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Abstract
In this paper, we study the following parabolic problem of Kirchhoff type with loga-
rithmic nonlinearity:

⎧
⎨

⎩

ut + M([u]2s )LK u = |u|p−2u log |u|, in � × (0,+∞),

u(x, t) = 0, in (RN \ �) × (0,+∞),

u(x, 0) = u0(x), in �,

where [u]s is the Gagliardo seminorm of u, � ⊂ R
N is a bounded domain with Lip-

schitz boundary, 0 < s < 1, LK is a nonlocal integro-differential operator defined
in (1.2), which generalizes the fractional Laplace operator (−�)s , u0 is the initial
function, and M : [0,+∞) → [0,+∞) is continuous. Let J (u0) be the initial energy
(see (2.1) for the definition of J ), d > 0 be the mountain-pass level given in (2.4), and
M̃ ∈ (0, d]be the constant defined in (2.6). Firstly,weget the conditions onglobal exis-
tence andfinite timeblow-up for J (u0) ≤ d. Thenwe study the lower andupper bounds
of blow-up time to blow-up solutions under some appropriate conditions. Secondly,
for J (u0) ≤ M̃ , the growth rate of the solution is got.Moreover, we give some blow-up
conditions independent ofd and study the upper boundof the blow-up time.Thirdly, the
behavior of the energy functional as t → T is also discussed, where T is the blow-up
time. In addition, for J (u0) ≤ d, we give some equivalent conditions for the solutions
blowing up in finite time or existing globally. Finally, we consider the existence of
ground state solutions and the asymptotical behavior of the general global solution.
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1 Introduction

In this paper, we study the global existence and blow-up phenomena for the following
fractional Kirchhoff-type parabolic problem with logarithmic nonlinearity:

⎧
⎨

⎩

ut + M([u]2s )LK u = |u|p−2u log |u|, x ∈ �, t > 0,
u(x, t) = 0, x ∈ (RN \ �), t > 0,
u(x, 0) = u0(x), x ∈ �,

(1.1)

where

[u]2s :=
∫∫

R2N

|u(x, t) − u(y, t)|2K (x − y)dxdy,

� ⊂ R
N is a bounded domain with Lipschitz boundary ∂�, LK is a nonlocal integro-

differential operator, which is defined by

LKϕ(x) := 1

2

∫

RN

(2ϕ(x) − ϕ(x + y) − ϕ(x − y))K (y)dy, ∀ϕ ∈ C∞
0 (RN ).

(1.2)

Here, K : RN \ {0} → R
+ is a function with the following properties:

(k1) γ K ∈ L1(RN ), with γ (x) := min{|x |2, 1};
(k2) there exists K0 > 0 such that K (x) ≥ K0|x |−N−2s for all x ∈ R

N \ {0}.
Furthermore, we make the following assumptions:

(M1) 0 < s < 1, M(τ ) := a+ bτ θ−1 for τ ∈ R
+
0 := [0,+∞) (a ≥ 0, b > 0 are two

constants), θ ∈ [
1, 2∗

s /2
)
, p ∈ (2θ, 2∗

s ). Here,

2∗
s :=

⎧
⎨

⎩

2N

N − 2s
, if 2s < N ;

∞, if 2s ≥ N .

In the past few decades, more and more attention has been devoted to the study of
Kirchhoff type problems. More specifically, Kirchhoff in 1883 proposed the following
Kirchhoff model

ρ
∂2u

∂t2
−

⎛

⎝
P0
h

+ E

2L

L∫

0

∣
∣
∣
∣
∂u(x)

∂x

∣
∣
∣
∣

2

dx

⎞

⎠
∂2u

∂x2
= 0,

which was as a generalization of the well-known D’Alembert wave equation for free
vibrations of elastic strings, where the above constants have the following meanings:
L is the length of the string, h is the area of the cross-section, E is the Young modulus
of the material, ρ is the mass density and P0 is the initial tension.
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It is worth mentioning that the above equation received much attention after the
work of Lions [24], where a functional analysis framework was proposed for the
following higher dimension problem in presence of an external force term f :

∂2u

∂t2
−

⎛

⎝a + b
∫

�

|∇u(x)|2dx
⎞

⎠�u = f (x, u),

where � denotes the Euclidean Laplace operator.
Recently, in [14], Han and Li studied the following initial boundary value problem

for a class of Kirchhoff type parabolic equation with a nonlinear term
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ut − M

⎛

⎝

∫

�

|∇u|2dx
⎞

⎠�u = |u|q−1u, (x, t) ∈ � × (0, T ),

u = 0, (x, t) ∈ ∂� × (0, T ),

u(x, 0) = u0(x), x ∈ �.

(1.3)

Here the diffusion coefficient M(τ ) = a+bτ with the parameters a, b being positive,
� ⊂ R

N (N ≥ 1) is a bound domainwith smooth boundary ∂�, 3 < q ≤ 2∗−1,where
2∗ is the Sobolev conjugate of 2. By using the potential well theory and variational
methods, the authors obtained the global existence and finite time blow-up of solutions
when the initial energy was subcritical, critical and supercritical. After this work, in
[15], the authors investigated the upper and lower bounds of blow-up time to the
blow-up solutions of problem (1.3).

It is well known that many mathematical models involving fractional and nonlocal
operators are actively studied in recent years. More precisely, this type of operators
arises in a quite natural way in many applications, such as finance, physics, fluid
dynamics, population dynamics, image processing,minimal surfaces and game theory.
As for the researchmotivation,wewould like to point out thatApplebaum in [1] viewed
the fractional Laplacian operators of the form (−�)s as the infinitesimal generators
of stable radially symmetric Lévy processes. Laskin in [19] deduced the fractional
Schrödinger equation as a result of expanding the Feynman path integral, from the
Brownian-like to the Lévy-like quantum mechanical paths. In particular, we would
like to point out that (−�)s can be reduced to the classical Laplace operator −� as
s → 1−, see [9] for more details. For more recent results involving the fractional
Laplacian, interested readers may refer to, for example, [2,3,9,11,18,26,36] and the
references therein.

In particular, in [32], the authors studied the following parabolic equations of Kirch-
hoff type involving the fractional Laplacian:

⎧
⎨

⎩

∂t u + M([u]2s )LK u = |u|p−2u, in � × (0,+∞),

u(x, t) = 0, in (RN \ �) × (0,+∞),

u(x, 0) = u0(x), in �.

By using the Galerkinmethod and differential inequality technique, the local existence
of weak solutions and the conditions on blow-up were studied.
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In recent years, logarithmic nonlinearity appears frequently in partial differential
equations which describes important physical phenomena (see [5,6,10,12,16,17,25,
29,42]) and the references therein). Especially, in the classical case, Chen and Tian
[5] studied the following semilinear pseudo-parabolic equation with logarithmic non-
linearity:

ut − �ut − �u = u log |u| (1.4)

in a bounded domain � ⊂ R
N (N ≥ 1) with zero Dirichlet boundary condition. By

using the logarithmic Sobolev inequality (see [7,8,21]), they studied the existence of
global solution, blow-up at ∞ and behavior of vacuum isolation of the solutions, and
they also compared the difference between logarithmic nonlinearity and polynomial
nonlinearity.

Inspired by the above works, in the present article we consider model (1.1). To
our best knowledge, this is the first attempt to study the properties of the solutions
for Kirchhoff-type equation with logarithmic nonlinearity. In this paper, we mainly
discuss the properties of global existence and finite time blow-up for the solutions of
problem (1.1)when the initial energy is subcritical and critical by potentialwellmethod
which was established by Payne and Sattinger [27] and the concavity method which
was established by Levine [22,23], see also [12,13,33–35,40,41,43] and references
therein for more applications of these two methods. Furthermore, we also obtain the
growth estimates of blow-up solutions.Moreover, the blow-up conditions independent
of mountain-pass level are also investigated. In particular, under some appropriate
conditions, we obtain the upper and lower bounds of blow-up time to blow-up solutions
of problem (1.1). Finally, we consider the ground state solutions for the stationary
problem. Here we say the initial energy is subcritical and critical if J (u0) < d and
J (u0) = d are satisfied respectively, where J (u0) denotes the initial energy defined
in (2.1) and d > 0 is the mountain-pass level defined in (2.4). We remark that to
handle the logarithmic nonlinear term of problem (1.1), we use some other methods
instead of logarithmic Sobolev inequality, which is a key inequality to get the results
in [4–6,20,21,38].

Throughout this paper, we denote by (·, ·) the L2(�)-inner product, i.e.

(φ, ϕ) =
∫

�

φ(x)ϕ(x)dx, ∀φ, ϕ ∈ L2(�).

We also denote the norm of Lγ (�) for 1 ≤ γ ≤ ∞ by ‖ · ‖γ . That is, for any
u ∈ Lγ (�),

‖u‖γ =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎛

⎝

∫

�

|u(x)|γ dx
⎞

⎠

1
γ

, if 1 ≤ γ < ∞;

ess sup
x∈�

|u(x)|, if γ = ∞.
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Now we recall some necessary properties of fractional Sobolev spaces which will
be used later. Let X be the linear space of Lebesgue measurable function u : RN → R

whose restrictions to � belong to L2(�) and such that

the map (x, y) �→ |u(x) − u(y)|2K (x − y) is in L1(Q, dxdy),

where Q = R
2N \ (C� × C�) and C� = R

N \ �. The space X is endowed with the
norm

‖ϕ‖X =
⎛

⎜
⎝‖ϕ‖22 +

∫∫

Q
|u(x) − u(y)|2K (x − y)dxdy

⎞

⎟
⎠

1
2

, (1.5)

for all ϕ ∈ X . We observe that bounded and Lipschitz functions belong to X , thus X
is not reduced to {0}.

The functional space Z denotes the closure of C∞
0 (�) in X . The scalar product

defined for any ϕ, ψ ∈ Z as

〈ϕ,ψ〉Z =
∫∫

Q
(ϕ(x) − ϕ(y))(ψ(x) − ψ(y))K (x − y)dxdy, (1.6)

makes Z a Hilbert space. The norm

‖ϕ‖Z =
⎛

⎜
⎝

∫∫

Q
|ϕ(x) − ϕ(y)|2K (x − y)dxdy

⎞

⎟
⎠

1
2

(1.7)

is equivalent to the usual norm defined in (1.5). Note that in (1.5)–(1.7) the integrals
can be extended to R

2N , since u = 0 a.e. in C�. By Lemma 6 of [28] and (k1), the
Hilbert space Z = (Z , ‖ · ‖Z ) is continuously embedded in Lr (�) for any r ∈ [1, 2∗

s ].
Hence there exists Cr > 0 such that

‖u‖r ≤ Cr‖u‖Z for all u ∈ Z and r ∈ [1, 2∗
s ]. (1.8)

Next, we consider the eigenvalue of the operator LK with homogeneous Dirichlet
boundary data, namely the eigenvalue of the the problem (see [32])

{−LK u = λu, in �;
u = 0, in RN \ �,

(1.9)

we denote by λ1 the first eigenvalue of problem (1.9), i.e.

λ1 = inf
u∈Z\{0}

‖u‖2Z
‖u‖22

∈ (0,∞). (1.10)
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The rest of this paper is organized as follows. In Sect. 2, we state the main results
of this paper. In Sect. 3, we give some important lemmas, which will be used in the
proof of the main results. In Sect. 4, we give the proof of the main results.

2 Main Results

In this section, we will give the main results of this paper and we always assume (M1)

holds. The energy functional J and the Nehari functional I are as follows:

J (u) := a

2
‖u‖2Z + b

2θ
‖u‖2θZ − 1

p

∫

�

|u|p log |u|dx + 1

p2
‖u‖p

p, (2.1)

and

I (u) := 〈J ′(u), u〉 = a‖u‖2Z + b‖u‖2θZ −
∫

�

|u|p log |u|dx, (2.2)

where 〈·, ·〉 denotes the dual pairing between Z and Z ′.
By (M1), we know that 2 < p < 2∗

s . Let 
 := 2∗
s − p > 0. Since log (|u|
) ≤ |u|
,

it follows from (1.8) that

∫

�

|u|p log |u|dx = 1




∫

�

|u|p log (|u|
) dx ≤ 1




∫

�

|u|p+
dx ≤ 1




(
C2∗

s
‖u‖Z

)2∗
s

and ‖u‖p ≤ Cp‖u‖Z . So J and I are well-defined for u ∈ Z .
Obviously, from (2.1) and (2.2), we have

J (u) = 1

p
I (u) + (p − 2)a

2p
‖u‖2Z + (p − 2θ)b

2θ p
‖u‖2θZ + 1

p2
‖u‖p

p. (2.3)

Let

d := inf
u∈N J (u) (2.4)

denote the mountain-pass level, where N is the Nehari manifold, which is defined by

N := {u ∈ Z \ {0} | I (u) = 0}. (2.5)

By Lemma 5, we know that d satisfies

d ≥ M̃ := aθr2∗ (p − 2) + br2θ∗ (p − 2θ)

2θ p
, (2.6)

where r∗ is a positive constant defined in (3.6) of Lemma 4.
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Moreover, we define

N+ := {u ∈ Z | I (u) > 0} , (2.7)

N− := {u ∈ Z | I (u) < 0} . (2.8)

Finally, the potential well W and its corresponding set V are defined by

W := {u ∈ Z | I (u) > 0, J (u) < d} ∪ {0}, (2.9)

V := {u ∈ Z | I (u) < 0, J (u) < d}. (2.10)

To state the main results succinctly, we need the following two definitions.

Definition 1 (Weak solution) A function u = u(t) ∈ L∞(0, T ; Z) is called a weak
solution of problem (1.1), if ut ∈ L2(0, T ; L2(�)) and the following equality holds

∫

�

utφdx +
(
a + b‖u‖2θ−2

Z

) ∫∫

Q
(u(x, t) − u(y, t))(φ(x) − φ(y))K (x − y)dxdy

=
∫

�

|u|p−2u log |u|φdx
(2.11)

for all φ ∈ Z . Moreover, the following inequality

t∫

0

‖uτ‖22dτ + J (u(t)) ≤ J (u0) (2.12)

holds for a.e. t ∈ (0, T ).

