FOUNDATIONS

Basic algebras and L-algebras

Jing Wang¹ · Yali Wu² · Yichuan Yang¹

Published online: 12 August 2020 © Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract

In this paper, we study the relation between L-algebras and basic algebras. In particular, we construct a lattice-ordered effect algebra which improves an example of Chajda et al. (Algebra Univ 60(1), 63–90, 2009).

Keywords Basic algebras · L-algebras · MV-algebras · Orthomodular lattices · Effect algebras

1 Introduction

Basic algebras, which generalize both MV-algebras and orthomodular lattices, were introduced in Chajda et al[.](#page-5-0) [\(2009\)](#page-5-0) and Chajda et al[.](#page-5-1) [\(2007](#page-5-1)) as a common base for axiomatization of many-valued propositional logics as well as of the logic of quantum mechanics. The relationship between basic algebras, MV-algebras, orthomodular lattices and lattice-ordered effect algebras was considered in Botu[r](#page-5-2) [\(2010](#page-5-2)), Botur and Hala[š](#page-5-3) [\(2008\)](#page-5-3), Chajda [\(2012](#page-5-4); [2015\)](#page-5-5), Chajda et al[.](#page-5-0) [\(2009\)](#page-5-0). One can mention that every MV-algebra is a basic algebra whose induced lattice is distributive (Chajd[a](#page-5-5) [2015,](#page-5-5) P. 18, Lemma 5.2). The sufficient and necessary condition for an orthomodular lattice to be a basic algebra has been obtained in Chajda [\(2015](#page-5-5), P. 17, Theorem 4.3). Relation between lattice-ordered effect algebras and basic algebras was treated in Botur and Hala[š](#page-5-3) [\(2008](#page-5-3)), Chajd[a](#page-5-4) [\(2012\)](#page-5-4) by considering their common lattice structure (a lattice with section antitone involutions).

Communicated by A. Di Nola.

Supported by CNNSF (Grant: 11771004).

 \boxtimes Yichuan Yang ycyang@buaa.edu.cn Jing Wang wangjing3421@sina.com Yali Wu

wuyl_hb@163.com

¹ School of Mathematical and Sciences, Beihang University, Beijing 100191, China

² School of Mathematics and Physics, Hebei GEO University, Shijiazhuang 050031, China

L-algebras, which are related to algebraic logic and quantum structures, were introduced by Rum[p](#page-5-6) [\(2008\)](#page-5-6). Many examples shown that L-algebras are very useful. Yang and Rum[p](#page-5-7) [\(2012\)](#page-5-7), characterized pseudo-MV-algebras and Bosbach's non-commutative bricks as L-algebras. Wu and Yan[g](#page-5-8) [\(2020](#page-5-8)) proved that orthomodular lattices form a special class of L-algebras in different ways. It was shown that every lattice-ordered effect algebra has an underlying L-algebra structure in Wu et al. [\(2019](#page-5-9)).

In the present paper, we study the relationship between basic algebras and L-algebras. We prove that a basic algebra which satisfies

$$
(z \oplus \neg x) \oplus \neg (y \oplus \neg x) = (z \oplus \neg y) \oplus \neg (x \oplus \neg y)
$$

can be converted into an L-algebra (Theorem [1\)](#page-2-0). Conversely, if an L-algebra with 0 and relation given by [\(10\)](#page-1-0) such that it is an involutive bounded lattice can be organized into a basic algebra, it must be a lattice-ordered effect algebra (Theorem [2\)](#page-3-0). Finally, we construct a lattice-ordered effect algebra which improves (Chajda et al[.](#page-5-0) [2009,](#page-5-0) P. 80, Example 5.3).

2 Preliminaries

Note that basic algebras were introduced in Chajda [\(2007](#page-5-1); [2009](#page-5-0)), but the axiomatic system was extended by one more axiom which is dependent on the following axioms as shown in Chajda and Kolší[k](#page-5-10) [\(2009\)](#page-5-10).

