1 Introduction

In this paper, we study the global existence and blow-up phenomena for the following fractional Kirchhoff-type parabolic problem with logarithmic nonlinearity:

$$\begin{aligned} \left\{ \begin{array}{ll} \displaystyle {u_t} +{M([u]^2_s){\mathcal {L}}_Ku}={|u|^{p-2}u\log |u|},\ \ \ &{}x\in \Omega ,~t>0,\\ \displaystyle u(x,t)=0,&{}x\in ({\mathbb {R}}^N\setminus \Omega ),~t>0,\\ \displaystyle u(x,0)=u_0(x),&{}x\in \Omega , \end{array}\right. \end{aligned}$$
(1.1)

where

$$\begin{aligned}{}[u]_s^2:=\iint \limits _{{\mathbb {R}}^{2N}}|u(x,t)-u(y,t)|^2K(x-y)dxdy, \end{aligned}$$

\(\Omega \subset {\mathbb {R}}^N\) is a bounded domain with Lipschitz boundary \(\partial \Omega \), \({\mathcal {L}}_K\) is a nonlocal integro-differential operator, which is defined by

$$\begin{aligned} {\mathcal {L}}_K\varphi (x):=\frac{1}{2}\int \limits _{{\mathbb {R}}^{N}}(2\varphi (x)-\varphi (x+y)-\varphi (x-y))K(y)dy,~~~\forall \varphi \in C_0^\infty ({\mathbb {R}}^N).\nonumber \\ \end{aligned}$$
(1.2)

Here, \(K:{\mathbb {R}}^N\setminus \{0\}\rightarrow {\mathbb {R}}^+\) is a function with the following properties:

\((k_1)\):

\(\gamma K\in L^1({\mathbb {R}}^N)\), with \(\gamma (x):=\min \{|x|^2,1\}\);

\((k_2)\):

there exists \(K_0>0\) such that \(K(x)\ge K_0|x|^{-N-2s}\) for all \(x\in {\mathbb {R}}^N\setminus \{0\}\).

Furthermore, we make the following assumptions:

\((M_1)\):

\(0<s<1\), \(M(\tau ):=a+b\tau ^{\theta -1}\) for \(\tau \in {\mathbb {R}}_0^+:=[0,+\infty )\) (\(a\ge 0\), \(b>0\) are two constants), \(\theta \in \left[ 1,{2_s^*}/{2}\right) \), \(p\in (2\theta ,2_s^*)\). Here,

$$\begin{aligned} 2_s^*:=\left\{ \begin{array}{ll} \displaystyle \frac{2N}{N-2s}, &{} \hbox { if }2s<N; \\ \displaystyle \infty , &{} \hbox { if }2s\ge N. \end{array} \right. \end{aligned}$$

In the past few decades, more and more attention has been devoted to the study of Kirchhoff type problems. More specifically, Kirchhoff in 1883 proposed the following Kirchhoff model

$$\begin{aligned} \rho \frac{\partial ^2u}{\partial t^2}-\left( \frac{P_0}{h}+\frac{E}{2L}\mathop \int \limits _0^L\left| \frac{\partial u(x)}{\partial x}\right| ^2dx\right) \frac{\partial ^2u}{\partial x^2}=0, \end{aligned}$$

which was as a generalization of the well-known D’Alembert wave equation for free vibrations of elastic strings, where the above constants have the following meanings: L is the length of the string, h is the area of the cross-section, E is the Young modulus of the material, \(\rho \) is the mass density and \(P_0\) is the initial tension.

It is worth mentioning that the above equation received much attention after the work of Lions [24], where a functional analysis framework was proposed for the following higher dimension problem in presence of an external force term f:

$$\begin{aligned} \frac{\partial ^2u}{\partial t^2}-\left( a+b\mathop \int \limits _\Omega |\nabla u(x)|^2dx\right) \Delta u=f(x,u), \end{aligned}$$

where \(\Delta \) denotes the Euclidean Laplace operator.

Recently, in [14], Han and Li studied the following initial boundary value problem for a class of Kirchhoff type parabolic equation with a nonlinear term

$$\begin{aligned} \left\{ \begin{array}{ll} \displaystyle {u_t}- M\left( \mathop \int \limits _\Omega |\nabla u|^2dx\right) \Delta u=|u|^{q-1}u,\ \ \ &{}(x,t)\in \Omega \times (0,T),\\ \displaystyle u=0,&{}(x,t)\in \partial \Omega \times (0,T),\\ \displaystyle u(x,0)=u_0(x),&{}x\in \Omega . \end{array}\right. \end{aligned}$$
(1.3)

Here the diffusion coefficient \(M(\tau )=a+b\tau \) with the parameters a, b being positive, \(\Omega \subset {\mathbb {R}}^N (N\ge 1)\) is a bound domain with smooth boundary \(\partial \Omega \), \(3<q\le 2^*-1\), where \(2^*\) is the Sobolev conjugate of 2. By using the potential well theory and variational methods, the authors obtained the global existence and finite time blow-up of solutions when the initial energy was subcritical, critical and supercritical. After this work, in [15], the authors investigated the upper and lower bounds of blow-up time to the blow-up solutions of problem (1.3).

It is well known that many mathematical models involving fractional and nonlocal operators are actively studied in recent years. More precisely, this type of operators arises in a quite natural way in many applications, such as finance, physics, fluid dynamics, population dynamics, image processing, minimal surfaces and game theory. As for the research motivation, we would like to point out that Applebaum in [1] viewed the fractional Laplacian operators of the form \((-\Delta )^s\) as the infinitesimal generators of stable radially symmetric Lévy processes. Laskin in [19] deduced the fractional Schrödinger equation as a result of expanding the Feynman path integral, from the Brownian-like to the Lévy-like quantum mechanical paths. In particular, we would like to point out that \((-\Delta )^s\) can be reduced to the classical Laplace operator \(-\Delta \) as \(s\rightarrow 1^-\), see [9] for more details. For more recent results involving the fractional Laplacian, interested readers may refer to, for example, [2, 3, 9, 11, 18, 26, 36] and the references therein.

In particular, in [32], the authors studied the following parabolic equations of Kirchhoff type involving the fractional Laplacian:

$$\begin{aligned} \left\{ \begin{array}{ll} \displaystyle {\partial _tu} +{M([u]^2_s){\mathcal {L}}_Ku}={|u|^{p-2}u},\ \ \ &{}\hbox { in } \Omega \times (0,+\infty ),\\ \displaystyle u(x,t)=0,&{}\hbox { in }({\mathbb {R}}^N\setminus \Omega )\times (0,+\infty ),\\ \displaystyle u(x,0)=u_0(x),&{}\hbox { in }\Omega . \end{array}\right. \end{aligned}$$

By using the Galerkin method and differential inequality technique, the local existence of weak solutions and the conditions on blow-up were studied.

In recent years, logarithmic nonlinearity appears frequently in partial differential equations which describes important physical phenomena (see [5, 6, 10, 12, 16, 17, 25, 29, 42]) and the references therein). Especially, in the classical case, Chen and Tian [5] studied the following semilinear pseudo-parabolic equation with logarithmic nonlinearity:

$$\begin{aligned} u_t-\Delta u_t-\Delta u=u\log |u| \end{aligned}$$
(1.4)

in a bounded domain \(\Omega \subset {\mathbb {R}}^N\) \((N\ge 1)\) with zero Dirichlet boundary condition. By using the logarithmic Sobolev inequality (see [7, 8, 21]), they studied the existence of global solution, blow-up at \(\infty \) and behavior of vacuum isolation of the solutions, and they also compared the difference between logarithmic nonlinearity and polynomial nonlinearity.

Inspired by the above works, in the present article we consider model (1.1). To our best knowledge, this is the first attempt to study the properties of the solutions for Kirchhoff-type equation with logarithmic nonlinearity. In this paper, we mainly discuss the properties of global existence and finite time blow-up for the solutions of problem (1.1) when the initial energy is subcritical and critical by potential well method which was established by Payne and Sattinger [27] and the concavity method which was established by Levine [22, 23], see also [12, 13, 33,34,35, 40, 41, 43] and references therein for more applications of these two methods. Furthermore, we also obtain the growth estimates of blow-up solutions. Moreover, the blow-up conditions independent of mountain-pass level are also investigated. In particular, under some appropriate conditions, we obtain the upper and lower bounds of blow-up time to blow-up solutions of problem (1.1). Finally, we consider the ground state solutions for the stationary problem. Here we say the initial energy is subcritical and critical if \(J(u_0)<d\) and \(J(u_0)=d\) are satisfied respectively, where \(J(u_0)\) denotes the initial energy defined in (2.1) and \(d>0\) is the mountain-pass level defined in (2.4). We remark that to handle the logarithmic nonlinear term of problem (1.1), we use some other methods instead of logarithmic Sobolev inequality, which is a key inequality to get the results in [4,5,6, 20, 21, 38].

Throughout this paper, we denote by \((\cdot ,\cdot )\) the \(L^2(\Omega )\)-inner product, i.e.

$$\begin{aligned} (\phi ,\varphi )=\mathop \int \limits _\Omega \phi (x)\varphi (x)dx,\ \ \forall \phi ,\varphi \in L^2(\Omega ). \end{aligned}$$

We also denote the norm of \(L^{\gamma }(\Omega )\) for \(1\le \gamma \le \infty \) by \(\Vert \cdot \Vert _{\gamma }\). That is, for any \(u\in L^{\gamma }(\Omega )\),

$$\begin{aligned} \Vert u\Vert _\gamma =\left\{ \begin{array}{ll} \displaystyle \left( \mathop \int \limits _\Omega |u(x)|^\gamma dx\right) ^{\frac{1}{\gamma }}, &{} \hbox { if }1\le \gamma <\infty ; \\ \displaystyle \hbox {ess }\sup \limits _{x\in \Omega }|u(x)|, &{} \hbox { if }\gamma =\infty . \end{array} \right. \end{aligned}$$

Now we recall some necessary properties of fractional Sobolev spaces which will be used later. Let X be the linear space of Lebesgue measurable function \(u:{\mathbb {R}}^N\rightarrow {\mathbb {R}}\) whose restrictions to \(\Omega \) belong to \(L^2(\Omega )\) and such that

$$\begin{aligned} \ \hbox { the map } (x,y)\mapsto |u(x)-u(y)|^2K(x-y)\ \hbox { is in } L^1({\mathcal {Q}},dxdy), \end{aligned}$$

where \({\mathcal {Q}}={\mathbb {R}}^{2N}\setminus ({\mathcal {C}}\Omega \times {\mathcal {C}}\Omega )\) and \({\mathcal {C}}\Omega ={\mathbb {R}}^N\setminus \Omega \). The space X is endowed with the norm

$$\begin{aligned} \Vert \varphi \Vert _X=\left( \Vert \varphi \Vert _2^2+\iint \limits _{{\mathcal {Q}}}|u(x)-u(y)|^2K(x-y)dxdy\right) ^{\frac{1}{2}}, \end{aligned}$$
(1.5)

for all \(\varphi \in X\). We observe that bounded and Lipschitz functions belong to X, thus X is not reduced to \(\{0\}\).

The functional space Z denotes the closure of \(C_0^\infty (\Omega )\) in X. The scalar product defined for any \(\varphi \), \(\psi \in Z\) as

$$\begin{aligned} \langle \varphi ,\psi \rangle _Z=\iint \limits _{{\mathcal {Q}}}(\varphi (x)-\varphi (y))(\psi (x)-\psi (y))K(x-y)dxdy, \end{aligned}$$
(1.6)

makes Z a Hilbert space. The norm

$$\begin{aligned} \Vert \varphi \Vert _Z=\left( \iint \limits _{{\mathcal {Q}}}|\varphi (x)-\varphi (y)|^2K(x-y)dxdy\right) ^{\frac{1}{2}} \end{aligned}$$
(1.7)

is equivalent to the usual norm defined in (1.5). Note that in (1.5)–(1.7) the integrals can be extended to \({\mathbb {R}}^{2N}\), since \(u=0\) a.e. in \({\mathcal {C}}\Omega \). By Lemma 6 of [28] and \((k_1)\), the Hilbert space \(Z=(Z,\Vert \cdot \Vert _Z)\) is continuously embedded in \(L^r(\Omega )\) for any \(r\in [1,2_s^*]\). Hence there exists \(C_r>0\) such that

$$\begin{aligned} \Vert u\Vert _r\le C_r\Vert u\Vert _Z\ \hbox { for all } u\in Z\ \hbox { and } r\in [1,2_s^*]. \end{aligned}$$
(1.8)

Next, we consider the eigenvalue of the operator \({\mathcal {L}}_K\) with homogeneous Dirichlet boundary data, namely the eigenvalue of the the problem (see [32])

$$\begin{aligned} \left\{ \begin{array}{ll} \displaystyle -{\mathcal {L}}_Ku=\lambda u, &{} \hbox { in }\Omega ; \\ \displaystyle u=0, &{} \hbox { in }{\mathbb {R}}^N\setminus \Omega , \end{array} \right. \end{aligned}$$
(1.9)

we denote by \(\lambda _1\) the first eigenvalue of problem (1.9), i.e.

$$\begin{aligned} \lambda _1=\inf _{u\in Z\setminus \{0\}}\frac{\Vert u\Vert _Z^2}{\Vert u\Vert _2^2}\in (0,\infty ). \end{aligned}$$
(1.10)

The rest of this paper is organized as follows. In Sect. 2, we state the main results of this paper. In Sect. 3, we give some important lemmas, which will be used in the proof of the main results. In Sect. 4, we give the proof of the main results.

2 Main Results

In this section, we will give the main results of this paper and we always assume \((M_1)\) holds. The energy functional J and the Nehari functional I are as follows:

$$\begin{aligned} J(u):=\frac{a}{2}\Vert u\Vert _Z^2+\frac{b}{2\theta }\Vert u\Vert _Z^{2\theta }-\frac{1}{p} \mathop \int \limits _\Omega |u|^p\log |u|dx+\frac{1}{p^2}\Vert u\Vert _p^p, \end{aligned}$$
(2.1)

and

$$\begin{aligned} I(u):=\langle J'(u),u\rangle =a\Vert u\Vert _Z^2+b\Vert u\Vert _Z^{2\theta }-\mathop \int \limits _\Omega |u|^p\log |u|dx, \end{aligned}$$
(2.2)

where \(\langle \cdot ,\cdot \rangle \) denotes the dual pairing between Z and \(Z'\).

By \((M_1)\), we know that \(2<p<2_s^*\). Let \(\varrho :=2_s^*-p>0\). Since \(\log \left( |u|^\varrho \right) \le |u|^\varrho \), it follows from (1.8) that

$$\begin{aligned} \mathop \int \limits _\Omega |u|^p\log |u|dx=\frac{1}{\varrho }\mathop \int \limits _\Omega |u|^p\log \left( |u|^\varrho \right) dx\le \frac{1}{\varrho }\mathop \int \limits _\Omega |u|^{p+\varrho }dx\le \frac{1}{\varrho }\left( C_{2_s^*}\Vert u\Vert _Z\right) ^{2_s^*} \end{aligned}$$

and \(\Vert u\Vert _p\le C_p\Vert u\Vert _Z\). So J and I are well-defined for \(u\in Z\).

Obviously, from (2.1) and (2.2), we have

$$\begin{aligned} J(u)=\frac{1}{p}I(u)+\frac{(p-2)a}{2p}\Vert u\Vert _Z^2+\frac{(p-2\theta )b}{2\theta p}\Vert u\Vert _Z^{2\theta }+\frac{1}{p^2}\Vert u\Vert _p^p. \end{aligned}$$
(2.3)

Let

$$\begin{aligned} d:=\inf _{u\in N}J(u) \end{aligned}$$
(2.4)

denote the mountain-pass level, where N is the Nehari manifold, which is defined by

$$\begin{aligned} N:=\{u\in Z\setminus \{0\}\mid I(u)=0\}. \end{aligned}$$
(2.5)

By Lemma 5, we know that d satisfies

$$\begin{aligned} d\ge {\widetilde{M}}:=\frac{a\theta r^2_*(p-2)+br^{2\theta }_*(p-2\theta )}{2\theta p}, \end{aligned}$$
(2.6)

where \(r_*\) is a positive constant defined in (3.6) of Lemma 4.

Moreover, we define

$$\begin{aligned}&N_+:=\left\{ u\in Z\mid I(u)>0\right\} , \end{aligned}$$
(2.7)
$$\begin{aligned}&N_-:=\left\{ u\in Z\mid I(u)<0\right\} . \end{aligned}$$
(2.8)

Finally, the potential well W and its corresponding set V are defined by

$$\begin{aligned}&W:=\{u\in Z\mid I(u)>0,J(u)<d\}\cup \{0\}, \end{aligned}$$
(2.9)
$$\begin{aligned}&V:=\{u\in Z\mid I(u)<0,J(u)<d\}. \end{aligned}$$
(2.10)

To state the main results succinctly, we need the following two definitions.

Definition 1

(Weak solution) A function \(u=u(t)\in L^\infty (0,T;Z)\) is called a weak solution of problem (1.1), if \(u_t\in L^2(0,T;L^2(\Omega ))\) and the following equality holds

$$\begin{aligned} \begin{aligned}&\mathop \int \limits _\Omega u_t\phi dx+\left( a+b\Vert u\Vert _Z^{2\theta -2}\right) \iint \limits _{{\mathcal {Q}}}(u(x,t)-u(y,t)) (\phi (x)-\phi (y))K(x-y)dxdy\\&\quad =\mathop \int \limits _\Omega |u|^{p-2}u\log |u|\phi dx \end{aligned} \end{aligned}$$
(2.11)

for all \(\phi \in Z\). Moreover, the following inequality

$$\begin{aligned} \mathop \int \limits _{0}^{t}\Vert u_\tau \Vert ^2_2d\tau +J(u(t))\le J(u_0) \end{aligned}$$
(2.12)

holds for a.e. \(t\in (0,T)\).

Definition 2

(Maximal existence time) Let \(u=u(t)\) be a weak solution of problem (1.1). We define the maximal existence time T of u as follows:

  1. (1)

     If u exists for all \(0\le t<\infty \), then \(T=\infty \);

  2. (2)

     If there exists a \(t_0\in (0,\infty )\) such that u exists for \(0\le t<t_0\), but doesn’t exist at \(t=t_0\), then \(T=t_0\).

Based on the above preparations, the main results of this paper are as follows. The first result is about global existence.

Theorem 1

Let \((M_1)\) hold, \(u_0\in Z\). Assume that \(J(u_0)<d\) and \(I(u_0)>0\). Then problem (1.1) admits a global weak solution \(u(t)\in L^\infty (0,\infty ;Z)\) with \(u_t\in L^2(0,\infty ;L^2(\Omega ))\) and \(u(t)\in W\) for \(0\le t<\infty \). Furthermore, the weak solution is unique if it is bounded. Moreover, for any \(\varepsilon \in (0,2_s^*-p]\), if \(J(u_0)<d(\varepsilon )\), then

$$\begin{aligned} \Vert u\Vert _2^2\le F(\varepsilon ):=\left\{ \begin{array}{ll} \Vert u_0\Vert _2^2e^{-C_\varepsilon t}, &{} \hbox { if }\theta =1, \\ \left( C_{\varepsilon }(\theta -1)t+\Vert u_0\Vert _2^{2-2\theta }\right) ^{-\frac{1}{\theta -1}}, &{} \hbox { if }\theta \in \left( 1,\frac{2_s^*}{2}\right) , \end{array} \right. \end{aligned}$$

where

$$\begin{aligned} \begin{aligned}&d(\varepsilon ):=\frac{(p-2\theta )br^{2\theta }(\varepsilon )}{2\theta p}\le d,\\&C_{\varepsilon }:=2\lambda _1^\theta \left[ b-\frac{ C_*^{p+\varepsilon }}{\varepsilon }\left( \frac{2\theta pJ(u_0)}{(p-2\theta )b}\right) ^{\frac{p+\varepsilon -2\theta }{2\theta }}\right] >0. \end{aligned} \end{aligned}$$

Here \(\lambda _1\), \(r(\varepsilon )\) and \(C_*\) are defined in (1.10), (3.2) and (3.3) respectively.

Remark 1

We show that \(d(\varepsilon )\le d\). In fact, for any \(u\in N\). By (2) of Lemma 3, we get \(\Vert u\Vert _Z>r(\varepsilon )\). Then it follows from from (2.3) that

$$\begin{aligned} \begin{aligned} J(u)&=\frac{1}{p}I(u)+\frac{(p-2)a}{2p}\Vert u\Vert _Z^2+\frac{(p-2\theta )b}{2\theta p}\Vert u\Vert _Z^{2\theta }+\frac{1}{p^2}\Vert u\Vert _p^p\\&\ge \frac{(p-2\theta )b}{2\theta p}\Vert u\Vert _Z^{2\theta }\ge \frac{(p-2\theta )br^{2\theta }(\varepsilon )}{2\theta p}=d(\varepsilon ). \end{aligned} \end{aligned}$$

Then by the definition of d in (2.4), we get \(d(\varepsilon )\le d\).

By using Theorem 1, we get the following corollary:

Corollary 1

Let \((M_1)\) hold, \(u_0\in Z\). Assume that \(J(u_0)\le d\) and \(I(u_0)\ge 0\). Then problem (1.1) admits a global weak solution \(u(t)\in L^\infty (0,\infty ;Z)\) with \(u_t\in L^2(0,\infty ;L^2(\Omega ))\) and \(u(t)\in {\overline{W}}\) for \(0\le t<\infty \).

As the other side of the above theorem, we have the following blow-up result.