Definition 2 (Maximal existence time) Let u = u(t) be a weak solution of problem
(1.1). We define the maximal existence time T of u as follows:

(1) If u exists for all 0 ≤ t < ∞, then T = ∞;
(2) If there exists a t0 ∈ (0,∞) such that u exists for 0 ≤ t < t0, but doesn’t exist at

t = t0, then T = t0.

Based on the above preparations, the main results of this paper are as follows. The
first result is about global existence.

Theorem 1 Let (M1) hold, u0 ∈ Z. Assume that J (u0) < d and I (u0) > 0.
Then problem (1.1) admits a global weak solution u(t) ∈ L∞(0,∞; Z) with
ut ∈ L2(0,∞; L2(�)) and u(t) ∈ W for 0 ≤ t < ∞. Furthermore, the weak
solution is unique if it is bounded. Moreover, for any ε ∈ (0, 2∗

s − p], if J (u0) < d(ε),
then

‖u‖22 ≤ F(ε) :=
⎧
⎨

⎩

‖u0‖22e−Cε t , if θ = 1,
(
Cε(θ − 1)t + ‖u0‖2−2θ

2

)− 1
θ−1

, if θ ∈
(
1, 2∗

s
2

)
,
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where

d(ε) := (p − 2θ)br2θ (ε)

2θ p
≤ d,

Cε := 2λθ
1

⎡

⎣b − C p+ε∗
ε

(
2θ pJ (u0)

(p − 2θ)b

) p+ε−2θ
2θ

⎤

⎦ > 0.

Here λ1, r(ε) and C∗ are defined in (1.10), (3.2) and (3.3) respectively.

Remark 1 We show that d(ε) ≤ d. In fact, for any u ∈ N . By (2) of Lemma 3, we get
‖u‖Z > r(ε). Then it follows from from (2.3) that

J (u) = 1

p
I (u) + (p − 2)a

2p
‖u‖2Z + (p − 2θ)b

2θ p
‖u‖2θZ + 1

p2
‖u‖p

p

≥ (p − 2θ)b

2θ p
‖u‖2θZ ≥ (p − 2θ)br2θ (ε)

2θ p
= d(ε).

Then by the definition of d in (2.4), we get d(ε) ≤ d.

By using Theorem 1, we get the following corollary:

Corollary 1 Let (M1) hold, u0 ∈ Z. Assume that J (u0) ≤ d and I (u0) ≥ 0.
Then problem (1.1) admits a global weak solution u(t) ∈ L∞(0,∞; Z) with
ut ∈ L2(0,∞; L2(�)) and u(t) ∈ W for 0 ≤ t < ∞.

As the other side of the above theorem, we have the following blow-up result.

Theorem 2 Let (M1) hold, u0 ∈ Z. If J (u0) ≤ d, I (u0) < 0, and u = u(t) is a
corresponding solution of problem (1.1), then u(t) blows up at some finite time T in
the sense of

lim
t→T−

t∫

0

‖u‖22dτ = ∞.

Moreover,

1. if J (u0) < d, then

T ≤ 4(p − 1)‖u0‖22
p(d − J (u0))(p − 2)2

;

2. if 2θ < p < 2θ + 2− 4θ/2∗
s , then for any ε ∈ (

0, 2θ + 2 − 4θ/2∗
s − p

)
, it holds

T >
1

2Ĉ(ζ − 1)‖u0‖2(ζ−1)
2
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and

‖u‖2 >
(
2Ĉ(ζ − 1)(T − t)

)− 1
2(ζ−1) ,

where

ζ = βθ(p + ε)

2θ − (1 − β)(p + ε)
> 1 (see Remark 2),

Ĉ =
(

C̃ p+ε

εb
(1−β)(p+ε)

2θ

) 2θ
2θ−(1−β)(p+ε)

.

Here,

C̃ = sup
u∈Z\{0}

‖u‖p+ε

‖u‖1−β
Z ‖u‖β

2

∈ (0,∞) (see Remak 2) (2.13)

and

β = 2(2∗
s − p − ε)

(p + ε)(2∗
s − 2)

∈ (0, 1) (see Remak 2). (2.14)

Remark 2 In this remark, we show that β ∈ (0, 1), C̃ is well-defined and ζ > 1.

1. Since θ ∈ [
1, 2∗

s /2
)
, ε ∈ (

0, 2θ + 2 − 4θ/2∗
s − p

)
and 2∗

s > 2, we get

p + ε < 2θ + 2 − 4θ

2∗
s

= 2

(

1 − 2

2∗
s

)

θ + 2 < 2

(

1 − 2

2∗
s

)
2∗
s

2
+ 2 = 2∗

s ,

(2.15)

which impliesβ > 0.On the other hand, by p+ε > 2,we obtain 2·2∗
s < 2∗

s (p+ε),
i.e., 2 · 2∗

s − 2p − 2ε < 2∗
s (p + ε) − 2p − 2ε = (p + ε)(2∗

s − 2), thus, we get
β ∈ (0, 1).

2. Since 2 < p + ε < 2∗
s , we get there exists a positive constant such that

‖u‖p+ε ≤ C‖u‖1−β
2∗
s

‖u‖β
2 ,

which, together with (1.8), implies

‖u‖p+ε ≤ CC1−β
2∗
s

‖u‖1−β
Z ‖u‖β

2 .

Then C̃ is well-defined. Here β satisfies

1

p + ε
= 1 − β

2∗
s

+ β

2
,

i.e., (2.14) holds.
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3. Now, we prove ζ > 1. In fact, from the definitions of ζ and β, by a direct compu-
tation, we have

ζ = 2θ(2∗
s − p − ε)

2θ(2∗
s − 2) − 2∗

s (p + ε − 2)
. (2.16)

Since ε < 2θ + 2 − 4θ/2∗
s − p, we get

2∗
s (p + ε − 2) < 2∗

s

(

2θ − 4θ

2∗
s

)

= 2θ(2∗
s − 2),

which, together with (2.15) and (2.16), implies

ζ > 1 ⇔ 2θ(2∗
s − p − ε) > 2θ(2∗

s − 2) − 2∗
s (p + ε − 2)

⇔ 2∗
s (p + ε − 2) > 2θ(2∗

s − 2) − 2θ(2∗
s − p − ε) = 2θ(p + ε − 2).

Then by p + ε > 2 and θ < 2∗
s /2, we get ζ > 1.

The next theorem shows lower bound of the growth rate for the solution got in
above theorem under more specific assumptions on J (u0) and I (u0) (note that, by
(2.6), M̃ ≤ d).

Theorem 3 Let (M1) hold, u0 ∈ Z satisfy I (u0) < 0 and J (u0) ≤ M̃. Then for any
γ ∈ [

0, 2/2∗
s

]
, there exists a tγ ∈ (0, T ) such that the weak solution u = u(t) of

problem (1.1) satisfies

‖u‖22 ≥ Cγ (t
pγ
2 − t

pγ
2 −1tγ )

2
2−pγ

for all t ∈ [tγ , T ), where

Cγ :=
[(

1 − pγ

2

)
G− pγ

2 (tγ )G ′(tγ )
] 2
2−pγ

,

and

G(t) :=
t∫

0

‖u‖22dτ.

Remark 3 Since p < 2∗
s and γ ∈ [

0, 2/2∗
s

]
, we have pγ < 2. Then the constant Cγ

is well-defined and 1 ≤ 2/(2 − pγ ) < ∞.

In view of the above results, one can see they all depend on the mountain-pass
level d. Next, we give some blow-up results independent of d but related to λ1, where
λ1 > 0 is the first eigenvalue of problem (1.9).
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Theorem 4 Let (M1) hold and u = u(t) be a weak solution to problem (1.1). If

J (u0) <
(p − 2θ)bλθ

1

2θ p
‖u0‖2θ2 , (2.17)

then u(t) blows up at some finite time T in the sense of

lim
t→T−

t∫

0

‖u‖22dτ = ∞.

Moreover, we have

T ≤ 8(p − 1)θ‖u0‖22
(p − 2)2

[
(p − 2θ)bλθ

1‖u0‖2θ2 − 2pθ J (u0)
] .

Furthermore, u(t) grows exponentially with L2-norm for all t ∈ [0, T ), that is,

‖u‖22 ≥
(

‖u0‖22 − 2p

A
J (u0)

)

eAt + 2p

A
J (u0),

where A = (p−2θ)bλθ
1‖u0‖2θ−2

2
θ

.

The next theorem is about the asymptotic behavior of J (u(t)) as t → T , where
u(t) is the blow-up solution got from the above theorems.

Theorem 5 Let u(t) be the blow-up solution of problem (1.1)with I (u0) < 0, J (u0) ≤
d or (2.17) holds, and assume T is the maximum existence time of u(t), then

lim
t→T

J (u(t)) = −∞. (2.18)

Next, we derive some sufficient and necessary conditions for the solutions blowing
up in finite time.

Theorem 6 Let u(t) be a solution of problem (1.1) and T ∈ (0,+∞] be the maximal
existence time of u(t). Then

1. if u0 ∈ Z \ {0} and J (u0) < d, we have following conclusions:

(1) I (u0) < 0 ⇔ T < +∞ ⇔ there exists a t0 ∈ [0, T ) such that J (u(t0)) < 0;
(2) I (u0) > 0 ⇔ T = +∞ ⇔ J (u(t)) > 0 for all t ∈ [0, T );

2. if u0 ∈ Z \ {N ∪ {0}} and J (u0) = d, we have following conclusions:

(3) I (u0) < 0 ⇔ T < +∞ ⇔ there exists a t0 ∈ [0, T ) such that J (u(t0)) < 0;
(4) I (u0) > 0 ⇔ T = +∞ ⇔ J (u(t)) > 0 for all t ∈ [0, T ),

where N is defined in (2.5).
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The next problem we will consider is can the mountain-pass level d defined in (2.4)
be achieved by some u ∈ N? To this end, we consider the steady-state corresponding
to problem (1.1), i.e., the following boundary value problem:

{
M([u]2s )LK u = |u|p−2u log |u|, x ∈ �,

u = 0, x ∈ (RN \ �).
(2.19)

A function u ∈ Z is called a weak solution of problem (2.19), if the following
equality

(
a + b‖u‖2θ−2

Z

) ∫∫

Q
(u(x) − u(y))(φ(x) − φ(y))K (x − y)dxdy

=
∫

�

|u|p−2u log |u|φdx

holds for all φ ∈ Z . Then we introduce the set

� = {weak solutions of problem (2.19)}
= {u ∈ Z : J ′(u) = 0 in Z ′}
= {u ∈ Z : 〈J ′(u), φ〉 = 0, ∀φ ∈ Z},

(2.20)

where J is defined in (2.1), Z ′ is the dual space of Z , and 〈·, ·〉 is the dual product
between Z ′ and Z . We have the following two theorems:

Theorem 7 Assume (M1) hold. Let N be the set defined in (2.5), then there exists a
function v0 ∈ N such that

(1) J (v0) = infu∈N J (u) = d;
(2) v0 is a ground-state solution of problem (2.19), i.e., v0 ∈ � \ {0} and J (v0) =

infu∈�\{0} J (u).

By Theorem 1, we know that the global solution converges to 0 as t → ∞ when
u0 satisfies some special conditions, how about the general global solutions? For this
question, we have the following results:

Theorem 8 Assume (M1) hold. Let u = u(t) be a global solution to problem (1.1).
Then there exists a u∗ ∈ � and an increasing sequence {tk}∞k=1 with tk → ∞ as
k → ∞ such that

lim
k→∞ ‖u(tk) − u∗‖Z = 0.

3 Preliminaries

In this section, we give some lemmas, which will be needed in our proofs. Throughout
this section, we denote by u = u(t) the solution to problem (1.1) with initial value u0,
whose maximal existence time is T .
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Let (M1) hold. For any ε satisfying

0 < ε ≤ 2∗
s − p, (3.1)

we define

r(ε) :=
(

bε

C p+ε∗

) 1
p+ε−2θ

> 0, (3.2)

where C∗ is the optimal embedding constant of Z ↪→ L p+ε(�) (see (1.8)), i.e.

1

C∗
= inf

u∈Z\{0}
‖u‖Z

‖u‖p+ε

. (3.3)

The following lemma is used to derive the upper bound of the blow-up time.

Lemma 1 [22,23] Suppose that 0 < T ≤ ∞ and suppose a nonnegative function
F(t) ∈ C2[0, T ) satisfies

F ′′(t)F(t) − (1 + γ )(F ′(t))2 ≥ 0

for some constant γ > 0. If F(0) > 0, F ′(0) > 0, then

T ≤ F(0)

γ F ′(0)
< ∞

and F(t) → ∞ as t → T .

Lemma 2 [28] For any bounded sequence {v j }∞j=1 in Z and any m ∈ [1, 2∗
s ), there

exists a v ∈ Lm(RN ), with v = 0 a.e. in R
N\�, such that up to a subsequence, still

denoted by {v j }∞j=1,

v j → v strongly in Lm(�) as j → ∞.

Lemma 3 Assume (M1) hold. Let u ∈ Z \ {0}. Then for any ε satisfying (3.1) we have

(1) if 0 < ‖u‖Z ≤ r(ε), then I (u) > 0;
(2) if I (u) ≤ 0, then ‖u‖Z > r(ε),

where r(ε) is defined in (3.2).

Proof Since u ∈ Z \ {0}, we get |u(x)| > 0 for a.e. x ∈ �. By a simple computation,
we know (for any ε > 0)

log |u(x)| <
|u(x)|ε

ε
for a.e. x ∈ �.

123



1664 Applied Mathematics & Optimization (2021) 83:1651–1707

Then by the above inequality and the definition of I (u), we have

I (u) = a‖u‖2Z + b‖u‖2θZ −
∫

�

|u|p log |u|dx

> b‖u‖2θZ − ‖u‖p+ε
p+ε

ε
.

(3.4)

For any ε satisfying (3.1), it follows from (3.3) that

‖u‖p+ε
p+ε ≤ C p+ε∗ ‖u‖p+ε

Z ,

then by (3.4) we get

I (u) > b‖u‖2θZ − C p+ε∗
ε

‖u‖p+ε
Z

= ‖u‖2θZ
(

b − C p+ε∗
ε

‖u‖p+ε−2θ
Z

)

.