Definition 1 A basic algebra is an algebra $B = (B; \oplus, \neg, 0)$ of type (2, 1, 0) satisfying the following identities:

 $(BA1)$ $x \oplus 0 = x$,

 $(BA2)$ $\neg \neg x = x$,

$$
(BA3) \quad \neg(\neg x \oplus y) \oplus y = \neg(\neg y \oplus x) \oplus x,
$$

$$
(BA4) \quad \neg(\neg(\neg(x \oplus y) \oplus y) \oplus z) \oplus (x \oplus z) = \neg 0.
$$

For the sake of brevity, we denote by $1 =: \neg 0$.

Let $\mathcal{B} = (B, \oplus, \neg, 0)$ be a basic algebra. The relation < defined by

$$
x \le y \text{ if and only if } \neg x \oplus y = 1 \tag{1}
$$

is a partial ordering on *B* such that 0 and 1 are the least and the greatest element of *B*, respectively.

In what follows, we need the following properties of basic algebras (cf. Chajd[a](#page-5-5) [2015](#page-5-5); Chajda et al[.](#page-5-0) [2009](#page-5-0)):

 $x \oplus 1 = 1 = 1 \oplus x.$ (2)

 $0 \oplus x = x$ **.** (3)

 $\neg x \oplus x = 1.$ (4)

 $x \le y \implies \neg x \ge \neg y.$ (5)

 $x \leq y \Rightarrow x \oplus z \leq y \oplus z.$ (6)

$$
y \le x \oplus y. \tag{7}
$$

Lemma 1 (Chajd[a](#page-5-5) [2015,](#page-5-5) P. 69, Prop. 3.6) *For every basic algebra* $B = (B, \oplus, \neg, 0)$ *, the poset* (B, \le) *is a bounded lattice in which the supremum* $x \vee y$ *and the infimum* $x \wedge y$ *are given by x* \vee *y* = $\neg(\neg x \oplus y) \oplus y$ *and x* \wedge *y* = $\neg(\neg x \vee \neg y)$ *, respectively.*

An involutive bounded lattice (IBL) (Chiara and Giunt[i](#page-5-11)ni [2002](#page-5-11), P. 191, Def. 12.1) is a structure (L, \leq) $, '$, 0, 1), where $(L, \leq, 0, 1)$ is a lattice with minimum 0 and maximum 1, \prime is a unary operation on L such that the following conditions are satisfied:

(Involutive law) $x = x$. $\mathscr{C}(8)$

(Antitony) if
$$
x \le y
$$
, then $y' \le x'$. (9)

According to (*B A*2), [\(5\)](#page-1-1) and Lemma [1,](#page-1-2) every basic algebra is an IBL.

Lemma 2 (Chajd[a](#page-5-5) [2015,](#page-5-5) P. 70, Lemma 3.8) *The identity*

 $\neg(\neg(x \oplus y) \oplus y) \oplus y = x \oplus y$

is true in all basic algebras.

Corollary 1 *The identity*

(x ∧ ¬*y)* ⊕ *y* = *x* ⊕ *y*

is true in all basic algebras.

Proof By Lemmas [1](#page-1-2) and [2,](#page-1-3) $x \oplus y = \neg(\neg(x \oplus y) \oplus y) \oplus y =$ $\neg(\neg x \lor y) \oplus y = (x \land \neg y) \oplus y$ is true in all basic algebras. \Box

Definition 2 (Rump and Yan[g](#page-5-12) [2012,](#page-5-12) P. 122) An L-algebra is an algebra (L, \rightarrow) of type $(2, 0)$ satisfying

 $(L1)$ $x \to x = x \to 1 = 1, 1 \to x = x$ $(L2)$ $(x \rightarrow y) \rightarrow (x \rightarrow z) = (y \rightarrow x) \rightarrow (y \rightarrow z)$ $(L3)$ $x \rightarrow y = y \rightarrow x = 1 \Rightarrow x = y$

for all $x, y, z \in L$.

There is a partial ordering by Rump [\(2008,](#page-5-6) P. 2332, Prop. 2)

$$
x \le y \iff x \to y = 1 \tag{10}
$$

such that 1 is the greatest element of *L*. If *L* admits a smallest element 0, we speak of an L-algebra with 0.

Lemma 3 (Rump and Yan[g](#page-5-12) [2012,](#page-5-12) P. 123, Lemma 2.1) *Let L be an L-algebra. Then,* $x \leq y$ *implies that* $z \to x \leq$ $z \rightarrow y$ *for all x*, $y, z \in L$.

