007;
2009), but the axiomatic system was extended by one more
axiom which is dependent on the following axioms as shown
in Chajda and Kolsik (2009).

Definition 1 A basic algebrais an algebra 5 = (B; @, —,0)
of type (2, 1, 0) satisfying the following identities:

(BAl) x®0=x,

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s00500-020-05231-w&domain=pdf

14328

J.Wang et al.

(BA2)
(BA3)
(BA%)

/X =X,
“(xBY)By=—(ydx) dx,
“(~(—(x DY) DY) DPz2) D (x dz) =—0.

For the sake of brevity, we denote by 1 =: —0.
Let B = (B, @, —, 0) be a basic algebra. The relation <
defined by

x <y ifandonlyif-x®y=1 )

is a partial ordering on B such that O and 1 are the least and
the greatest element of B, respectively.

In what follows, we need the following properties of basic
algebras (cf. Chajda 2015; Chajda et al. 2009):

xdl=1=16&x. (2
0dx = x. (3)
—xdx = 1. (@)
X<y = "Xx=7y. &)
X<y=>x®dz=ydz. (6)
y=x®y. (N

Lemma 1 (Chajda 2015, P. 69, Prop. 3.6) For every basic
algebra B = (B, ®, —,0), the poset (B, <) is a bounded
lattice in which the supremum x V' y and the infimum x Ay are
givenbyxVvy=—-(-x®y)®yandx ANy = —(—x V —y),
respectively.

An involutive bounded lattice (IBL) (Chiara and Giun-
tini 2002, P. 191, Def. 12.1) is a structure (L, <
, ', 0, 1), where (L, <, 0, 1) is a lattice with mini-
mum 0 and maximum 1, ’ is a unary operation on L such
that the following conditions are satisfied:

x=x. (8)
ifx <y, theny < x’'. )

(Involutive law)
(Antitony)

Accordingto(BA2),(5)and Lemma 1, every basic algebra
is an IBL.

Lemma 2 (Chajda 2015, P. 70, Lemma 3.8) The identity
“Cxey)Dy)Dy=xBYy

is true in all basic algebras.

Corollary 1 The identity
A=) Dy=x@Yy

is true in all basic algebras.
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Proof By Lemmas l and2,x®y = =(—(xDy)Dy) Dy =
—(—xVYy)dy=(x A—y)®yistrue in all basic algebras.
O

Definition 2 (Rump and Yang 2012, P. 122) An L-algebra is
an algebra (L, —) of type (2, 0) satisfying

(L) x >x=x—>1=1,1>x=x
(L2) d=>y>Cx—=>0)=(—>x)>—>2)
L3)) x> y=y—->x=1 = x=y

forall x, y, z € L.

There is a partial ordering by Rump (2008, P. 2332, Prop. 2)
X<y & x—>y=1 (10)

such that 1 is the greatest element of L. If L admits a smallest
element 0, we speak of an L-algebra with 0.

Lemma3 (Rump and Yang 2012, P. 123, Lemma 2.1)
Let L be an L-algebra. Then, x < y implies that 7 — x <
z— yforallx, y, z€L.

In particular, if L is an L-algebra with 0 and satisfies (8)
for every x € L, then

x<x' =y xX'<x—-y. (11)

3 L-algebras and basic algebras

In this section, we are interested in knowing the mutual rela-
tion between L-algebras and basic algebras. Assume that they
have the same lattice structure. Firstly, we give three types
of involutive bounded lattices which can be regarded as both
L-algebras and basic algebras: MV-algebras, lattice-ordered
effect algebras and orthomodular lattices.

Recall that an MV-algebra Chang (1958) is an alge-
bra A = (A, @, ', 0) of type (2, 1, 0) where (A, ®, 0)is
a commutative monoid satisfying (8) and the following iden-
tities:

x®0 =0,
eyey=0'®x) ®x.

MV-algebras are both basic algebras and L-algebras (Cha-
jda et al. 2009; Wu et al. 2019).

An effect algebra (Foulis and Bennett 1994, P. 1333, Def.
2.1) is a system (E, +, 0, 1) consisting of a set £ with
two special elements 0, 1 € E, called the zero and the unit,
and with a partially defined binary operation + satisfying the
following conditions for all p, ¢, r € E.
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(E1) (Commutative law) If p+q is defined, then g + p is
definedand p +¢q = ¢q + p.