(3.5)

(1) If 0 < ‖u‖Z ≤ r(ε), then it follows from (3.2) that

b − C p+ε∗
ε

‖u‖p+ε−2θ
Z ≥ 0,

so by (3.5) we obtain I (u) > 0.
(2) If I (u) ≤ 0, according to (3.5), we get

b − C p+ε∗
ε

‖u‖p+ε−2θ
Z < 0,

which implies

‖u‖Z > r(ε).

��
Lemma 4 Assume (M1) hold. With the notations in Lemma 3,

r∗ := sup
ε∈(0,2∗

s−p]
r(ε) (3.6)

exists and

0 < r∗ ≤ r∗ < ∞, (3.7)
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where

r∗ := sup
ε∈(0,2∗

s−p]
σ(ε) (3.8)

and

σ(ε) :=
(

bε

κ p+ε

) 1
p+ε−2θ |�| ε

p(p+ε−2θ) . (3.9)

Here, |�| is the measure of �, κ is the optimal embedding constant of Z ↪→ L p(�),
i.e.,

1

κ
= inf

u∈Z\{0}
‖u‖Z
‖u‖p

. (3.10)

Proof Obviously r∗, if it exists, is positive. So in order to prove the lemma. We only
need to prove r(ε) ≤ σ(ε), r∗ exists and r∗ < ∞.

Firstly, we prove r(ε) ≤ σ(ε). For any u ∈ Z , since (M1) holds and ε ∈ (0, 2∗
s − p],

we have u ∈ L p(�) ∩ L p+ε(�). By Hölder’s inequality we have

∫

�

|u|pdx ≤ |�| ε
p+ε

⎛

⎝

∫

�

|u|p+εdx

⎞

⎠

p
p+ε

,

which, together with (3.3) and (3.10), implies

1

C∗
= inf

u∈Z\{0}
‖u‖Z

‖u‖p+ε

≤ |�| ε
p(p+ε) inf

u∈Z\{0}
‖u‖Z
‖u‖p

= 1

κ
|�| ε

p(p+ε) .

(3.11)

Then it follows from (3.2) that

r(ε) =
(

bε

C p+ε∗

) 1
p+ε−2θ ≤ σ(ε), (3.12)

where σ(ε) is defined in (3.9).
Secondly, we prove r∗ exists and r∗ < ∞. Since ε ∈ (0, 2∗

s − p] and σ(ε) is
continuous on [0, 2∗

s − p], we have r∗ exists and

r∗ = sup
ε∈(0,2∗

s−p]
σ(ε) ≤ max

ε∈[0,2∗
s−p] σ(ε) < ∞.

��
Based on the above two lemmas, we have the following corollary:
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Corollary 2 Assume (M1) hold. Let u ∈ Z \ {0}.
(1) if 0 < ‖u‖Z < r∗, then I (u) > 0;
(2) if I (u) ≤ 0, then ‖u‖Z ≥ r∗,

where r∗ is defined in (3.6) of Lemma 4.

Proof We only need to prove (1) since (2) is the direct result of (1). We fix u ∈ Z \ {0}
such that 0 < ‖u‖Z < r∗. Then by the definition of r∗ in (3.6), there exists a ε0
satisfying (3.1) such that ‖u‖Z ≤ r(ε0), where r(·) is defined in (3.2). Then by (1) of
Lemma 3, I (u) > 0. ��

Lemma 5 Assume (M1) hold. Then we have

d ≥ aθr2∗ (p − 2) + br2θ∗ (p − 2θ)

2θ p
, (3.13)

where d is defined in (2.4) and r∗ is defined in (3.6) of Lemma 4.

Proof For all u ∈ N , we have u ∈ Z \ {0} and I (u) = 0. Thus by (2) of Corollary 2,
we know ‖u‖Z ≥ r∗, and then from (2.3) we get

J (u) = 1

p
I (u) + (p − 2)a

2p
‖u‖2Z + (p − 2θ)b

2θ p
‖u‖2θZ + 1

p2
‖u‖p

p

≥ (p − 2)a

2p
‖u‖2Z + (p − 2θ)b

2θ p
‖u‖2θZ

≥ (p − 2)a

2p
r2∗ + (p − 2θ)b

2θ p
r2θ∗

= aθr2∗ (p − 2) + br2θ∗ (p − 2θ)

2θ p
,

which gives (3.13). ��

Lemma 6 Assume (M1) hold. Let u ∈ Z satisfy I (u) < 0. Then there exists a λ∗ ∈
(0, 1) such that I (λ∗u) = 0.

Proof We divide the proof into two cases.
Case 1: a = 0. Let

φ(λ) := λp−2θ
∫

�

|u|p log |λu|dx, λ ∈ (0,∞).
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Then for any λ > 0, by the definition of I (u), we have

I (λu) = bλ2θ‖u‖2θZ −
∫

�

|λu|p log |λu|dx

= λ2θ

⎛

⎝b‖u‖2θZ − λp−2θ
∫

�

|u|p log |λu|dx
⎞

⎠

= λ2θ
(
b‖u‖2θZ − φ(λ)

)
.

(3.14)

Since I (u) < 0, by (3.14) and (2) of Corollary 2 we get

φ(1) > b‖u‖2θZ ≥ br2θ∗ > 0. (3.15)

On the other hand, by the definition of φ(λ), we have

φ(λ) = λp−2θ
∫

�

|u|p log |u|dx + λp−2θ log λ‖u‖p
p,

which, together with p > 2θ , implies

lim
λ→0+ φ(λ) = 0.

So by (3.15), we get that there exists a λ∗ ∈ (0, 1) such that φ(λ∗) = b‖u‖2θZ and
then I (λ∗u) = 0.

Case 2: a > 0. Let

φ(λ) := λp−2
∫

�

|u|p log |λu|dx − bλ2θ−2‖u‖2θZ , λ ∈ (0,∞).

Then for any λ > 0, by the definition of I (u), we have

I (λu) = aλ2‖u‖2Z + bλ2θ‖u‖2θZ −
∫

�

|λu|p log |λu|dx

= λ2

⎛

⎝a‖u‖2Z + bλ2θ−2‖u‖2θZ − λp−2
∫

�

|u|p log |λu|dx
⎞

⎠

= λ2
(
a‖u‖2Z − φ(λ)

)
.

(3.16)

Since I (u) < 0, by (3.16) and (2) of Corollary 2 we get

φ(1) > a‖u‖2Z ≥ ar2∗ > 0. (3.17)
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On the other hand, by the definition of φ(λ), we have

φ(λ) = λp−2
∫

�

|u|p log |u|dx + λp−2 log λ‖u‖p
p − bλ2θ−2‖u‖2θZ ,

which, together with p > 2θ ≥ 2, implies

lim
λ→0+ φ(λ) = 0.

So by (3.17), we get that there exists a λ∗ ∈ (0, 1) such that φ(λ∗) = a‖u‖2Z and
then I (λ∗u) = 0. ��
Lemma 7 Assume (M1) hold. Let u ∈ Z satisfy I (u) < 0. Then

I (u) < p (J (u) − d) . (3.18)

Proof First from Lemma 6 we know that there exists a λ∗ ∈ (0, 1) such that I (λ∗u) =
0. Set

g(λ) := pJ (λu) − I (λu), λ > 0.

By a direct computation, we obtain

g(λ) = aλ2(p − 2)

2
‖u‖2Z + bλ2θ (p − 2θ)

2θ
‖u‖2θZ + λp

p
‖u‖p

p.

Then from (2) of Corollary 2, we get

g′(λ) = aλ(p − 2)‖u‖2Z + bλ2θ−1(p − 2θ)‖u‖2θZ + λp−1‖u‖p
p

≥ bλ2θ−1(p − 2θ)‖u‖2θZ
> bλ2θ−1(p − 2θ)r2θ∗
> 0,

which implies that g(λ) is strictly increasing for λ > 0, hence according to 0 < λ∗ < 1
we get g(1) > g(λ∗), namely

pJ (u) − I (u) > pJ (λ∗u) − I (λ∗u) = pJ (λ∗u) ≥ pd,

where the last inequality we have used the λ∗u ∈ N and d = infφ∈N J (φ), which
gives (3.18) immediately. ��
Lemma 8 Let (M1) hold and u = u(t) be the corresponding solution to problem (1.1).
Then for all t ∈ [0, T ) we have

1

2

d

dt
‖u‖22 = −I (u). (3.19)
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Proof Let φ = u(t) in (2.11) of Definition 1, we get

∫

�

utudx +
(
a + b‖u‖2θ−2

Z

)
‖u‖2Z =

∫

�

|u|p log |u|dx,

i.e.

1

2

d

dt
‖u‖22 = −a‖u‖2Z − b‖u‖2θZ +

∫

�

|u|p log |u|dx .

Thus, we have

1

2

d

dt
‖u‖22 = −I (u).

��
Lemma 9 If J (u0) ≤ d, then the sets N− and N+ are both invariant for u(t), i.e., if
u0 ∈ N− (resp. u0 ∈ N+), then u(t) ∈ N− (resp. u(t) ∈ N+) for all t ∈ [0, T ).

Proof We only proof the invariance of N− since the proof of the invariance of N+ is
similar.

Firstly, we consider the case J (u0) < d. If the conclusion is not true, it follows
J (u(t)) ≤ J (u0) < d for t ∈ [0, T ) (see the energy inequality (2.12)) that there exists
a t0 ∈ (0, T ) such that

• I (u(t0)) = 0 and I (u(t)) < 0 for t ∈ [0, t0).
From (2) of Corollary 2 we have ‖u‖Z > r∗ > 0 for t ∈ [0, t0), then by the

continuity of ‖u‖Z with respect to t , we get ‖u(t0)‖Z ≥ r∗ > 0, hence u(t0) ∈ N .
Then it follows from the definition of d in (2.4) that J (u(t0)) ≥ d, a contradiction.

Secondly, we consider the case J (u0) = d. If the conclusion is not true, then by
I (u0) < 0, there must be a t1 ∈ (0, T ) such that I (u(t1)) = 0 and I (u(t)) < 0 for
t ∈ [0, t1). On the one hand, we get from (2) of Corollary 2 that ‖u‖Z > r∗ > 0 for
t ∈ [0, t1), which implies that u(t1) �= 0. Then we have u(t1) ∈ N and then it follows
from the definition of d in (2.4) that

J (u(t1)) ≥ d. (3.20)

On the other hand, from (ut , u) = −I (u(t)) > 0 (see Lemma 8) for t ∈ [0, t1) and
u(t)|∂� = 0 we deduce ut �= 0 and then

t1∫

0
‖uτ‖22dτ > 0. So by (2.12) we obtain

J (u(t1)) ≤ J (u0) −
t1∫

0

‖uτ‖22dτ < d,

which conflicts with (3.20). ��
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4 Proof of the Theorems

Proof of Theorem 1 We divide the proof into three steps.
Step 1: Existence of a global weak solution Let ω j , j = 1, 2, . . . be the eigenfunc-

tions of the operator Lk subject to the Dirichlet boundary condition (see [32]):

{−LKω j = λ jω j , x ∈ �,

ω j = 0, x ∈ R
N \ �,

we also normalize ω j such that ‖ω j‖2 = 1. Then {ω j }∞j=1 is a basis of Z .
First we construct the following approximate solutions um(t) of problem (1.1):

um =
m∑

j=1

g jm(t)ω j (x), m = 1, 2 . . . (4.1)

which satisfy

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫

�

umtω j dx +
(
a + b‖um‖2θ−2

Z

) ∫∫

Q
(um(x)

−um(y))(ω j (x) − ω j (y))K (x − y)dxdy

=
∫

�

|um |p−2um log |um |ω j dx,

(um(0), ω j ) = ξ jm,

(4.2)

for j = 1, 2, . . . ,m, where (·, ·) means the inner product of L2(�) and ξ jm are given
constants such that

um(0) =
m∑

j=1

ξ jmω j (x) → u0 in Z (4.3)

as m → ∞. Existence of such ξ jm follows from u0 ∈ Z , and {ω j }∞j=1 is a basis
of Z . The standard theory of ODEs, e.g. Peano’s theorem, yields that there exists a
T > 0 depending only on ξ jm , j = 1, 2, . . . ,m, such that in g jm ∈ C1[0, T ] and
g jm(0) = ξ jm . Thus um ∈ C1 ([0, T ]; Z).

We now try to get a priori estimates for the approximate solution um(t). Multiplying
the first equation of (4.2) by g′

jm(t), summing for j from 1 to m and integrating with
respect to time from 0 to t , we can obtain

t∫

0

‖umτ‖22dτ + J (um(t)) = J (um(0)), 0 ≤ t ≤ T .

Due to (4.3) and g jm(0) = ξ jm , one has (note that we have assumed that J (u0) < d
and I (u0) > 0)
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lim
m→∞ J (um(0)) = J (u0) < d

and

lim
m→∞ I (um(0)) = I (u0) > 0.

Therefore, for sufficiently large m, we have

t∫

0

‖umτ‖22dτ + J (um(t)) = J (um(0)) < d, 0 ≤ t ≤ T , (4.4)

and

I (um(0)) > 0,

which implies that um(0) ∈ W for sufficiently large m [see the definition of W in
(2.9)].

Next, we prove um(t) ∈ W for sufficiently large m and any t ∈ [0, T ]. Indeed, if it
is false, there exists a sufficiently large m and a t0 ∈ (0, T ] such that um(t0) ∈ ∂W ,
which implies that um(t0) ∈ Z \{0} and J (um(t0)) = d or I (um(t0)) = 0. From (4.4),
J (um(t0)) = d is not true. So um(t0) ∈ N , then by the definition of d in (2.4), we
have J (um(t0)) ≥ d, which also contradicts (4.4). Hence, um(t) ∈ W for sufficiently
large m and any t ∈ [0, T ].

