Skip to main content
Log in

Production of 21-hydroxy-20-methyl-pregna-1,4-dien-3-one by modifying multiple genes in Mycolicibacterium

  • Biotechnological Products and Process Engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

C22 steroid drug intermediates are suitable for corticosteroids synthesis, and the production of C22 steroids is unsatisfactory due to the intricate steroid metabolism. Among the C22 steroids, 21-hydroxy-20-methyl-pregna-1,4-dien-3-one (1,4-HP) could be used for Δ1-steroid drug synthesis, such as prednisolone. Nevertheless, the production of 1,4-HP remains unsatisfactory. In this study, an ideal 1,4-HP producing strain was constructed. By the knockout of 3-ketosteroid-9-hydroxylase (KshA) genes and 17β-hydroxysteroid dehydrogenase (Hsd4A) gene, the steroid nucleus degradation and the accumulation of C19 steroids in Mycolicibacterium neoaurum were blocked. The mutant strain could transform phytosterols into 1,4-HP as the main product and 21-hydroxy-20-methyl-pregna-4-ene-3-one as a by-product. Subsequently, the purity of 1,4-HP improved to 95.2% by the enhancement of 3-ketosteroid-Δ1-dehydrogenase (KSTD) activity, and the production of 1,4-HP was improved by overexpressing NADH oxidase (NOX) and catalase (KATE) genes. Consequently, the yield of 1,4-HP achieved 10.5 g/L. The molar yield and the purity of 1,4-HP were optimal so far, and the production of 1,4-HP provides a new intermediate for the pharmaceutical steroid industry.

Key points

A third 3-ketosteroid-9-hydroxylase was identified in Mycolicibacterium neoaurum.

• An 1,4-HP producer was constructed by KshA and Hsd4A deficiency.

The production of 1,4-HP was improved by KSTD, NOX, and KATE overexpression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data generated and analyzed during this study are included in this published article.

References

  • Capyk JK, D’Angelo I, Strynadka NC, Eltis LD (2009) Characterization of 3-ketosteroid 9alpha-hydroxylase, a rieske oxygenase in the cholesterol degradation pathway of Mycobacterium tuberculosis. J Biol Chem 284(15):9937–9946. https://doi.org/10.1074/jbc.M900719200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Capyk JK, Casabon I, Gruninger R, Strynadka NC, Eltis LD (2011) Activity of 3-ketosteroid 9 alpha-hydroxylase (KshAB) indicates cholesterol side chain and ring degradation occur simultaneously in mycobacterium tuberculosis. J Biol Chem 286(47):40717–40724. https://doi.org/10.1074/jbc.M111.289975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ezraty B, Gennaris A, Barras F, Collet JF (2017) Oxidative stress, protein damage and repair in bacteria. Nat Rev Microbiol 15(7):385–396. https://doi.org/10.1038/nrmicro.2017.26

    Article  CAS  PubMed  Google Scholar 

  • Fernandes P, Cruz A, Angelova B, Pinheiro HM, Cabral J (2003) Microbial conversion of steroid compounds: recent developments. Enzyme Microb Technol 32(6):688–705

    Article  CAS  Google Scholar 

  • Fernández-Cabezón L, Galán B, García JL (2018) New insights on steroid biotechnology. Front Microbiol 9:958

    Article  PubMed  PubMed Central  Google Scholar 

  • Josefsen KD, Nordborg A, Sletta H (2017) Bioconversion of phytosterols into androstenedione by Mycobacterium. Microbial Steroids. Springer, pp 177-197

  • Li H, Wang X, Zhou L, Ma Y, Yuan W, Zhang X, Shi J, Xu Z (2019) Enhancing expression of 3-ketosteroid-9alpha-hydroxylase oxygenase, an enzyme with broad substrate range and high hydroxylation ability, in Mycobacterium sp LY-1. Appl Biochem Biotechnol 187(4):1238–1254. https://doi.org/10.1007/s12010-018-2876-2

    Article  CAS  PubMed  Google Scholar 

  • Liang L, Liu R, Wang G, Gou D, Ma J, Chen K, Jiang M, Wei P, Ouyang P (2012) Regulation of NAD(H) pool and NADH/NAD(+) ratio by overexpression of nicotinic acid phosphoribosyltransferase for succinic acid production in Escherichia coli NZN111. Enzyme Microb Technol 51(5):286–293. https://doi.org/10.1016/j.enzmictec.2012.07.011