(E2) (Associative law) If p + ¢ is defined and (p +
q) + r is defined, then g 4+ r and p + (g + r) are defined
and p+(g+r)=(p+q)+r.

(E3) (Orthosupplement law) For every p € E, there
exists a unique ¢ € E such that p + ¢ is defined and p +
g = 1. The unique element ¢ is written as p’ and called the
orthosupplement of p.

(E4) (Zero-one law) If p + 1 is defined, then p = 0.

Let (E, +, 0, 1) be an effect algebra. Define a binary
relation on E by

a<b ifforsomece E, c+a=0>b (12)

which is a partial ordering on E such that 0 and 1 are the
smallest element and the greatest element of E, respec-
tively. If the poset (E, <) is a lattice, then E is called a
lattice-ordered effect algebra.

Lemmas 4 and 5 show that there is a mutual correspon-
dence between lattice-ordered effect algebras, basic algebras
and L-algebras.

Lemma4 (Chajda2012,P.8, Thm.12)Let& = (E, +, 0, 1)
be a lattice-ordered effect algebra. Define

x@y:=xAy)+y and —x :=x'. (13)

Then, B(E) = (E, &, —, 0) is a basic algebra (whose
lattice order coincides with the original one).

Define x — y :== (x A y) +x'.

Lemma5 (Wu et al. 2019, P106, Thm. 3.3) Every lattice-
ordered effect algebra (E, 4+, 0, 1) gives rise to an
L-algebra (E, —) with negation such that x' = x — 0 is
exactly the orthosupplement of x in (E, +, 0, 1).

Let (L, +, 0, 1) be a lattice-ordered effect algebra.
Define

x@y:=xAy)+y,

and then, (L, @, —, 0) is a basic algebra by Lemma 4. By
Lemma 5, (L, —, 0, 1) is an L-algebra, where

x—>yi=xAy)+x.

Then,x ®y =y — x.

An orthomodular lattice (OML) Kalmbach (1983) is an
algebra L = (L, Vv, A, ', 0, 1) of type (2, 2, 1, 0, 0) satis-
fying (8), (9) and the following axioms: (i) (L, Vv, A, 0, 1)
is a bounded lattice. (ii) x < y implies y = x V (y A x/).

In Chajda (2015), the author uses

x@y:=xAy)Vy and —x :=x (14)

Table 1 & of Example 1

S
S
|
S
—_
—_ = k= e

—a -a 1 1
1 1 1 1
Table2 — of Example 1 ,
— 0 a a 1
0 1 1 1
a a a 1 1
a a a 1 1
1 0 a a’ 1

to convert an orthomodular lattice (L, Vv, A, ’, 0, 1) into a
basic algebra (L, &, —, 0).
Define

x—=>y=x"VEAy), (15)

then every orthomodular lattice L gives rise to an L-
algebra (L, —) in [16]. Then,x @ y = y’ — x.

Now, we will give a basic algebra which is also an L-
algebra.

Example1 Let B = ({0, a, —a, 1}, ®, —, 0) be a basic
algebra, where @ is given in Table 1.

Define x — y := y @ —x and x’ = x — 0 := —x; then,
we have Table 2.

An easy computation shows that B is also an L-algebra.

Next, we will give a characterization of basic algebras to
be L-algebras.

Theorem 1 Let (B, @, —, 0) be a basic algebra which sat-
isfies the following condition:

A X)B-(YBX)=CDy)D-(xDd—y) (LB)

Then, (B, —) is an L-algebra.

Proof Definex — y := y @ —ux.

By2,x > 1=1d-x=11—->x=x@-1 =
x® 0=x.By@),x - x = x & —x = 1. This verifies
(L1).

x=>»—>@C—=>20=x—->20~x >y =
(z® —x) & —(y ® —x). Similarly, (y > x) —> (y > 2) =
(z® —y) & —(x & —y). By (LB), we have verified (L2) in
the definition of an L-algebra.

Assume that x — y =y — x = 1, then y @ —x =
x@®@-y=1.Sincey@—-x=1&-y<-x&x<y
by (5) and (BA2), then x <y, y < x. Hence, x = y. This
verifies (L3).