By (4.4), I (um(t)) > 0 for sufficiently large m (since um(t) ∈ W for sufficiently
largem) and the fact that (see the definition of J and I in (2.1) and (2.2), respectively)

J (um(t)) = 1

p
I (um(t)) + (p − 2)a

2p
‖um‖2Z + (p − 2θ)b

2θ p
‖um‖2θZ + 1

p2
‖um‖p

p,

we obtain

t∫

0

‖umτ‖22dτ + (p − 2)a

2p
‖um‖2Z + (p − 2θ)b

2θ p
‖um‖2θZ + 1

p2
‖um‖p

p < d,

holds for sufficiently large m and any t ∈ [0, T ], which yields

t∫

0

‖umτ‖22dτ < d, ∀t ∈ [0, T ], (4.5)

‖um‖2θZ <
2θ pd

(p − 2θ)b
, ∀t ∈ [0, T ], (4.6)
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and

‖um‖p
p < p2d, ∀t ∈ [0, T ]. (4.7)

So T = ∞. Then um(t) ∈ W for all t ∈ [0,∞) and all the above inequalities hold
for t ∈ [0,∞).

On the other hand, by a direct calculation, we know

∫

�

∣
∣
∣|um(t)|p−2um(t) log |um(t)|

∣
∣
∣

p
p−1

dx

=
∫

{x∈�:|um (t)|≤1}

∣
∣
∣|um(t)|p−1 log |um(t)|

∣
∣
∣

p
p−1

dx

+
∫

{x∈�:|um (t)|>1}

∣
∣
∣|um(t)|p−1 log |um(t)|

∣
∣
∣

p
p−1

dx .

(4.8)

Since

inf
τ∈(0,1)

τ p−1 log τ = τ p−1 log τ

∣
∣
∣
τ=e−1/(p−1)

= − 1

(p − 1)e
,

we have

∫

{x∈�;|um (t)|≤1}

∣
∣
∣|um(t)|p−1 log |um(t)|

∣
∣
∣

p
p−1

dx ≤
(

1

(p − 1)e

) p
p−1 |�|, ∀t ∈ [0,∞).

(4.9)

Moreover, since log τ ≤ 1
μ
τμ for all μ, τ ∈ (0,∞), we can choose a positive

constant μ such that p(p+μ−1)
p−1 ∈ [1, 2∗

s ], then we get from (4.6) that form sufficiently
large,

∫

{x∈�;|um (t)|>1}

∣
∣
∣|um(t)|p−1 log |um(t)|

∣
∣
∣

p
p−1

dx

≤ μ
p

1−p

∫

{x∈�:|um (t)|>1}

∣
∣
∣|um(t)|p+μ−1

∣
∣
∣

p
p−1

dx

= μ
p

1−p

∫

{x∈�;|um (t)|>1}
|um(t)| p(p+μ−1)

p−1 dx

≤ μ
p

1−p ‖um‖
p(p+μ−1)

p−1
p(p+μ−1)

p−1

≤ μ
p

1−p C
p(p+μ−1)

p−1∗∗ ‖um‖
p(p+μ−1)

p−1
Z
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< μ
p

1−p C
p(p+μ−1)

p−1∗∗
(

2θ pd

(p − 2θ)b

) p(p+μ−1)
2θ(p−1)

, ∀t ∈ [0,∞), (4.10)

where C∗∗ is the optimal embedding constant of Z ↪→ L
p(p+μ−1)

p−1 (�).
Then it follows from (4.8), (4.9) and (4.10) that, form large enough and t ∈ [0,∞),

∫

�

∣
∣
∣|um(t)|p−2um(t) log |um(t)|

∣
∣
∣

p
p−1

dx

≤ Cd :=
(

1

(p − 1)e

) p
p−1 |�| + μ

p
1−p C

p(p+μ−1)
p−1∗∗

(
2θ pd

(p − 2θ)b

) p(p+μ−1)
2θ(p−1)

.

(4.11)

Therefore, by (4.5), (4.6) and (4.11), there is a function u = u(t) ∈ L∞(0,∞; Z)

with ut ∈ L2(0,∞; L2(�)), χ = χ(t) ∈ L2
(
0,∞; L p

p−1 (�)
)
and a subsequence of

{um}∞m=1 (still denoted by {um}∞m=1) such that for each T̃ > 0, as m → ∞,

umt⇀ut weakly in L2(0, T̃ ; L2(�)), (4.12)

um⇀u weakly star in L∞(0, T̃ ; Z), (4.13)

um⇀u weakly in L2(0, T̃ ; Z), (4.14)

|um |p−2um log |um |⇀χ(t) weakly star in L∞ (
0, T̃ ; L p

p−1 (�)
)

, (4.15)

|um |p−2um log |um |⇀χ(t) weakly in L2
(
0, T̃ ; L p

p−1 (�)
)

. (4.16)

Since Z ↪→ L p(�) compactly, by [39] we know that

{u : u ∈ L2(0, T̃ ; Z), ut ∈ L2(0, T̃ ; L2(�))} ↪→ L2(0, T̃ ; L p(�))

compactly. So, in view of (4.12) and (4.14), we can assume

um → u strongly in L2(0, T̃ ; L p(�)), (4.17)

which implies um → u a.e. in � × (0, T̃ ), and then |um |p−2um log |um | →
|u|p−2u log |u| a.e. in � × (0, T̃ ). Therefore, it follows from [39] that

χ(t) = |u|p−2u log |u|. (4.18)

To show that the limit function u(t) obtained above is a weak solution to problem
(1.1), we fix a positive integer k and choose a function v ∈ C1([0, T̃ ]; Z) of the
following form

v =
k∑

j=1

l j (t)ω j (x), (4.19)
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where {l j (t)}kj=1 are arbitrary given C1 functions. Taking m ≥ k in the first equation
of (4.2), multiplying the first equation of (4.2) by l j (t), summing for j from 1 to k,
and integrating with respect to t from 0 to T̃ , we obtain

T̃∫

0

∫

�

umtvdxdt+
T̃∫

0

(a+b‖um‖2θ−2Z )

∫∫

Q
(um(x)−um(y))(v(x)

−v(y))K (x − y)dxdydt

=
T̃∫

0

∫

�

|um |p−2um log |um |vdxdt .

(4.20)

Letting m → ∞ in (4.20) and recalling (4.12), (4.14), (4.16) and (4.18) yield

T̃∫

0

∫

�

utvdxdt +
T̃∫

0

(a + b‖u‖2θ−2
Z )

∫∫

Q
(u(x)

− u(y))(v(x) − v(y))K (x − y)dxdydt

=
T̃∫

0

∫

�

|u|p−2u log |u|vdxdt .

(4.21)

Since the functions of the form in (4.19) are dense in L2(0, T̃ ; Z), (4.21) also holds
for all v ∈ L2(0, T̃ ; Z). By arbitrariness of T̃ > 0, we know that

∫

�

utφdx + (a + b‖u‖2θ−2
Z )

∫∫

Q
(u(x) − u(y))(φ(x) − φ(y))K (x − y)dxdy

=
∫

�

|u|p−2u log |u|φdx,

holds for a.e. t ∈ (0,∞) and any φ ∈ Z .
In view of (4.12) and (4.14), we get um(0)⇀u(0) weakly in L2(�). Then by (4.1),

(4.3) and g jm(0) = ξ jm , we get u(0) = u0 ∈ Z .
In view of Definition 1 and the above discussions, to show the limit function u(t)

got above is indeed a global weak solution to problem (1.1), we only need to prove
(2.12) holds for a.e. 0 < t < ∞. In fact, for a.e. 0 < t < ∞, we choose T̃ > t . Then
it follows from (4.17) that um(t) → u(t) strongly in L p(�). So by (4.11) and (4.16),
we have

∣
∣
∣
∣
∣
∣

∫

�

|um |p log |um |dx −
∫

�

|u|p log |u|dx
∣
∣
∣
∣
∣
∣
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≤
∣
∣
∣
∣
∣
∣

∫

�

(um − u)um |um |p−2 log |um |dx
∣
∣
∣
∣
∣
∣

+
∣
∣
∣
∣
∣
∣

∫

�

u
(
|um |p−2um log |um | − |u|p−2u log |u|

)
dx

∣
∣
∣
∣
∣
∣

≤ C
p−1
p

d ‖um − u‖p +
∣
∣
∣
∣
∣
∣

∫

�

u
(
|um |p−2um log |um | − |u|p−2u log |u|

)
dx

∣
∣
∣
∣
∣
∣

→ 0, (4.22)

as m → ∞.
From the convergence of (4.12), (4.14), (4.17), the definition of J in (2.1), (4.1),

(4.3), (4.4), (4.22) and g jm(0) = ξ jm , we obtain

a

2
‖u‖2Z + b

2θ
‖u‖2θZ + 1

p2
‖u‖p

p +
t∫

0

‖uτ‖22dτ

≤ a

2
lim inf
m→∞ ‖um‖2Z + b

2θ
lim inf
m→∞ ‖um‖2θZ + 1

p2
lim inf
m→∞ ‖um‖p

p

+ lim inf
m→∞

t∫

0

‖umτ‖22dτ

≤ lim inf
m→∞

⎛

⎝
a

2
‖um‖2Z + b

2θ
‖um‖2θZ + 1

p2
‖um‖p

p +
t∫

0

‖umτ‖22dτ

⎞

⎠

= lim inf
m→∞

⎛

⎝J (um) + 1

p

∫

�

|um |p log |um |dx +
t∫

0

‖umτ‖22dτ

⎞

⎠

= lim
m→∞

⎛

⎝J (um(0)) + 1

p

∫

�

|um |p log |um |dx
⎞

⎠

= J (u0) + 1

p

∫

�

|u|p log |u|dx,

which implies (2.12) holds for a.e. t ∈ (0,∞). So the limit function u(t) got above is
a global weak solution to problem (1.1). Furthermore, by using u0 ∈ W and (2.12),
one can get u(t) ∈ W for 0 ≤ t < ∞ and the proof is same as the proof of um(t) ∈ W .

Step 2: Uniqueness of bounded global weak solution To show the uniqueness of
bounded global weak solution, we assume that u, v ∈ L∞(0,∞; L∞(�)) are two
global weak solutions to problem (1.1). Then for any φ ∈ Z , we have
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(ut , φ) + a〈u, φ〉Z + b‖u‖2θ−2
Z 〈u, φ〉Z = (|u|p−2u log |u|, φ),

and

(vt , φ) + a〈v, φ〉Z + b‖v‖2θ−2
Z 〈v, φ〉Z = (|v|p−2v log |v|, φ).

Subtracting the above two inequalities, taking φ = u − v ∈ Z , we obtain

∫

�

φtφdx + a‖φ‖2Z + b‖u‖2θ−2
Z 〈u, φ〉Z − b‖v‖2θ−2

Z 〈v, φ〉Z

=
∫

�

(
|u|p−2u log |u| − |v|p−2v log |v|

)
φdx .

(4.23)

Moreover, by using 〈u, v〉Z ≤ ‖u‖2Z+‖v‖2Z
2 , we have

a‖φ‖2Z + b‖u‖2θ−2
Z 〈u, φ〉Z − b‖v‖2θ−2

Z 〈v, φ〉Z
≥ b‖u‖2θ−2

Z 〈u, u − v〉Z − b‖v‖2θ−2
Z 〈v, u − v〉Z

= b‖u‖2θ−2
Z 〈u, u〉Z − b‖u‖2θ−2

Z 〈u, v〉Z − b‖v‖2θ−2
Z 〈u, v〉Z + b‖v‖2θ−2

Z 〈v, v〉Z
= b‖u‖2θZ − b‖u‖2θ−2

Z 〈u, v〉Z − b‖v‖2θ−2
Z 〈u, v〉Z + b‖v‖2θZ

≥ b‖u‖2θZ − b‖u‖2θ−2
Z · ‖u‖2Z + ‖v‖2Z

2
− b‖v‖2θ−2

Z · ‖u‖2Z + ‖v‖2Z
2

+ b‖v‖2θZ

= b‖u‖2θ−2
Z

2
(‖u‖2Z − ‖v‖2Z ) + b‖v‖2θ−2

Z

2
(‖v‖2Z − ‖u‖2Z )

= b

2
(‖u‖2Z − ‖v‖2Z )(‖u‖2θ−2

Z − ‖v‖2θ−2
Z ) ≥ 0.

(4.24)

Then combining (4.23) and (4.24) we have

∫

�

φtφdx ≤
∫

�

(
|u|p−2u log |u| − |v|p−2v log |v|

)
φdx

=
∫

�

⎡

⎣

1∫

0

d

dω

(
|ω|p−2ω log |ω|

) ∣
∣
∣
∣
ω=ϑu+(1−ϑ)v

dϑ

⎤

⎦φ2dx

≤ Dp−2 [(p − 1) log D + 1
] ‖φ‖22,

where

D := max
{‖u‖L∞(0,∞;L∞(�)), ‖v‖L∞(0,∞;L∞(�))

}
.
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Then we have
⎧
⎨

⎩

d

dt
‖φ‖22 ≤ 2Dp−2 [(p − 1) log D + 1

] ‖φ‖22, t > 0,

‖φ(0)‖22 = 0,

which implies ‖φ‖22 = 0 for t ≥ 0. Thus φ(t)(x) = 0 a.e. in � × (0,∞) and the
uniqueness of bounded global weak solution follows.

Step 3: Decay estimates Since d(ε) ≤ d (see (2.4)), by step 1 we know problem
(1.1) admits a global solution u ∈ L∞(0,∞; Z) with ut ∈ L2(0,∞; L2(�)) and
u(t) ∈ W for 0 ≤ t < ∞. So by the definition of W in (2.9), we have I (u) ≥ 0. Then
it follows from (2.3) and (2.12) that

J (u0) ≥ J (u) = 1

p
I (u) + (p − 2)a

2p
‖u‖2Z + (p − 2θ)b

2θ p
‖u‖2θZ + 1

p2
‖u‖p

p

≥ (p − 2θ)b

2θ p
‖u‖2θZ ,

(4.25)

which, together with (3.3), implies

‖u‖p+ε ≤ C∗‖u‖Z ≤ C∗
(
2θ pJ (u0)

(p − 2θ)b

) 1
2θ

. (4.26)

In view of (3.3) and (4.26), we obtain

‖u‖p+ε
p+ε = ‖u‖p+ε−2θ

p+ε ‖u‖2θp+ε

≤ C2θ∗ ‖u‖p+ε−2θ
p+ε ‖u‖2θZ

≤ C p+ε∗
(
2θ pJ (u0)

(p − 2θ)b

) p+ε−2θ
2θ ‖u‖2θZ .