Theorem 2

Let \((M_1)\) hold, \(u_0\in Z\). If \(J(u_0)\le d\), \(I(u_0)<0\), and \(u=u(t)\) is a corresponding solution of problem (1.1), then u(t) blows up at some finite time T in the sense of

$$\begin{aligned} \lim _{t\rightarrow T^-}\mathop \int \limits _0^t\Vert u\Vert _2^2d\tau =\infty . \end{aligned}$$

Moreover,

  1. 1.

    if \(J(u_0)<d\), then

    $$\begin{aligned} T\le \frac{4(p-1)\Vert u_0\Vert _2^2}{p(d-J(u_0))(p-2)^2}; \end{aligned}$$
  2. 2.

    if \(2\theta<p<2\theta +2-{4\theta }/{2_s^*}\), then for any \(\varepsilon \in \left( 0,2\theta +2-{4\theta }/{2_s^*}-p\right) \), it holds

    $$\begin{aligned} T>\frac{1}{2{\widehat{C}}(\zeta -1)\Vert u_0\Vert _2^{2(\zeta -1)}} \end{aligned}$$

    and

    $$\begin{aligned} \Vert u\Vert _2>\left( 2{\widehat{C}}(\zeta -1)(T-t)\right) ^{-\frac{1}{2(\zeta -1)}}, \end{aligned}$$

    where

    $$\begin{aligned} \begin{aligned} \zeta&=\frac{\beta \theta (p+\varepsilon )}{2\theta -(1-\beta )(p+\varepsilon )}{>1}\ \ (\hbox {see Remark}~2),\\ {\widehat{C}}&=\left( \frac{{\widetilde{C}}^{p+\varepsilon }}{\varepsilon b^{\frac{(1-\beta )(p+\varepsilon )}{2\theta }}}\right) ^{\frac{2\theta }{2 \theta -(1-\beta )(p+\varepsilon )}}. \end{aligned} \end{aligned}$$

    Here,

    $$\begin{aligned} \tilde{C}=\sup _{u\in Z\setminus \{0\}}\frac{\Vert u\Vert _{p+\varepsilon }}{\Vert u\Vert _Z^{1-\beta }\Vert u\Vert _2^\beta }\in (0,\infty )~~~(\hbox {see Remak}~2) \end{aligned}$$
    (2.13)

    and

    $$\begin{aligned} \beta =\frac{2(2_s^*-p-\varepsilon )}{(p+\varepsilon )(2_s^*-2)}{\in (0,1)}~~~(\hbox {see Remak}~2). \end{aligned}$$
    (2.14)

Remark 2

In this remark, we show that \(\beta \in (0,1)\), \(\tilde{C}\) is well-defined and \(\zeta >1\).

  1. 1.

    Since \(\theta \in \left[ 1,{2_s^*}/{2}\right) \), \(\varepsilon \in \left( 0,2\theta +2-{4\theta }/{2_s^*}-p\right) \) and \(2_s^*>2\), we get

    $$\begin{aligned} p+\varepsilon<2\theta +2-\frac{4\theta }{2_s^*}=2\left( 1-\frac{2}{2_s^*}\right) \theta +2<2\left( 1-\frac{2}{2_s^*}\right) \frac{2_s^*}{2}+2=2_s^*,\nonumber \\ \end{aligned}$$
    (2.15)

    which implies \(\beta >0\). On the other hand, by \(p+\varepsilon >2\), we obtain \(2\cdot 2_s^*<2_s^*(p+\varepsilon )\), i.e., \(2\cdot 2_s^*-2p-2\varepsilon <2_s^*(p+\varepsilon )-2p-2\varepsilon =(p+\varepsilon )(2_s^*-2)\), thus, we get \(\beta \in (0,1)\).

  2. 2.

    Since \(2<p+\varepsilon <2_s^*\), we get there exists a positive constant such that

    $$\begin{aligned} \Vert u\Vert _{p+\varepsilon }\le C\Vert u\Vert _{2_s^*}^{1-\beta }\Vert u\Vert _2^\beta , \end{aligned}$$

    which, together with (1.8), implies

    $$\begin{aligned} \Vert u\Vert _{p+\varepsilon }\le C C_{2_s^*}^{1-\beta }\Vert u\Vert _Z^{1-\beta }\Vert u\Vert _2^\beta . \end{aligned}$$

    Then \(\tilde{C}\) is well-defined. Here \(\beta \) satisfies

    $$\begin{aligned} \frac{1}{p+\varepsilon }=\frac{1-\beta }{2_s^*}+\frac{\beta }{2}, \end{aligned}$$

    i.e., (2.14) holds.

  3. 3.

    Now, we prove \(\zeta >1\). In fact, from the definitions of \(\zeta \) and \(\beta \), by a direct computation, we have

    $$\begin{aligned} \zeta =\frac{2\theta (2_s^*-p-\varepsilon )}{2\theta (2_s^*-2)-2_s^*(p+\varepsilon -2)}. \end{aligned}$$
    (2.16)

    Since \(\varepsilon <2\theta +2-{4\theta }/{2_s^*}-p\), we get

    $$\begin{aligned} 2_s^*(p+\varepsilon -2)<2_s^*\left( 2\theta -\frac{4\theta }{2_s^*}\right) =2\theta (2_s^*-2), \end{aligned}$$

    which, together with (2.15) and (2.16), implies

    $$\begin{aligned} \zeta>1&\Leftrightarrow 2\theta (2_s^*-p-\varepsilon )>2\theta (2_s^*-2)-2_s^* (p+\varepsilon -2)\\&\Leftrightarrow 2_s^*(p+\varepsilon -2)>2\theta (2_s^*-2)-2\theta (2_s^*-p-\varepsilon ) =2\theta (p+\varepsilon -2). \end{aligned}$$

    Then by \(p+\varepsilon >2\) and \(\theta <2_s^*/2\), we get \(\zeta >1\).

The next theorem shows lower bound of the growth rate for the solution got in above theorem under more specific assumptions on \(J(u_0)\) and \(I(u_0)\) (note that, by (2.6), \({\widetilde{M}}\le d\)).

Theorem 3

Let \((M_1)\) hold, \(u_0\in Z\) satisfy \(I(u_0)<0\) and \(J(u_0)\le {\widetilde{M}}\). Then for any \(\gamma \in \left[ 0,{2}/{2_s^*}\right] \), there exists a \(t_\gamma \in (0,T)\) such that the weak solution \(u=u(t)\) of problem (1.1) satisfies

$$\begin{aligned} \Vert u\Vert ^2_2\ge C_\gamma (t^{\frac{p\gamma }{2}}-t^{\frac{p\gamma }{2}-1}t_\gamma )^{\frac{2}{2-p\gamma }} \end{aligned}$$

for all \(t\in [t_\gamma ,T)\), where

$$\begin{aligned} C_\gamma :=\left[ \left( 1-\frac{p\gamma }{2}\right) G^{-\frac{p\gamma }{2}}(t_\gamma ) G'(t_\gamma )\right] ^{\frac{2}{2-p\gamma }}, \end{aligned}$$

and

$$\begin{aligned} G(t):=\mathop \int \limits _0^t\Vert u\Vert _2^2d\tau . \end{aligned}$$

Remark 3

Since \(p<2_s^*\) and \(\gamma \in \left[ 0,{2}/{2_s^*}\right] \), we have \(p\gamma <2\). Then the constant \(C_\gamma \) is well-defined and \(1\le 2/(2-p\gamma )<\infty \).

In view of the above results, one can see they all depend on the mountain-pass level d. Next, we give some blow-up results independent of d but related to \(\lambda _1\), where \(\lambda _1>0\) is the first eigenvalue of problem (1.9).

Theorem 4

Let \((M_1)\) hold and \(u=u(t)\) be a weak solution to problem (1.1). If

$$\begin{aligned} J(u_0)<\frac{(p-2\theta )b\lambda _1^\theta }{2\theta p}\Vert u_0\Vert _2^{2\theta }, \end{aligned}$$
(2.17)

then u(t) blows up at some finite time T in the sense of

$$\begin{aligned} \lim _{t\rightarrow T^-}\mathop \int \limits _0^t\Vert u\Vert _2^2d\tau =\infty . \end{aligned}$$

Moreover, we have

$$\begin{aligned} T\le \frac{8(p-1)\theta \Vert u_0\Vert _2^2}{(p-2)^2\left[ (p-2\theta )b\lambda _1^\theta \Vert u_0 \Vert _2^{2\theta }-2p\theta J(u_0)\right] }. \end{aligned}$$

Furthermore, u(t) grows exponentially with \(L^2\)-norm for all \(t\in [0,T)\), that is,

$$\begin{aligned} \Vert u\Vert _2^2\ge \left( \Vert u_0\Vert _2^2-\frac{2p}{A}J(u_0)\right) e^{At}+\frac{2p}{A}J(u_0), \end{aligned}$$

where \(A=\frac{(p-2\theta )b\lambda _1^\theta \Vert u_0\Vert _2^{2\theta -2}}{\theta }\).

The next theorem is about the asymptotic behavior of J(u(t)) as \(t\rightarrow T\), where u(t) is the blow-up solution got from the above theorems.

Theorem 5

Let u(t) be the blow-up solution of problem (1.1) with \(I(u_0)<0\), \(J(u_0)\le d\) or (2.17) holds, and assume T is the maximum existence time of u(t), then

$$\begin{aligned} \lim _{t\rightarrow T}J(u(t))=-\infty . \end{aligned}$$
(2.18)

Next, we derive some sufficient and necessary conditions for the solutions blowing up in finite time.

Theorem 6

Let u(t) be a solution of problem (1.1) and \(T\in (0,+\infty ]\) be the maximal existence time of u(t). Then

  1. 1.

    if \(u_0\in Z\setminus \{0\}\) and \(J(u_0)<d\), we have following conclusions:

    1. (1)

       \(I(u_0)<0\Leftrightarrow T<+\infty \Leftrightarrow \) there exists a \(t_0\in [0,T)\) such that \(J(u(t_0))<0\);

    2. (2)

       \(I(u_0)>0\Leftrightarrow T=+\infty \Leftrightarrow J(u(t))>0\) for all \(t\in [0,T)\);

  2. 2.

    if \(u_0\in Z\setminus \left\{ N\cup \{0\}\right\} \) and \(J(u_0)=d\), we have following conclusions:

    1. (3)

       \(I(u_0)<0\Leftrightarrow T<+\infty \Leftrightarrow \) there exists a \(t_0\in [0,T)\) such that \(J(u(t_0))<0\);

    2. (4)

       \(I(u_0)>0\Leftrightarrow T=+\infty \Leftrightarrow J(u(t))>0\) for all \(t\in [0,T)\),

where N is defined in (2.5).

The next problem we will consider is can the mountain-pass level d defined in (2.4) be achieved by some \(u\in N\)? To this end, we consider the steady-state corresponding to problem (1.1), i.e., the following boundary value problem:

$$\begin{aligned} \left\{ \begin{array}{ll} \displaystyle {M([u]^2_s){\mathcal {L}}_Ku}={|u|^{p-2}u\log |u|},\ \ \ &{}x\in \Omega ,\\ \displaystyle u=0,&{}x\in ({\mathbb {R}}^N\setminus \Omega ).\\ \end{array}\right. \end{aligned}$$
(2.19)

A function \(u\in Z\) is called a weak solution of problem (2.19), if the following equality

$$\begin{aligned}&\left( a+b\Vert u\Vert _Z^{2\theta -2}\right) \iint \limits _{{\mathcal {Q}}}(u(x) -u(y))(\phi (x)-\phi (y))K(x-y)dxdy\\&\quad =\mathop \int \limits _\Omega |u|^{p-2}u\log |u|\phi dx \end{aligned}$$

holds for all \(\phi \in Z\). Then we introduce the set

$$\begin{aligned} \begin{aligned} \Gamma&=\{\hbox {weak solutions of problem }(2.19)\}\\&=\{u\in Z:J'(u)=0\hbox { in }Z'\}\\&=\{u\in Z:\langle J'(u),\phi \rangle =0,~\forall \phi \in Z\}, \end{aligned} \end{aligned}$$
(2.20)

where J is defined in (2.1), \(Z'\) is the dual space of Z, and \(\langle \cdot ,\cdot \rangle \) is the dual product between \(Z'\) and Z. We have the following two theorems:

Theorem 7

Assume \((M_1)\) hold. Let N be the set defined in (2.5), then there exists a function \(v_0\in N\) such that

  1. (1)

     \(J(v_0)=\inf _{u\in N}J(u)=d\);

  2. (2)

     \(v_0\) is a ground-state solution of problem (2.19), i.e., \(v_0\in \Gamma \setminus \{0\}\) and \(J(v_0)=\inf _{u\in \Gamma \setminus \{0\}}J(u)\).

By Theorem 1, we know that the global solution converges to 0 as \(t\rightarrow \infty \) when \(u_0\) satisfies some special conditions, how about the general global solutions? For this question, we have the following results:

Theorem 8

Assume \((M_1)\) hold. Let \(u=u(t)\) be a global solution to problem (1.1). Then there exists a \(u^*\in \Gamma \) and an increasing sequence \(\{t_k\}_{k=1}^\infty \) with \(t_k\rightarrow \infty \) as \(k\rightarrow \infty \) such that

$$\begin{aligned} \lim _{k\rightarrow \infty }\Vert u(t_k)-u^*\Vert _Z=0. \end{aligned}$$

3 Preliminaries

In this section, we give some lemmas, which will be needed in our proofs. Throughout this section, we denote by \(u=u(t)\) the solution to problem (1.1) with initial value \(u_0\), whose maximal existence time is T.

Let \((M_1)\) hold. For any \(\varepsilon \) satisfying

$$\begin{aligned} 0<\varepsilon \le 2_s^*-p, \end{aligned}$$
(3.1)

we define

$$\begin{aligned} r(\varepsilon ):=\left( \frac{b\varepsilon }{C_*^{p+\varepsilon }} \right) ^{\frac{1}{p+\varepsilon -2\theta }}>0, \end{aligned}$$
(3.2)

where \(C_*\) is the optimal embedding constant of \(Z\hookrightarrow L^{p+\varepsilon }(\Omega )\) (see (1.8)), i.e.

$$\begin{aligned} \frac{1}{C_*}=\inf _{u\in Z\setminus \{0\}}\frac{\Vert u\Vert _Z}{\Vert u\Vert _{p+\varepsilon }}. \end{aligned}$$
(3.3)

The following lemma is used to derive the upper bound of the blow-up time.

Lemma 1

[22, 23] Suppose that \(0<T\le \infty \) and suppose a nonnegative function \(F(t)\in C^2[0,T)\) satisfies

$$\begin{aligned} F''(t)F(t)-(1+\gamma )(F'(t))^2\ge 0 \end{aligned}$$

for some constant \(\gamma >0\). If \(F(0)>0\), \(F'(0)>0\), then

$$\begin{aligned} T\le \frac{F(0)}{\gamma F'(0)}<\infty \end{aligned}$$

and \(F(t)\rightarrow \infty \) as \(t\rightarrow T\).

Lemma 2

[28] For any bounded sequence \(\{v_j\}_{j=1}^\infty \) in Z and any \(m\in [1,2_s^*)\), there exists a \(v\in L^m({\mathbb {R}}^N)\), with \(v=0\) a.e. in \({\mathbb {R}}^N\backslash \Omega \), such that up to a subsequence, still denoted by \(\{v_j\}_{j=1}^\infty \),

$$\begin{aligned} v_j\rightarrow v\ \ \hbox { strongly in }L^m(\Omega )\hbox { as }j\rightarrow \infty . \end{aligned}$$

Lemma 3

Assume \((M_1)\) hold. Let \(u\in Z\setminus \{0\}\). Then for any \(\varepsilon \) satisfying (3.1) we have

  1. (1)

     if \(0<\Vert u\Vert _Z\le r(\varepsilon )\), then \(I(u)>0\);

  2. (2)

     if \(I(u)\le 0\), then \(\Vert u\Vert _Z>r(\varepsilon )\),

where \(r(\varepsilon )\) is defined in (3.2).

Proof

Since \(u\in Z\setminus \{0\}\), we get \(|u(x)|>0\) for a.e. \(x\in \Omega \). By a simple computation, we know (for any \(\varepsilon >0\))

$$\begin{aligned} \log |u(x)|<\frac{|u(x)|^{\varepsilon }}{\varepsilon }\hbox { for a.e. } x\in \Omega . \end{aligned}$$

Then by the above inequality and the definition of I(u), we have

$$\begin{aligned} \begin{aligned} I(u)&=a\Vert u\Vert _Z^{2}+b\Vert u\Vert _Z^{2\theta }-\mathop \int \limits _\Omega |u|^p\log |u|dx\\&>b\Vert u\Vert _Z^{2\theta }-\frac{\Vert u\Vert _{p+\varepsilon }^{p+\varepsilon }}{\varepsilon }. \end{aligned} \end{aligned}$$
(3.4)

For any \(\varepsilon \) satisfying (3.1), it follows from (3.3) that

$$\begin{aligned} \Vert u\Vert _{p+\varepsilon }^{p+\varepsilon }\le C_*^{p+\varepsilon }\Vert u\Vert _Z^{p+\varepsilon }, \end{aligned}$$

then by (3.4) we get

$$\begin{aligned} \begin{aligned} I(u)&>b\Vert u\Vert _Z^{2\theta }-\frac{C_*^{p+\varepsilon }}{\varepsilon }\Vert u\Vert _Z^{p+\varepsilon }\\&=\Vert u\Vert _Z^{2\theta }\left( b-\frac{C_*^{p+\varepsilon }}{\varepsilon } \Vert u\Vert _Z^{p+\varepsilon -2\theta }\right) . \end{aligned} \end{aligned}$$
(3.5)

(1) If \(0<\Vert u\Vert _Z\le r(\varepsilon )\), then it follows from (3.2) that

$$\begin{aligned} b-\frac{C_*^{p+\varepsilon }}{\varepsilon }\Vert u\Vert _Z^{p+\varepsilon -2\theta }\ge 0, \end{aligned}$$

so by (3.5) we obtain \(I(u)>0\).

(2) If \(I(u)\le 0\), according to (3.5), we get

$$\begin{aligned} b-\frac{C_*^{p+\varepsilon }}{\varepsilon }\Vert u\Vert _Z^{p+\varepsilon -2\theta }<0, \end{aligned}$$

which implies

$$\begin{aligned} \Vert u\Vert _Z>r(\varepsilon ). \end{aligned}$$

\(\square \)

Lemma 4

Assume \((M_1)\) hold. With the notations in Lemma 3,

$$\begin{aligned} r_*:=\sup _{\varepsilon \in (0,2_s^*-p]}r(\varepsilon ) \end{aligned}$$
(3.6)

exists and

$$\begin{aligned} 0<r_*\le r^*<\infty , \end{aligned}$$
(3.7)

where

$$\begin{aligned} r^*:=\sup _{\varepsilon \in (0,2_s^*-p]}\sigma (\varepsilon ) \end{aligned}$$
(3.8)

and

$$\begin{aligned} \sigma (\varepsilon ):=\left( \frac{b\varepsilon }{\kappa ^{p+\varepsilon }} \right) ^{\frac{1}{p+\varepsilon -2\theta }}|\Omega |^{\frac{\varepsilon }{p(p+ \varepsilon -2\theta )}}. \end{aligned}$$
(3.9)

Here, \(|\Omega |\) is the measure of \(\Omega \), \(\kappa \) is the optimal embedding constant of \(Z\hookrightarrow L^{p}(\Omega )\), i.e.,

$$\begin{aligned} \frac{1}{\kappa }=\inf _{u\in Z\setminus \{0\}}\frac{\Vert u\Vert _Z}{\Vert u\Vert _p}. \end{aligned}$$
(3.10)

Proof

Obviously \(r_*\), if it exists, is positive. So in order to prove the lemma. We only need to prove \(r(\varepsilon )\le \sigma (\varepsilon )\), \(r^*\) exists and \(r^*<\infty \).

Firstly, we prove \(r(\varepsilon )\le \sigma (\varepsilon )\). For any \(u\in Z\), since \((M_1)\) holds and \(\varepsilon \in (0,2_s^*-p]\), we have \(u\in L^p(\Omega )\cap L^{p+\varepsilon }(\Omega )\). By Hölder’s inequality we have

$$\begin{aligned} \mathop \int \limits _\Omega |u|^pdx\le |\Omega |^{\frac{\varepsilon }{p+\varepsilon }}\left( \mathop \int \limits _\Omega |u|^{p+\varepsilon }dx\right) ^{\frac{p}{p+\varepsilon }}, \end{aligned}$$

which, together with (3.3) and (3.10), implies

$$\begin{aligned} \begin{aligned} \frac{1}{C_*}&=\inf _{u\in Z\setminus \{0\}}\frac{\Vert u\Vert _Z}{\Vert u\Vert _{p+\varepsilon }}\\&\le |\Omega |^{\frac{\varepsilon }{p(p+\varepsilon )}}\inf _{u\in Z\setminus \{0\}}\frac{\Vert u\Vert _Z}{\Vert u\Vert _p}\\&=\frac{1}{\kappa }|\Omega |^{\frac{\varepsilon }{p(p+\varepsilon )}}. \end{aligned} \end{aligned}$$
(3.11)

Then it follows from (3.2) that

$$\begin{aligned} r(\varepsilon )=\left( \frac{b\varepsilon }{C_*^{p+\varepsilon }} \right) ^{\frac{1}{p+\varepsilon -2\theta }}\le \sigma (\varepsilon ), \end{aligned}$$
(3.12)

where \(\sigma (\varepsilon )\) is defined in (3.9).