In particular, if *L* is an L-algebra with 0 and satisfies [\(8\)](#page-1-4) for every $x \in L$, then

$$
x \le x' \to y, \ x' \le x \to y. \tag{11}
$$

3 L-algebras and basic algebras

In this section, we are interested in knowing the mutual relation between L-algebras and basic algebras. Assume that they have the same lattice structure. Firstly, we give three types of involutive bounded lattices which can be regarded as both L-algebras and basic algebras: MV-algebras, lattice-ordered effect algebras and orthomodular lattices.

Recall that an MV-algebra Chan[g](#page-5-13) [\(1958\)](#page-5-13) is an alge- $\text{bra } A = (A, \oplus, ', 0) \text{ of type } (2, 1, 0) \text{ where } (A, \oplus, 0) \text{ is }$ a commutative monoid satisfying [\(8\)](#page-1-4) and the following identities:

 $x \oplus 0' = 0',$ $(x' \oplus y)' \oplus y = (y' \oplus x)' \oplus x$.

MV-algebras are both basic algebras and L-algebras (Chajda et al[.](#page-5-0) [2009;](#page-5-0) Wu et al[.](#page-5-9) [2019](#page-5-9)).

An effect algebra (Foulis and Bennet[t](#page-5-14) [1994,](#page-5-14) P. 1333, Def. 2.1) is a system $(E, +, 0, 1)$ consisting of a set *E* with two special elements $0, 1 \in E$, called the zero and the unit, and with a partially defined binary operation $+$ satisfying the following conditions for all $p, q, r \in E$.

(*E*1) (Commutative law) If $p+q$ is defined, then $q+p$ is defined and $p + q = q + p$.

(*E*2) (Associative law) If $p + q$ is defined and $(p +$ q ^{$>$} + *r* is defined, then q ^{$+$} r and p ^{$+$} (q ^{$+$} r) are defined and $p + (q + r) = (p + q) + r$.

(*E*3) (Orthosupplement law) For every $p \in E$, there exists a unique $q \in E$ such that $p + q$ is defined and $p + q$ $q = 1$. The unique element *q* is written as *p'* and called the orthosupplement of *p*.

(*E*4) (Zero-one law) If $p + 1$ is defined, then $p = 0$.

Let $(E, +, 0, 1)$ be an effect algebra. Define a binary relation on *E* by

$$
a \le b \text{ if for some } c \in E, \ c + a = b \tag{12}
$$

which is a partial ordering on *E* such that 0 and 1 are the smallest element and the greatest element of *E*, respectively. If the poset (E, \leq) is a lattice, then *E* is called a lattice-ordered effect algebra.

Lemmas [4](#page-2-1) and [5](#page-2-2) show that there is a mutual correspondence between lattice-ordered effect algebras, basic algebras and L-algebras.

Lemm[a](#page-5-4) 4 (Chajda [2012](#page-5-4), P. 8, Thm. 12) Let $\mathcal{E} = (E_1 + 0, 1)$ *be a lattice-ordered effect algebra. Define*

$$
x \oplus y := (x \wedge y') + y \text{ and } \neg x := x'. \tag{13}
$$

Then, $\mathcal{B}(E) = (E, \oplus, \neg, 0)$ *is a basic algebra (whose lattice order coincides with the original one).*

Define $x \to y := (x \land y) + x'$.

Lemma 5 (Wu et al[.](#page-5-9) [2019](#page-5-9), P106, Thm. 3.3) *Every latticeordered effect algebra (E,* +*,* 0*,* 1*) gives rise to an L*-algebra (E, \rightarrow) *with negation such that* $x' = x \rightarrow 0$ *is exactly the orthosupplement of x in* $(E, +, 0, 1)$ *.*

Let $(L, +, 0, 1)$ be a lattice-ordered effect algebra. Define

 $x \oplus y := (x \land y') + y$,

and then, $(L, \oplus, \neg, 0)$ is a basic algebra by Lemma [4.](#page-2-1) By Lemma [5,](#page-2-2) $(L, \rightarrow, 0, 1)$ is an L-algebra, where

$$
x \to y := (x \land y) + x'.
$$

Then, $x \oplus y = y' \rightarrow x$.