(4.27)

By Lemma 8, we have

d

dt
‖u‖22 = −2I (u) = −2

⎛

⎝a‖u‖2Z + b‖u‖2θZ −
∫

�

|u|p log |u|dx
⎞

⎠ . (4.28)

Then for J (u0) < d(ε), it follows from (1.10), (4.27) and log |u| < 1
ε
|u|ε (for any

ε > 0) that

d

dt
‖u‖22 ≤ −2b‖u‖2θZ + 2

∫

�

|u|p log |u|dx

≤ −2b‖u‖2θZ + 2

ε
‖u‖p+ε

p+ε
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≤ −2b‖u‖2θZ + 2C p+ε∗
ε

(
2θ pJ (u0)

(p − 2θ)b

) p+ε−2θ
2θ ‖u‖2θZ

= −2‖u‖2θZ
⎡

⎣b − C p+ε∗
ε

(
2θ pJ (u0)

(p − 2θ)b

) p+ε−2θ
2θ

⎤

⎦

≤ −2λθ
1‖u‖2θ2

⎡

⎣b − C p+ε∗
ε

(
2θ pJ (u0)

(p − 2θ)b

) p+ε−2θ
2θ

⎤

⎦ , (4.29)

which implies

‖u‖22 ≤ F(ε) :=
⎧
⎨

⎩

‖u0‖22e−Cε t , if θ = 1,
(
Cε(θ − 1)t + ‖u0‖2−2θ

2

)− 1
θ−1

, if θ ∈
(
1, 2∗

s
2

)
,

(4.30)

where

Cε = 2λθ
1

⎡

⎣b − C p+ε∗
ε

(
2θ pJ (u0)

(p − 2θ)b

) p+ε−2θ
2θ

⎤

⎦ > 0.

��
Proof of Corollary 1 If u0 = 0, then problem (1.1) admits a global solution u(t) ≡ 0,
and the proof is complete. So in the following, we assume u0 ∈ Z \ {0} and the proof
is divided into three cases.

Case 1: I (u0) > 0 and J (u0) < d. The conclusion follows from Theorem 1.
Case 2: I (u0) = 0 and J (u0) < d. This case does not happen because in this case

u0 ∈ N , then it follows from the definition of d in (2.4) that J (u0) ≥ d.
Case 3: I (u0) ≥ 0 and J (u0) = d. Let λm = 1 − 1

m and m = 2, 3, . . .. Consider
the following approximate problem:

⎧
⎨

⎩

ut + M([u]2s )LK u = |u|p−2u log |u|, in � × (0,∞),

u(x, t) = 0, in (RN \ �) × (0,∞),

u(x, 0) = u0m(x) := λmu0, in �.

(4.31)

Since u0 ∈ Z \ {0}, λm ∈ (0, 1) and I (u0) ≥ 0 (i.e. a‖u0‖2Z + b‖u0‖2θZ ≥∫

�

|u0|p log |u0|dx), then we have

I (u0m) = aλ2m‖u0‖2Z + bλ2θm ‖u0‖2θZ − λ
p
m

∫

�

|u0|p log |u0|dx

−λ
p
m log λm

∫

�

|u0|pdx
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> aλ2m‖u0‖2Z + bλ2θm ‖u0‖2θZ − λ
p
m

∫

�

|u0|p log |u0|dx

= λ2m

⎛

⎝a‖u0‖2Z + bλ2θ−2
m ‖u0‖2θZ − λ

p−2
m

∫

�

|u0|p log |u0|dx
⎞

⎠ . (4.32)

Next, we will discuss the sign of I (u0m) on two aspects:
∫

�

|u0|p log |u0|dx ≤ 0

and
∫

�

|u0|p log |u0|dx > 0.

(1) When
∫

�

|u0|p log |u0|dx ≤ 0, from (4.32) we get

I (u0m) > λ2m

(
a‖u0‖2Z + bλ2θ−2

m ‖u0‖2θZ
)

> 0. (4.33)

(2) When
∫

�

|u0|p log |u0|dx > 0, from (4.32) we get

I (u0m) > λ2m

⎛

⎝aλ2θ−2
m ‖u0‖2Z + bλ2θ−2

m ‖u0‖2θZ − λ
p−2
m

∫

�

|u0|p log |u0|dx
⎞

⎠

= λ2θm

⎛

⎝a‖u0‖2Z + b‖u0‖2θZ − λ
p−2θ
m

∫

�

|u0|p log |u0|dx
⎞

⎠

> 0.

(4.34)

On the other hand, by a simply computation, we obtain

d

dλm
J (λmu)

= aλm‖u‖2Z + bλ2θ−1
m ‖u‖2θZ − λ

p−1
m

∫

�

|u|p log |u|dx − λ
p−1
m log λm

∫

�

|u|pdx

= 1

λm

⎛

⎝aλ2m‖u‖2Z + bλ2θm ‖u‖2θZ − λ
p
m

∫

�

|u|p log |u|dx − λ
p
m log λm

∫

�

|u|pdx
⎞

⎠

= 1

λm
I (λmu). (4.35)

Then by (4.33), (4.34) and (4.35), we have

d

dλm
J (λmu0) = 1

λm
I (λmu0) = 1

λm
I (u0m) > 0,
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which implies that J (λmu0) is strictly increasing with respect to λm . So we can get

J (u0m) = J (λmu0) < J (u0) = d.

From Theorem 1, it follows that for each m = 2, 3, . . ., problem (4.31) admits
a global weak solution um(t) ∈ L∞(0,∞; Z) with umt ∈ L2(0,∞; L2(�)), which
satisfies um(t) ∈ W for 0 ≤ t < ∞ and

∫

�

umtφdx +
(
a + b‖um‖2θ−2

Z

) ∫∫

Q
(um(x) − um(y))(φ(x)

− φ(y))K (x − y)dxdy

=
∫

�

|um |p−2um log |um |φdx,

holds for any φ ∈ Z and a.e. t > 0. Moreover,

t∫

0

‖umτ‖22dτ + J (um(t)) = J (u0m) < d. (4.36)

From (4.36) and the fact that

J (um(t)) = 1

p
I (um(t)) + (p − 2)a

2p
‖um‖2Z + (p − 2θ)b

2θ p
‖um‖2θZ + 1

p2
‖um‖p

p,

we obtain

t∫

0

‖umτ‖22dτ + (p − 2)a

2p
‖um‖2Z + (p − 2θ)b

2θ p
‖um‖2θZ + 1

p2
‖um‖p

p < d.

Then the remainder of the proof is similar to that in the proof of Theorem 1. ��
Proof of Theorem 2 We divide the proof into three steps.

Step 1: Blow-up in finite time
We divide the proof into two cases.
Case 1: J (u0) < d. Let u = u(t), t ∈ [0, T ) be a weak solution of problem (1.1)

with J (u0) < d and I (u0) < 0, where T is the maximal existence time. Then from
Lemma 9, we have u(t) ∈ V . Next let us prove that u(t) blows up in finite time.
Arguing by contradiction, we suppose that T = +∞ and define

M(t) :=
t∫

0

‖u‖22dτ, t ∈ [0, T ).
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Then we have

M ′(t) = ‖u‖22, (4.37)

and

M ′′(t) = 2(u(t), ut (t)) = −2I (u(t)). (4.38)

By (2.3) and (2.12), one has

t∫

0

‖uτ‖22dτ + 1

p
I (u) + (p − 2)a

2p
‖u‖2Z + (p − 2θ)b

2θ p
‖u‖2θZ + 1

p2
‖u‖p

p ≤ J (u0),

hence

−2I (u(t)) ≥ 2p

t∫

0

‖uτ‖22dτ + (p − 2)a‖u‖2Z + (p − 2θ)b

θ
‖u‖2θZ

+ 2

p
‖u‖p

p − 2pJ (u0),

so by (1.8) and the above inequality, we have

M ′′(t) = −2I (u) ≥ 2p

t∫

0

‖uτ‖22dτ + (p − 2θ)b

θ
‖u‖2θZ − 2pJ (u0)

≥ 2p

t∫

0

‖uτ‖22dτ + (p − 2θ)b

θC2θ
2

‖u‖2θ2 − 2pJ (u0).

(4.39)

In addition, from

t∫

0

(uτ , u)dτ = 1

2

t∫

0

d

dτ
‖u‖22dτ = 1

2

(
‖u‖22 − ‖u0‖22

)
,

we obtain

⎛

⎝

t∫

0

(uτ , u)dτ

⎞

⎠

2

= 1

4

(
‖u‖42 − 2‖u0‖22‖u‖22 + ‖u0‖42

)

= 1

4

(
(M ′(t))2 − 2‖u0‖22M ′(t) + ‖u0‖42

)
.

(4.40)
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Hence, by (4.39), (4.40) and the Schwartz’s inequality we deduce that

M(t)M ′′(t) − p

2
(M ′(t))2

≥ 2p

t∫

0

‖uτ‖22dτ

t∫

0

‖u‖22dτ − 2p

⎛

⎝

t∫

0

(uτ , u)dτ

⎞

⎠

2

+ p

2
‖u0‖42

+ (p − 2θ)b

θC2θ
2

‖u‖2θ2 M(t) − p‖u0‖22M ′(t) − 2pJ (u0)M(t)

≥ (p − 2θ)b

θC2θ
2

(M ′(t))θ M(t) − p‖u0‖22M ′(t) − 2pJ (u0)M(t).

(4.41)

Moreover, since M ′′(t) = −2I (u(t)) > 0 (note that u(t) ∈ V for t ∈ [0, T )), so
we have M ′(t) > M ′(0) = ‖u0‖22 > 0. Then by (4.41) we obtain

M(t)M ′′(t) − p

2
(M ′(t))2 ≥ (p − 2θ)b‖u0‖2θ−2

2

θC2θ
2

M(t)M ′(t) − p‖u0‖22M ′(t)

−2pJ (u0)M(t). (4.42)

From Lemma 7 one has

−2I (u(t)) > 2p(d − J (u(t))), 0 ≤ t < ∞.

By (2.12) and (4.38) we have

M ′′(t) = −2I (u(t))

> 2p(d − J (u(t)))

≥ 2p(d − J (u0))

:= C1 > 0, 0 ≤ t < ∞.

(4.43)

Then we can obtain

M ′(t) ≥ C1t + M ′(0) = C1t + ‖u0‖22 > C1t, 0 ≤ t < ∞,

M(t) >
C1

2
t2 + M(0) = C1

2
t2, 0 ≤ t < ∞.

Therefore,

lim
t→∞ M(t) = ∞, lim

t→∞ M ′(t) = ∞.
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Hence there exists a t0 ≥ 0 such that

(p − 2θ)b‖u0‖2θ−2
2

2θC2θ
2

M(t) > p‖u0‖22, t0 ≤ t < ∞,

(p − 2θ)b‖u0‖2θ−2
2

2θC2θ
2

M ′(t) > 2pJ (u0), t0 ≤ t < ∞,

which combined with (4.42) give the inequality

M(t)M ′′(t) − p

2
(M ′(t))2

≥
(

(p − 2θ)b‖u0‖2θ−2
2

2θC2θ
2

M(t) − p‖u0‖22
)

M ′(t)

+
(

(p − 2θ)b‖u0‖2θ−2
2

2θC2θ
2

M ′(t) − 2pJ (u0)

)

M(t) > 0, t0 ≤ t < ∞.

Then we get from Lemma 1 that the maximal existence time T1 of M(t) satisfying
T1 < ∞ and

lim
t→T1

M(t) = ∞,

which contradicts T = ∞.

Case 2: J (u0) = d Since I (u(t)) < 0 for t ≥ 0 (see Lemma 9), it follows that

(ut , u) = −I (u(t)) > 0, t ≥ 0.

Hence we can get ‖ut‖22 > 0 for t ≥ 0. Thus by (2.12), there exists a t1 > 0 such
that

J (u(t1)) ≤ J (u0) −
t1∫

0

‖uτ‖22dτ < d.

If we take t1 as the initial time, then similar to the Case 1 in the proof of this section,
we can obtain the finite time blow up result. The proof of Step 1 is complete.

Step 2: Upper bound estimate of the blow-up time

Letu = u(t)be a solution of problem (1.1)with initial valueu0 satisfying I (u0) < 0
and J (u0) < d. By Step 1, the maximal existence time T < +∞. Let

μ(t) :=
⎛

⎝

t∫

0

‖u‖22dτ

⎞

⎠

1
2

, ν(t) :=
⎛

⎝

t∫

0

‖uτ‖22dτ

⎞

⎠

1
2

, ∀t ∈ [0, T ).
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By (2.12), Lemmas 8 and 9, we have

(R1) J (u(t)) + ν2(t) ≤ J (u0), ∀t ∈ [0, T );
(R2) d

dt ‖u‖22 = −2I (u(t)), ∀t ∈ [0, T );
(R3) u(t) ∈ N−, i.e., I (u(t)) < 0, ∀t ∈ [0, T ).

Consider the following functional:

F(t) := μ2(t) + (T − t)‖u0‖22 + β(t + α)2, ∀t ∈ [0, T ), (4.44)

where α and β are two positive constants to be determined later. Then by (R2) and
(R3), we have

F ′(t) = ‖u‖22 − ‖u0‖22 + 2β(t + α)

≥ 2β(t + α) > 0, t ∈ [0, T ),
(4.45)

which implies

F(t) ≥ F(0) = T ‖u0‖22 + βα2 > 0, t ∈ [0, T ) (4.46)

and (by (R1), (R2) and Lemma 7)

F ′′(t) = −2I (u(t)) + 2β > 2p(d − J (u(t))) + 2β

≥ 2p(d − J (u0)) + 2pν2(t) + 2β, t ∈ [0, T ).
(4.47)

By Schwartz’s inequality, we have

1

2

t∫

0

d

dτ
‖u‖22dτ =

t∫

0

(u, uτ )dτ

≤
t∫

0

‖u‖2‖uτ‖2dτ ≤ μ(t)ν(t), t ∈ [0, T ),

which, together with the definition of F(t), implies

(
F(t) − (T − t)‖u0‖22

) (
ν2(t) + β

)

=
(
μ2(t) + β(t + α)2

) (
ν2(t) + β

)

= μ2(t)ν2(t) + βμ2(t) + β(t + α)2ν2(t) + β2(t + α)2

≥ μ2(t)ν2(t) + 2βμ(t)ν(t)(t + α) + β2(t + α)2

= (μ(t)ν(t) + β(t + α))2

≥
⎡

⎣
1

2

t∫

0

d

dτ
‖u‖22dτ + β(t + α)

⎤

⎦

2

, t ∈ [0, T ).
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Then it follows from (4.45) and the above inequality that

(
F ′(t)

)2 = 4

⎛

⎝
1

2

t∫

0

d

dτ
‖u‖22ds + β(t + α)

⎞

⎠

2

≤ 4F(t)
(
ν2(t) + β

)
, t ∈ [0, T ).