    Article  CAS  PubMed  Google Scholar 

  • Liu H-H, Xu L-Q, Yao K, Xiong L-B, Tao X-Y, Liu M, Wang F-Q, Wei D-Z (2018) Engineered 3-ketosteroid 9α-hydroxylases in Mycobacterium neoaurum: an efficient platform for production of steroid drugs. Appl Environ Microbiol 84(14):e02777-02717

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu X, Zhang R, Bao Z, Yuan C, Cao H, Shi J, Sun J, Zhang B (2020) Biotransformation of phytosterols to androst-1, 4-diene-3, 17-dione by Mycobacterium sp ZFZ expressing 3-ketosteroid-δ1-dehydrogenase. Catalysts 10(6):663

    Article  CAS  Google Scholar 

  • Malaviya A, Gomes J (2008) Androstenedione production by biotransformation of phytosterols. Bioresource Technol 99(15):6725–6737. https://doi.org/10.1016/j.biortech.2008.01.039

    Article  CAS  Google Scholar 

  • Nesbitt NM, Yang X, Fontan P, Kolesnikova I, Smith I, Sampson NS, Dubnau E (2010) A thiolase of mycobacterium tuberculosis is required for virulence and production of androstenedione and androstadienedione from cholesterol. Infect Immun 78(1):275–282. https://doi.org/10.1128/IAI.00893-09

    Article  CAS  PubMed  Google Scholar 

  • Penfield JS, Worrall LJ, Strynadka NC, Eltis LD (2014) Substrate specificities and conformational flexibility of 3-ketosteroid 9alpha-hydroxylases. J Biol Chem 289(37):25523–25536. https://doi.org/10.1074/jbc.M114.575886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng H, Wang Y, Jiang K, Chen X, Zhang W, Zhang Y, Deng Z, Qu X (2021) A dual role reductase from phytosterols catabolism enables the efficient production of valuable steroid precursors. Angew Chem Int Ed Engl 60(10):5414–5420. https://doi.org/10.1002/anie.202015462

    Article  CAS  PubMed  Google Scholar 

  • Petrusma M, Dijkhuizen L, van der Geize R (2009) Rhodococcus rhodochrous DSM 43269 3-ketosteroid 9alpha-hydroxylase, a two-component iron-sulfur-containing monooxygenase with subtle steroid substrate specificity. Appl Environ Microbiol 75(16):5300–5307. https://doi.org/10.1128/AEM.00066-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petrusma M, Dijkhuizen L, van der Geize R (2012) Structural features in the KshA terminal oxygenase protein that determine substrate preference of 3-ketosteroid 9alpha-hydroxylase enzymes. J Bacteriol 194(1):115–121. https://doi.org/10.1128/JB.05838-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petrusma M, van der Geize R, Dijkhuizen L (2014) 3-Ketosteroid 9alpha-hydroxylase enzymes: rieske non-heme monooxygenases essential for bacterial steroid degradation. Antonie Van Leeuwenhoek 106(1):157–172. https://doi.org/10.1007/s10482-014-0188-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shao M, Zhao Y, Liu Y, Yang T, Xu M, Zhang X, Rao Z (2019) Intracellular environment improvement of Mycobacterium neoaurum for enhancing androst-1, 4-diene-3, 17-dione production by manipulating NADH and reactive oxygen species levels. Molecules 24(21):3841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su L, Shen Y, Zhang W, Gao T, Shang Z, Wang M (2017) Cofactor engineering to regulate NAD+/NADH ratio with its application to phytosterols biotransformation. Microb Cell Factories 16(1):1–11

    Article  Google Scholar 

  • Su L, Xu S, Shen Y, Xia M, Ren X, Wang L, Shang Z, Wang M (2020) The sterol carrier hydroxypropyl-β-cyclodextrin enhances the metabolism of phytosterols by Mycobacterium neoaurum. Appl Environ Microbiol 86(15):e00441-00420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun B, Yang J, Yang S, Ye RD, Chen D, Jiang Y (2018) A CRISPR-Cpf1-assisted non-homologous end joining genome editing system of Mycobacterium smegmatis. Biotechnol J 13(9):1700588

    Article  Google Scholar 

  • Sun W-J, Wang L, Liu H-H, Liu Y-J, Ren Y-H, Wang F-Q, Wei D-Z (2019) Characterization and engineering control of the effects of reactive oxygen species on the conversion of sterols to steroid synthons in Mycobacterium neoaurum. Metab Eng 56:97–110