An orthomodular lattice (OML) Kalmbac[h](#page-5-15) [\(1983](#page-5-15)) is an algebra $\mathcal{L} = (L, \vee, \wedge, ', 0, 1)$ of type $(2, 2, 1, 0, 0)$ satisfying (8) , (9) and the following axioms: (i) $(L, \vee, \wedge, 0, 1)$ is a bounded lattice. (ii) $x \leq y$ implies $y = x \vee (y \wedge x')$.

In Chajd[a](#page-5-5) [\(2015](#page-5-5)), the author uses

$$
x \oplus y := (x \land y') \lor y \text{ and } \neg x := x' \tag{14}
$$

to convert an orthomodular lattice $(L, \vee, \wedge, ', 0, 1)$ into a basic algebra $(L, \oplus, \neg, 0)$.

Define

$$
x \to y := x' \lor (x \land y), \tag{15}
$$

then every orthomodular lattice *L* gives rise to an Lalgebra (L, \rightarrow) in [16]. Then, $x \oplus y = y' \rightarrow x$.

Now, we will give a basic algebra which is also an Lalgebra.

Example 1 Let $\mathcal{B} = (\{0, a, \neg a, 1\}, \oplus, \neg, 0)$ be a basic algebra, where \oplus is given in Table [1.](#page-2-4)

Define $x \to y := y \oplus \neg x$ and $x' = x \to 0 := \neg x$; then, we have Table [2.](#page-2-5)

An easy computation shows that *B* is also an L-algebra.

Next, we will give a characterization of basic algebras to be L-algebras.

Theorem 1 *Let* $(B, \oplus, \neg, 0)$ *be a basic algebra which satisfies the following condition:*

$$
(z \oplus \neg x) \oplus \neg (y \oplus \neg x) = (z \oplus \neg y) \oplus \neg (x \oplus \neg y) \quad (LB)
$$

Then, (B, \rightarrow) *is an L-algebra.*

Proof Define $x \to y := y \oplus \neg x$.

By [\(2\)](#page-1-1), $x \to 1 = 1 \oplus \neg x = 1$. $1 \to x = x \oplus \neg 1 =$ $x \oplus 0 = x$. By [\(4\)](#page-1-1), $x \to x = x \oplus \neg x = 1$. This verifies *(L*1*)*.

 $(x \rightarrow y) \rightarrow (x \rightarrow z) = (x \rightarrow z) \oplus \neg(x \rightarrow y) =$ $(z \oplus \neg x) \oplus \neg (y \oplus \neg x)$. Similarly, $(y \rightarrow x) \rightarrow (y \rightarrow z) =$ $(z \oplus \neg y) \oplus \neg (x \oplus \neg y)$. By *(LB)*, we have verified *(L2)* in the definition of an L-algebra.

Assume that $x \to y = y \to x = 1$, then $y \oplus \neg x = 1$ $x \oplus \neg y = 1$. Since $y \oplus \neg x = 1 \Leftrightarrow \neg y \leq \neg x \Leftrightarrow x \leq y$ by [\(5\)](#page-1-1) and *(BA2)*, then $x \le y$, $y \le x$. Hence, $x = y$. This verifies *(L*3*)*.

Then,
$$
(B, \rightarrow)
$$
 is an L-algebra.

Table 3 ⊕ of Example [2](#page-3-1)

There are many basic algebras which are not L-algebras with respect to the original involutive bounded lattice structure.

Example 2 Let us consider the ortholattice O_6 with the following Hasse diagram.

By Corollary [1](#page-1-5) and the properties of basic algebras, it is routine to verify that $(O_6, \oplus, \neg, 0)$ is a basic algebra, where $\neg x = x'$ and \oplus is given in Table [3.](#page-3-2)

Assume O_6 can be converted into an L-algebra with the operation \rightarrow *.* By *(L2), (b* \rightarrow *a)* \rightarrow *b'* = *(a* \rightarrow *b)* \rightarrow $a' = 1 \rightarrow a' = a'$. Then, $b \rightarrow a = a'$, since $b' \le b \rightarrow a$, whence $a' \rightarrow b' = a'$. However, $a \le a' \rightarrow b' = a'$, which is a contradiction. Thus, O_6 is not an L-algebra.