Secondly, we prove \(r^*\) exists and \(r^*<\infty \). Since \(\varepsilon \in (0,2_s^*-p]\) and \(\sigma (\varepsilon )\) is continuous on \([0,2_s^*-p]\), we have \(r^*\) exists and

$$\begin{aligned} r^*=\sup _{\varepsilon \in (0,2_s^*-p]}\sigma (\varepsilon )\le \max _{\varepsilon \in [0,2_s^*-p]}\sigma (\varepsilon )<\infty . \end{aligned}$$

\(\square \)

Based on the above two lemmas, we have the following corollary:

Corollary 2

Assume \((M_1)\) hold. Let \(u\in Z\setminus \{0\}\).

  1. (1)

     if \(0<\Vert u\Vert _Z<r_*\), then \(I(u)>0\);

  2. (2)

     if \(I(u)\le 0\), then \(\Vert u\Vert _Z\ge r_*\),

where \(r_*\) is defined in (3.6) of Lemma 4.

Proof

We only need to prove (1) since (2) is the direct result of (1). We fix \(u\in Z\setminus \{0\}\) such that \(0<\Vert u\Vert _Z<r_*\). Then by the definition of \(r_*\) in (3.6), there exists a \(\varepsilon _0\) satisfying (3.1) such that \(\Vert u\Vert _Z\le r(\varepsilon _0)\), where \(r(\cdot )\) is defined in (3.2). Then by (1) of Lemma 3, \(I(u)>0\). \(\square \)

Lemma 5

Assume \((M_1)\) hold. Then we have

$$\begin{aligned} d\ge \frac{a\theta r^2_*(p-2)+br^{2\theta }_*(p-2\theta )}{2\theta p}, \end{aligned}$$
(3.13)

where d is defined in (2.4) and \(r_*\) is defined in (3.6) of Lemma 4.

Proof

For all \(u\in N\), we have \(u\in Z\setminus \{0\}\) and \(I(u)=0\). Thus by (2) of Corollary 2, we know \(\Vert u\Vert _Z\ge r_*\), and then from (2.3) we get

$$\begin{aligned} \begin{aligned} J(u)&=\frac{1}{p}I(u)+\frac{(p-2)a}{2p}\Vert u\Vert _Z^2+\frac{(p-2\theta )b}{2\theta p}\Vert u\Vert _Z^{2\theta }+\frac{1}{p^2}\Vert u\Vert _p^p\\&\ge \frac{(p-2)a}{2p}\Vert u\Vert _Z^2+\frac{(p-2\theta )b}{2\theta p}\Vert u\Vert _Z^{2\theta }\\&\ge \frac{(p-2)a}{2p}r^2_*+\frac{(p-2\theta )b}{2\theta p}r^{2\theta }_*\\&=\frac{a\theta r^2_*(p-2)+br^{2\theta }_*(p-2\theta )}{2\theta p}, \end{aligned}\end{aligned}$$

which gives (3.13). \(\square \)

Lemma 6

Assume \((M_1)\) hold. Let \(u\in Z\) satisfy \(I(u)<0\). Then there exists a \(\lambda ^*\in (0,1)\) such that \(I(\lambda ^*u)=0\).

Proof

We divide the proof into two cases.

Case 1: \(a=0\). Let

$$\begin{aligned} \phi (\lambda ):=\lambda ^{p-2\theta }\mathop \int \limits _\Omega |u|^p\log |\lambda u|dx,\ \ \lambda \in (0,\infty ). \end{aligned}$$

Then for any \(\lambda >0\), by the definition of I(u), we have

$$\begin{aligned} \begin{aligned} I(\lambda u)&=b\lambda ^{2\theta }\Vert u\Vert _Z^{2\theta }-\mathop \int \limits _\Omega |\lambda u|^p\log |\lambda u|dx\\&=\lambda ^{2\theta }\left( b\Vert u\Vert _Z^{2\theta }-\lambda ^{p-2\theta }\mathop \int \limits _\Omega |u|^p\log |\lambda u|dx\right) \\&=\lambda ^{2\theta }\left( b\Vert u\Vert _Z^{2\theta }-\phi (\lambda )\right) . \end{aligned} \end{aligned}$$
(3.14)

Since \(I(u)<0\), by (3.14) and (2) of Corollary 2 we get

$$\begin{aligned} \phi (1)>b\Vert u\Vert _Z^{2\theta }\ge br^{2\theta }_*>0. \end{aligned}$$
(3.15)

On the other hand, by the definition of \(\phi (\lambda )\), we have

$$\begin{aligned} \phi (\lambda )=\lambda ^{p-2\theta }\mathop \int \limits _\Omega |u|^p\log |u|dx +\lambda ^{p-2\theta }\log \lambda \Vert u\Vert _p^p, \end{aligned}$$

which, together with \(p>2\theta \), implies

$$\begin{aligned} \lim _{\lambda \rightarrow 0^+}\phi (\lambda )=0. \end{aligned}$$

So by (3.15), we get that there exists a \(\lambda ^*\in (0,1)\) such that \(\phi (\lambda ^*)=b\Vert u\Vert _Z^{2\theta }\) and then \(I(\lambda ^*u)=0\).

Case 2: \(a>0\). Let

$$\begin{aligned} \phi (\lambda ):=\lambda ^{p-2}\mathop \int \limits _\Omega |u|^p\log |\lambda u|dx-b\lambda ^{2\theta -2}\Vert u\Vert _Z^{2\theta },\ \ \lambda \in (0,\infty ). \end{aligned}$$

Then for any \(\lambda >0\), by the definition of I(u), we have

$$\begin{aligned} \begin{aligned} I(\lambda u)&=a\lambda ^2\Vert u\Vert _Z^2+b\lambda ^{2\theta }\Vert u\Vert _Z^{2\theta }-\mathop \int \limits _\Omega |\lambda u|^p\log |\lambda u|dx\\&=\lambda ^2\left( a\Vert u\Vert _Z^2+b\lambda ^{2\theta -2}\Vert u\Vert _Z^{2\theta }-\lambda ^{p-2}\mathop \int \limits _\Omega |u|^p\log |\lambda u|dx\right) \\&=\lambda ^2\left( a\Vert u\Vert _Z^2-\phi (\lambda )\right) . \end{aligned}\end{aligned}$$
(3.16)

Since \(I(u)<0\), by (3.16) and (2) of Corollary 2 we get

$$\begin{aligned} \phi (1)>a\Vert u\Vert _Z^2\ge ar^2_*>0. \end{aligned}$$
(3.17)

On the other hand, by the definition of \(\phi (\lambda )\), we have

$$\begin{aligned} \phi (\lambda )=\lambda ^{p-2}\mathop \int \limits _\Omega |u|^p\log |u|dx+\lambda ^{p-2}\log \lambda \Vert u\Vert _p^p -b\lambda ^{2\theta -2}\Vert u\Vert _Z^{2\theta }, \end{aligned}$$

which, together with \(p>2\theta \ge 2\), implies

$$\begin{aligned} \lim _{\lambda \rightarrow 0^+}\phi (\lambda )=0. \end{aligned}$$

So by (3.17), we get that there exists a \(\lambda ^*\in (0,1)\) such that \(\phi (\lambda ^*)=a\Vert u\Vert _Z^2\) and then \(I(\lambda ^*u)=0\). \(\square \)

Lemma 7

Assume \((M_1)\) hold. Let \(u\in Z\) satisfy \(I(u)<0\). Then

$$\begin{aligned} I(u)<p\left( J(u)-d\right) . \end{aligned}$$
(3.18)

Proof

First from Lemma 6 we know that there exists a \(\lambda ^*\in (0,1)\) such that \(I(\lambda ^*u)=0\). Set

$$\begin{aligned} g(\lambda ):=pJ(\lambda u)-I(\lambda u),\ \ \lambda >0. \end{aligned}$$

By a direct computation, we obtain

$$\begin{aligned} g(\lambda )=\frac{a\lambda ^2(p-2)}{2}\Vert u\Vert _Z^2+\frac{b\lambda ^{2\theta }(p-2\theta )}{2\theta }\Vert u\Vert _Z^{2\theta }+\frac{\lambda ^p}{p}\Vert u\Vert _p^p. \end{aligned}$$

Then from (2) of Corollary 2, we get

$$\begin{aligned}\begin{aligned} g'(\lambda )&=a\lambda (p-2)\Vert u\Vert _Z^2+b\lambda ^{2\theta -1}(p-2\theta )\Vert u\Vert _Z^{2\theta } +\lambda ^{p-1}\Vert u\Vert _p^p\\&\ge b\lambda ^{2\theta -1}(p-2\theta )\Vert u\Vert _Z^{2\theta }\\&>b\lambda ^{2\theta -1}(p-2\theta )r^{2\theta }_*\\&>0, \end{aligned} \end{aligned}$$

which implies that \(g(\lambda )\) is strictly increasing for \(\lambda >0\), hence according to \(0<\lambda ^*<1\) we get \(g(1)>g(\lambda ^*)\), namely

$$\begin{aligned} pJ(u)-I(u)>pJ(\lambda ^*u)-I(\lambda ^*u)=pJ(\lambda ^*u)\ge pd, \end{aligned}$$

where the last inequality we have used the \(\lambda ^*u\in N\) and \(d=\inf _{\phi \in N}J(\phi )\), which gives (3.18) immediately. \(\square \)

Lemma 8

Let \((M_1)\) hold and \(u=u(t)\) be the corresponding solution to problem (1.1). Then for all \(t\in [0,T)\) we have

$$\begin{aligned} \frac{1}{2}\frac{d}{dt}\Vert u\Vert _2^2=-I(u). \end{aligned}$$
(3.19)

Proof

Let \(\phi =u(t)\) in (2.11) of Definition 1, we get

$$\begin{aligned} \mathop \int \limits _\Omega u_tudx+\left( a+b\Vert u\Vert _Z^{2\theta -2}\right) \Vert u\Vert _Z^2=\mathop \int \limits _\Omega |u|^p\log |u|dx, \end{aligned}$$

i.e.

$$\begin{aligned} \frac{1}{2}\frac{d}{dt}\Vert u\Vert _2^2=-a\Vert u\Vert _Z^2-b\Vert u\Vert _Z^{2\theta } +\mathop \int \limits _\Omega |u|^p\log |u|dx. \end{aligned}$$

Thus, we have

$$\begin{aligned} \frac{1}{2}\frac{d}{dt}\Vert u\Vert _2^2=-I(u). \end{aligned}$$

\(\square \)

Lemma 9

If \(J(u_0)\le d\), then the sets \(N_-\) and \(N_+\) are both invariant for u(t), i.e., if \(u_0\in N_-\) (resp. \(u_0\in N_+\)), then \(u(t)\in N_-\) (resp. \(u(t)\in N_+\)) for all \(t\in [0,T)\).

Proof

We only proof the invariance of \(N_-\) since the proof of the invariance of \(N_+\) is similar.

Firstly, we consider the case \(J(u_0)<d\). If the conclusion is not true, it follows \(J(u(t))\le J(u_0)<d\) for \(t\in [0,T)\) (see the energy inequality (2.12)) that there exists a \(t_0\in (0,T)\) such that

  • \(I(u(t_0))=0\) and \(I(u(t))<0\) for \(t\in [0,t_0)\).

From (2) of Corollary 2 we have \(\Vert u\Vert _Z> r_*>0\) for \(t\in [0,t_0)\), then by the continuity of \(\Vert u\Vert _Z\) with respect to t, we get \(\Vert u(t_0)\Vert _Z\ge r_*>0\), hence \(u(t_0)\in N\). Then it follows from the definition of d in (2.4) that \(J(u(t_0))\ge d\), a contradiction.

Secondly, we consider the case \(J(u_0)=d\). If the conclusion is not true, then by \(I(u_0)<0\), there must be a \(t_1\in (0,T)\) such that \(I(u(t_1))=0\) and \(I(u(t))<0\) for \(t\in [0,t_1)\). On the one hand, we get from (2) of Corollary 2 that \(\Vert u\Vert _Z>r_*>0\) for \(t\in [0,t_1)\), which implies that \(u(t_1)\ne 0\). Then we have \(u(t_1)\in N\) and then it follows from the definition of d in (2.4) that

$$\begin{aligned} J(u(t_1))\ge d. \end{aligned}$$
(3.20)

On the other hand, from \((u_t,u)=-I(u(t))>0\) (see Lemma 8) for \(t\in [0,t_1)\) and \(u(t)|_{\partial {\Omega }}=0\) we deduce \(u_t\ne 0\) and then \(\mathop \int \limits _0^{t_1}\Vert u_\tau \Vert ^2_2d\tau >0\). So by (2.12) we obtain

$$\begin{aligned} J(u(t_1))\le J(u_0)-\mathop \int \limits _0^{t_1}\Vert u_\tau \Vert ^2_2d\tau <d, \end{aligned}$$

which conflicts with (3.20). \(\square \)

4 Proof of the Theorems

Proof of Theorem 1

We divide the proof into three steps.

Step 1: Existence of a global weak solution Let \(\omega _j\), \(j=1,2,\ldots \) be the eigenfunctions of the operator \({\mathcal {L}}_k\) subject to the Dirichlet boundary condition (see [32]):

$$\begin{aligned}\begin{aligned} \left\{ \begin{array}{ll} -{\mathcal {L}}_K\omega _j=\lambda _j\omega _j, ~~&{}x\in \Omega , \\ \omega _j=0,&{}x\in {\mathbb {R}}^N\setminus \Omega , \end{array} \right. \end{aligned} \end{aligned}$$

we also normalize \(\omega _j\) such that \(\Vert \omega _j\Vert _2=1\). Then \(\{\omega _j\}^\infty _{j=1}\) is a basis of Z.

First we construct the following approximate solutions \(u_m(t)\) of problem (1.1):

$$\begin{aligned} u_m=\sum ^m_{j=1}g_{jm}(t)\omega _j(x),~m=1,2\ldots \end{aligned}$$
(4.1)

which satisfy

$$\begin{aligned} \begin{aligned} \left\{ \begin{array}{llll} &{}\displaystyle \mathop \int \limits _\Omega u_{mt}\omega _jdx+\left( a+b\Vert u_m\Vert _Z^{2\theta -2}\right) \iint \limits _{\mathcal {Q}}(u_m(x)\\ &{} -u_m(y))(\omega _j(x)-\omega _j(y))K(x-y)dxdy \\ =&{}\displaystyle \mathop \int \limits _\Omega |u_m|^{p-2}u_m\log |u_m|\omega _jdx, \\ &{}\displaystyle (u_m(0),\omega _j)=\xi _{jm}, \end{array} \right. \end{aligned} \end{aligned}$$
(4.2)

for \(j=1, 2,\ldots , m\), where \((\cdot ,\cdot )\) means the inner product of \(L^2(\Omega )\) and \(\xi _{jm}\) are given constants such that

$$\begin{aligned} u_m(0)=\sum _{j=1}^m\xi _{jm}\omega _j(x)\rightarrow u_0\hbox { in }Z \end{aligned}$$
(4.3)

as \(m\rightarrow \infty \). Existence of such \(\xi _{jm}\) follows from \(u_0\in Z\), and \(\{\omega _j\}^\infty _{j=1}\) is a basis of Z. The standard theory of ODEs, e.g. Peano’s theorem, yields that there exists a \(T>0\) depending only on \(\xi _{jm}\), \(j=1, 2,\ldots , m\), such that in \(g_{jm}\in C^1[0,T]\) and \(g_{jm}(0)=\xi _{jm}\). Thus \(u_m\in C^1\left( [0,T];Z\right) \).

We now try to get a priori estimates for the approximate solution \(u_m(t)\). Multiplying the first equation of (4.2) by \(g'_{jm}(t)\), summing for j from 1 to m and integrating with respect to time from 0 to t, we can obtain

$$\begin{aligned} \mathop \int \limits ^t_0\Vert u_{m\tau }\Vert ^2_2d\tau +J(u_m(t))=J(u_m(0)),\ \ 0\le t\le T. \end{aligned}$$

Due to (4.3) and \(g_{jm}(0)=\xi _{jm}\), one has (note that we have assumed that \(J(u_0)<d\) and \(I(u_0)>0\))

$$\begin{aligned} \lim _{m\rightarrow \infty }J(u_m(0))=J(u_0)<d \end{aligned}$$

and

$$\begin{aligned} \lim _{m\rightarrow \infty }I(u_m(0))=I(u_0)>0. \end{aligned}$$

Therefore, for sufficiently large m, we have

$$\begin{aligned} \mathop \int \limits ^t_0\Vert u_{m\tau }\Vert ^2_2d\tau +J(u_m(t))=J(u_m(0))<d,\ \ 0\le t\le T, \end{aligned}$$
(4.4)

and

$$\begin{aligned} I(u_m(0))>0, \end{aligned}$$

which implies that \(u_m(0)\in W\) for sufficiently large m [see the definition of W in (2.9)].

Next, we prove \(u_m(t)\in W\) for sufficiently large m and any \(t\in [0,T]\). Indeed, if it is false, there exists a sufficiently large m and a \(t_0\in (0,T]\) such that \(u_m(t_0)\in \partial W\), which implies that \(u_m(t_0)\in Z\setminus \{0\}\) and \(J(u_m(t_0))=d\) or \(I(u_m(t_0))=0\). From (4.4), \(J(u_m(t_0))=d\) is not true. So \(u_m(t_0)\in N\), then by the definition of d in (2.4), we have \(J(u_m(t_0))\ge d\), which also contradicts (4.4). Hence, \(u_m(t)\in W\) for sufficiently large m and any \(t\in [0,T]\).

By (4.4), \(I(u_m(t))>0\) for sufficiently large m (since \(u_m(t)\in W\) for sufficiently large m) and the fact that (see the definition of J and I in (2.1) and (2.2), respectively)

$$\begin{aligned} J(u_m(t))=\frac{1}{p}I(u_m(t))+\frac{(p-2)a}{2p}\Vert u_m\Vert _Z^2+\frac{(p-2\theta )b}{2\theta p}\Vert u_m\Vert _Z^{2\theta }+\frac{1}{p^2}\Vert u_m\Vert _p^p, \end{aligned}$$

we obtain

$$\begin{aligned} \mathop \int \limits ^t_0\Vert u_{m\tau }\Vert ^2_2d\tau +\frac{(p-2)a}{2p}\Vert u_m\Vert _Z^2+\frac{(p-2\theta )b}{2\theta p}\Vert u_m\Vert _Z^{2\theta }+\frac{1}{p^2}\Vert u_m\Vert _p^p<d, \end{aligned}$$

holds for sufficiently large m and any \(t\in [0,T]\), which yields

$$\begin{aligned}&\mathop \int \limits _0^t\Vert u_{m\tau }\Vert _2^2d\tau <d,\ \ \forall t\in [0,T], \end{aligned}$$
(4.5)
$$\begin{aligned}&\Vert u_m\Vert _Z^{2\theta }<\frac{2\theta pd}{(p-2\theta )b},\ \ \forall t\in [0,T], \end{aligned}$$
(4.6)

and

$$\begin{aligned} \Vert u_m\Vert _p^p<p^2d,\ \ \forall t\in [0,T]. \end{aligned}$$
(4.7)

So \(T=\infty \). Then \(u_m(t)\in W\) for all \(t\in [0,\infty )\) and all the above inequalities hold for \(t\in [0,\infty )\).

On the other hand, by a direct calculation, we know

$$\begin{aligned} \begin{aligned}&\mathop \int \limits _\Omega \left| |u_m(t)|^{p-2}u_m(t)\log |u_m(t)|\right| ^{\frac{p}{p-1}}dx\\&\quad =\mathop \int \limits _{\{x\in \Omega :|u_m(t)|\le 1\}}\left| |u_m(t)|^{p-1}\log |u_m(t)| \right| ^{\frac{p}{p-1}}dx\\&\qquad +\mathop \int \limits _{\{x\in \Omega :|u_m(t)|>1\}} \left| |u_m(t)|^{p-1}\log |u_m(t)|\right| ^{\frac{p}{p-1}}dx. \end{aligned} \end{aligned}$$
(4.8)

Since

$$\begin{aligned} \inf _{\tau \in (0,1)}\tau ^{p-1}\log \tau =\left. \tau ^{p-1}\log \tau \right| _{\tau =e^{-1/(p-1)}}=-\frac{1}{(p-1)e}, \end{aligned}$$

we have

$$\begin{aligned} \mathop \int \limits _{\{x\in \Omega ;|u_m(t)|\le 1\}}\left| |u_m(t)|^{p-1}\log |u_m(t)|\right| ^{\frac{p}{p-1}}dx \le \left( \frac{1}{(p-1)e}\right) ^{\frac{p}{p-1}}|\Omega |,\ \ \forall t\in [0,\infty ).\nonumber \\ \end{aligned}$$
(4.9)

Moreover, since \(\log \tau \le \frac{1}{\mu }\tau ^{\mu }\) for all \(\mu \), \(\tau \in (0,\infty )\), we can choose a positive constant \(\mu \) such that \(\frac{p(p+\mu -1)}{p-1}\in [1,2_s^*]\), then we get from (4.6) that for m sufficiently large,

$$\begin{aligned}&\mathop \int \limits _{\{x\in \Omega ;|u_m(t)|>1\}}\left| |u_m(t)|^{p-1}\log |u_m(t)| \right| ^{\frac{p}{p-1}}dx \nonumber \\&\quad \le \mu ^{\frac{p}{1-p}}\mathop \int \limits _{\{x\in \Omega :|u_m(t)|>1\}}\left| |u_m(t)|^{p+\mu -1} \right| ^{\frac{p}{p-1}}dx\nonumber \\&\quad =\mu ^{\frac{p}{1-p}}\mathop \int \limits _{\{x\in \Omega ;|u_m(t)|>1\}}|u_m(t)|^{\frac{p(p+\mu -1)}{p-1}}dx\nonumber \\&\quad \le \mu ^{\frac{p}{1-p}}\Vert u_m\Vert _{\frac{p(p+\mu -1)}{p-1}}^{\frac{p(p+\mu -1)}{p-1}}\le \mu ^{\frac{p}{1-p}}C_{**}^{\frac{p(p+\mu -1)}{p-1}}\Vert u_m\Vert _Z^{\frac{p(p+\mu -1)}{p-1}}\nonumber \\&\quad <\mu ^{\frac{p}{1-p}}C_{**}^{\frac{p(p+\mu -1)}{p-1}}\left( \frac{2\theta pd}{(p-2\theta )b}\right) ^{\frac{p(p+\mu -1)}{2\theta (p-1)}},\ \ \forall t\in [0,\infty ), \end{aligned}$$
(4.10)

where \(C_{**}\) is the optimal embedding constant of \(Z\hookrightarrow L^{\frac{p(p+\mu -1)}{p-1}}(\Omega )\).