(4.48)

Combining (4.46), (4.47) and (4.48), we get

F(t)F ′′(t) − p

2

(
F ′(t)

)2

> F(t)
[
2p(d − J (u0)) + 2pν2(t) + 2β − 2pν2(t) − 2pβ

]

= F(t) [2p(d − J (u0)) − 2(p − 1)β] , t ∈ [0, T ),

which is nonnegative if we take β small enough such that

0 < β ≤ p(d − J (u0))

p − 1
. (4.49)

Then it follows from Lemma 1 that

T ≤ F(0)
( p
2 − 1

)
F ′(0)

= 1

p − 2

(

α + ‖u0‖22
βα

T

)

. (4.50)

By taking α large enough such that

α >
‖u0‖22

(p − 2)β
, (4.51)

we get from (4.50) that

T ≤ βα2

(p − 2)βα − ‖u0‖22
. (4.52)

The above analysis shows that (ρ := αβ)

T ≤ inf
(ρ,α)∈�

f (ρ, α), (4.53)

where

� :=
{

(ρ, α) : ρ >
‖u0‖22
p − 2

, α ≥ (p − 1)ρ

p(d − J (u0))

}

,

f (ρ, α) := ρα

(p − 2)ρ − ‖u0‖22
.
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It is easily to find that f (ρ, α) is increasing with α. Then

T ≤ inf
ρ>

‖u0‖22
p−2

f

(

ρ,
(p − 1)ρ

p(d − J (u0))

)

= inf
ρ>

‖u0‖22
p−2

(p − 1)ρ2

p(d − J (u0))
(
(p − 2)ρ − ‖u0‖22

)

= (p − 1)ρ2

p(d − J (u0))
(
(p − 2)ρ − ‖u0‖22

)

∣
∣
∣
∣
ρ= 2‖u0‖22

p−2

= 4(p − 1)‖u0‖22
p(d − J (u0))(p − 2)2

.

Step 3: Lower bound estimate of the blow-up time

From Step 1 we know that the weak solution u(t) = u(x, t) of problem (1.1) blows
up at finite time T . Now, we estimate the lower bound of T and blow-up rate. To this
end, we define a function

f (t) := 1

2
‖u‖22,

then we have

f (T ) = ∞. (4.54)

According to Lemma 8, we have

1

2

d

dt
‖u‖22 = −I (u) = −a‖u‖2Z − b‖u‖2θZ +

∫

�

|u|p log |u|dx . (4.55)

Moreover, by Lemma 9, we know I (u) < 0. Thus, by (2.13) and the inequality
log |u(x)| <

|u(x)|ε
ε

(for any ε > 0), we deduce

‖u‖p+ε
p+ε ≤ C̃ p+ε

(
‖u‖2Z

) (1−β)(p+ε)
2 ·

(
‖u‖22

) β(p+ε)
2

= C̃ p+ε

b
(1−β)(p+ε)

2θ

(
b‖u‖2θZ

) (1−β)(p+ε)
2θ ·

(
‖u‖22

) β(p+ε)
2

≤ C̃ p+ε

b
(1−β)(p+ε)

2θ

(
a‖u‖2Z + b‖u‖2θZ

) (1−β)(p+ε)
2θ ·

(
‖u‖22

) β(p+ε)
2

<
C̃ p+ε

b
(1−β)(p+ε)

2θ

⎛

⎝

∫

�

|u|p log |u|dx
⎞

⎠

(1−β)(p+ε)
2θ

·
(
‖u‖22

) β(p+ε)
2
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<
C̃ p+ε

(bε)
(1−β)(p+ε)

2θ

(
‖u‖p+ε

p+ε

) (1−β)(p+ε)
2θ ·

(
‖u‖22

) β(p+ε)
2

. (4.56)

Since 0 < ε < 2θ+2− 4θ
2∗
s
−p, 2θ < p < 2θ+2− 4θ

2∗
s
andβ = 2·2∗

s−2p−2ε
(p+ε)(2∗

s−2) ∈ (0, 1),
we have

(1 − β)(p + ε)

2θ
< 1.

Thus, by (4.56), we can get

‖u‖p+ε
p+ε <

(
C̃ p+ε

(bε)
(1−β)(p+ε)

2θ

) 2θ
2θ−(1−β)(p+ε) (

‖u‖22
) βθ(p+ε)

2θ−(1−β)(p+ε)
. (4.57)

Moreover, by remark 2, we know

ζ := βθ(p + ε)

2θ − (1 − β)(p + ε)
> 1.

Then combining (4.55) and (4.57) we have

f ′(t) = −a‖u‖2Z − b‖u‖2θZ +
∫

�

|u|p log |u|dx

≤
∫

�

|u|p log |u|dx ≤ 1

ε
‖u‖p+ε

p+ε

< Ĉ
(
‖u‖22

)ζ = 2ζ Ĉ ( f (t))ζ ,

(4.58)

where Ĉ =
(

C̃ p+ε

εb
(1−β)(p+ε)

2θ

) 2θ
2θ−(1−β)(p+ε)

.

We can prove by contradiction that for any t ∈ [0, T ), f (t) > 0. If not, there exists
a t1 ≥ 0 such that ‖u(t1)‖22 = 0, which contradicts (4.57). Then by (4.58) we have

f ′(t)
( f (t))ζ

< 2ζ Ĉ . (4.59)

Integrating the above inequality from 0 to t , we have

( f (0))1−ζ − ( f (t))1−ζ < 2ζ Ĉ(ζ − 1)t, (4.60)

letting t → T in (4.60) and using (4.54) we can conclude that

T >
( f (0))1−ζ

2ζ Ĉ(ζ − 1)
= ‖u0‖2−2ζ

2

2Ĉ(ζ − 1)
.
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Similarly, integrating the inequality (4.59) from t to T , by (4.54) we have

f (t) >
(
2ζ Ĉ(ζ − 1)(T − t)

) 1
1−ζ ,

then by the definition of f (t) we can see that

‖u‖2 >
(
2Ĉ(ζ − 1)(T − t)

) 1
2(1−ζ ) .

��

Proof of Theorem 3 Let u = u(t) be theweak solution of problem (1.1)with I (u0) < 0
and J (u0) ≤ M̃ . Then according to Lemma 9 we have I (u) < 0 for all t ∈ [0, T ).

Let

G(t) :=
t∫

0

‖u‖22dτ, t ∈ [0, T ),

then

G ′(t) = ‖u‖22

and

G ′′(t) = −2I (u) > 0. (4.61)

Then by (2.3), (2.6), (2.12), (4.61) and Corollary 2, we get

G ′′(t) = −2pJ (u) + (p − 2)a‖u‖2Z + (p − 2θ)b

θ
‖u‖2θZ + 2

p
‖u‖p

p

≥ −2pJ (u0) + 2p

t∫

0

‖uτ‖22dτ + (p − 2)a‖u‖2Z + (p − 2θ)b

θ
‖u‖2θZ

≥ −2pJ (u0) + (p − 2)ar2∗ + (p − 2θ)b

θ
r2θ∗ + 2p

t∫

0

‖uτ‖22dτ

= 2p(M̃ − J (u0)) + 2p

t∫

0

‖uτ‖22dτ.

(4.62)
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Since

⎛

⎝

t∫

0

(u, uτ )dτ

⎞

⎠

2

= 1

4

⎛

⎝

t∫

0

d

dτ
‖u‖22dτ

⎞

⎠

2

= 1

4
(G ′(t) − G ′(0))2

= 1

4
[(G ′(t))2 − 2G ′(t)G ′(0) + (G ′(0))2],

so we have

(G ′(t))2 = 4

⎛

⎝

t∫

0

(u, uτ )dτ

⎞

⎠

2

+ 2‖u0‖22G ′(t) − ‖u0‖42. (4.63)

Combining (4.62) and (4.63), and using the Schwartz inequality, we get

G(t)G ′′(t) − p

2
(G ′(t))2

≥ 2p

t∫

0

‖uτ‖22dτ

t∫

0

‖u‖22dτ − 2p

⎛

⎝

t∫

0

(u, uτ )dτ

⎞

⎠

2

+ 2p(M̃ − J (u0))G(t) − p‖u0‖22G ′(t) + p

2
‖u0‖42

≥ 2p(M̃ − J (u0))G(t) − p‖u0‖22G ′(t)
≥ −p‖u0‖22G ′(t).

Then for any γ ∈
[
0, 2

2∗
s

]
, we have

G(t)G ′′(t) − pγ

2
(G ′(t))2 ≥ p(1 − γ )

2
(G ′(t))2 − p‖u0‖22G ′(t). (4.64)

Moreover, by Theorem 2, we know that u(t) blows up at some finite time, so we
have

lim
t→T− G ′(t) = lim

t→T− ‖u‖22 = +∞.

Then it follows from (4.64) that there exists a tγ ∈ (0, T ) such that for all t ∈ [tγ , T )

G(t)G ′′(t) − pγ

2
(G ′(t))2 > 0. (4.65)
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Since

(
G1− pγ

2 (t)
)′ =

(
1 − pγ

2

)
G− pγ

2 (t)G ′(t),

it follows from (4.65) that for all t ∈ [tγ , T ),

(
G1− pγ

2 (t)
)′′ =

(
1 − pγ

2

)
G− pγ

2 −1(t)
[
G(t)G ′′(t) − pγ

2
(G ′(t))2

]
> 0.

Then by 2 − pγ ≥ 2 − 2p
2∗
s

> 0 and G(tγ ) > 0, we have

G(t) = (G1− pγ
2 (t))

2
2−pγ

=
⎡

⎢
⎣G1− pγ

2 (tγ ) +
t∫

tγ

(
G1− pγ

2 (τ )
)′
dτ

⎤

⎥
⎦

2
2−pγ

≥
[

G1− pγ
2 (tγ ) + (t − tγ )

(
G1− pγ

2 (τ )
)′∣∣
∣
∣
τ=tγ

] 2
2−pγ

=
[
G1− pγ

2 (tγ ) +
(
1 − pγ

2

)
(t − tγ )G− pγ

2 (tγ )G ′(tγ )
] 2
2−pγ

≥
[(

1 − pγ

2

)
(t − tγ )G− pγ

2 (tγ )G ′(tγ )
] 2
2−pγ

= Cγ (t − tγ )
2

2−pγ ,

(4.66)

where

Cγ :=
[(

1 − pγ

2

)
G− pγ

2 (tγ )G ′(tγ )
] 2
2−pγ

.

Since G ′′(t) > 0 for all t ∈ [0, T ), thus we have

t∫

0

G ′(τ )dτ ≤ tG ′(t),

i.e. (for all t ∈ [0, T )),

t‖u‖22 ≥ G(t).
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Combining with (4.66) and the above inequality, we can deduce that for any 0 ≤
γ ≤ 2

2∗
s
and t ∈ [tγ , T ),

‖u‖22 ≥ Cγ (t − tγ )
2

2−pγ

t
= Cγ (t

pγ
2 − t

pγ
2 −1tγ )

2
2−pγ .

��
Proof of Theorem 4 To complete this proof, we use some ideas from [30,31] and we
divide the proof into three steps.

Step 1: Blow-up in finite time
First, it follows from the definition of (2.3) and the assumption that

I (u0) = pJ (u0) − (p − 2)a

2
‖u0‖2Z − (p − 2θ)b

2θ
‖u0‖2θZ − 1

p
‖u0‖p

p

≤ pJ (u0) − (p − 2θ)bλθ
1

2θ
‖u0‖2θ2 < 0.

Actually, we may claim that I (u(t)) < 0 for all t ∈ [0, T ). Otherwise, there exists
a t0 ∈ (0, T ) such that I (u(t0)) = 0 and I (u(t)) < 0 for all t ∈ [0, t0). By Lemma 8
we know that ‖u‖22 is strictly increasing with respect to t for t ∈ [0, t0), and therefore

J (u0) <
(p − 2θ)bλθ

1

2θ p
‖u0‖2θ2 <

(p − 2θ)bλθ
1

2θ p
‖u(t0)‖2θ2 . (4.67)

On the other hand, by (2.3) and (2.12), we can get

(p − 2θ)bλθ
1

2θ p
‖u(t0)‖2θ2 ≤ (p − 2θ)b

2θ p
‖u(t0)‖2θZ ≤ J (u(t0)) ≤ J (u0),

which contradicts (4.67), so we obtain I (u(t)) < 0 for all t ∈ [0, T ).
Next, we are going to prove the blow-up of the solution u(t) by contradiction. Fix

a T̃ = (4(p−1)‖u0‖22+1)2+1

(p−2)2

, where 
 := (p−2θ)bλθ
1

θ
‖u0‖2θ2 − 2pJ (u0) > 0, then we

suppose that u(t) exists globally on [0, T̃ ] and let

G(t) :=
t∫

0

‖u‖22dτ + (T̃ − t)‖u0‖22 + σ(t + ε)2, t ∈ [0, T̃ ],

where σ , ε are two positive constants which will be specified later.
Then, for any t ∈ [0, T̃ ], by a simply computation, we obtain

⎧
⎨

⎩

G(0) = T̃ ‖u0‖22 + σε2 > 0,
G ′(t) = ‖u‖22 − ‖u0‖22 + 2σ(t + ε) > 2σ(t + ε) > 0,
G ′(0) = 2σε > 0,
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and

G ′′(t) = −2I (u(t)) + 2σ ≥ (p − 2)a‖u‖2Z + (p − 2θ)b

θ
‖u‖2θZ + 2

p
‖u‖p

p

− 2pJ (u(t)) + 2σ

≥ (p − 2θ)b

θ
‖u‖2θZ − 2pJ (u(t)) + 2σ

≥ (p − 2θ)bλθ
1

θ
‖u‖2θ2 − 2pJ (u0) + 2p

t∫

0

‖uτ‖22dτ + 2σ

≥ (p − 2θ)bλθ
1

θ
‖u0‖2θ2 − 2pJ (u0) + 2p

t∫

0

‖uτ‖22dτ

+ 2σ > 0,

thus, we can get G(t) ≥ G(0) > 0 for all t ∈ [0, T̃ ].
Let

μ(t) :=
(∫ t

0
‖u‖22dτ

) 1
2

, ν(t) :=
(∫ t

0
‖uτ‖22dτ

) 1
2

.