Then, (B, —) is an L-algebra. O
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Table 3 @ of Example 2

® 0 a b —-b —-a 1
0 0 a b —-b —-a 1
a a a b —a 1 1
b b a b 1 1 1
-b —-b b 1 —b —-a 1
—a —a 1 1 =b —-a 1
1 1 1 1 1 1 1

There are many basic algebras which are not L-algebras
with respect to the original involutive bounded lattice struc-
ture.

Example 2 Let us consider the ortholattice Og with the fol-
lowing Hasse diagram.

1
b a
a b
0
O¢

By Corollary 1 and the properties of basic algebras, it is
routine to verify that (Og, @, —, 0) is a basic algebra, where
—x = x’ and @ is given in Table 3.

Assume Og can be converted into an L-algebra with the
operation — . By (L2), (b — a) > b = (a —> b) —
ad=1—d =d.Then,b > a =d,sinceb) <b — a,
whence a’ — b’ = a’. However, a < a’ — b’ = a’, which
is a contradiction. Thus, Og is not an L-algebra.

Conversely, under what conditions can an L-algebra be
regarded as a basic algebra? Since every basic algebra is an
IBL, we are interested in the L-algebra L with 0 and relation
given by (10) such that the L is an IBL. Define x @ y :=
y' — x, and we have the following theorem:

Theorem 2 Let (L, —) be an L-algebra with 0 and relation

given by (10) such that L is an involutive bounded lattice,
where x' = x — 0. Define

x@y:=y — x.

If (L, &, —, 0) is a basic algebra, then L must be a lattice-
ordered effect algebra.

Proof Since L is an involutive bounded lattice, then x” = x

andx <y = x’ >y foreveryx, y € L. Define x @ y :=
y — x,and then,x Vy =y — () — x’)’ by Lemma 1.

@ Springer

Assume x <y, then

y—=>x=(yVx)—>x
== @& = y))—>x
== @ = y))—= & = 0) by (L2)
=((x' =) =)= (' = y) =0
by (11) and (9)
=1—- &' =) by(Ll

/ /
=x —y.

Then by Theorem 3.9 in Wu et al. (2019), L is a lattice-
ordered effect algebra. O

By Rump (2008, P. 2346, Example 1), every partially
ordered set with the greatest element 1 can be regarded as
an L-algebra. We have already known that every basic alge-
bra (B, &, —, 0)isanIBL such that 1 is the greatest element
of B, soit can be regarded as an L-algebra. But we are focused
on the L-algebra with 0 and relation given by (10) such that
it is an involutive bounded lattice, where x’ = x — 0.

In conclusion, we get an interesting relationship diagram
as follows:

basic algebra

]

MYV — algebra — lattice — ordered effect algebra <—— OML

T

L —algebra

Aninvolutive bounded lattice which is neither a basic alge-
bra nor an L-algebra (relation given by (10) such that it is an
involutive bounded lattice) is given in the following.

Example 3 Let us consider the involutive bounded lattice Gg.

Gg

Assume that G4 can be converted into an L-algebra with 0
such thatx’ :=x — 0. By (I11),x' <x —> y, y <y — x,
thenx — y = x’or y/(x > y, x — y # 1) and the possible
values of y — x are y, x, x/, y'.
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By (L2) and (L1),

x>y =0-o0)>0->0=1->y=)

(16)
and

=l>x=x—->y)=>x =0 —x) -y (17)

Ifx > y=x',thenl = x’ - x' =y by (16), a
contradiction. Thus, x — y = y’ which implies that y’ —
x' =y’ by (16).

There are only four possible valuesof y’ — x:y, x, x', y'.

(i) If yY - x = y, then y — y = x’ by (17). However,
y — y = 1. Hence, y — x # y.

(ii) Assume y’ — x = x, then x — y = x’ by (17), which
contradicts x — y = y’.

(iii) If yY — x = x/, then x’ — y = x’ by (17). Since
x <x’ = y,thenx < x’ — y = x'. However, x is
uncomparable with x’, and then, y’ — x # x'.

(iv) Assume y — x = y/, then y/ — y = x" by (17).
Nevertheless, x =1 > x ="' - y) > x = (' —
xy > y =1y — y = x’/, which is a contradiction.

The above shows that no matter how we define — on Gg,
it cannot be converted into an L-algebra (the induced partial
ordering binary relation by (10) is an involutive bounded
lattice).