Then it follows from (4.8), (4.9) and (4.10) that, for m large enough and \(t\in [0,\infty )\),

$$\begin{aligned} \begin{aligned}&\mathop \int \limits _\Omega \left| |u_m(t)|^{p-2}u_m(t)\log |u_m(t)|\right| ^{\frac{p}{p-1}}dx\\&\quad \le C_d:=\left( \frac{1}{(p-1)e}\right) ^{\frac{p}{p-1}}|\Omega | +\mu ^{\frac{p}{1-p}}C_{**}^{\frac{p(p+\mu -1)}{p-1}}\left( \frac{2\theta pd}{(p-2\theta )b}\right) ^{\frac{p(p+\mu -1)}{2\theta (p-1)}}. \end{aligned} \end{aligned}$$
(4.11)

Therefore, by (4.5), (4.6) and (4.11), there is a function \(u=u(t)\in L^\infty (0,\infty ;Z)\) with \(u_t\in L^2(0,\infty ;L^2(\Omega ))\), \(\chi =\chi (t)\in L^2\left( 0,\infty ;L^{\frac{p}{p-1}}(\Omega )\right) \) and a subsequence of \(\{u_m\}^\infty _{m=1}\) (still denoted by \(\{u_m\}^\infty _{m=1}\)) such that for each \({\widetilde{T}}>0\), as \(m\rightarrow \infty \),

$$\begin{aligned}&u_{mt}\rightharpoonup u_t\hbox { weakly in }L^2(0,{\widetilde{T}};L^2(\Omega )), \end{aligned}$$
(4.12)
$$\begin{aligned}&u_m\rightharpoonup u\hbox { weakly star in }L^\infty (0,{\widetilde{T}};Z), \end{aligned}$$
(4.13)
$$\begin{aligned}&u_m\rightharpoonup u\hbox { weakly in }L^2(0,{\widetilde{T}};Z), \end{aligned}$$
(4.14)
$$\begin{aligned}&|u_m|^{p-2}u_m\log |u_m|\rightharpoonup \chi (t)\hbox { weakly star in }L^\infty \left( 0,{\widetilde{T}};L^{\frac{p}{p-1}}(\Omega )\right) , \end{aligned}$$
(4.15)
$$\begin{aligned}&|u_m|^{p-2}u_m\log |u_m|\rightharpoonup \chi (t)\hbox { weakly in }L^2\left( 0,{\widetilde{T}};L^{\frac{p}{p-1}}(\Omega )\right) . \end{aligned}$$
(4.16)

Since \(Z\hookrightarrow L^p(\Omega )\) compactly, by [39] we know that

$$\begin{aligned} \{u:u\in L^2(0,{\widetilde{T}};Z),u_t\in L^2(0,{\widetilde{T}};L^2(\Omega ))\}\hookrightarrow L^2(0,{\widetilde{T}};L^p(\Omega )) \end{aligned}$$

compactly. So, in view of (4.12) and (4.14), we can assume

$$\begin{aligned} u_m\rightarrow u\hbox { strongly in }L^2(0,{\widetilde{T}};L^p(\Omega )), \end{aligned}$$
(4.17)

which implies \(u_m\rightarrow u\) a.e. in \(\Omega \times (0,{\widetilde{T}})\), and then \(|u_m|^{p-2}u_m\log |u_m|\rightarrow |u|^{p-2}u\log |u|\) a.e. in \(\Omega \times (0,{\widetilde{T}})\). Therefore, it follows from [39] that

$$\begin{aligned} \chi (t)=|u|^{p-2}u\log |u|. \end{aligned}$$
(4.18)

To show that the limit function u(t) obtained above is a weak solution to problem (1.1), we fix a positive integer k and choose a function \(v\in C^1([0,{\widetilde{T}}];Z)\) of the following form

$$\begin{aligned} v=\sum _{j=1}^kl_j(t)\omega _j(x), \end{aligned}$$
(4.19)

where \(\{l_j(t)\}_{j=1}^k\) are arbitrary given \(C^1\) functions. Taking \(m\ge k\) in the first equation of (4.2), multiplying the first equation of (4.2) by \(l_j(t)\), summing for j from 1 to k, and integrating with respect to t from 0 to \({\widetilde{T}}\), we obtain

$$\begin{aligned} \begin{aligned}&\mathop \int \limits _0^{{\widetilde{T}}}\mathop \int \limits _\Omega u_{mt}vdxdt+\mathop \int \limits _0^{{\widetilde{T}}}(a+b\Vert u_m\Vert _Z^{2\theta -2}) \iint \limits _{\mathcal {Q}}(u_m(x)-u_m(y))(v(x)\\&\qquad -v(y))K(x-y)dxdydt\\&\quad =\mathop \int \limits _0^{{\widetilde{T}}}\mathop \int \limits _\Omega |u_m|^{p-2}u_m\log |u_m|vdxdt. \end{aligned} \end{aligned}$$
(4.20)

Letting \(m\rightarrow \infty \) in (4.20) and recalling (4.12), (4.14), (4.16) and (4.18) yield

$$\begin{aligned} \begin{aligned}&\mathop \int \limits _0^{{\widetilde{T}}}\mathop \int \limits _\Omega u_tvdxdt+\mathop \int \limits _0^{{\widetilde{T}}}(a+b\Vert u\Vert _Z^{2\theta -2})\iint \limits _{\mathcal {Q}} (u(x)\\&\qquad -u(y))(v(x)-v(y))K(x-y)dxdydt\\&\quad =\mathop \int \limits _0^{{\widetilde{T}}}\mathop \int \limits _\Omega |u|^{p-2}u\log |u|vdxdt. \end{aligned} \end{aligned}$$
(4.21)

Since the functions of the form in (4.19) are dense in \(L^2(0,{\widetilde{T}};Z)\), (4.21) also holds for all \(v\in L^2(0,{\widetilde{T}};Z)\). By arbitrariness of \({\widetilde{T}}>0\), we know that

$$\begin{aligned} \begin{aligned}&\mathop \int \limits _\Omega u_t\phi dx+(a+b\Vert u\Vert _Z^{2\theta -2})\iint \limits _{\mathcal {Q}} (u(x)-u(y))(\phi (x)-\phi (y))K(x-y)dxdy\\&\quad =\mathop \int \limits _\Omega |u|^{p-2}u\log |u|\phi dx, \end{aligned} \end{aligned}$$

holds for a.e. \(t\in (0,\infty )\) and any \(\phi \in Z\).

In view of (4.12) and (4.14), we get \(u_m(0)\rightharpoonup u(0)\) weakly in \(L^2(\Omega )\). Then by (4.1), (4.3) and \(g_{jm}(0)=\xi _{jm}\), we get \(u(0)=u_0\in Z\).

In view of Definition 1 and the above discussions, to show the limit function u(t) got above is indeed a global weak solution to problem (1.1), we only need to prove (2.12) holds for a.e. \(0<t<\infty \). In fact, for a.e. \(0<t<\infty \), we choose \({\widetilde{T}}>t\). Then it follows from (4.17) that \(u_m(t)\rightarrow u(t)\) strongly in \(L^p(\Omega )\). So by (4.11) and (4.16), we have

$$\begin{aligned}&\left| \mathop \int \limits _{\Omega }|u_m|^p\log |u_m|dx-\mathop \int \limits _{\Omega }|u|^p\log |u|dx\right| \nonumber \\&\quad \le \left| \mathop \int \limits _{\Omega }(u_m-u)u_m|u_m|^{p-2}\log |u_m|dx\right| \nonumber \\&\qquad +\left| \mathop \int \limits _{\Omega }u\left( |u_m|^{p-2}u_m\log |u_m|-|u|^{p-2}u\log |u|\right) dx\right| \nonumber \\&\quad \le C_d^{\frac{p-1}{p}}\Vert u_m-u\Vert _p+\left| \mathop \int \limits _{\Omega }u\left( |u_m|^{p-2}u_m \log |u_m|-|u|^{p-2}u\log |u|\right) dx\right| \nonumber \\&\quad \rightarrow 0, \end{aligned}$$
(4.22)

as \(m\rightarrow \infty \).

From the convergence of (4.12), (4.14), (4.17), the definition of J in (2.1), (4.1), (4.3), (4.4), (4.22) and \(g_{jm}(0)=\xi _{jm}\), we obtain

$$\begin{aligned}\begin{aligned}&\frac{a}{2}\Vert u\Vert _Z^2+\frac{b}{2\theta }\Vert u\Vert _Z^{2\theta }+\frac{1}{p^2}\Vert u\Vert _p^p +\mathop \int \limits _{0}^{t}\Vert u_\tau \Vert _2^2d\tau \\&\quad \le \frac{a}{2}\liminf _{m\rightarrow \infty }\Vert u_m\Vert _Z^2+\frac{b}{2\theta } \liminf _{m\rightarrow \infty }\Vert u_m\Vert _Z^{2\theta } +\frac{1}{p^2}\liminf _{m\rightarrow \infty }\Vert u_m\Vert _p^p\\&\qquad +\liminf _{m\rightarrow \infty }\mathop \int \limits _{0}^{t}\Vert u_{m\tau }\Vert _2^2d\tau \\&\quad \le \liminf _{m\rightarrow \infty }\left( \frac{a}{2}\Vert u_m\Vert _Z^2 +\frac{b}{2\theta }\Vert u_m\Vert _Z^{2\theta } +\frac{1}{p^2}\Vert u_m\Vert _p^p+\mathop \int \limits _{0}^{t}\Vert u_{m\tau }\Vert _2^2d\tau \right) \\&\quad =\liminf _{m\rightarrow \infty }\left( J(u_m)+\frac{1}{p}\mathop \int \limits _{\Omega }|u_m|^p\log |u_m|dx +\mathop \int \limits _{0}^{t}\Vert u_{m\tau }\Vert _2^2d\tau \right) \\&\quad =\lim _{m\rightarrow \infty }\left( J(u_m(0))+\frac{1}{p}\mathop \int \limits _{\Omega }| u_m|^p\log |u_m|dx\right) \\&\quad =J(u_0)+\frac{1}{p}\mathop \int \limits _{\Omega }|u|^p\log |u|dx, \end{aligned} \end{aligned}$$

which implies (2.12) holds for a.e. \(t\in (0,\infty )\). So the limit function u(t) got above is a global weak solution to problem (1.1). Furthermore, by using \(u_0\in W\) and (2.12), one can get \(u(t)\in W\) for \(0\le t<\infty \) and the proof is same as the proof of \(u_m(t)\in W\).

Step 2: Uniqueness of bounded global weak solution To show the uniqueness of bounded global weak solution, we assume that u, \(v\in L^\infty (0,\infty ;L^\infty (\Omega ))\) are two global weak solutions to problem (1.1). Then for any \(\phi \in Z\), we have

$$\begin{aligned} (u_t,\phi )+a\langle u,\phi \rangle _Z+b\Vert u\Vert _Z^{2\theta -2}\langle u, \phi \rangle _Z=(|u|^{p-2}u\log |u|,\phi ), \end{aligned}$$

and

$$\begin{aligned} (v_t,\phi )+a\langle v,\phi \rangle _Z+b\Vert v\Vert _Z^{2\theta -2}\langle v, \phi \rangle _Z=(|v|^{p-2}v\log |v|,\phi ). \end{aligned}$$

Subtracting the above two inequalities, taking \(\phi =u-v\in Z\), we obtain

$$\begin{aligned} \begin{aligned}&\mathop \int \limits _\Omega \phi _t\phi dx+a\Vert \phi \Vert _Z^2+b\Vert u\Vert _Z^{2\theta -2}\langle u,\phi \rangle _Z-b\Vert v\Vert _Z^{2\theta -2}\langle v,\phi \rangle _Z\\&\quad =\mathop \int \limits _\Omega \left( |u|^{p-2}u\log |u|-|v|^{p-2}v\log |v|\right) \phi dx. \end{aligned} \end{aligned}$$
(4.23)

Moreover, by using \(\langle u,v\rangle _Z\le \frac{\Vert u\Vert _Z^2+\Vert v\Vert _Z^2}{2}\), we have

$$\begin{aligned} \begin{aligned}&a\Vert \phi \Vert _Z^2+b\Vert u\Vert _Z^{2\theta -2}\langle u,\phi \rangle _Z-b\Vert v\Vert _Z^{2\theta -2}\langle v,\phi \rangle _Z\\&\quad \ge b\Vert u\Vert _Z^{2\theta -2}\langle u,u-v\rangle _Z-b\Vert v\Vert _Z^{2\theta -2}\langle v,u-v\rangle _Z\\&\quad =b\Vert u\Vert _Z^{2\theta -2}\langle u,u\rangle _Z-b\Vert u\Vert _Z^{2\theta -2}\langle u,v\rangle _Z-b\Vert v\Vert _Z^{2\theta -2}\langle u,v\rangle _Z+b\Vert v\Vert _Z^{2\theta -2}\langle v,v\rangle _Z\\&\quad =b\Vert u\Vert _Z^{2\theta }-b\Vert u\Vert _Z^{2\theta -2}\langle u,v\rangle _Z-b\Vert v\Vert _Z^{2\theta -2}\langle u,v\rangle _Z+b\Vert v\Vert _Z^{2\theta }\\&\quad \ge b\Vert u\Vert _Z^{2\theta }-b\Vert u\Vert _Z^{2\theta -2}\cdot \frac{\Vert u\Vert _Z^2+\Vert v\Vert _Z^2}{2} -b\Vert v\Vert _Z^{2\theta -2}\cdot \frac{\Vert u\Vert _Z^2+\Vert v\Vert _Z^2}{2}+b\Vert v\Vert _Z^{2\theta }\\&\quad =\frac{b\Vert u\Vert _Z^{2\theta -2}}{2}(\Vert u\Vert _Z^2-\Vert v\Vert _Z^2)+\frac{b\Vert v\Vert _Z^{2\theta -2}}{2}(\Vert v\Vert _Z^2-\Vert u\Vert _Z^2)\\&\quad =\frac{b}{2}(\Vert u\Vert _Z^2-\Vert v\Vert _Z^2)(\Vert u\Vert _Z^{2\theta -2}-\Vert v\Vert _Z^{2\theta -2})\ge 0. \end{aligned} \end{aligned}$$
(4.24)

Then combining (4.23) and (4.24) we have

$$\begin{aligned} \begin{aligned} \mathop \int \limits _\Omega \phi _t\phi dx&\le \mathop \int \limits _\Omega \left( |u|^{p-2}u\log |u|-|v|^{p-2}v\log |v|\right) \phi dx\\&=\mathop \int \limits _\Omega \left[ \mathop \int \limits _0^1\frac{d}{d\omega }\left( |\omega |^{p-2}\omega \log |\omega | \right) \bigg |_{\omega =\vartheta u+(1-\vartheta )v}d\vartheta \right] \phi ^2dx\\&\le D^{p-2}\left[ (p-1)\log {D}+1\right] \Vert \phi \Vert _2^2, \end{aligned} \end{aligned}$$

where

$$\begin{aligned} D:=\max \left\{ \Vert u\Vert _{L^\infty (0,\infty ;L^\infty (\Omega ))},\Vert v\Vert _{L^\infty (0,\infty ;L^\infty (\Omega ))}\right\} . \end{aligned}$$

Then we have

$$\begin{aligned} \begin{aligned} \left\{ \begin{array}{ll} \displaystyle \frac{d}{dt}\Vert \phi \Vert _2^2\le 2D^{p-2}\left[ (p-1)\log {D}+1\right] \Vert \phi \Vert _2^2, ~~t>0, \\ \displaystyle \Vert \phi (0)\Vert _2^2=0, \end{array} \right. \end{aligned} \end{aligned}$$

which implies \(\Vert \phi \Vert _2^2=0\) for \(t\ge 0\). Thus \(\phi (t)(x)=0\) a.e. in \(\Omega \times (0,\infty )\) and the uniqueness of bounded global weak solution follows.

Step 3: Decay estimates Since \(d(\varepsilon )\le d\) (see (2.4)), by step 1 we know problem (1.1) admits a global solution \(u\in L^\infty (0,\infty ;Z)\) with \(u_t\in L^2(0,\infty ;L^2(\Omega ))\) and \(u(t)\in W\) for \(0\le t<\infty \). So by the definition of W in (2.9), we have \(I(u)\ge 0\). Then it follows from (2.3) and (2.12) that

$$\begin{aligned} \begin{aligned} J(u_0)&\ge J(u)=\frac{1}{p}I(u)+\frac{(p-2)a}{2p}\Vert u\Vert _Z^2+\frac{(p-2\theta )b}{2\theta p}\Vert u\Vert _Z^{2\theta }+\frac{1}{p^2}\Vert u\Vert _p^p\\&\ge \frac{(p-2\theta )b}{2\theta p}\Vert u\Vert _Z^{2\theta }, \end{aligned} \end{aligned}$$
(4.25)

which, together with (3.3), implies

$$\begin{aligned} \Vert u\Vert _{p+\varepsilon }\le C_*\Vert u\Vert _Z\le C_*\left( \frac{2\theta pJ(u_0)}{(p-2\theta )b}\right) ^{\frac{1}{2\theta }}. \end{aligned}$$
(4.26)

In view of (3.3) and (4.26), we obtain

$$\begin{aligned} \begin{aligned} \Vert u\Vert _{p+\varepsilon }^{p+\varepsilon }&=\Vert u\Vert _{p+\varepsilon }^{p+\varepsilon -2\theta }\Vert u\Vert _{p+\varepsilon }^{2\theta }\\&\le C_*^{2\theta }\Vert u\Vert _{p+\varepsilon }^{p+\varepsilon -2\theta }\Vert u\Vert _Z^{2\theta }\\&\le C_*^{p+\varepsilon }\left( \frac{2\theta pJ(u_0)}{(p-2\theta )b}\right) ^{\frac{p+\varepsilon -2\theta }{2\theta }}\Vert u\Vert _Z^{2\theta }. \end{aligned} \end{aligned}$$
(4.27)

By Lemma 8, we have

$$\begin{aligned} \frac{d}{dt}\Vert u\Vert _2^2=-2I(u)=-2\left( a\Vert u\Vert _Z^2+b\Vert u\Vert _Z^{2\theta } -\mathop \int \limits _\Omega |u|^p\log |u|dx\right) . \end{aligned}$$
(4.28)

Then for \(J(u_0)<d(\varepsilon )\), it follows from (1.10), (4.27) and \(\log |u|<\frac{1}{\varepsilon }|u|^\varepsilon \) (for any \(\varepsilon >0\)) that

$$\begin{aligned} \frac{d}{dt}\Vert u\Vert _2^2\le & {} -2b\Vert u\Vert _Z^{2\theta }+2\mathop \int \limits _\Omega |u|^p\log |u|dx\nonumber \\&\le -2b\Vert u\Vert _Z^{2\theta }+\frac{2}{\varepsilon }\Vert u\Vert _{p+\varepsilon }^{p+\varepsilon }\nonumber \\&\le -2b\Vert u\Vert _Z^{2\theta }+\frac{2C_*^{p+\varepsilon }}{\varepsilon }\left( \frac{2\theta pJ(u_0)}{(p-2\theta )b}\right) ^{\frac{p+\varepsilon -2\theta }{2\theta }}\Vert u\Vert _Z^{2\theta }\nonumber \\= & {} -2\Vert u\Vert _Z^{2\theta }\left[ b-\frac{C_*^{p+\varepsilon }}{\varepsilon }\left( \frac{2\theta pJ(u_0)}{(p-2\theta )b}\right) ^{\frac{p+\varepsilon -2\theta }{2\theta }}\right] \nonumber \\\le & {} -2\lambda _1^\theta \Vert u\Vert _2^{2\theta }\left[ b-\frac{C_*^{p+\varepsilon }}{\varepsilon }\left( \frac{2\theta pJ(u_0)}{(p-2\theta )b}\right) ^{\frac{p+\varepsilon -2\theta }{2\theta }}\right] , \end{aligned}$$
(4.29)

which implies

$$\begin{aligned} \Vert u\Vert _2^2\le F(\varepsilon ):=\left\{ \begin{array}{ll} \Vert u_0\Vert _2^2e^{-C_\varepsilon t}, &{} \hbox { if }\theta =1, \\ \left( C_{\varepsilon }(\theta -1)t+\Vert u_0\Vert _2^{2-2\theta }\right) ^{-\frac{1}{\theta -1}}, &{} \hbox { if }\theta \in \left( 1,\frac{2_s^*}{2}\right) , \end{array} \right. \end{aligned}$$
(4.30)

where

$$\begin{aligned} C_{\varepsilon }=2\lambda _1^\theta \left[ b-\frac{ C_*^{p+\varepsilon }}{\varepsilon }\left( \frac{2\theta pJ(u_0)}{(p-2\theta )b}\right) ^{\frac{p+\varepsilon -2\theta }{2\theta }}\right] >0. \end{aligned}$$

\(\square \)

Proof of Corollary 1

If \(u_0=0\), then problem (1.1) admits a global solution \(u(t)\equiv 0\), and the proof is complete. So in the following, we assume \(u_0\in Z\setminus \{0\}\) and the proof is divided into three cases.