    Article  CAS  PubMed  Google Scholar 

  • Uhia I, Galan B, Morales V, Garcia JL (2011) Initial step in the catabolism of cholesterol by Mycobacterium smegmatis mc2155. Environ Microbiol 13(4):943–959. https://doi.org/10.1111/j.1462-2920.2010.02398.x

    Article  CAS  PubMed  Google Scholar 

  • Xu L-Q, Liu Y-J, Yao K, Liu H-H, Tao X-Y, Wang F-Q, Wei D-Z (2016) Unraveling and engineering the production of 23,24-bisnorcholenic steroids in sterol metabolism. Sci Rep 6(1):1–13

    Google Scholar 

  • Yan M-Y, Yan H-Q, Ren G-X, Zhao J-P, Guo X-P, Sun Y-C (2017) CRISPR-Cas12a-assisted recombineering in bacteria. Appl Environ Microbiol 83(17):e00947-00917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan C-Y, Ma Z-G, Zhang J-X, Liu X-C, Du G-L, Sun J-S, Shi J-P, Zhang B-G (2021) Production of 9, 21-dihydroxy-20-methyl-pregna-4-en-3-one from phytosterols in Mycobacterium neoaurum by modifying multiple genes and improving the intracellular environment. Microb Cell Factories 20(1):1–12

    Article  Google Scholar 

  • Zhang R, Liu X, Wang Y, Han Y, Sun J, Shi J, Zhang B (2018) Identification, function, and application of 3-ketosteroid Δ1-dehydrogenase isozymes in Mycobacterium neoaurum DSM 1381 for the production of steroidic synthons. Microb Cell Factories 17(1):1–16

    Article  Google Scholar 

  • Zhang R, Xu X, Cao H, Yuan C, Yuminaga Y, Zhao S, Shi J, Zhang B (2019) Purification, characterization, and application of a high activity 3-ketosteroid-Delta(1)-dehydrogenase from Mycobacterium neoaurum DSM 1381. Appl Microbiol Biotechnol 103(16):6605–6616. https://doi.org/10.1007/s00253-019-09988-5

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Zhou X, Yao Y, Xu Q, Shi H, Wang K, Feng W, Shen Y (2021) Coexpression of VHb and MceG genes in Mycobacterium sp strain LZ2 enhances androstenone production via immobilized repeated batch fermentation. Bioresour Technol 342:125965. https://doi.org/10.1016/j.biortech.2021.125965

    Article  CAS  PubMed  Google Scholar 

  • Zhao A, Zhang X, Li Y, Wang Z, Lv Y, Liu J, Alam MA, Xiong W, Xu J (2021) Mycolicibacterium cell factory for the production of steroid-based drug intermediates. Biotechnol Adv 53:107860. https://doi.org/10.1016/j.biotechadv.2021.107860

    Article  CAS  PubMed  Google Scholar 

  • Zhou X, Zhang Y, Shen Y, Zhang X, Zan Z, Xia M, Luo J, Wang M (2020) Efficient repeated batch production of androstenedione using untreated cane molasses by Mycobacterium neoaurum driven by ATP futile cycle. Bioresour Technol 309:123307. https://doi.org/10.1016/j.biortech.2020.123307

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. Yu Jiang (CAS Center for Excellence in Molecular Plant Sciences Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China) and Dr. Yichen Sun (Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China) for helping us set up the Cprispr-Cpf1 system.

Funding

This work is supported by the National Key R&D Program of China (No.2017YFE0112700) and Shi Jiping Expert Workstation project of Yunnan Province in 2021.

Author information

Authors and Affiliations

Authors

Contributions

BGZ, CYY, and ZGM designed and conceived the study. CYY, ZGM, and SWH performed the research. CYY, JXZ, and XCL analyzed the data. CYY and YXL wrote the paper. YXL, BGZ, and GLD revised the paper. JSS, JPS, and GLD contributed analytical tools and supervised the project. All authors read and approved the manuscript.

Corresponding author

Correspondence to Baoguo Zhang.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 324 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, C., Ma, Z., Li, Y. et al. Production of 21-hydroxy-20-methyl-pregna-1,4-dien-3-one by modifying multiple genes in Mycolicibacterium. Appl Microbiol Biotechnol 107, 1563–1574 (2023). https://doi.org/10.1007/s00253-023-12399-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-023-12399-2

Keywords

Navigation