Conversely, under what conditions can an L-algebra be regarded as a basic algebra? Since every basic algebra is an IBL, we are interested in the L-algebra *L* with 0 and relation given by [\(10\)](#page-1-0) such that the *L* is an IBL. Define $x \oplus y :=$ $y' \rightarrow x$, and we have the following theorem:

Theorem 2 *Let* (L, \rightarrow) *be an L-algebra with 0 and relation given by* [\(10\)](#page-1-0) *such that L is an involutive bounded lattice, where* $x' = x \rightarrow 0$ *. Define*

 $x \oplus y := y' \rightarrow x$.

If $(L, \oplus, \neg, 0)$ *is a basic algebra, then L must be a latticeordered effect algebra.*

Proof Since *L* is an involutive bounded lattice, then $x'' = x$ and $x \leq y \Rightarrow x' \geq y'$ for every $x, y \in L$. Define $x \oplus y :=$ $y' \rightarrow x$, and then, $x \vee y = y' \rightarrow (y' \rightarrow x')'$ by Lemma [1.](#page-1-2) Assume $x \leq y$, then

$$
y \rightarrow x = (y \lor x) \rightarrow x
$$

\n
$$
= (x' \rightarrow (x' \rightarrow y')) \rightarrow x
$$

\n
$$
= (x' \rightarrow (x' \rightarrow y')) \rightarrow (x' \rightarrow 0) \quad by \ (L2)
$$

\n
$$
= ((x' \rightarrow y')' \rightarrow x') \rightarrow ((x' \rightarrow y')' \rightarrow 0)
$$

\n
$$
by \ (11) \ and \ (9)
$$

\n
$$
= 1 \rightarrow (x' \rightarrow y') \quad by \ (L1)
$$

\n
$$
= x' \rightarrow y'.
$$

Then by Theorem 3.9 in Wu et al[.](#page-5-9) [\(2019](#page-5-9)), *L* is a latticeordered effect algebra.

By Rump [\(2008](#page-5-6), P. 2346, Example 1), every partially ordered set with the greatest element 1 can be regarded as an L-algebra. We have already known that every basic algebra $(B, \oplus, \neg, 0)$ is an IBL such that 1 is the greatest element of B, so it can be regarded as an L-algebra. But we are focused on the L-algebra with 0 and relation given by (10) such that it is an involutive bounded lattice, where $x' = x \rightarrow 0$.

In conclusion, we get an interesting relationship diagram as follows:

An involutive bounded lattice which is neither a basic algebra nor an L-algebra (relation given by [\(10\)](#page-1-0) such that it is an involutive bounded lattice) is given in the following.

Example 3 Let us consider the involutive bounded lattice G_6 .

Assume that G_6 can be converted into an L-algebra with 0 such that $x' := x \rightarrow 0$. By [\(11\)](#page-1-6), $x' \le x \rightarrow y$, $y \le y' \rightarrow x$, then $x \to y = x'$ or $y'(x \ge y, x \to y \ne 1)$ and the possible values of $y' \rightarrow x$ are y, x, x', y' .

By $(L2)$ and $(L1)$,

$$
(x \to y) \to x' = (y \to x) \to (y \to 0) = 1 \to y' = y'
$$
\n(16)

and

$$
x' = 1 \to x' = (x \to y') \to x' = (y' \to x) \to y. \tag{17}
$$

If $x \rightarrow y = x'$, then $1 = x' \rightarrow x' = y'$ by [\(16\)](#page-4-0), a contradiction. Thus, $x \to y = y'$ which implies that $y' \to$ $x' = y'$ by [\(16\)](#page-4-0).

There are only four possible values of $y' \rightarrow x : y, x, x', y'$.