Case 1: \(I(u_0)>0\) and \(J(u_0)<d\). The conclusion follows from Theorem 1.

Case 2: \(I(u_0)=0\) and \(J(u_0)<d\). This case does not happen because in this case \(u_0\in N\), then it follows from the definition of d in (2.4) that \(J(u_0)\ge d\).

Case 3: \(I(u_0)\ge 0\) and \(J(u_0)=d\). Let \(\lambda _m=1-\frac{1}{m}\) and \(m=2,3,\ldots \). Consider the following approximate problem:

$$\begin{aligned} \left\{ \begin{array}{ll} \displaystyle {u_t} +{M([u]^2_s){\mathcal {L}}_Ku}={|u|^{p-2}u\log |u|},\ \ \ &{}\hbox { in } \Omega \times (0,\infty ),\\ \displaystyle u(x,t)=0,&{}\hbox { in }({\mathbb {R}}^N\setminus \Omega )\times (0,\infty ),\\ \displaystyle u(x,0)=u_{0m}(x):=\lambda _mu_0,&{}\hbox { in }\Omega . \end{array}\right. \end{aligned}$$
(4.31)

Since \(u_0\in Z\setminus \{0\}\), \(\lambda _m\in (0,1)\) and \(I(u_0)\ge 0\) (i.e. \(a\Vert u_0\Vert _Z^2+b\Vert u_0\Vert _Z^{2\theta }\ge \mathop \int \limits _\Omega |u_0|^p\log |u_0|dx\)), then we have

$$\begin{aligned} I(u_{0m})= & {} a\lambda _m^2\Vert u_0\Vert _Z^2+b\lambda _m^{2\theta }\Vert u_0\Vert _Z^{2\theta } -\lambda _m^p\mathop \int \limits _\Omega |u_0|^p\log |u_0|dx\nonumber \\&-\lambda _m^p\log \lambda _m\mathop \int \limits _\Omega |u_0|^pdx\nonumber \\> & {} a\lambda _m^2\Vert u_0\Vert _Z^2+b\lambda _m^{2\theta }\Vert u_0\Vert _Z^{2\theta } -\lambda _m^p\mathop \int \limits _\Omega |u_0|^p\log |u_0|dx\nonumber \\= & {} \lambda _m^2\left( a\Vert u_0\Vert _Z^2+b\lambda _m^{2\theta -2}\Vert u_0\Vert _Z^{2\theta } -\lambda _m^{p-2}\mathop \int \limits _\Omega |u_0|^p\log |u_0|dx\right) . \end{aligned}$$
(4.32)

Next, we will discuss the sign of \(I(u_{0m})\) on two aspects: \(\mathop \int \limits _\Omega |u_0|^p\log |u_0|dx\le 0\) and \(\mathop \int \limits _\Omega |u_0|^p\log |u_0|dx>0\).

(1) When \(\mathop \int \limits _\Omega |u_0|^p\log |u_0|dx\le 0\), from (4.32) we get

$$\begin{aligned} I(u_{0m})>\lambda _m^2\left( a\Vert u_0\Vert _Z^2+b\lambda _m^{2\theta -2}\Vert u_0\Vert _Z^{2\theta } \right) >0. \end{aligned}$$
(4.33)

(2) When \(\mathop \int \limits _\Omega |u_0|^p\log |u_0|dx>0\), from (4.32) we get

$$\begin{aligned} \begin{aligned} I(u_{0m})&>\lambda _m^2\left( a\lambda _m^{2\theta -2}\Vert u_0\Vert _Z^2+ b\lambda _m^{2\theta -2}\Vert u_0\Vert _Z^{2\theta }-\lambda _m^{p-2}\mathop \int \limits _\Omega |u_0|^p \log |u_0|dx\right) \\&=\lambda _m^{2\theta }\left( a\Vert u_0\Vert _Z^2+b\Vert u_0\Vert _Z^{2\theta }- \lambda _m^{p-2\theta }\mathop \int \limits _\Omega |u_0|^p\log |u_0|dx\right) \\&>0. \end{aligned} \end{aligned}$$
(4.34)

On the other hand, by a simply computation, we obtain

$$\begin{aligned}&\frac{d}{d\lambda _m}J(\lambda _mu)\nonumber \\&\quad =a\lambda _m\Vert u\Vert _Z^2+b\lambda _m^{2\theta -1}\Vert u\Vert _Z^{2\theta }- \lambda _m^{p-1}\mathop \int \limits _\Omega |u|^p\log |u|dx-\lambda _m^{p-1}\log \lambda _m \mathop \int \limits _\Omega |u|^pdx\nonumber \\&\quad =\frac{1}{\lambda _m}\left( a\lambda _m^2\Vert u\Vert _Z^2+b\lambda _m^{2\theta }\Vert u\Vert _Z^{2\theta }- \lambda _m^{p}\mathop \int \limits _\Omega |u|^p\log |u|dx-\lambda _m^{p}\log \lambda _m \mathop \int \limits _\Omega |u|^pdx\right) \nonumber \\&\quad =\frac{1}{\lambda _m}I(\lambda _mu). \end{aligned}$$
(4.35)

Then by (4.33), (4.34) and (4.35), we have

$$\begin{aligned} \frac{d}{d\lambda _m}J(\lambda _mu_0)=\frac{1}{\lambda _m}I(\lambda _mu_0) =\frac{1}{\lambda _m}I(u_{0m})>0, \end{aligned}$$

which implies that \(J(\lambda _mu_0)\) is strictly increasing with respect to \(\lambda _m\). So we can get

$$\begin{aligned} J(u_{0m})=J(\lambda _mu_0)<J(u_0)=d. \end{aligned}$$

From Theorem 1, it follows that for each \(m=2,3,\ldots \), problem (4.31) admits a global weak solution \(u_m(t)\in L^\infty (0,\infty ;Z)\) with \(u_{mt}\in L^2(0,\infty ;L^2(\Omega ))\), which satisfies \(u_m(t)\in W\) for \(0\le t<\infty \) and

$$\begin{aligned} \begin{aligned}&\mathop \int \limits _\Omega u_{mt}\phi dx+\left( a+b\Vert u_m\Vert _Z^{2\theta -2}\right) \iint \limits _{\mathcal {Q}}(u_m(x) -u_m(y))(\phi (x)\\&\qquad -\phi (y))K(x-y)dxdy \\&\quad =\mathop \int \limits _\Omega |u_m|^{p-2}u_m\log |u_m|\phi dx, \end{aligned} \end{aligned}$$

holds for any \(\phi \in Z\) and a.e. \(t>0\). Moreover,

$$\begin{aligned} \mathop \int \limits ^t_0\Vert u_{m\tau }\Vert ^2_2d\tau +J(u_m(t))=J(u_{0m})<d. \end{aligned}$$
(4.36)

From (4.36) and the fact that

$$\begin{aligned} J(u_m(t))=\frac{1}{p}I(u_m(t))+\frac{(p-2)a}{2p}\Vert u_m\Vert _Z^2+\frac{(p-2\theta )b}{2\theta p}\Vert u_m\Vert _Z^{2\theta }+\frac{1}{p^2}\Vert u_m\Vert _p^p, \end{aligned}$$

we obtain

$$\begin{aligned} \mathop \int \limits ^t_0\Vert u_{m\tau }\Vert ^2_2d\tau +\frac{(p-2)a}{2p}\Vert u_m\Vert _Z^2+\frac{(p-2\theta )b}{2\theta p}\Vert u_m\Vert _Z^{2\theta }+\frac{1}{p^2}\Vert u_m\Vert _p^p<d. \end{aligned}$$

Then the remainder of the proof is similar to that in the proof of Theorem 1. \(\square \)

Proof of Theorem 2

We divide the proof into three steps.

Step 1: Blow-up in finite time

We divide the proof into two cases.

Case 1: \(J(u_0)<d\). Let \(u=u(t)\), \(t\in [0,T)\) be a weak solution of problem (1.1) with \(J(u_0)<d\) and \(I(u_0)<0\), where T is the maximal existence time. Then from Lemma 9, we have \(u(t)\in V\). Next let us prove that u(t) blows up in finite time. Arguing by contradiction, we suppose that \(T=+\infty \) and define

$$\begin{aligned} M(t):=\mathop \int \limits _0^t\Vert u\Vert _2^2d\tau ,\ \ t\in [0,T). \end{aligned}$$

Then we have

$$\begin{aligned} M'(t)=\Vert u\Vert _2^2, \end{aligned}$$
(4.37)

and

$$\begin{aligned} M''(t)=2(u(t),u_t(t))=-2I(u(t)). \end{aligned}$$
(4.38)

By (2.3) and (2.12), one has

$$\begin{aligned} \mathop \int \limits _0^t\Vert u_\tau \Vert _2^2d\tau +\frac{1}{p}I(u)+\frac{(p-2)a}{2p}\Vert u\Vert _Z^2 +\frac{(p-2\theta )b}{2\theta p}\Vert u\Vert _Z^{2\theta }+\frac{1}{p^2}\Vert u\Vert _p^p\le J(u_0), \end{aligned}$$

hence

$$\begin{aligned} -2I(u(t))\ge & {} 2p\mathop \int \limits _0^t\Vert u_\tau \Vert _2^2d\tau +(p-2)a\Vert u\Vert ^2_Z +\frac{(p-2\theta )b}{\theta }\Vert u\Vert ^{2\theta }_Z\\&+\frac{2}{p}\Vert u\Vert _p^p-2pJ(u_0), \end{aligned}$$

so by (1.8) and the above inequality, we have

$$\begin{aligned} \begin{aligned} M''(t)=-2I(u)&\ge 2p\mathop \int \limits _0^t\Vert u_\tau \Vert _2^2d\tau +\frac{(p-2\theta )b}{\theta }\Vert u\Vert ^{2\theta }_Z-2pJ(u_0)\\&\ge 2p\mathop \int \limits _0^t\Vert u_\tau \Vert _2^2d\tau +\frac{(p-2\theta )b}{\theta C_2^{2\theta }}\Vert u\Vert _2^{2\theta }-2pJ(u_0). \end{aligned} \end{aligned}$$
(4.39)

In addition, from

$$\begin{aligned} \mathop \int \limits _0^t(u_\tau ,u)d\tau =\frac{1}{2}\mathop \int \limits _0^t\frac{d}{d\tau }\Vert u\Vert _2^2d\tau =\frac{1}{2}\left( \Vert u\Vert _2^2-\Vert u_0\Vert _2^2\right) , \end{aligned}$$

we obtain

$$\begin{aligned} \begin{aligned} \left( \mathop \int \limits _0^t(u_\tau ,u)d\tau \right) ^2&=\frac{1}{4}\left( \Vert u\Vert _2^4-2\Vert u_0 \Vert _2^2\Vert u\Vert _2^2+\Vert u_0\Vert _2^4\right) \\&=\frac{1}{4}\left( (M'(t))^2-2\Vert u_0\Vert _2^2M'(t)+\Vert u_0\Vert _2^4\right) . \end{aligned} \end{aligned}$$
(4.40)

Hence, by (4.39), (4.40) and the Schwartz’s inequality we deduce that

$$\begin{aligned} \begin{aligned}&M(t)M''(t)-\frac{p}{2}(M'(t))^2\\&\quad \ge 2p\mathop \int \limits _0^t\Vert u_\tau \Vert _2^2d\tau \mathop \int \limits _0^t\Vert u\Vert _2^2d\tau -2p \left( \mathop \int \limits _0^t(u_\tau ,u)d\tau \right) ^2+\frac{p}{2}\Vert u_0\Vert _2^4\\&\qquad +\frac{(p-2\theta )b}{\theta C_2^{2\theta }}\Vert u\Vert _2^{2\theta }M(t)-p\Vert u_0\Vert _2^2M'(t) -2pJ(u_0)M(t)\\&\quad \ge \frac{(p-2\theta )b}{\theta C_2^{2\theta }}(M'(t))^{\theta }M(t)-p\Vert u_0\Vert _2^2M'(t)-2pJ(u_0)M(t). \end{aligned} \end{aligned}$$
(4.41)

Moreover, since \(M''(t)=-2I(u(t))>0\) (note that \(u(t)\in V\) for \(t\in [0,T)\)), so we have \(M'(t)>M'(0)=\Vert u_0\Vert _2^2>0\). Then by (4.41) we obtain

$$\begin{aligned} M(t)M''(t)-\frac{p}{2}(M'(t))^2\ge & {} \frac{(p-2\theta )b\Vert u_0\Vert _2^{2\theta -2}}{\theta C_2^{2\theta }}M(t)M'(t)-p\Vert u_0\Vert _2^2M'(t)\nonumber \\&-2pJ(u_0)M(t). \end{aligned}$$
(4.42)

From Lemma 7 one has

$$\begin{aligned} -2I(u(t))>2p(d-J(u(t))),\ \ 0\le t<\infty . \end{aligned}$$

By (2.12) and (4.38) we have

$$\begin{aligned} \begin{aligned} M''(t)&=-2I(u(t))\\&>2p(d-J(u(t)))\\&\ge 2p(d-J(u_0))\\&:=C_1>0,\ \ 0\le t<\infty . \end{aligned} \end{aligned}$$
(4.43)

Then we can obtain

$$\begin{aligned} \begin{aligned} M'(t)&\ge C_1t+M'(0)=C_1t+\Vert u_0\Vert _2^2>C_1t,\ \ 0\le t<\infty ,\\ M(t)&>\frac{C_1}{2}t^2+M(0)=\frac{C_1}{2}t^2,\ \ 0\le t<\infty . \end{aligned} \end{aligned}$$

Therefore,

$$\begin{aligned} \lim _{t\rightarrow \infty }M(t)=\infty ,\ \ \ \ \lim _{t\rightarrow \infty }M'(t)=\infty . \end{aligned}$$

Hence there exists a \(t_0\ge 0\) such that

$$\begin{aligned} \begin{aligned} \frac{(p-2\theta )b\Vert u_0\Vert _2^{2\theta -2}}{2\theta C_2^{2\theta }}M(t)&>p\Vert u_0\Vert _2^2,\ \ t_0\le t<\infty ,\\ \frac{(p-2\theta )b\Vert u_0\Vert _2^{2\theta -2}}{2\theta C_2^{2\theta }}M'(t)&>2pJ(u_0),\ \ t_0\le t<\infty , \end{aligned} \end{aligned}$$

which combined with (4.42) give the inequality

$$\begin{aligned} \begin{aligned}&M(t)M''(t)-\frac{p}{2}(M'(t))^2\\&\quad \ge \left( \frac{(p-2\theta )b\Vert u_0\Vert _2^{2\theta -2}}{2\theta C_2^{2\theta }} M(t)-p\Vert u_0\Vert _2^2\right) M'(t)\\&\qquad +\left( \frac{(p-2\theta )b\Vert u_0\Vert _2^{2\theta -2}}{2\theta C_2^{2\theta }}M'(t)-2pJ(u_0)\right) M(t)>0,\ \ t_0\le t<\infty . \end{aligned} \end{aligned}$$

Then we get from Lemma 1 that the maximal existence time \(T_1\) of M(t) satisfying \(T_1<\infty \) and

$$\begin{aligned} \lim _{t\rightarrow T_1}M(t)=\infty , \end{aligned}$$

which contradicts \(T=\infty \).

Case 2: \(J(u_0)=d\) Since \(I(u(t))<0\) for \(t\ge 0\) (see Lemma 9), it follows that

$$\begin{aligned} (u_t,u)=-I(u(t))>0,\ \ \ t\ge 0. \end{aligned}$$

Hence we can get \(\Vert u_t\Vert ^2_2>0\) for \(t\ge 0\). Thus by (2.12), there exists a \(t_1>0\) such that

$$\begin{aligned} J(u(t_1))\le J(u_0)-\mathop \int \limits ^{t_1}_0\Vert u_\tau \Vert ^2_2d\tau <d. \end{aligned}$$

If we take \(t_1\) as the initial time, then similar to the Case 1 in the proof of this section, we can obtain the finite time blow up result. The proof of Step 1 is complete.

Step 2: Upper bound estimate of the blow-up time

Let \(u=u(t)\) be a solution of problem (1.1) with initial value \(u_0\) satisfying \(I(u_0)<0\) and \(J(u_0)<d\). By Step 1, the maximal existence time \(T<+\infty \). Let

$$\begin{aligned} \mu (t):=\left( \mathop \int \limits _0^t\Vert u\Vert _2^2d\tau \right) ^{\frac{1}{2}},~~~\nu (t):= \left( \mathop \int \limits _0^t\Vert u_\tau \Vert _2^2d\tau \right) ^{\frac{1}{2}},~~~\forall t\in [0,T). \end{aligned}$$

By (2.12), Lemmas 8 and 9, we have

(R1):

\(J(u(t))+\nu ^2(t)\le J(u_0)\), \(\forall t\in [0,T)\);

(R2):

\(\frac{d}{dt}\Vert u\Vert _2^2=-2I(u(t))\), \(\forall t\in [0,T)\);

(R3):

\(u(t)\in N_-\), i.e., \(I(u(t))<0\), \(\forall t\in [0,T)\).

Consider the following functional:

$$\begin{aligned} F(t):=\mu ^2(t)+(T-t)\Vert u_0\Vert _2^2+\beta (t+\alpha )^2,~~~\forall t\in [0,T), \end{aligned}$$
(4.44)

where \(\alpha \) and \(\beta \) are two positive constants to be determined later. Then by (R2) and (R3), we have

$$\begin{aligned} \begin{aligned} F'(t)&=\Vert u\Vert _2^2-\Vert u_0\Vert _2^2+2\beta (t+\alpha )\\&\ge 2\beta (t+\alpha )>0,\ \ \ t\in [0,T), \end{aligned} \end{aligned}$$
(4.45)

which implies

$$\begin{aligned} F(t)\ge F(0)=T\Vert u_0\Vert _2^2+\beta \alpha ^2>0,\ \ \ t\in [0,T) \end{aligned}$$
(4.46)

and (by (R1), (R2) and Lemma 7)

$$\begin{aligned} \begin{aligned} F''(t)&=-2I(u(t))+2\beta >2p(d-J(u(t)))+2\beta \\&\ge 2p(d-J(u_0))+2p\nu ^2(t)+2\beta ,\ \ \ t\in [0,T). \end{aligned} \end{aligned}$$
(4.47)

By Schwartz’s inequality, we have

$$\begin{aligned} \begin{aligned} \frac{1}{2}\mathop \int \limits _0^t\frac{d}{d\tau }\Vert u\Vert _2^2d\tau&=\mathop \int \limits _0^t(u,u_\tau )d\tau \\&\le \mathop \int \limits _0^t\Vert u\Vert _2\Vert u_\tau \Vert _2d\tau \le \mu (t)\nu (t),\ \ \ t\in [0,T), \end{aligned} \end{aligned}$$

which, together with the definition of F(t), implies

$$\begin{aligned} \begin{aligned}&\left( F(t)-(T-t)\Vert u_0\Vert _2^2\right) \left( \nu ^2(t)+\beta \right) \\&\quad =\left( \mu ^2(t)+\beta (t+\alpha )^2\right) \left( \nu ^2(t)+\beta \right) \\&\quad =\mu ^2(t)\nu ^2(t)+\beta \mu ^2(t)+\beta (t+\alpha )^2\nu ^2(t)+\beta ^2(t+\alpha )^2\\&\quad \ge \mu ^2(t)\nu ^2(t)+2\beta \mu (t)\nu (t)(t+\alpha )+\beta ^2(t+\alpha )^2\\&\quad =\left( \mu (t)\nu (t)+\beta (t+\alpha )\right) ^2\\&\quad \ge \left[ \frac{1}{2}\mathop \int \limits _0^t\frac{d}{d\tau }\Vert u\Vert _2^2d\tau +\beta (t+\alpha )\right] ^2,\ \ \ t\in [0,T). \end{aligned} \end{aligned}$$

Then it follows from (4.45) and the above inequality that

$$\begin{aligned} \begin{aligned} \left( F'(t)\right) ^2&=4\left( \frac{1}{2}\mathop \int \limits _0^t\frac{d}{d\tau }\Vert u\Vert _2^2ds +\beta (t+\alpha )\right) ^2\\&\le 4F(t)\left( \nu ^2(t)+\beta \right) ,\ \ \ t\in [0,T). \end{aligned} \end{aligned}$$
(4.48)

Combining (4.46), (4.47) and (4.48), we get

$$\begin{aligned} \begin{aligned}&F(t)F''(t)-\frac{p}{2}\left( F'(t)\right) ^2\\&\quad >F(t)\left[ 2p(d-J(u_0)) +2p\nu ^2(t)+2\beta -2p\nu ^2(t)-2p\beta \right] \\&\quad =F(t)\left[ 2p(d-J(u_0))-2(p-1)\beta \right] ,\ \ \ t\in [0,T), \end{aligned} \end{aligned}$$

which is nonnegative if we take \(\beta \) small enough such that

$$\begin{aligned} 0<\beta \le \frac{p(d-J(u_0))}{p-1}. \end{aligned}$$
(4.49)