By using Hölder’s inequality, we have

⎡

⎣

t∫

0

‖u‖22dτ + σ(t + ε)2

⎤

⎦

⎡

⎣

t∫

0

‖uτ‖22dτ + σ

⎤

⎦ −
[
1

2
(‖u‖22 − ‖u0‖22) + σ(t + ε)

]2

=
[
μ2(t) + σ(t + ε)2

] [
ν2(t) + σ

]
−

⎡

⎣
1

2

t∫

0

d

dτ
‖u‖22dτ + σ(t + ε)

⎤

⎦

2

≥
[
μ2(t) + σ(t + ε)2

] [
ν2(t) + σ

]
−

⎡

⎣

t∫

0

‖u‖2‖uτ‖2dτ + σ(t + ε)

⎤

⎦

2

≥
[
μ2(t) + σ(t + ε)2

] [
ν2(t) + σ

]
− [μ(t)ν(t) + σ(t + ε)]2

= [√
σμ(t)

]2 − 2σ(t + ε)μ(t)ν(t) + [√
σ(t + ε)ν(t)

]2

= [√
σμ(t) − √

σ(t + ε)ν(t)
]2 ≥ 0.
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Then we obtain

−(G ′(t))2 = −4

(
1

2
(‖u‖22 − ‖u0‖22) + σ(t + ε)

)2

= 4

⎛

⎝

t∫

0

‖u‖22dτ + σ(t + ε)2

⎞

⎠

⎛

⎝

t∫

0

‖uτ‖22dτ + σ

⎞

⎠

− 4

(
1

2
(‖u‖22 − ‖u0‖22) + σ(t + ε)

)2

− 4
(
G(t) − (T̃ − t)‖u0‖22

)
⎛

⎝

t∫

0

‖uτ‖22dτ + σ

⎞

⎠

≥ −4G(t)

⎛

⎝

t∫

0

‖uτ‖22dτ + σ

⎞

⎠ .

The above calculations show that

G(t)G ′′(t) − p

2

(
G ′(t)

)2

≥ G(t)

⎛

⎝G ′′(t) − 2p

⎛

⎝

t∫

0

‖uτ‖22dτ + σ

⎞

⎠

⎞

⎠

≥ G(t)

(
(p − 2θ)bλθ

1

θ
‖u0‖2θ2 − 2pJ (u0) − 2(p − 1)σ

)

.

Wechooseσ = 

4(p−1) , then it follows thatG(t)G ′′(t)− p

2

(
G ′(t)

)2 ≥ 0. Therefore,
by Lemma 1 it is seen that

T ≤ 2G(0)

(p − 2)G ′(0)
= ‖u0‖22

σε(p − 2)
T̃ + ε

p − 2
and lim

t→T
G(t) = +∞.

Next, we choose ε = 4(p−1)‖u0‖22+1

(p−2) , then we have T < T̃ , which is a contraction.

Hence, u(t) will blow-up at some finite time T .

Step 2: Upper bound estimate of the blow-up time
For any T1 ∈ (0, T ), let

F(t) :=
t∫

0

‖u‖22dτ + (T − t)‖u0‖22 + σ(t + ε)2, t ∈ [0, T1],

where σ , ε are two positive constants which will be specified later.
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Then similar to Step 1 we can get

F(t)F ′′(t) − p

2

(
F ′(t)

)2 ≥ F(t)

(
(p − 2θ)bλθ

1

θ
‖u0‖2θ2 − 2pJ (u0) − 2(p − 1)σ

)

.

We choose σ small enough, such that

σ ∈
(

0,



2(p − 1)

]

, (4.68)

then it follows that F(t)F ′′(t) − p
2

(
F ′(t)

)2 ≥ 0. Therefore, by Lemma 1 we obtain

T1 ≤ 2F(0)

(p − 2)F ′(0)
= ‖u0‖22

σε(p − 2)
T + ε

p − 2
, ∀T1 ∈ [0, T ).

Hence, letting T1 → T , we have

T ≤ ‖u0‖22
σε(p − 2)

T + ε

p − 2
. (4.69)

Let ε be large enough such that

ε ∈
(

‖u0‖22
(p − 2)σ

,+∞
)

, (4.70)

then by (4.69), we can get

T ≤ σε2

σε(p − 2) − ‖u0‖22
.

In view of (4.68) and (4.70), we define

� : =
{

(σ, ε) : σ ∈
(

0,



2(p − 1)

]

, ε ∈
(

‖u0‖22
(p − 2)σ

,+∞
)}

=
{

(σ, ε) : σ ∈
(

‖u0‖22
(p − 2)ε

,



2(p − 1)

]

, ε ∈
(
2(p − 1)‖u0‖22

(p − 2)

,+∞

)}

,

then

T ≤ inf
(σ,ε)∈�

σε2

σε(p − 2) − ‖u0‖22
.
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Let ς = σε and

f (ε, ς) := ςε

ς(p − 2) − ‖u0‖22
.

Since f (ε, ς) is decreasing with ς and we obtain

T ≤ inf
ε∈

(
2(p−1)‖u0‖22

(p−2)
 ,+∞
) f

(

ε,

ε

2(p − 1)

)

= inf
ε∈

(
2(p−1)‖u0‖22

(p−2)
 ,+∞
)


ε2


ε(p − 2) − 2(p − 1)‖u0‖22

= 
ε2


ε(p − 2) − 2(p − 1)‖u0‖22

∣
∣
∣
∣
ε= 4(p−1)‖u0‖22

(p−2)


=8(p − 1)‖u0‖22
(p − 2)2


.

Hence, by the definition of 
 and the above inequality, we have

T ≤ 8(p − 1)θ‖u0‖22
(p − 2)2

[
(p − 2θ)bλθ

1‖u0‖2θ2 − 2pθ J (u0)
] .

Step 3: Growth estimates
First, similar to Step 1, we can get I (u) < 0 for all t ∈ [0, T ), so by Lemma 8, we

know that ‖u‖22 is strictly increasing with respect to t . Then by Lemma 8 and (2.3) we
know

d

dt

(

‖u‖22 − 2pθ

(p − 2θ)bλθ
1‖u0‖2θ−2

2

J (u0)

)

= −2I (u) = −2pJ (u) + (p − 2)a‖u‖2Z + (p − 2θ)b

θ
‖u‖2θZ + 2

p
‖u‖p

p.

According to (2.12), we know J (u(t)) ≤ J (u0) for all t ∈ [0, T ). Sowe can deduce
from (1.10) and the above equality that

d

dt

(

‖u‖22 − 2pθ

(p − 2θ)bλθ
1‖u0‖2θ−2

2

J (u0)

)

≥ −2pJ (u0) + (p − 2θ)bλθ
1

θ
‖u‖2θ2

≥ −2pJ (u0) + (p − 2θ)bλθ
1‖u0‖2θ−2

2

θ
‖u‖22
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= (p − 2θ)bλθ
1‖u0‖2θ−2

2

θ

(

‖u‖22 − 2pθ

(p − 2θ)bλθ
1‖u0‖2θ−2

2

J (u0)

)

,

which implies

‖u‖22 ≥
(

‖u0‖22 − 2p

A
J (u0)

)

eAt + 2p

A
J (u0),

where A = (p−2θ)bλθ
1‖u0‖2θ−2

2
θ

. ��
Proof of Theorem 5 Let u(t) be the blow-up solution with I (u0) < 0, J (u0) ≤ d or
(2.17) holds, and assume T is the maximal existence time, then by Theorem 2 and
Theorem 4 we know

lim
t→T

‖u‖2 = +∞. (4.71)

Moreover, by Lemma 9 and Step 1 of Theorem 4, we can get I (u) < 0 for all
t ∈ [0, T ), so by Lemma 8, we can infer that ‖u‖22 is strictly increasing for all
t ∈ [0, T ).

By Hölder’s inequality, we obtain

t∫

0

‖uτ‖22dτ ≥ 1

t

⎛

⎝

t∫

0

‖uτ‖2dτ

⎞

⎠

2

.

By [37, page 75, Proposition 3.3], we know

t∫

0

‖uτ‖2dτ ≥
∥
∥
∥
∥
∥
∥

t∫

0

uτdτ

∥
∥
∥
∥
∥
∥
2

= ‖u(t) − u0‖2 ≥ ‖u‖2 − ‖u0‖2.

Since ‖u‖22 is strictly increasing on [0, T ), we know ‖u‖2 − ‖u0‖2 ≥ 0, then the
above inequalities imply

t∫

0

‖uτ‖22dτ ≥ 1

t
(‖u‖2 − ‖u0‖2)2.

So it follows from (2.12) that

J (u(t)) ≤ J (u0) −
t∫

0

‖uτ‖22dτ

≤ J (u0) − 1

t
(‖u‖2 − ‖u0‖2)2.
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Let t → T in the above inequality and using (4.71), we get

lim
t→T

J (u(t)) = −∞.

��
Proof of Theorem 6 We divide the proof into two cases.

Case 1: u0 ∈ Z \ {0} and J (u0) < d.
First, we claim that I (u0) �= 0. Indeed, since u0 �= 0, if I (u0) = 0, then by the

definition of d, we get J (u0) ≥ d, which contradicts J (u0) < d.
(1) If I (u0) < 0, then together with J (u0) < d and Theorem 2, we know the

solution blows up in finite time, so we get T < +∞. Next we claim that if T < +∞,
then we have I (u0) < 0. Indeed, if I (u0) > 0, then together with J (u0) < d and
Theorem 1, we get T = +∞, which contradicts T < +∞. Since I (u0) �= 0, so the
claim is true. Moreover, if I (u0) < 0, then according to J (u0) < d and Theorem 5,
we can get there must exist a t0 ∈ [0, T ) such that J (u(t0)) < 0. Hence, in order to
complete this proof, we now only need to show

there exists a t0 ∈ [0, T ) such that J (u(t0)) < 0 ⇒ I (u0) < 0.

Since there exists a t0 ∈ [0, T ) such that J (u(t0)) < 0, so by (2.3), we have
I (u(t0)) < 0, then taking t0 as the initial time, by Theorem 2, we see the solution
blows up in finite time, so by Theorem 1 we know that I (u0) > 0 cannot happen.
Since I (u0) �= 0, so there must be I (u0) < 0.

(2) If I (u0) > 0, together with J (u0) < d and Theorem 1, we get T = +∞. Next,
we claim that if T = +∞, then we have I (u0) > 0. Indeed, if I (u0) < 0, then by
(1), we have T < +∞, which is a contradiction. Since I (u0) �= 0, so the claim is
true. Moreover, if I (u0) > 0, then according to J (u0) < d and Lemma 9, we know
I (u(t)) > 0 for all t ∈ [0,+∞). Thus, by (2.3) we deduce that J (u(t)) > 0 for all
t ∈ [0,+∞). So we only need to prove

J (u(t)) > 0 for all t ∈ [0, T ) ⇒ I (u0) > 0.

Since I (u0) �= 0, if I (u0) < 0, then together with J (u0) < d and Theorem 5,
we have limt→T J (u(t)) = −∞. By the continuity of J (u(t)) with respect to t , we
know there exists a t0 such that J (u(t0)) < 0, which contradicts J (u(t)) > 0 for all
t ∈ [0, T ) and our proof is complete.

Case 2: u0 ∈ Z \ {N ∪ {0}} and J (u0) = d.
First, since u0 ∈ Z \ {N ∪ {0}}, so we have I (u0) �= 0.
(3) If I (u0) < 0, then together with J (u0) = d and Theorem 2, we know the

solution blows up in finite time, so we get T < +∞. Next we claim that if T < +∞,
then we have I (u0) < 0. Indeed, if I (u0) > 0, then together with J (u0) = d and
Corollary 1, we get T = +∞, which contradicts T < +∞. Since I (u0) �= 0, so the
claim is true. Moreover, if I (u0) < 0, then according to J (u0) = d and Theorem 5,
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we can get there must exist a t0 ∈ [0, T ) such that J (u(t0)) < 0. Hence, in order to
complete this proof, we now only need to show

there exists a t0 ∈ [0, T ) such that J (u(t0)) < 0 ⇒ I (u0) < 0.

Since there exists a t0 ∈ [0, T ) such that J (u(t0)) < 0, so by (2.3), we have
I (u(t0)) < 0, then taking t0 as the initial time, by Theorem 2, we see the solution
blows up in finite time, so by Corollary 1 we know that I (u0) > 0 cannot happen.
Since I (u0) �= 0, so there must be I (u0) < 0.

(4) If I (u0) > 0, together with J (u0) = d and Corollary 1, we get T = +∞. Next,
we claim that if T = +∞, then we have I (u0) > 0. Indeed, if I (u0) < 0, then by
(3), we have T < +∞, which is a contradiction. Since I (u0) �= 0, so the claim is
true. Moreover, if I (u0) > 0, then according to J (u0) = d and Lemma 9, we know
I (u(t)) > 0 for all t ∈ [0,+∞). Thus, by (2.3) we deduce that J (u(t)) > 0 for all
t ∈ [0,+∞). So we only need to prove

J (u(t)) > 0 for all t ∈ [0, T ) ⇒ I (u0) > 0.

Since I (u0) �= 0, if I (u0) < 0, then together with J (u0) = d and Theorem 5,
we have limt→T J (u(t)) = −∞. By the continuity of J (u(t)) with respect to t , we
know there exists a t0 such that J (u(t0)) < 0, which contradicts J (u(t)) > 0 for all
t ∈ [0, T ) and our proof is complete. ��
Proof of Theorem 7 (1) By the definition of d in (2.4), N in (2.5) and (2.3), we get

d = inf
u∈N J (u) = inf

u∈N

[
(p − 2)a

2p
‖u‖2Z + (p − 2θ)b

2θ p
‖u‖2θZ + 1

p2
‖u‖p

p

]

.