- (i) If $y' \rightarrow x = y$, then $y \rightarrow y = x'$ by [\(17\)](#page-4-1). However, $y \rightarrow y = 1$. Hence, $y' \rightarrow x \neq y$.
- (ii) Assume $y' \rightarrow x = x$, then $x \rightarrow y = x'$ by [\(17\)](#page-4-1), which contradicts $x \to y = y'$.
- (iii) If $y' \rightarrow x = x'$, then $x' \rightarrow y = x'$ by [\(17\)](#page-4-1). Since $x \leq x' \to y$, then $x \leq x' \to y = x'$. However, *x* is uncomparable with *x'*, and then, $y' \rightarrow x \neq x'$.
- (iv) Assume $y' \rightarrow x = y'$, then $y' \rightarrow y = x'$ by [\(17\)](#page-4-1). Nevertheless, $x = 1 \rightarrow x = (x' \rightarrow y') \rightarrow x = (y' \rightarrow y')$ $f(x') \rightarrow y = y' \rightarrow y = x'$, which is a contradiction.

The above shows that no matter how we define \rightarrow on G_6 , it cannot be converted into an L-algebra (the induced partial ordering binary relation by [\(10\)](#page-1-0) is an involutive bounded lattice).

We will verify that G_6 can also not be a basic algebra in the following.

Assume G_6 can be converted into a basic algebra with operation \oplus such that $x' = \neg x$. By Lemma [1,](#page-1-2)

$$
x = x \lor y = \neg(\neg x \oplus y) \oplus y. \tag{18}
$$

Since $y \leq \neg x \oplus y$, $y \leq x$ and $y \oplus \neg y = 1$, then the possible values of $\neg x \oplus y$ are $x, \neg x, \neg y$.

By Lemma [1,](#page-1-2) we can obtain

$$
\neg x = \neg x \lor y = \neg(x \oplus y) \oplus y \tag{19}
$$

and

$$
\neg y = \neg y \lor y = \neg (y \oplus y) \oplus y. \tag{20}
$$

Thus, we get the possible values of $x \oplus y$ and $y \oplus y$ which are also $x, -x, -y$.

We will divide into three cases to discuss the values of ¬*x* ⊕ *y.*

- (i) If $\neg x \oplus y = \neg x$, then $x \oplus y = x$ by [\(18\)](#page-4-2). Since $y \le x$, then $y \oplus y \le x \oplus y = x$ by [\(6\)](#page-1-1). Then, $y \oplus y = x$. By (20) , $\neg x \oplus y = \neg y \neq \neg x$, a contradiction.
- (ii) If $\neg x \oplus y = x$ and $x \oplus y = x$, then $\neg x \oplus y = \neg x$ by [\(19\)](#page-4-4). This contradicts the assumption. If $x \oplus y = \neg x$, since $y \oplus y \le x \oplus y = \neg x$, then $y \oplus y = \neg x$. Thus by [\(20\)](#page-4-3), $x \oplus y = \neg y \neq \neg x$. So $x \oplus y = \neg y$, which implies $y \oplus y = \neg x$. But $x = \neg x \oplus y > y \oplus y = \neg x$, which is impossible.
- (iii) If $\neg x \oplus y = \neg y$ *,* then $y \oplus y = x$ by [\(18\)](#page-4-2). Suppose that $x \oplus y = x$, then $\neg x \oplus y = \neg x \neq \neg y$ by [\(19\)](#page-4-4). If $x \oplus y = \neg y$, then $y \oplus y = \neg x \neq x$. So $x \oplus y = \neg x$. However, $\neg x = x \oplus y \geq y \oplus y = x$, which is absurd.

None of the above cases is satisfied, which means G_6 can also not be considered as a basic algebra.

4 A lattice-ordered effect algebra with different basic algebra structures

In this section, we construct a lattice-ordered effect algebra with two different basic algebra structures and improve (Chajda et al[.](#page-5-0) [2009,](#page-5-0) P. 80,Example 5.3) which stated as follows:

Let us consider the lattice from Fig. [1](#page-4-5) with the antitone involution on the section [*b*, 1] defined by $b^b = 1$, $(\neg b)^b =$ $\neg b, \ (\neg a)^b = \neg a, \ 1^b = b.$

An easy inspection shows that the derived basic algebra $A = (A, \oplus, \neg, 0)$ is not a lattice-ordered effect algebra [because it does not fulfill (21)], where $A =$ {0, $a, b, \neg a, \neg b, 1$ } and the addition \oplus is given in Table [4:](#page-5-16)

$$
x \leq \neg y \text{ and } x \oplus y \leq \neg z \Rightarrow x \oplus (z \oplus y) = (x \oplus y) \oplus z.
$$
\n
$$
(21)
$$

It is easily seen that when $x = 0$, $y = b$ and $z = a$, $x \oplus (z \oplus y) = 0 \oplus (a \oplus b) = a \oplus b = \neg a \neq \neg b = b \oplus a =$ $(0 ⊕ b) ⊕ a = (x ⊕ y) ⊕ z$. Hence, *A* does not fulfill [\(21\)](#page-4-6).