Then it follows from Lemma 1 that

$$\begin{aligned} T\le \frac{F(0)}{\left( \frac{p}{2}-1\right) F'(0)}=\frac{1}{p-2} \left( \alpha +\frac{\Vert u_0\Vert _2^2}{\beta \alpha }T\right) . \end{aligned}$$
(4.50)

By taking \(\alpha \) large enough such that

$$\begin{aligned} \alpha >\frac{\Vert u_0\Vert _2^2}{(p-2)\beta }, \end{aligned}$$
(4.51)

we get from (4.50) that

$$\begin{aligned} T\le \frac{\beta \alpha ^2}{(p-2)\beta \alpha -\Vert u_0\Vert _2^2}. \end{aligned}$$
(4.52)

The above analysis shows that (\(\rho :=\alpha \beta \))

$$\begin{aligned} T\le \inf _{(\rho ,\alpha )\in \Phi }f(\rho ,\alpha ), \end{aligned}$$
(4.53)

where

$$\begin{aligned} \begin{aligned}&\Phi :=\left\{ (\rho ,\alpha ):\rho >\frac{\Vert u_0\Vert _2^2}{p-2}, \alpha \ge \frac{(p-1)\rho }{p(d-J(u_0))}\right\} ,\\&f(\rho ,\alpha ):=\frac{\rho \alpha }{(p-2)\rho -\Vert u_0\Vert _2^2}. \end{aligned} \end{aligned}$$

It is easily to find that \(f(\rho ,\alpha )\) is increasing with \(\alpha \). Then

$$\begin{aligned} \begin{aligned}&T\le \inf _{\rho>\frac{\Vert u_0\Vert _2^2}{p-2}}f\left( \rho ,\frac{(p-1)\rho }{p(d-J(u_0))}\right) \\&\quad =\inf _{\rho >\frac{\Vert u_0\Vert _2^2}{p-2}}\frac{(p-1)\rho ^2}{p(d-J(u_0))\left( (p-2)\rho -\Vert u_0\Vert _2^2\right) }\\&\quad =\frac{(p-1)\rho ^2}{p(d-J(u_0))\left( (p-2)\rho -\Vert u_0\Vert _2^2\right) } \bigg |_{\rho =\frac{2\Vert u_0\Vert _2^2}{p-2}}\\&\quad =\frac{4(p-1)\Vert u_0\Vert _2^2}{p(d-J(u_0))(p-2)^2}. \end{aligned} \end{aligned}$$

Step 3: Lower bound estimate of the blow-up time

From Step 1 we know that the weak solution \(u(t)=u(x,t)\) of problem (1.1) blows up at finite time T. Now, we estimate the lower bound of T and blow-up rate. To this end, we define a function

$$\begin{aligned} f(t):=\frac{1}{2}\Vert u\Vert _2^2, \end{aligned}$$

then we have

$$\begin{aligned} f(T)=\infty . \end{aligned}$$
(4.54)

According to Lemma 8, we have

$$\begin{aligned} \frac{1}{2}\frac{d}{dt}\Vert u\Vert _2^2=-I(u)=-a\Vert u\Vert _Z^2-b\Vert u\Vert _Z^{2\theta } +\mathop \int \limits _\Omega |u|^p\log |u|dx. \end{aligned}$$
(4.55)

Moreover, by Lemma 9, we know \(I(u)<0\). Thus, by (2.13) and the inequality \(\log |u(x)|<\frac{|u(x)|^\varepsilon }{\varepsilon }\) (for any \(\varepsilon >0\)), we deduce

$$\begin{aligned} \Vert u\Vert _{p+\varepsilon }^{p+\varepsilon }\le & {} {\widetilde{C}}^{p+\varepsilon } \left( \Vert u\Vert _Z^2\right) ^{\frac{(1-\beta )(p+\varepsilon )}{2}} \cdot \left( \Vert u\Vert _2^2\right) ^{\frac{\beta (p+\varepsilon )}{2}}\nonumber \\= & {} \frac{{\widetilde{C}}^{p+\varepsilon }}{b^{\frac{(1-\beta )(p+\varepsilon )}{2\theta }}} \left( b\Vert u\Vert _Z^{2\theta }\right) ^{\frac{(1-\beta )(p+\varepsilon )}{2\theta }} \cdot \left( \Vert u\Vert _2^2\right) ^{\frac{\beta (p+\varepsilon )}{2}}\nonumber \\\le & {} \frac{{\widetilde{C}}^{p+\varepsilon }}{b^{\frac{(1-\beta )(p+\varepsilon )}{2\theta }}} \left( a\Vert u\Vert _Z^2+b\Vert u\Vert _Z^{2\theta }\right) ^{\frac{(1-\beta )(p+\varepsilon )}{2\theta }} \cdot \left( \Vert u\Vert _2^2\right) ^{\frac{\beta (p+\varepsilon )}{2}}\nonumber \\< & {} \frac{{\widetilde{C}}^{p+\varepsilon }}{b^{\frac{(1-\beta )(p+\varepsilon )}{2\theta }}} \left( \mathop \int \limits _\Omega |u|^p\log |u|dx\right) ^{\frac{(1-\beta )(p+\varepsilon )}{2\theta }} \cdot \left( \Vert u\Vert _2^2\right) ^{\frac{\beta (p+\varepsilon )}{2}}\nonumber \\< & {} \frac{{\widetilde{C}}^{p+\varepsilon }}{(b\varepsilon )^{\frac{(1-\beta )(p+\varepsilon )}{2\theta }}} \left( \Vert u\Vert _{p+\varepsilon }^{p+\varepsilon }\right) ^{\frac{(1-\beta ) (p+\varepsilon )}{2\theta }} \cdot \left( \Vert u\Vert _2^2\right) ^{\frac{\beta (p+\varepsilon )}{2}}. \end{aligned}$$
(4.56)

Since \(0<\varepsilon <2\theta +2-\frac{4\theta }{2_s^*}-p\), \(2\theta<p<2\theta +2-\frac{4\theta }{2_s^*}\) and \(\beta =\frac{2\cdot 2_s^*-2p-2\varepsilon }{(p+\varepsilon )(2_s^*-2)}\in (0,1)\), we have

$$\begin{aligned} \frac{(1-\beta )(p+\varepsilon )}{2\theta }<1. \end{aligned}$$

Thus, by (4.56), we can get

$$\begin{aligned} \Vert u\Vert _{p+\varepsilon }^{p+\varepsilon }<\left( \frac{{\widetilde{C}}^{p+\varepsilon }}{(b\varepsilon )^{\frac{(1-\beta )(p+\varepsilon )}{2\theta }}}\right) ^{\frac{2\theta }{2\theta -(1-\beta )(p+\varepsilon )}} \left( \Vert u\Vert _2^2\right) ^{\frac{\beta \theta (p+\varepsilon )}{2\theta -(1-\beta ) (p+\varepsilon )}}. \end{aligned}$$
(4.57)

Moreover, by remark 2, we know

$$\begin{aligned} \zeta :=\frac{\beta \theta (p+\varepsilon )}{2\theta -(1-\beta )(p+\varepsilon )}>1. \end{aligned}$$

Then combining (4.55) and (4.57) we have

$$\begin{aligned} \begin{aligned} f'(t)&=-a\Vert u\Vert _Z^2-b\Vert u\Vert _Z^{2\theta }+\mathop \int \limits _\Omega |u|^p\log |u|dx\\&\le \mathop \int \limits _\Omega |u|^p\log |u|dx\le \frac{1}{\varepsilon }\Vert u\Vert _{p+\varepsilon }^{p+\varepsilon }\\&<{\widehat{C}}\left( \Vert u\Vert _2^2\right) ^\zeta =2^\zeta {\widehat{C}}\left( f(t)\right) ^\zeta , \end{aligned} \end{aligned}$$
(4.58)

where \({\widehat{C}}=\left( \frac{{\widetilde{C}}^{p+\varepsilon }}{\varepsilon b^{\frac{(1-\beta )(p+\varepsilon )}{2\theta }}}\right) ^{\frac{2\theta }{2\theta -(1-\beta )(p+\varepsilon )}}\).

We can prove by contradiction that for any \(t\in [0,T)\), \(f(t)>0\). If not, there exists a \(t_1\ge 0\) such that \(\Vert u(t_1)\Vert _2^2=0\), which contradicts (4.57). Then by (4.58) we have

$$\begin{aligned} \frac{f'(t)}{\left( f(t)\right) ^\zeta }<2^\zeta {\widehat{C}}. \end{aligned}$$
(4.59)

Integrating the above inequality from 0 to t, we have

$$\begin{aligned} \left( f(0)\right) ^{1-\zeta }-\left( f(t)\right) ^{1-\zeta }<2^\zeta {\widehat{C}}(\zeta -1)t, \end{aligned}$$
(4.60)

letting \(t\rightarrow T\) in (4.60) and using (4.54) we can conclude that

$$\begin{aligned} T>\frac{\left( f(0)\right) ^{1-\zeta }}{2^\zeta {\widehat{C}}(\zeta -1)}=\frac{\Vert u_0\Vert _2^{2-2\zeta }}{2{\widehat{C}}(\zeta -1)}. \end{aligned}$$

Similarly, integrating the inequality (4.59) from t to T, by (4.54) we have

$$\begin{aligned} f(t)>\left( 2^\zeta {\widehat{C}}(\zeta -1)(T-t)\right) ^{\frac{1}{1-\zeta }}, \end{aligned}$$

then by the definition of f(t) we can see that

$$\begin{aligned} \Vert u\Vert _2>\left( 2{\widehat{C}}(\zeta -1)(T-t)\right) ^{\frac{1}{2(1-\zeta )}}. \end{aligned}$$

\(\square \)

Proof of Theorem 3

Let \(u=u(t)\) be the weak solution of problem (1.1) with \(I(u_0)<0\) and \(J(u_0)\le {\widetilde{M}}\). Then according to Lemma 9 we have \(I(u)<0\) for all \(t\in [0,T)\).

Let

$$\begin{aligned} G(t):=\mathop \int \limits _0^t\Vert u\Vert _2^2d\tau ,\ \ t\in [0,T), \end{aligned}$$

then

$$\begin{aligned} G'(t)=\Vert u\Vert _2^2 \end{aligned}$$

and

$$\begin{aligned} G''(t)=-2I(u)>0. \end{aligned}$$
(4.61)

Then by (2.3), (2.6), (2.12), (4.61) and Corollary 2, we get

$$\begin{aligned} \begin{aligned} G''(t)&=-2pJ(u)+(p-2)a\Vert u\Vert ^2_Z+\frac{(p-2\theta )b}{\theta }\Vert u\Vert ^{2\theta }_Z +\frac{2}{p}\Vert u\Vert _p^p\\&\ge -2pJ(u_0)+2p\mathop \int \limits _0^t\Vert u_\tau \Vert _2^2d\tau +(p-2)a\Vert u\Vert ^2_Z +\frac{(p-2\theta )b}{\theta }\Vert u\Vert ^{2\theta }_Z\\&\ge -2pJ(u_0)+(p-2)ar_*^2+\frac{(p-2\theta )b}{\theta }r_*^{2\theta } +2p\mathop \int \limits _0^t\Vert u_\tau \Vert _2^2d\tau \\&=2p({\widetilde{M}}-J(u_0))+2p\mathop \int \limits _0^t\Vert u_\tau \Vert _2^2d\tau . \end{aligned} \end{aligned}$$
(4.62)

Since

$$\begin{aligned} \begin{aligned} \left( \mathop \int \limits _0^t(u,u_\tau )d\tau \right) ^2&=\frac{1}{4}\left( \mathop \int \limits _0^t \frac{d}{d\tau }\Vert u\Vert _2^2d\tau \right) ^2\\&=\frac{1}{4}(G'(t)-G'(0))^2\\&=\frac{1}{4}[(G'(t))^2-2G'(t)G'(0)+(G'(0))^2], \end{aligned} \end{aligned}$$

so we have

$$\begin{aligned} (G'(t))^2=4\left( \mathop \int \limits _0^t(u,u_\tau )d\tau \right) ^2+2\Vert u_0\Vert _2^2G'(t)-\Vert u_0\Vert _2^4. \end{aligned}$$
(4.63)

Combining (4.62) and (4.63), and using the Schwartz inequality, we get

$$\begin{aligned} \begin{aligned}&G(t)G''(t)-\frac{p}{2}(G'(t))^2\\&\quad \ge 2p\mathop \int \limits _0^t\Vert u_\tau \Vert _2^2d\tau \mathop \int \limits _0^t\Vert u\Vert _2^2d\tau -2p \left( \mathop \int \limits _0^t(u,u_\tau )d\tau \right) ^2\\&\qquad +2p({\widetilde{M}}-J(u_0))G(t)-p\Vert u_0\Vert _2^2G'(t)+\frac{p}{2}\Vert u_0\Vert _2^4\\&\quad \ge 2p({\widetilde{M}}-J(u_0))G(t)-p\Vert u_0\Vert _2^2G'(t)\\&\quad \ge -p\Vert u_0\Vert _2^2G'(t). \end{aligned} \end{aligned}$$

Then for any \(\gamma \in \left[ 0,\frac{2}{2_s^*}\right] \), we have

$$\begin{aligned} G(t)G''(t)-\frac{p\gamma }{2}(G'(t))^2\ge \frac{p(1-\gamma )}{2}(G'(t))^2 -p\Vert u_0\Vert _2^2G'(t). \end{aligned}$$
(4.64)

Moreover, by Theorem 2, we know that u(t) blows up at some finite time, so we have

$$\begin{aligned} \lim _{t\rightarrow T^-}G'(t)=\lim _{t\rightarrow T^-}\Vert u\Vert _2^2=+\infty . \end{aligned}$$

Then it follows from (4.64) that there exists a \(t_\gamma \in (0,T)\) such that for all \(t\in [t_\gamma ,T)\)

$$\begin{aligned} G(t)G''(t)-\frac{p\gamma }{2}(G'(t))^2>0. \end{aligned}$$
(4.65)

Since

$$\begin{aligned} \left( G^{1-\frac{p\gamma }{2}}(t)\right) '=\left( 1-\frac{p\gamma }{2}\right) G^{-\frac{p\gamma }{2}}(t)G'(t), \end{aligned}$$

it follows from (4.65) that for all \(t\in [t_\gamma ,T)\),

$$\begin{aligned} \left( G^{1-\frac{p\gamma }{2}}(t)\right) ''=\left( 1-\frac{p\gamma }{2}\right) G^{-\frac{p\gamma }{2}-1}(t) \left[ G(t)G''(t)-\frac{p\gamma }{2}(G'(t))^2\right] >0. \end{aligned}$$

Then by \(2-p\gamma \ge 2-\frac{2p}{2_s^*}>0\) and \(G(t_\gamma )>0\), we have

$$\begin{aligned} \begin{aligned} G(t)&=(G^{1-\frac{p\gamma }{2}}(t))^{\frac{2}{2-p\gamma }}\\&=\left[ G^{1-\frac{p\gamma }{2}}(t_\gamma )+\mathop \int \limits ^t_{t_\gamma } \left( G^{1-\frac{p\gamma }{2}} (\tau )\right) 'd\tau \right] ^{\frac{2}{2-p\gamma }}\\&\ge \left[ G^{1-\frac{p\gamma }{2}}(t_\gamma )+(t-{t_\gamma }) \left. \left( G^{1-\frac{p\gamma }{2}}(\tau )\right) '\right| _{\tau =t_\gamma } \right] ^{\frac{2}{2-p\gamma }}\\&=\left[ G^{1-\frac{p\gamma }{2}}(t_\gamma )+\left( 1-\frac{p\gamma }{2}\right) (t-t_\gamma )G^{-\frac{p\gamma }{2}}(t_\gamma )G'(t_\gamma )\right] ^{\frac{2}{2-p\gamma }}\\&\ge \left[ \left( 1-\frac{p\gamma }{2}\right) (t-t_\gamma )G^{-\frac{p\gamma }{2}} (t_\gamma )G'(t_\gamma )\right] ^{\frac{2}{2-p\gamma }}\\&=C_\gamma (t-t_\gamma )^{\frac{2}{2-p\gamma }}, \end{aligned} \end{aligned}$$
(4.66)

where

$$\begin{aligned} C_\gamma :=\left[ \left( 1-\frac{p\gamma }{2}\right) G^{-\frac{p\gamma }{2}} (t_\gamma )G'(t_\gamma )\right] ^{\frac{2}{2-p\gamma }}. \end{aligned}$$

Since \(G''(t)>0\) for all \(t\in [0,T)\), thus we have

$$\begin{aligned} \mathop \int \limits ^t_0G'(\tau )d\tau \le tG'(t), \end{aligned}$$

i.e. (for all \(t\in [0,T)\)),

$$\begin{aligned} t\Vert u\Vert ^2_2\ge G(t). \end{aligned}$$

Combining with (4.66) and the above inequality, we can deduce that for any \(0\le \gamma \le \frac{2}{2_s^*}\) and \(t\in [t_\gamma ,T)\),

$$\begin{aligned} \Vert u\Vert ^2_2\ge \frac{C_\gamma (t-t_\gamma )^{\frac{2}{2-p\gamma }}}{t}=C_\gamma (t^{\frac{p\gamma }{2}}-t^{\frac{p\gamma }{2}-1}t_\gamma )^{\frac{2}{2-p\gamma }}. \end{aligned}$$

\(\square \)

Proof of Theorem 4

To complete this proof, we use some ideas from [30, 31] and we divide the proof into three steps.

Step 1: Blow-up in finite time

First, it follows from the definition of (2.3) and the assumption that

$$\begin{aligned} \begin{aligned} I(u_0)&=pJ(u_0)-\frac{(p-2)a}{2}\Vert u_0\Vert _Z^2-\frac{(p-2\theta )b}{2\theta } \Vert u_0\Vert _Z^{2\theta }-\frac{1}{p}\Vert u_0\Vert _p^p\\&\le pJ(u_0)-\frac{(p-2\theta )b\lambda _1^\theta }{2\theta }\Vert u_0\Vert _2^{2\theta }<0. \end{aligned} \end{aligned}$$

Actually, we may claim that \(I(u(t))<0\) for all \(t\in [0,T)\). Otherwise, there exists a \(t_0\in (0,T)\) such that \(I(u(t_0))=0\) and \(I(u(t))<0\) for all \(t\in [0,t_0)\). By Lemma 8 we know that \(\Vert u\Vert _2^2\) is strictly increasing with respect to t for \(t\in [0,t_0)\), and therefore

$$\begin{aligned} \begin{aligned} J(u_0)<\frac{(p-2\theta )b\lambda _1^\theta }{2\theta p}\Vert u_0\Vert _2^{2\theta }<\frac{(p-2\theta )b\lambda _1^\theta }{2\theta p}\Vert u(t_0)\Vert _2^{2\theta }. \end{aligned} \end{aligned}$$
(4.67)

On the other hand, by (2.3) and (2.12), we can get

$$\begin{aligned} \frac{(p-2\theta )b\lambda _1^\theta }{2\theta p}\Vert u(t_0)\Vert _2^{2\theta }\le \frac{(p-2\theta )b}{2\theta p}\Vert u(t_0)\Vert _Z^{2\theta }\le J(u(t_0))\le J(u_0), \end{aligned}$$

which contradicts (4.67), so we obtain \(I(u(t))<0\) for all \(t\in [0,T)\).

Next, we are going to prove the blow-up of the solution u(t) by contradiction. Fix a \({\widetilde{T}}=\frac{(4(p-1)\Vert u_0\Vert _2^2+1)^2+1}{\varrho (p-2)^2}\), where \(\varrho :=\frac{(p-2\theta )b\lambda _1^\theta }{\theta }\Vert u_0\Vert _2^{2\theta }-2pJ(u_0)>0\), then we suppose that u(t) exists globally on \([0,{\widetilde{T}}]\) and let

$$\begin{aligned} G(t):=\mathop \int \limits _0^t\Vert u\Vert _2^2d\tau +({\widetilde{T}}-t)\Vert u_0\Vert _2^2+\sigma (t+\epsilon )^2,\ \ t\in [0,{\widetilde{T}}], \end{aligned}$$

where \(\sigma \), \(\epsilon \) are two positive constants which will be specified later.

Then, for any \(t\in [0,{\widetilde{T}}]\), by a simply computation, we obtain

$$\begin{aligned} \left\{ \begin{array}{ll} G(0)={\widetilde{T}}\Vert u_0\Vert ^2_2+\sigma \epsilon ^2>0,\\ G'(t)=\Vert u\Vert ^2_2-\Vert u_0\Vert ^2_2+2\sigma (t+\epsilon )>2\sigma (t+\epsilon )>0,\\ G'(0)=2\sigma \epsilon >0, \end{array} \right. \end{aligned}$$

and

$$\begin{aligned} \begin{aligned} G''(t)=-2I(u(t))+2\sigma&\ge (p-2)a\Vert u\Vert _Z^2+\frac{(p-2\theta )b}{\theta }\Vert u\Vert _Z^{2\theta }+\frac{2}{p}\Vert u\Vert _p^p\\&\quad -2pJ(u(t))+2\sigma \\&\ge \frac{(p-2\theta )b}{\theta }\Vert u\Vert _Z^{2\theta }-2pJ(u(t))+2\sigma \\&\ge \frac{(p-2\theta )b\lambda _1^\theta }{\theta }\Vert u\Vert _2^{2\theta }-2pJ(u_0) +2p\mathop \int \limits _0^t\Vert u_\tau \Vert _2^2d\tau +2\sigma \\&\ge \frac{(p-2\theta )b\lambda _1^\theta }{\theta }\Vert u_0\Vert _2^{2\theta }-2pJ(u_0) +2p\mathop \int \limits _0^t\Vert u_\tau \Vert _2^2d\tau \\&\quad +2\sigma >0, \end{aligned} \end{aligned}$$

thus, we can get \(G(t)\ge G(0)>0\) for all \(t\in [0,{\widetilde{T}}]\).