Then a minimizing sequence {uk}∞k=1 ⊂ N exists such that

lim
k→∞ J (uk) = lim

k→∞

[
(p − 2)a

2p
‖uk‖2Z + (p − 2θ)b

2θ p
‖uk‖2θZ + 1

p2
‖uk‖p

p

]

= d.

(4.72)

Since p ∈ (2θ, 2∗
s ), (4.72) ensures that {uk}∞k=1 is bounded in Z , i.e., there exists a

constant ϑ independent of k such that

‖uk‖Z ≤ ϑ, k = 1, 2, . . . , (4.73)

which, together with Z is reflexive, implies there exists a subsequence of {uk}∞k=1, still
denoted by {uk}∞k=1, and a v0 such that

uk⇀v0 weakly in Z as k → ∞. (4.74)

Moreover, by Lemma 2, we have

uk → v0 strongly in L p(�) as k → ∞. (4.75)
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Since (4.73) holds, similar to the proof (4.11), there exists a positive constant Cχ

independent of k such that

∫

�

||uk |p−2uk log |uk ||
p

p−1 ≤ Cχ . (4.76)

In view of (4.75) and (4.76), similar to get (4.18), there exists a subsequence of
{uk}∞k=1, still denoted by {uk}∞k=1 such that

|uk |p−2uk log |uk |⇀|v0|p−2v0 log |v0| weakly in L
p

p−1 (�) as k → ∞. (4.77)

Similar to the proof of (4.22), by (4.75) and (4.77), we have, as k → ∞,

∣
∣
∣
∣
∣
∣

∫

�

|uk |p log |uk |dx −
∫

�

|v0|p log |v0|dx
∣
∣
∣
∣
∣
∣

≤ p
p−1
√
Cχ‖uk − v0‖p

+
∣
∣
∣
∣
∣
∣

∫

�

v0

(
|uk |p−2uk log |uk | − |v0|p−2v0 log |v0|

)
dx

∣
∣
∣
∣
∣
∣

→ 0.

(4.78)

Since {uk}∞k=1 ∈ N , by the definition of N in (2.5), we get

a‖uk‖2Z + b‖uk‖2θZ =
∫

�

|uk |p log |uk |dx,

which, togetherwith ‖·‖Z is weakly lower semi-continuous, (4.74) and (4.78), implies

a‖v0‖2Z + b‖v0‖2θZ ≤ lim inf
k→∞ (a‖uk‖2Z + b‖uk‖2θZ )

= lim
k→∞

∫

�

|uk |p log |uk |dx

=
∫

�

|v0|p log |v0|dx .

(4.79)

Next, we claim that I (v0) = a‖v0‖2Z + b‖v0‖2θZ − ∫

�

|v0|p log |v0|dx = 0. Indeed,

if the claim is not true, then by (4.79), we get a‖v0‖2Z +b‖v0‖2θZ <
∫

�

|v0|p log |v0|dx .
Obviously, we have v0 �= 0. Then by Lemma 6, there exists a λ∗ ∈ (0, 1) such that
λ∗v0 ∈ N .
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By (4.72), the first inequality of (4.79) and (4.75), we get

d = lim
k→∞

[
(p − 2)a

2p
‖uk‖2Z + (p − 2θ)b

2θ p
‖uk‖2θZ + 1

p2
‖uk‖p

p

]

≥ p − 2

2p
lim inf
k→∞ a‖uk‖2Z + p − 2θ

2θ p
lim inf
k→∞ b‖uk‖2θZ + 1

p2
lim inf
k→∞ ‖uk‖p

p

≥ (p − 2)a

2p
‖v0‖2Z + (p − 2θ)b

2θ p
‖v0‖2θZ + 1

p2
‖v0‖p

p.

Then by I (λ∗v0) = 0, λ∗ ∈ (0, 1), we obtain

J (λ∗v0) = (p − 2)a

2p
λ∗2‖v0‖2Z + (p − 2θ)b

2θ p
λ∗2θ‖v0‖2θZ + λ∗ p

p2
‖v0‖p

p

<
(p − 2)a

2p
‖v0‖2Z + (p − 2θ)b

2θ p
‖v0‖2θZ + 1

p2
‖v0‖p

p

≤ d.

However, since λ∗v0 ∈ N , it follows from the definition of d in (2.4) that J (λ∗v0) ≥
d, a contradiction. So the claim holds and we get from (4.79) that

lim
k→∞ ‖uk‖Z = ‖v0‖Z ,

which, together with Z is uniformly convex and (4.74), implies

uk → v0 strongly in Z as k → ∞.

Then by (2.3) and (4.72), we get

J (v0) = (p − 2)a

2p
‖v0‖2Z + (p − 2θ)b

2θ p
‖v0‖2θZ + 1

p2
‖v0‖p

p

= lim
k→∞

[
(p − 2)a

2p
‖uk‖2Z + (p − 2θ)b

2θ p
‖uk‖2θZ + 1

p2
‖uk‖p

p

]

= d,

which implies v0 �= 0. Then by I (v0) = 0, we get v0 ∈ N and d = J (v0) =
infu∈N J (u).

(2) Finally, we prove v0 is a ground-state solution of problem (2.19). That is,
v0 ∈ � \ {0} and

J (v0) = inf
u∈�\{0} J (u), (4.80)

where � is defined in (2.20).
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In fact, by conclusion (1) and the definition of N in (2.5) we know that

v0 ∈ N = {u ∈ Z \ {0} : 〈J ′(u), u〉 = I (u) = 0}

and

J (v0) = d = inf
u∈N J (u). (4.81)

Therefore, v0 �= 0, and by the theory of Lagrangemultipliers, there exists a constant
μ ∈ R such that

J ′(v0) − μI ′(v0) = 0. (4.82)

Then

μ〈I ′(v0), v0〉 = 〈J ′(v0), v0〉 = I (v0) = 0. (4.83)

On the other hand, for any u ∈ Z , we can deduce

〈I ′(v0), u〉 = d

dτ
I (v0 + τu)

∣
∣
∣
∣
τ=0

= d

dτ

[
a‖v0 + τu‖2Z + b‖v0 + τu‖2θZ

−
∫

�

|v0 + τu|p log |v0 + τu|dx
⎤

⎦

∣
∣
∣
∣
τ=0

= 2a〈v0, u〉Z + 2θb‖v0‖2θ−2
Z 〈v0, u〉Z

−
∫

�

[
p|v0|p−2v0u log |v0| + |v0|p−2v0u

]
dx,

which implies

〈I ′(v0), v0〉 = 2a‖v0‖2Z + 2θb‖v0‖2θZ −
∫

�

[
p|v0|p log |v0| + |v0|p

]
dx .

Since I (v0) = 0, we get from (2.2) that a‖v0‖2Z + b‖v0‖2θZ = ∫

�

|v0|p log |v0|dx .
Then it follows from the above equality, v0 �= 0, and p ∈ (2θ, 2∗

s ) that

〈I ′(v0), v0〉 = 2a‖v0‖2Z + 2θb‖v0‖2θZ − ap‖v0‖2Z − bp‖v0‖2θZ − ‖v0‖p
p < 0,

which, together with (4.83), implies μ = 0. Then we get from (4.82) that J ′(v0) = 0,
so v0 ∈ � \ {0}. Furthermore, by (4.81) and � \ {0} ⊂ N , we get (4.80). ��
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Proof of Theorem 8 Let u = u(t) be a global solution of problem (1.1). Without loss
of generality, we may assume that

0 ≤ J (u(t)) ≤ J (u0), t ∈ [0,∞). (4.84)

Indeed, the second inequality follows from (2.12). Now we prove the first inequality
by contradiction argument. If there is a t0 ∈ [0,∞) such that J (u(t0)) < 0, then by
(2.3) we have I (u(t0)) < 0, so it follows from Theorem 2 that u(t) blows up in finite
time, which contradicts the assumption that u(t) is global.

Since J (u(t)) ∈ [0, J (u0)], so there must exist a subsequence {tm}∞m=1 and a
constant c ∈ [0, J (u0)] such that

lim
tm→∞ J (u(tm)) = c.

By (2.12), we have

tm∫

0

‖uτ‖22dτ + J (u(tm)) ≤ J (u0).

Letting tm → ∞ in the above inequality, we get

∞∫

0

‖uτ‖22dτ ≤ J (u0) − c ≤ J (u0),

which implies there is an increasing sequence {tk}∞k=1 with tk → ∞ as k → ∞
satisfying

lim
k→∞ ‖ut (tk)‖2 = 0. (4.85)

By the definition of J in (2.1) and (2.11), for any ψ ∈ Z , we have

〈J ′(u(t)), ψ〉 = d

dτ
J (u(t) + τψ)

∣
∣
∣
∣
τ=0

= a〈u, ψ〉Z + b‖u‖2θ−2
Z 〈u, ψ〉Z −

∫

�

|u|p−2uψ log |u|dx

= −
∫

�

utψdx,

which, together with (4.85), implies

‖J ′(u(tk))‖Z ′ = sup
‖ψ‖Z≤1

|〈J ′(u(tk)), ψ〉|
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≤ sup
‖ψ‖Z≤1

‖ut (tk)‖2‖ψ‖2

≤ 1√
λ1

sup
‖ψ‖Z≤1

‖ut (tk)‖2‖ψ‖Z

≤ 1√
λ1

‖ut (tk)‖2
→ 0 (4.86)

as k → ∞, where λ1 is the first eigenvalue of problem (1.9).
By (2.2) and (4.86), there exists a positive constant σ such that

1

p
|I (u(tk))| = 1

p
|〈J ′(u(tk)), u(tk)〉|

≤ 1

p
‖J ′(u(tk))‖Z ′ ‖u(tk)‖Z

≤ σ‖u(tk)‖Z .

Then it follows from (2.1), (2.2), (4.84) and p ∈ (2θ, 2∗
s ) that

J (u0) + σ‖u(tk)‖Z ≥ J (u(tk)) − 1

p
I (u(tk))

= (p − 2)a

2p
‖u(tk)‖2Z + (p − 2θ)b

2θ p
‖u(tk)‖2θZ + 1

p2
‖u(tk)‖p

p

≥ (p − 2θ)b

2θ p
‖u(tk)‖2θZ ,

which implies there exists a positive constant L independent of k such that

‖u(tk)‖Z ≤ L, k = 1, 2, . . . (4.87)

Indeed, if ‖u(tk)‖Z is unbounded, then there must be a t̃k such that ‖u(t̃k)‖Z → ∞,

which, together with θ ∈
[
1, 2∗

s
2

)
and p > 2θ , implies

J (u0) + σ‖u(t̃k)‖Z − (p − 2θ)b

2θ p
‖u(t̃k)‖2θZ < 0,

a contradiction.
Then by similar arguments as to get (4.74) and (4.75), there exists an increasing

subsequence of the sequence {tk}∞k=1, still denoted by {tk}∞k=1, and a u
∗ ∈ Z such that

uk := u(tk) satisfies

uk⇀u∗ weakly in Z as k → ∞, (4.88)
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and

uk → u∗ strongly in L p(�) as k → ∞. (4.89)

By the definition of J in (2.1) and (1.7) we obtain

〈J ′(uk), uk − u∗〉
= d

dτ
J (uk + τ(uk − u∗))

∣
∣
∣
∣
τ=0

= d

dτ

[
a

2
‖uk + τ(uk − u∗)‖2Z + b

2θ
‖uk + τ(uk − u∗)‖2θZ

] ∣
∣
∣
∣
τ=0

− d

dτ

⎡

⎣
1

p

∫

�

|uk + τ(uk − u∗)|p log |uk + τ(uk − u∗)|dx

− 1

p2
‖uk + τ(uk − u∗)‖p

p

] ∣
∣
∣
∣
τ=0

= (a + b‖uk‖2θ−2
Z )〈uk, uk − u∗〉Z −

∫

�

|uk |p−2uk(uk − u∗) log |uk |dx .

(4.90)

Similarly, we have

〈J ′(u∗), uk − u∗〉 = (a + b‖u∗‖2θ−2
Z )〈u∗, uk − u∗〉Z

−
∫

�

|u∗|p−2u∗(uk − u∗) log |u∗|dx . (4.91)

So, we can get

〈J ′(uk) − J ′(u∗), uk − u∗〉 = a‖uk − u∗‖2Z + b〈‖uk‖2θ−2
Z uk

− ‖u∗‖2θ−2
Z u∗, uk − u∗〉Z + ρ

≥ Cθ,b‖uk − u∗‖2θZ + ρ,

(4.92)

where Cθ,b is a positive constant independent of k and

ρ :=
∫

�

|u∗|p−2u∗(uk − u∗) log |u∗| − |uk |p−2uk(uk − u∗) log |uk |dx .

According to (4.87), then similar to the proof of (4.11), we have

‖|uk |p−1 log |uk |‖ p
p−1

≤ CL , (4.93)

where CL is a positive constant independent of k.
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Therefore, by Hölder’s inequality, (4.89) and (4.93), we have

|ρ| ≤
(
‖|u∗|p−1 log |u∗|‖ p

p−1
+ ‖|uk |p−1 log |uk |‖ p

p−1

)
‖uk − u∗‖p

≤
(
‖|u∗|p−1 log |u∗|‖ p

p−1
+ CL

)
‖uk − u∗‖p

→ 0

(4.94)

as k → ∞. By (4.88), (4.89) and (4.91), we get

〈J ′(u∗), uk − u∗〉 → 0 (4.95)

as k → ∞. By (4.86) and (4.87), we have

|〈J ′(uk), uk − u∗〉| ≤ ‖J ′(uk)‖Z ′(‖uk‖Z + ‖u∗‖Z )

≤ (L + ‖u∗‖Z )‖J ′(uk)‖Z ′

→ 0

(4.96)

as k → ∞.
Then it follows from (4.92), (4.94), (4.95) and (4.96) that

Cθ,b‖uk − u∗‖2θZ ≤ 〈J ′(uk) − J ′(u∗), uk − u∗〉 − ρ

→ 0

as k → ∞. Then we get

J ′(u∗) = lim
k→∞ J ′(uk)

in Z ′, which, together with (4.86), implies J ′(u∗) = 0, i.e., u∗ ∈ �. ��
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