However, using the same $(A, \oplus, \neg, 0)$ as in Fig. [1](#page-4-5) and Table [4,](#page-5-16) we consider

Fig[.](#page-5-0) 1 Lattice of Example 5.3 in Chajda et al. [\(2009\)](#page-5-0)

Example 4 The basic algebra $A = (A, \oplus, \neg, 0)$ can be converted into a lattice-ordered effect algebra *(*{0*, a, b, a , b ,* 1}, $+$, \prime , 0) whose operation is given in Table [5.](#page-5-18) If $x + y$ is undefined for $x, y \in \{0, a, b, a', b', 1\}$, we denote it by "−."

Remark 1 In Chajda et al[.](#page-5-0) [\(2009\)](#page-5-0) [P. 75, Prop. 4.5], latticeordered effect algebras can be viewed as basic algebras. We can obtain the derived basic algebra of the lattice-ordered effect algebra $(A, +)$ from Example [4.](#page-4-7)

Define $x \oplus^* y := (x \wedge y') \oplus y$ and $\neg x := x'$. Then, $A^* = (A^*, \oplus^*, \neg, 0)$ is a basic algebra with \oplus^* given in Table [6.](#page-5-19)

Hence, we obtain two different basic algebra structures whose operations are given in Tables [4](#page-5-16) and [6](#page-5-19) from the same lattice-ordered algebra from Example [4.](#page-4-7)

Compliance with ethical standards

Conflicts of interest The authors declare that they have no conflict of interest.

References

- Botur M (2010) An example of a commutative basic algebra which is not an MV-algebra. Math. Slovaca 60(2):171–178
- Botur M, Halaš R (2008) Finite commutative basic algebras are MVeffect algebras. J Mult-Valued Logic Soft Comput 14(1–2):69–80
- Chajda I (2015) Basic algebras, logics, trends and applications. Asian-Eur J Math 8(3):1550040
- Chajda I (2012) Basic algebras and their applications. An overview. Contributions to general algebra, vol 20. Heyn, Klagenfurt, pp 1– 10
- Chajda I, Halaš R, Kühr J (2009) Many-valued quantum algebras. Algebra Univ 60(1):63–90
- Chajda I, Halaš R, Kühr J (2007) Semilattice structure. Heldermann Verlag, Lemgo
- Chajda I, Kolšík M (2009) Independence of axiom system of basic algebras. Soft Comput 13:41–43
- Chang CC (1958) Algebraic analysis of many valued logics. Trans Am Math Soc 88:467–490
- Chiara MLD, Giuntini R (2002) Quantum logics, handbook of philosophical logic. Springer, Dordrecht
- Foulis DJ, Bennett MK (1994) Effect algebras and unsharp quantum logics. Found Phys 24(10):1331–1352
- Kalmbach G (1983) Orthomodular lattices, London mathematical society monographs, 18. Academic Press, Inc., London
- Rump W (2008) L-algebras, self-similarity, and l-groups. J Algebra 320:2328–2348
- Rump W (2018) Von Neumann algebras, L-algebras, Baer∗-monoids, and Garside groups. Forum Math 30(4):973–995
- Rump W, Yang YC (2012) Intervals in l-groups as L-algebras. Algebra Univ 67(2):121–130
- Wu YL, Wang J, Yang YC (2019) Lattice-ordered effect algebras and *L*-algebras. Fuzzy Sets Syst 369:103–113
- Wu YL, Yang YC (2020) Orthomodular lattices as L-algebras, Soft Computing (to appear). [https://doi.org/10.1007/s00500-020-](https://doi.org/10.1007/s00500-020-05242-7) [05242-7](https://doi.org/10.1007/s00500-020-05242-7)
- Yang YC, Rump W (2012) Pseudo-MV algebras as L-algebras. J Multi-Valued Logic Soft Comput 19(5–6):621–632

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.