Let

$$\begin{aligned} \mu (t):=\left( \int ^t_0\Vert u\Vert ^2_2d\tau \right) ^\frac{1}{2},\ \ \nu (t):=\left( \int ^t_0\Vert u_\tau \Vert ^2_2d\tau \right) ^\frac{1}{2}. \end{aligned}$$

By using Hölder’s inequality, we have

$$\begin{aligned} \begin{aligned}&\left[ \mathop \int \limits ^t_0\Vert u\Vert ^2_2d\tau +\sigma (t+\epsilon )^2\right] \left[ \mathop \int \limits ^t_0\Vert u_\tau \Vert ^2_2d\tau +\sigma \right] - \left[ \frac{1}{2}(\Vert u\Vert ^2_2-\Vert u_0\Vert ^2_2)+\sigma (t+\epsilon )\right] ^2\\&\quad =\left[ \mu ^2(t)+\sigma (t+\epsilon )^2\right] \left[ \nu ^2(t)+\sigma \right] -\left[ \frac{1}{2}\mathop \int \limits ^t_0\frac{d}{d\tau }\Vert u\Vert ^2_2d\tau +\sigma (t+\epsilon )\right] ^2\\&\quad \ge \left[ \mu ^2(t)+\sigma (t+\epsilon )^2\right] \left[ \nu ^2(t)+\sigma \right] -\left[ \mathop \int \limits ^t_0\Vert u\Vert _2\Vert u_\tau \Vert _2d\tau +\sigma (t+\epsilon )\right] ^2\\&\quad \ge \left[ \mu ^2(t)+\sigma (t+\epsilon )^2\right] \left[ \nu ^2(t)+\sigma \right] -\left[ \mu (t)\nu (t)+\sigma (t+\epsilon )\right] ^2\\&\quad =\left[ \sqrt{\sigma }\mu (t)\right] ^2-2\sigma (t+\epsilon )\mu (t)\nu (t) +\left[ \sqrt{\sigma }(t+\epsilon )\nu (t)\right] ^2\\&\quad =\left[ \sqrt{\sigma }\mu (t)-\sqrt{\sigma }(t+\epsilon )\nu (t)\right] ^2\ge 0. \end{aligned} \end{aligned}$$

Then we obtain

$$\begin{aligned} \begin{aligned} -(G'(t))^2&=-4\left( \frac{1}{2}(\Vert u\Vert ^2_2-\Vert u_0\Vert ^2_2)+\sigma (t+\epsilon )\right) ^2\\&=4\left( \mathop \int \limits ^t_0\Vert u\Vert ^2_2d\tau +\sigma (t+\epsilon )^2\right) \left( \mathop \int \limits ^t_0\Vert u_\tau \Vert ^2_2d\tau +\sigma \right) \\&\qquad -4\left( \frac{1}{2}(\Vert u\Vert ^2_2-\Vert u_0\Vert ^2_2)+\sigma (t+\epsilon )\right) ^2\\&\qquad -4\left( G(t)-({\widetilde{T}}-t)\Vert u_0\Vert ^2_2\right) \left( \mathop \int \limits ^t_0\Vert u_\tau \Vert ^2_2d\tau +\sigma \right) \\&\ge -4G(t)\left( \mathop \int \limits ^t_0\Vert u_\tau \Vert ^2_2d\tau +\sigma \right) . \end{aligned} \end{aligned}$$

The above calculations show that

$$\begin{aligned} \begin{aligned}&G(t)G''(t)-\frac{p}{2}\left( G'(t)\right) ^2\\&\quad \ge G(t)\left( G''(t)-2p\left( \mathop \int \limits _0^t\Vert u_\tau \Vert _2^2d\tau +\sigma \right) \right) \\&\quad \ge G(t)\left( \frac{(p-2\theta )b\lambda _1^\theta }{\theta }\Vert u_0\Vert _2^{2\theta }-2pJ(u_0)-2(p-1)\sigma \right) . \end{aligned} \end{aligned}$$

We choose \(\sigma =\frac{\varrho }{4(p-1)}\), then it follows that \(G(t)G''(t)-\frac{p}{2}\left( G'(t)\right) ^2\ge 0\). Therefore, by Lemma 1 it is seen that

$$\begin{aligned} T\le \frac{2G(0)}{(p-2)G'(0)}=\frac{\Vert u_0\Vert _2^2}{\sigma \epsilon (p-2)} {\widetilde{T}}+\frac{\epsilon }{p-2}\ \hbox { and }\lim _{t\rightarrow T}G(t)=+\infty . \end{aligned}$$

Next, we choose \(\epsilon =\frac{4(p-1)\Vert u_0\Vert _2^2+1}{\varrho (p-2)}\), then we have \(T<{\widetilde{T}}\), which is a contraction. Hence, u(t) will blow-up at some finite time T.

Step 2: Upper bound estimate of the blow-up time

For any \(T_1\in (0,T)\), let

$$\begin{aligned} F(t):=\mathop \int \limits _0^t\Vert u\Vert _2^2d\tau +(T-t)\Vert u_0\Vert _2^2+\sigma (t+\epsilon )^2,\ \ t\in [0,T_1], \end{aligned}$$

where \(\sigma \), \(\epsilon \) are two positive constants which will be specified later.

Then similar to Step 1 we can get

$$\begin{aligned} F(t)F''(t)-\frac{p}{2}\left( F'(t)\right) ^2\ge F(t)\left( \frac{(p-2\theta )b\lambda _1^\theta }{\theta }\Vert u_0\Vert _2^{2\theta }-2pJ(u_0)-2(p-1)\sigma \right) . \end{aligned}$$

We choose \(\sigma \) small enough, such that

$$\begin{aligned} \sigma \in \left( 0,\frac{\varrho }{2(p-1)}\right] , \end{aligned}$$
(4.68)

then it follows that \(F(t)F''(t)-\frac{p}{2}\left( F'(t)\right) ^2\ge 0\). Therefore, by Lemma 1 we obtain

$$\begin{aligned} T_1\le \frac{2F(0)}{(p-2)F'(0)}=\frac{\Vert u_0\Vert _2^2}{\sigma \epsilon (p-2)}T +\frac{\epsilon }{p-2},\ \ \ \forall T_1\in [0,T). \end{aligned}$$

Hence, letting \(T_1\rightarrow T\), we have

$$\begin{aligned} T\le \frac{\Vert u_0\Vert _2^2}{\sigma \epsilon (p-2)}T+\frac{\epsilon }{p-2}. \end{aligned}$$
(4.69)

Let \(\epsilon \) be large enough such that

$$\begin{aligned} \epsilon \in \left( \frac{\Vert u_0\Vert _2^2}{(p-2)\sigma },+\infty \right) , \end{aligned}$$
(4.70)

then by (4.69), we can get

$$\begin{aligned} T\le \frac{\sigma \epsilon ^2}{\sigma \epsilon (p-2)-\Vert u_0\Vert _2^2}. \end{aligned}$$

In view of (4.68) and (4.70), we define

$$\begin{aligned} \begin{aligned} \Lambda :&=\left\{ (\sigma ,\epsilon ):\sigma \in \left( 0,\frac{\varrho }{2(p-1)}\right] , \epsilon \in \left( \frac{\Vert u_0\Vert _2^2}{(p-2)\sigma },+\infty \right) \right\} \\&=\left\{ (\sigma ,\epsilon ):\sigma \in \left( \frac{\Vert u_0\Vert _2^2}{(p-2)\epsilon }, \frac{\varrho }{2(p-1)}\right] ,\epsilon \in \left( \frac{2(p-1)\Vert u_0\Vert _2^2}{(p-2)\varrho },+\infty \right) \right\} , \end{aligned} \end{aligned}$$

then

$$\begin{aligned} T\le \inf _{(\sigma ,\epsilon )\in \Lambda }\frac{\sigma \epsilon ^2}{\sigma \epsilon (p-2)-\Vert u_0\Vert _2^2}. \end{aligned}$$

Let \(\varsigma =\sigma \epsilon \) and

$$\begin{aligned} f(\epsilon ,\varsigma ):=\frac{\varsigma \epsilon }{\varsigma (p-2)-\Vert u_0\Vert _2^2}. \end{aligned}$$

Since \(f(\epsilon ,\varsigma )\) is decreasing with \(\varsigma \) and we obtain

$$\begin{aligned} \begin{aligned} T\le&\inf _{\epsilon \in \left( \frac{2(p-1)\Vert u_0\Vert _2^2}{(p-2)\varrho }, +\infty \right) }f\left( \epsilon ,\frac{\varrho \epsilon }{2(p-1)}\right) \\ =&\inf _{\epsilon \in \left( \frac{2(p-1)\Vert u_0\Vert _2^2}{(p-2)\varrho }, +\infty \right) }\frac{\varrho \epsilon ^2}{\varrho \epsilon (p-2)-2(p-1)\Vert u_0\Vert _2^2}\\ =&\frac{\varrho \epsilon ^2}{\varrho \epsilon (p-2)-2(p-1)\Vert u_0\Vert _2^2} \bigg |_{\epsilon =\frac{4(p-1)\Vert u_0\Vert _2^2}{(p-2)\varrho }}\\ =&\frac{8(p-1)\Vert u_0\Vert _2^2}{(p-2)^2\varrho }. \end{aligned} \end{aligned}$$

Hence, by the definition of \(\varrho \) and the above inequality, we have

$$\begin{aligned} T\le \frac{8(p-1)\theta \Vert u_0\Vert _2^2}{(p-2)^2\left[ (p-2\theta )b \lambda _1^\theta \Vert u_0\Vert _2^{2\theta }-2p\theta J(u_0)\right] }. \end{aligned}$$

Step 3: Growth estimates

First, similar to Step 1, we can get \(I(u)<0\) for all \(t\in [0,T)\), so by Lemma 8, we know that \(\Vert u\Vert _2^2\) is strictly increasing with respect to t. Then by Lemma 8 and (2.3) we know

$$\begin{aligned} \begin{aligned}&\frac{d}{dt}\left( \Vert u\Vert _2^2-\frac{2p\theta }{(p-2\theta )b \lambda _1^\theta \Vert u_0\Vert _2^{2\theta -2}}J(u_0)\right) \\&\quad =-2I(u) =-2pJ(u)+(p-2)a\Vert u\Vert _Z^2+\frac{(p-2\theta )b}{\theta }\Vert u\Vert _Z^{2\theta } +\frac{2}{p}\Vert u\Vert _p^p. \end{aligned} \end{aligned}$$

According to (2.12), we know \(J(u(t))\le J(u_0)\) for all \(t\in [0,T)\). So we can deduce from (1.10) and the above equality that

$$\begin{aligned}&\frac{d}{dt}\left( \Vert u\Vert _2^2-\frac{2p\theta }{(p-2\theta )b \lambda _1^\theta \Vert u_0\Vert _2^{2\theta -2}}J(u_0)\right) \\&\quad \ge -2pJ(u_0)+\frac{(p-2\theta )b\lambda _1^\theta }{\theta }\Vert u\Vert _2^{2\theta }\\&\quad \ge -2pJ(u_0)+\frac{(p-2\theta )b\lambda _1^\theta \Vert u_0\Vert _2^{2\theta -2}}{\theta }\Vert u\Vert _2^2\\&\quad =\frac{(p-2\theta )b\lambda _1^\theta \Vert u_0\Vert _2^{2\theta -2}}{\theta } \left( \Vert u\Vert _2^2-\frac{2p\theta }{(p-2\theta )b\lambda _1^\theta \Vert u_0\Vert _2^{2\theta -2}}J(u_0)\right) , \end{aligned}$$

which implies

$$\begin{aligned} \Vert u\Vert _2^2\ge \left( \Vert u_0\Vert _2^2-\frac{2p}{A}J(u_0)\right) e^{At}+\frac{2p}{A}J(u_0), \end{aligned}$$

where \(A=\frac{(p-2\theta )b\lambda _1^\theta \Vert u_0\Vert _2^{2\theta -2}}{\theta }\). \(\square \)

Proof of Theorem 5

Let u(t) be the blow-up solution with \(I(u_0)<0\), \(J(u_0)\le d\) or (2.17) holds, and assume T is the maximal existence time, then by Theorem 2 and Theorem 4 we know

$$\begin{aligned} \lim _{t\rightarrow T}\Vert u\Vert _2=+\infty . \end{aligned}$$
(4.71)

Moreover, by Lemma 9 and Step 1 of Theorem 4, we can get \(I(u)<0\) for all \(t\in [0,T)\), so by Lemma 8, we can infer that \(\Vert u\Vert _2^2\) is strictly increasing for all \(t\in [0,T)\).

By Hölder’s inequality, we obtain

$$\begin{aligned} \mathop \int \limits _0^t\Vert u_\tau \Vert _2^2d\tau \ge \frac{1}{t}\left( \mathop \int \limits _0^t\Vert u_\tau \Vert _2d\tau \right) ^2. \end{aligned}$$

By [37, page 75, Proposition 3.3], we know

$$\begin{aligned} \mathop \int \limits _0^t\Vert u_\tau \Vert _2d\tau \ge \left\| \mathop \int \limits _0^tu_\tau d\tau \right\| _2=\Vert u(t)-u_0\Vert _2\ge \Vert u\Vert _2-\Vert u_0\Vert _2. \end{aligned}$$

Since \(\Vert u\Vert _2^2\) is strictly increasing on [0, T), we know \(\Vert u\Vert _2-\Vert u_0\Vert _2\ge 0\), then the above inequalities imply

$$\begin{aligned} \mathop \int \limits _0^t\Vert u_\tau \Vert _2^2d\tau \ge \frac{1}{t}(\Vert u\Vert _2-\Vert u_0\Vert _2)^2. \end{aligned}$$

So it follows from (2.12) that

$$\begin{aligned} \begin{aligned} J(u(t))&\le J(u_0)-\mathop \int \limits _0^t\Vert u_\tau \Vert _2^2d\tau \\&\le J(u_0)-\frac{1}{t}(\Vert u\Vert _2-\Vert u_0\Vert _2)^2. \end{aligned} \end{aligned}$$

Let \(t\rightarrow T\) in the above inequality and using (4.71), we get

$$\begin{aligned} \lim _{t\rightarrow T}J(u(t))=-\infty . \end{aligned}$$

\(\square \)

Proof of Theorem 6

We divide the proof into two cases.

Case 1: \(u_0\in Z\setminus \{0\}\) and \(J(u_0)<d\).

First, we claim that \(I(u_0)\ne 0\). Indeed, since \(u_0\ne 0\), if \(I(u_0)=0\), then by the definition of d, we get \(J(u_0)\ge d\), which contradicts \(J(u_0)<d\).

(1) If \(I(u_0)<0\), then together with \(J(u_0)<d\) and Theorem 2, we know the solution blows up in finite time, so we get \(T<+\infty \). Next we claim that if \(T<+\infty \), then we have \(I(u_0)<0\). Indeed, if \(I(u_0)>0\), then together with \(J(u_0)<d\) and Theorem 1, we get \(T=+\infty \), which contradicts \(T<+\infty \). Since \(I(u_0)\ne 0\), so the claim is true. Moreover, if \(I(u_0)<0\), then according to \(J(u_0)<d\) and Theorem 5, we can get there must exist a \(t_0\in [0,T)\) such that \(J(u(t_0))<0\). Hence, in order to complete this proof, we now only need to show

$$\begin{aligned} \hbox { there exists a }t_0\in [0,T)\hbox { such that }J(u(t_0))<0 \Rightarrow I(u_0)<0. \end{aligned}$$

Since there exists a \(t_0\in [0,T)\) such that \(J(u(t_0))<0\), so by (2.3), we have \(I(u(t_0))<0\), then taking \(t_0\) as the initial time, by Theorem 2, we see the solution blows up in finite time, so by Theorem 1 we know that \(I(u_0)>0\) cannot happen. Since \(I(u_0)\ne 0\), so there must be \(I(u_0)<0\).

(2) If \(I(u_0)>0\), together with \(J(u_0)<d\) and Theorem 1, we get \(T=+\infty \). Next, we claim that if \(T=+\infty \), then we have \(I(u_0)>0\). Indeed, if \(I(u_0)<0\), then by (1), we have \(T<+\infty \), which is a contradiction. Since \(I(u_0)\ne 0\), so the claim is true. Moreover, if \(I(u_0)>0\), then according to \(J(u_0)<d\) and Lemma 9, we know \(I(u(t))>0\) for all \(t\in [0,+\infty )\). Thus, by (2.3) we deduce that \(J(u(t))>0\) for all \(t\in [0,+\infty )\). So we only need to prove

$$\begin{aligned} J(u(t))>0\hbox { for all }t\in [0,T)\Rightarrow I(u_0)>0. \end{aligned}$$

Since \(I(u_0)\ne 0\), if \(I(u_0)<0\), then together with \(J(u_0)<d\) and Theorem 5, we have \(\lim _{t\rightarrow T}J(u(t))=-\infty \). By the continuity of J(u(t)) with respect to t, we know there exists a \(t_0\) such that \(J(u(t_0))<0\), which contradicts \(J(u(t))>0\) for all \(t\in [0,T)\) and our proof is complete.

Case 2: \(u_0\in Z\setminus \left\{ N\cup \{0\}\right\} \) and \(J(u_0)=d\).

First, since \(u_0\in Z\setminus \left\{ N\cup \{0\}\right\} \), so we have \(I(u_0)\ne 0\).

(3) If \(I(u_0)<0\), then together with \(J(u_0)=d\) and Theorem 2, we know the solution blows up in finite time, so we get \(T<+\infty \). Next we claim that if \(T<+\infty \), then we have \(I(u_0)<0\). Indeed, if \(I(u_0)>0\), then together with \(J(u_0)=d\) and Corollary 1, we get \(T=+\infty \), which contradicts \(T<+\infty \). Since \(I(u_0)\ne 0\), so the claim is true. Moreover, if \(I(u_0)<0\), then according to \(J(u_0)=d\) and Theorem 5, we can get there must exist a \(t_0\in [0,T)\) such that \(J(u(t_0))<0\). Hence, in order to complete this proof, we now only need to show

$$\begin{aligned} \hbox { there exists a }t_0\in [0,T)\hbox { such that }J(u(t_0))<0 \Rightarrow I(u_0)<0. \end{aligned}$$

Since there exists a \(t_0\in [0,T)\) such that \(J(u(t_0))<0\), so by (2.3), we have \(I(u(t_0))<0\), then taking \(t_0\) as the initial time, by Theorem 2, we see the solution blows up in finite time, so by Corollary 1 we know that \(I(u_0)>0\) cannot happen. Since \(I(u_0)\ne 0\), so there must be \(I(u_0)<0\).