We will verify that G can also not be a basic algebra in
the following.

Assume Gg¢ can be converted into a basic algebra with
operation @ such that x" = —x. By Lemma 1,

X=xVy=—(-x®y) dy. (18)

Sincey < —x ©&y,y <xandy® —y = 1, then the
possible values of —=x & y are x, —x, —y.
By Lemma 1, we can obtain

X=X VyYy="xDy)DYy (19)
and
—y=—yVy==(y®y &y. (20)

Thus, we get the possible values of x @ y and y @ y which
are also x, —x, —y.

We will divide into three cases to discuss the values of
X DYy.

(1) f—-x®y=—x,thenx ®y = x by (18). Since y < x,
theny ®y <x @y = x by (6). Then, y & y = x. By
(20), =x @ y = —y # —x, a contradiction.

) f—-x@®y=xandx ®y = x, then =x @ y = —x by
(19). This contradicts the assumption. If x & y = —x,
sincey ®y < x®y = —x,thenydy = —x. Thus
by (20), x @y = =y # —x.Sox & y = —y, which
impliesy®y=—-x.Butx=—x@®y>y®y=—x,
which is impossible.

(i) If =x & y = —y, then y & y = x by (18). Suppose
that x ® y = x, then =x @ y = —x # —y by (19). If
x®y=-y,theny®y=—x #x.Sox @y = —x.
However, -x = x @y > y @ y = x, which is absurd.

None of the above cases is satisfied, which means G¢ can
also not be considered as a basic algebra.

4 A lattice-ordered effect algebra with
different basic algebra structures

In this section, we construct a lattice-ordered effect algebra
with two different basic algebra structures and improve (Cha-
jda et al. 2009, P. 80,Example 5.3) which stated as follows:

Let us consider the lattice from Fig. 1 with the antitone
involution on the section [b, 1] defined by v =1, (=b) =
—b, (ma)? = —a, 1" =b.

An easy inspection shows that the derived basic alge-
bra A = (A, ®, —, 0) is not a lattice-ordered effect
algebra [because it does not fulfill (21)], where A =
{0, a, b, —a, —b, 1} and the addition € is given in Table 4:

x<—yand xPy<z72=x0@ZPy)=xdy) Pz
(21)
It is easily seen that when x = 0, y = b and z = a,
xX®(zdy)=0b(@db)=adb=—a#-b=bba=
Odb)da=(x®y)®z. Hence, A does not fulfill (21).

However, using the same (A, @, —, 0) as in Fig. 1 and
Table 4, we consider

—b —

0

Fig.1 Lattice of Example 5.3 in Chajda et al. (2009)
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Table4 @ of Example 5.3 in

—a —a 1 —a

Chajda et al. (2009) ® 0 a b b -al
0 0 a b =b —a l
a a a —a —b 1 1
b b —=b —-b 1 =—-a l
-b —-b —-b 1 1 1 1
—a —a 1 -b 1 —a 1
1 1 1 1 1 1 1
Table5 @ of Example 4 L+ 0 a b b od 1
0 0 a b bV a 1
a a — bV - -
b b b ad 1 -
vV v - 1 - -
a dad 1 - - =
1 - - - -
Table6 @* of Remark 1 & 0 a b —b —a 1
0 0 a -b —a 1
a a a —-b —-b 1 1
b b -—b —a —a 1
—b —b —b 1 1
1
1

—_
1
S

Example 4 Thebasic algebra. A = (A, &, —, 0)canbecon-
verted into a lattice-ordered effect algebra ({0, a, b, da’, b/,
1}, +, /, 0) whose operation is given in Table 5. If x + y is
undefined for x, y € {0, a, b, a/, b/, 1}, we denote it by

113 ER)

Remark 1 In Chajda et al. (2009) [P. 75, Prop. 4.5], lattice-
ordered effect algebras can be viewed as basic algebras. We
can obtain the derived basic algebra of the lattice-ordered
effect algebra (A, +) from Example 4.

Define x &* y := (x A y') @ y and —x := x’. Then,
A* = (A%, @*, —, 0) is a basic algebra with &* given in
Table 6.

Hence, we obtain two different basic algebra structures
whose operations are given in Tables 4 and 6 from the same
lattice-ordered algebra from Example 4.
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