(4) If \(I(u_0)>0\), together with \(J(u_0)=d\) and Corollary 1, we get \(T=+\infty \). Next, we claim that if \(T=+\infty \), then we have \(I(u_0)>0\). Indeed, if \(I(u_0)<0\), then by (3), we have \(T<+\infty \), which is a contradiction. Since \(I(u_0)\ne 0\), so the claim is true. Moreover, if \(I(u_0)>0\), then according to \(J(u_0)=d\) and Lemma 9, we know \(I(u(t))>0\) for all \(t\in [0,+\infty )\). Thus, by (2.3) we deduce that \(J(u(t))>0\) for all \(t\in [0,+\infty )\). So we only need to prove

$$\begin{aligned} J(u(t))>0\hbox { for all }t\in [0,T)\Rightarrow I(u_0)>0. \end{aligned}$$

Since \(I(u_0)\ne 0\), if \(I(u_0)<0\), then together with \(J(u_0)=d\) and Theorem 5, we have \(\lim _{t\rightarrow T}J(u(t))=-\infty \). By the continuity of J(u(t)) with respect to t, we know there exists a \(t_0\) such that \(J(u(t_0))<0\), which contradicts \(J(u(t))>0\) for all \(t\in [0,T)\) and our proof is complete. \(\square \)

Proof of Theorem 7

(1) By the definition of d in (2.4), N in (2.5) and (2.3), we get

$$\begin{aligned} d=\inf _{u\in N}J(u)=\inf _{u\in N}\left[ \frac{(p-2)a}{2p}\Vert u\Vert _Z^2+\frac{(p-2\theta )b}{2\theta p}\Vert u\Vert _Z^{2\theta }+\frac{1}{p^2}\Vert u\Vert _p^p\right] . \end{aligned}$$

Then a minimizing sequence \(\{u_k\}_{k=1}^{\infty }\subset N\) exists such that

$$\begin{aligned} \lim _{k\rightarrow \infty }J(u_k)=\lim _{k\rightarrow \infty } \left[ \frac{(p-2)a}{2p}\Vert u_k\Vert _Z^2+\frac{(p-2\theta )b}{2\theta p}\Vert u_k\Vert _Z^{2\theta }+\frac{1}{p^2}\Vert u_k\Vert _p^p\right] =d.\nonumber \\ \end{aligned}$$
(4.72)

Since \(p\in (2\theta ,2_s^*)\), (4.72) ensures that \(\{u_k\}_{k=1}^{\infty }\) is bounded in Z, i.e., there exists a constant \(\vartheta \) independent of k such that

$$\begin{aligned} \Vert u_k\Vert _Z\le \vartheta ,\ \ k=1,2,\ldots , \end{aligned}$$
(4.73)

which, together with Z is reflexive, implies there exists a subsequence of \(\{u_k\}_{k=1}^{\infty }\), still denoted by \(\{u_k\}_{k=1}^{\infty }\), and a \(v_0\) such that

$$\begin{aligned} u_k\rightharpoonup v_0 \ \hbox { weakly in }Z\ \hbox { as }k\rightarrow \infty . \end{aligned}$$
(4.74)

Moreover, by Lemma 2, we have

$$\begin{aligned} u_k\rightarrow v_0 \ \hbox { strongly in }L^p(\Omega )\ \hbox { as }k\rightarrow \infty . \end{aligned}$$
(4.75)

Since (4.73) holds, similar to the proof (4.11), there exists a positive constant \(C_\chi \) independent of k such that

$$\begin{aligned} \mathop \int \limits _\Omega ||u_k|^{p-2}u_k\log |u_k||^{\frac{p}{p-1}}\le C_\chi . \end{aligned}$$
(4.76)

In view of (4.75) and (4.76), similar to get (4.18), there exists a subsequence of \(\{u_k\}_{k=1}^{\infty }\), still denoted by \(\{u_k\}_{k=1}^{\infty }\) such that

$$\begin{aligned} |u_k|^{p-2}u_k\log |u_k|\rightharpoonup |v_0|^{p-2}v_0\log |v_0|\hbox { weakly in }L^{\frac{p}{p-1}}(\Omega )\hbox { as }k\rightarrow \infty . \end{aligned}$$
(4.77)

Similar to the proof of (4.22), by (4.75) and (4.77), we have, as \(k\rightarrow \infty \),

$$\begin{aligned} \begin{aligned}&\left| \mathop \int \limits _\Omega |u_k|^p\log |u_k|dx-\mathop \int \limits _\Omega |v_0|^p\log |v_0|dx\right| \\&\quad \le \root \frac{p}{p-1} \of {C_\chi }\Vert u_k-v_0\Vert _p\\&\qquad +\left| \mathop \int \limits _\Omega v_0 \left( |u_k|^{p-2}u_k\log |u_k|-|v_0|^{p-2}v_0\log |v_0|\right) dx\right| \\&\quad \rightarrow 0. \end{aligned} \end{aligned}$$
(4.78)

Since \(\{u_k\}_{k=1}^{\infty }\in N\), by the definition of N in (2.5), we get

$$\begin{aligned} a\Vert u_k\Vert _Z^2+b\Vert u_k\Vert _Z^{2\theta }=\mathop \int \limits _\Omega |u_k|^p\log |u_k|dx, \end{aligned}$$

which, together with \(\Vert \cdot \Vert _Z\) is weakly lower semi-continuous, (4.74) and (4.78), implies

$$\begin{aligned} \begin{aligned} a\Vert v_0\Vert _Z^2+b\Vert v_0\Vert _Z^{2\theta }&\le \liminf _{k\rightarrow \infty } (a\Vert u_k\Vert _Z^2+b\Vert u_k\Vert _Z^{2\theta })\\&=\lim _{k\rightarrow \infty }\mathop \int \limits _\Omega |u_k|^p\log |u_k|dx\\&=\mathop \int \limits _\Omega |v_0|^p\log |v_0|dx. \end{aligned} \end{aligned}$$
(4.79)

Next, we claim that \(I(v_0)=a\Vert v_0\Vert _Z^2+b\Vert v_0\Vert _Z^{2\theta }-\mathop \int \limits _\Omega |v_0|^p\log |v_0|dx=0\). Indeed, if the claim is not true, then by (4.79), we get \(a\Vert v_0\Vert _Z^2+b\Vert v_0\Vert _Z^{2\theta }<\mathop \int \limits _\Omega |v_0|^p\log |v_0|dx\). Obviously, we have \(v_0\ne 0\). Then by Lemma 6, there exists a \(\lambda ^*\in (0,1)\) such that \(\lambda ^*v_0\in N\).

By (4.72), the first inequality of (4.79) and (4.75), we get

$$\begin{aligned} \begin{aligned} d&=\lim _{k\rightarrow \infty }\left[ \frac{(p-2)a}{2p}\Vert u_k\Vert _Z^2 +\frac{(p-2\theta )b}{2\theta p}\Vert u_k\Vert _Z^{2\theta }+\frac{1}{p^2}\Vert u_k\Vert _p^p\right] \\&\ge \frac{p-2}{2p}\liminf _{k\rightarrow \infty }a\Vert u_k\Vert _Z^2 +\frac{p-2\theta }{2\theta p}\liminf _{k\rightarrow \infty }b\Vert u_k\Vert _Z^{2\theta } +\frac{1}{p^2}\liminf _{k\rightarrow \infty }\Vert u_k\Vert _p^p\\&\ge \frac{(p-2)a}{2p}\Vert v_0\Vert _Z^2+\frac{(p-2\theta )b}{2\theta p}\Vert v_0\Vert _Z^{2\theta }+\frac{1}{p^2}\Vert v_0\Vert _p^p. \end{aligned} \end{aligned}$$

Then by \(I(\lambda ^*v_0)=0\), \(\lambda ^*\in (0,1)\), we obtain

$$\begin{aligned} \begin{aligned} J(\lambda ^*v_0)&=\frac{(p-2)a}{2p}{\lambda ^*}^2\Vert v_0\Vert _Z^2 +\frac{(p-2\theta )b}{2\theta p}{\lambda ^*}^{2\theta }\Vert v_0\Vert _Z^{2\theta } +\frac{{\lambda ^*}^p}{p^2}\Vert v_0\Vert _p^p\\&<\frac{(p-2)a}{2p}\Vert v_0\Vert _Z^2+\frac{(p-2\theta )b}{2\theta p}\Vert v_0\Vert _Z^{2\theta } +\frac{1}{p^2}\Vert v_0\Vert _p^p\\&\le d. \end{aligned} \end{aligned}$$

However, since \(\lambda ^*v_0\in N\), it follows from the definition of d in (2.4) that \(J(\lambda ^*v_0)\ge d\), a contradiction. So the claim holds and we get from (4.79) that

$$\begin{aligned} \lim _{k\rightarrow \infty }\Vert u_k\Vert _Z=\Vert v_0\Vert _Z, \end{aligned}$$

which, together with Z is uniformly convex and (4.74), implies

$$\begin{aligned} u_k\rightarrow v_0\hbox { strongly in }Z\hbox { as }k\rightarrow \infty . \end{aligned}$$

Then by (2.3) and (4.72), we get

$$\begin{aligned} \begin{aligned} J(v_0)&=\frac{(p-2)a}{2p}\Vert v_0\Vert _Z^2+\frac{(p-2\theta )b}{2\theta p}\Vert v_0\Vert _Z^{2\theta } +\frac{1}{p^2}\Vert v_0\Vert _p^p\\&=\lim _{k\rightarrow \infty }\left[ \frac{(p-2)a}{2p}\Vert u_k\Vert _Z^2+\frac{(p-2\theta )b}{2\theta p}\Vert u_k\Vert _Z^{2\theta }+\frac{1}{p^2}\Vert u_k\Vert _p^p\right] \\&=d, \end{aligned} \end{aligned}$$

which implies \(v_0\ne 0\). Then by \(I(v_0)=0\), we get \(v_0\in N\) and \(d=J(v_0)=\inf _{u\in N}J(u)\).

(2) Finally, we prove \(v_0\) is a ground-state solution of problem (2.19). That is, \(v_0\in \Gamma \setminus \{0\}\) and

$$\begin{aligned} J(v_0)=\inf _{u\in \Gamma \setminus \{0\}}J(u), \end{aligned}$$
(4.80)

where \(\Gamma \) is defined in (2.20).

In fact, by conclusion (1) and the definition of N in (2.5) we know that

$$\begin{aligned} v_0\in N=\{u\in Z\setminus \{0\}:\langle J'(u),u\rangle =I(u)=0\} \end{aligned}$$

and

$$\begin{aligned} J(v_0)=d=\inf _{u\in N}J(u). \end{aligned}$$
(4.81)

Therefore, \(v_0\ne 0\), and by the theory of Lagrange multipliers, there exists a constant \(\mu \in {\mathbb {R}}\) such that

$$\begin{aligned} J'(v_0)-\mu I'(v_0)=0. \end{aligned}$$
(4.82)

Then

$$\begin{aligned} \mu \langle I'(v_0),v_0\rangle =\langle J'(v_0),v_0\rangle =I(v_0)=0. \end{aligned}$$
(4.83)

On the other hand, for any \(u\in Z\), we can deduce

$$\begin{aligned}\begin{aligned} \langle I'(v_0),u\rangle&=\frac{d}{d\tau }I(v_0+\tau u)\bigg |_{\tau =0}\\&=\frac{d}{d\tau }\left[ a\Vert v_0+\tau u\Vert _Z^2+b\Vert v_0+\tau u\Vert _Z^{2\theta }\right. \\&\quad \left. -\mathop \int \limits _\Omega |v_0+\tau u|^p\log |v_0+\tau u|dx\right] \bigg |_{\tau =0}\\&=2a\langle v_0,u\rangle _Z+2\theta b\Vert v_0\Vert _Z^{2\theta -2}\langle v_0,u\rangle _Z\\&\quad -\mathop \int \limits _\Omega \left[ p|v_0|^{p-2}v_0u\log |v_0|+|v_0|^{p-2}v_0u\right] dx, \end{aligned} \end{aligned}$$

which implies

$$\begin{aligned} \langle I'(v_0),v_0\rangle =2a\Vert v_0\Vert _Z^2+2\theta b\Vert v_0\Vert _Z^{2\theta }-\mathop \int \limits _\Omega \left[ p|v_0|^p\log |v_0|+|v_0|^p\right] dx. \end{aligned}$$

Since \(I(v_0)=0\), we get from (2.2) that \(a\Vert v_0\Vert _Z^2+b\Vert v_0\Vert _Z^{2\theta }=\mathop \int \limits _\Omega |v_0|^p\log |v_0|dx\). Then it follows from the above equality, \(v_0\ne 0\), and \(p\in (2\theta ,2_s^*)\) that

$$\begin{aligned} \langle I'(v_0),v_0\rangle =2a\Vert v_0\Vert _Z^2+2\theta b\Vert v_0\Vert _Z^{2\theta }-ap\Vert v_0\Vert _Z^2-bp\Vert v_0\Vert _Z^{2\theta }-\Vert v_0\Vert _p^p<0, \end{aligned}$$

which, together with (4.83), implies \(\mu =0\). Then we get from (4.82) that \(J'(v_0)=0\), so \(v_0\in \Gamma \setminus \{0\}\). Furthermore, by (4.81) and \(\Gamma \setminus \{0\}\subset N\), we get (4.80). \(\square \)

Proof of Theorem 8

Let \(u=u(t)\) be a global solution of problem (1.1). Without loss of generality, we may assume that

$$\begin{aligned} 0\le J(u(t))\le J(u_0),\ \ t\in [0,\infty ). \end{aligned}$$
(4.84)

Indeed, the second inequality follows from (2.12). Now we prove the first inequality by contradiction argument. If there is a \(t_0\in [0,\infty )\) such that \(J(u(t_0))<0\), then by (2.3) we have \(I(u(t_0))<0\), so it follows from Theorem 2 that u(t) blows up in finite time, which contradicts the assumption that u(t) is global.

Since \(J(u(t))\in [0,J(u_0)]\), so there must exist a subsequence \(\{t_m\}_{m=1}^\infty \) and a constant \(c\in [0,J(u_0)]\) such that

$$\begin{aligned} \lim _{t_m\rightarrow \infty }J(u(t_m))=c. \end{aligned}$$

By (2.12), we have

$$\begin{aligned} \mathop \int \limits _0^{t_m}\Vert u_\tau \Vert _2^2d\tau +J(u(t_m))\le J(u_0). \end{aligned}$$

Letting \(t_m\rightarrow \infty \) in the above inequality, we get

$$\begin{aligned} \mathop \int \limits _0^\infty \Vert u_\tau \Vert _2^2d\tau \le J(u_0)-c\le J(u_0), \end{aligned}$$

which implies there is an increasing sequence \(\{t_k\}_{k=1}^\infty \) with \(t_k\rightarrow \infty \) as \(k\rightarrow \infty \) satisfying

$$\begin{aligned} \lim _{k\rightarrow \infty }\Vert u_t(t_k)\Vert _2=0. \end{aligned}$$
(4.85)

By the definition of J in (2.1) and (2.11), for any \(\psi \in Z\), we have

$$\begin{aligned} \begin{aligned} \langle J'(u(t)),\psi \rangle&=\frac{d}{d\tau }J(u(t)+\tau \psi )\bigg |_{\tau =0}\\&=a\langle u,\psi \rangle _Z+b\Vert u\Vert _Z^{2\theta -2}\langle u,\psi \rangle _Z -\mathop \int \limits _\Omega |u|^{p-2}u\psi \log |u|dx\\&=-\mathop \int \limits _\Omega u_t\psi dx, \end{aligned} \end{aligned}$$

which, together with (4.85), implies

$$\begin{aligned} \Vert J'(u(t_k))\Vert _{Z'}= & {} \sup _{\Vert \psi \Vert _Z\le 1}|\langle J'(u(t_k)),\psi \rangle |\nonumber \\\le & {} \sup _{\Vert \psi \Vert _Z\le 1}\Vert u_t(t_k)\Vert _2\Vert \psi \Vert _2\nonumber \\\le & {} \frac{1}{\sqrt{\lambda _1}}\sup _{\Vert \psi \Vert _Z\le 1}\Vert u_t(t_k)\Vert _2\Vert \psi \Vert _Z\nonumber \\\le & {} \frac{1}{\sqrt{\lambda _1}}\Vert u_t(t_k)\Vert _2\nonumber \\\rightarrow & {} 0 \end{aligned}$$
(4.86)

as \(k\rightarrow \infty \), where \(\lambda _1\) is the first eigenvalue of problem (1.9).

By (2.2) and (4.86), there exists a positive constant \(\sigma \) such that

$$\begin{aligned} \begin{aligned} \frac{1}{p}|I(u(t_k))|&=\frac{1}{p}|\langle J'(u(t_k)),u(t_k)\rangle |\\&\le \frac{1}{p}\Vert J'(u(t_k))\Vert _{Z'}\Vert u(t_k)\Vert _Z\\&\le \sigma \Vert u(t_k)\Vert _Z. \end{aligned} \end{aligned}$$

Then it follows from (2.1), (2.2), (4.84) and \(p\in (2\theta ,2_s^*)\) that

$$\begin{aligned} \begin{aligned} J(u_0)+\sigma \Vert u(t_k)\Vert _Z&\ge J(u(t_k))-\frac{1}{p}I(u(t_k))\\&=\frac{(p-2)a}{2p}\Vert u(t_k)\Vert _Z^2+\frac{(p-2\theta )b}{2\theta p}\Vert u(t_k)\Vert _Z^{2\theta }+\frac{1}{p^2}\Vert u(t_k)\Vert _p^p\\&\ge \frac{(p-2\theta )b}{2\theta p}\Vert u(t_k)\Vert _Z^{2\theta }, \end{aligned} \end{aligned}$$

which implies there exists a positive constant L independent of k such that

$$\begin{aligned} \Vert u(t_k)\Vert _Z\le L,\ \ k=1,2,\ldots \end{aligned}$$
(4.87)

Indeed, if \(\Vert u(t_k)\Vert _Z\) is unbounded, then there must be a \({\tilde{t}}_k\) such that \(\Vert u({\tilde{t}}_k)\Vert _Z\rightarrow \infty \), which, together with \(\theta \in \left[ 1,\frac{2_s^*}{2}\right) \) and \(p>2\theta \), implies

$$\begin{aligned} J(u_0)+\sigma \Vert u({\tilde{t}}_k)\Vert _Z-\frac{(p-2\theta )b}{2\theta p}\Vert u({\tilde{t}}_k)\Vert _Z^{2\theta }<0, \end{aligned}$$

a contradiction.

Then by similar arguments as to get (4.74) and (4.75), there exists an increasing subsequence of the sequence \(\{t_k\}_{k=1}^\infty \), still denoted by \(\{t_k\}_{k=1}^\infty \), and a \(u^*\in Z\) such that \(u_k:=u(t_k)\) satisfies

$$\begin{aligned} u_k\rightharpoonup u^*\hbox { weakly in }Z\hbox { as }k\rightarrow \infty , \end{aligned}$$
(4.88)

and

$$\begin{aligned} u_k\rightarrow u^*\hbox { strongly in }L^p(\Omega )\hbox { as }k\rightarrow \infty . \end{aligned}$$
(4.89)

By the definition of J in (2.1) and (1.7) we obtain

$$\begin{aligned} \begin{aligned}&\langle J'(u_k),u_k-u^*\rangle \\&\quad =\frac{d}{d\tau }J(u_k+\tau (u_k-u^*))\bigg |_{\tau =0}\\&\quad =\frac{d}{d\tau }\left[ \frac{a}{2}\Vert u_k+\tau (u_k-u^*)\Vert _Z^2 +\frac{b}{2\theta }\Vert u_k+\tau (u_k-u^*)\Vert _Z^{2\theta }\right] \bigg |_{\tau =0}\\&\qquad -\frac{d}{d\tau }\left[ \frac{1}{p}\mathop \int \limits _\Omega |u_k+\tau (u_k-u^*)|^p \log |u_k+\tau (u_k-u^*)|dx\right. \\&\qquad \left. -\frac{1}{p^2}\Vert u_k+\tau (u_k-u^*)\Vert _p^p\right] \bigg |_{\tau =0}\\&\quad =(a+b\Vert u_k\Vert _Z^{2\theta -2})\langle u_k,u_k-u^*\rangle _Z-\mathop \int \limits _\Omega |u_k|^{p-2}u_k(u_k-u^*)\log |u_k|dx. \end{aligned} \end{aligned}$$
(4.90)

Similarly, we have

$$\begin{aligned} \langle J'(u^*),u_k-u^*\rangle= & {} (a+b\Vert u^*\Vert _Z^{2\theta -2})\langle u^*,u_k-u^*\rangle _Z\nonumber \\&-\mathop \int \limits _\Omega |u^*|^{p-2}u^*(u_k-u^*)\log |u^*|dx. \end{aligned}$$
(4.91)

So, we can get

$$\begin{aligned} \begin{aligned} \langle J'(u_k)-J'(u^*),u_k-u^*\rangle&=a\Vert u_k-u^*\Vert _Z^2+b\langle \Vert u_k\Vert _Z^{2\theta -2} u_k\\&\quad -\Vert u^*\Vert _Z^{2\theta -2}u^*,u_k-u^*\rangle _Z+\rho \\&\ge C_{\theta ,b}\Vert u_k-u^*\Vert _Z^{2\theta }+\rho , \end{aligned} \end{aligned}$$
(4.92)

where \(C_{\theta ,b}\) is a positive constant independent of k and

$$\begin{aligned} \rho :=\mathop \int \limits _\Omega |u^*|^{p-2}u^*(u_k-u^*)\log |u^*|-|u_k|^{p-2}u_k(u_k-u^*)\log |u_k|dx. \end{aligned}$$

According to (4.87), then similar to the proof of (4.11), we have

$$\begin{aligned} \Vert |u_k|^{p-1}\log |u_k|\Vert _{\frac{p}{p-1}}\le C_L, \end{aligned}$$
(4.93)

where \(C_L\) is a positive constant independent of k.

Therefore, by Hölder’s inequality, (4.89) and (4.93), we have

$$\begin{aligned} \begin{aligned} |\rho |&\le \left( \Vert |u^*|^{p-1}\log |u^*|\Vert _{\frac{p}{p-1}}+\Vert |u_k|^{p-1} \log |u_k|\Vert _{\frac{p}{p-1}}\right) \Vert u_k-u^*\Vert _p\\&\le \left( \Vert |u^*|^{p-1}\log |u^*|\Vert _{\frac{p}{p-1}}+C_L\right) \Vert u_k-u^*\Vert _p\\&\rightarrow 0 \end{aligned} \end{aligned}$$
(4.94)

as \(k\rightarrow \infty \). By (4.88), (4.89) and (4.91), we get

$$\begin{aligned} \langle J'(u^*),u_k-u^*\rangle \rightarrow 0 \end{aligned}$$
(4.95)

as \(k\rightarrow \infty \). By (4.86) and (4.87), we have

$$\begin{aligned} \begin{aligned} |\langle J'(u_k),u_k-u^*\rangle |&\le \Vert J'(u_k)\Vert _{Z'}(\Vert u_k\Vert _Z+\Vert u^*\Vert _Z)\\&\le (L+\Vert u^*\Vert _Z)\Vert J'(u_k)\Vert _{Z'}\\&\rightarrow 0 \end{aligned} \end{aligned}$$
(4.96)

as \(k\rightarrow \infty \).

Then it follows from (4.92), (4.94), (4.95) and (4.96) that

$$\begin{aligned} \begin{aligned} C_{\theta ,b}\Vert u_k-u^*\Vert _Z^{2\theta }&\le \langle J'(u_k)-J'(u^*),u_k-u^*\rangle -\rho \\&\rightarrow 0 \end{aligned} \end{aligned}$$

as \(k\rightarrow \infty \). Then we get

$$\begin{aligned} J'(u^*)=\lim _{k\rightarrow \infty }J'(u_k) \end{aligned}$$

in \(Z'\), which, together with (4.86), implies \(J'(u^*)=0\), i.e., \(u^*\in \Gamma \). \(\square \)