1 Introduction

The study of ordinary and partial differential equations with Wentzell boundary conditions was stimulated by the theory of probability in the pioneering paper of Wentzell [17]. He considered a second order elliptic differential operator \(A\) in a domain \(\Omega \) in \({\mathbb {R}}^n\), with sufficiently smooth boundary \(\partial \Omega \), and he looked for the most general supplementary conditions which restrict the given operator \(A\) to be the infinitesimal generator of a semigroup corresponding to a Markov process in the domain. In [17] it is proved that, when the domain \(\Omega \) has some special shape, the boundary conditions could involve the operator \(A\). Generalized Wentzell boundary conditions contain, as special cases, Dirichlet, Neumann and Robin boundary conditions. In a paper by Feller [9] we find a diffusion process involving the operator

$$\begin{aligned} Au(x):=x(1-x)u''(x),\ \ \ x\in (0,1), \end{aligned}$$
(1.1)

with the boundary conditions

$$\begin{aligned} \lim _{x\rightarrow 0^+,\ x\rightarrow 1^-} Au(x)=0. \end{aligned}$$
(1.2)

In [3] it is proved that \(A\) with the domain

$$\begin{aligned} \mathcal{D}(A)=\{ u\in C[0,1]\cap C^1(0,1)\ :\ \lim _{x\rightarrow 0^+,\ x\rightarrow 1^-} Au(x)=0\} \end{aligned}$$
(1.3)

is the generator of a \(C_0\)-contraction semigroup on \(C[0,1]\). For this reason in this paper we will consider the operator \(x(1-x)u''(x)\). Several motivations to study elliptic operators with Wentzell boundary conditions can also be found in [11, 1315].

In [7] generation results in suitable \(L^p\) spaces were proved. The present paper can be considered an extension of that work to the case \(W^{1,p}\). We recall what has been proved in [7], introducing the problem

$$\begin{aligned} \left\{ \begin{array}{clcr} &{}\lambda u -\nabla \cdot (a\nabla u) =f,\ \ \mathrm{in}\ \ \ \Omega ,\\ &{} \nabla \cdot (a\nabla u) +\beta \frac{\partial u}{\partial n} +\gamma u=0, \ \ \mathrm{on} \ \ \partial \Omega , \end{array}\right. \end{aligned}$$
(1.4)

where \(\Omega \) is a bounded open set with smooth boundary \(\partial \Omega \), \(\displaystyle {\frac{\partial u}{\partial n}}\) is the outward normal derivative, \(a(x)\) is a strictly positive \(C^2\) function for all \(x\in \overline{\Omega }\) and \( \beta (x) >0\), \(\gamma (x) \ge 0\), for all \(x\in \partial \Omega \).

We start by pointing out the surprising fact that the presence of the term \(\beta \frac{\partial u}{\partial n}\) in the boundary conditions led in [7] to introduce suitable \(L^p\) weighted spaces to prove a generation result. More precisely the authors in [7] define \(L^p(\overline{\Omega },d\mu )\), where

$$\begin{aligned} d\mu =dx\Big |_{\Omega } \oplus \frac{a }{\beta } \ \ dS\Big |_{\Gamma }\,; \end{aligned}$$

here \(dx\) denotes the Lebesgue measure on \(\Omega \), while \((a / \beta )\ dS\) denotes the measure with weight \(a/ \beta \) on \(\Gamma \): it is assumed that \(a>0\) in \(\Omega \cup \Gamma \), where \(\emptyset \ne \Gamma \subset \partial \Omega \) and \(a\in C^2(\Omega \cup \Gamma ) \cap C\left( \overline{\Omega }\right) \).

Let \(U=(u,v)\in L^p(\overline{\Omega },d\mu )\), where \( u:\Omega \rightarrow {\mathbb {C}}\) and \(v:\partial \Omega \rightarrow {\mathbb {C}}\) are measurable functions such that

$$\begin{aligned} \int _\Omega |u(x)|^p\, dx+\int _{\partial \Omega }|v(x)|^p\, \frac{a}{ \beta }\ dS \end{aligned}$$

is finite. With the norm

$$\begin{aligned} \Vert U\Vert _{L^p(\overline{\Omega },d\mu )}:=\left[ \int _\Omega |u(x)|^p\, dx +\int _{\partial \Omega }|v(x)|^p\, \frac{a}{ \beta }\ dS\right] ^{1/p}, \end{aligned}$$

\(L^p(\overline{\Omega },d\mu )\) becomes a Banach space. Moreover, the space \(L^p(\overline{\Omega },d\mu )\) can be identified with

$$\begin{aligned} L^p(\Omega ,dx)\times L^p\Big (\Gamma ,\displaystyle {\frac{a}{\beta }\ dS}\Big ). \end{aligned}$$

This space can be defined in an equivalent way: consider \(u\in C\left( \overline{\Omega }\right) \), set \(U=(u|_{\Omega }, u|_{\partial \Omega })\) and define \(X_p(\overline{\Omega })\) to be the completion of \(C(\overline{\Omega })\) with the norm \(\Vert U\Vert _{L^p(\overline{\Omega },d\mu )}\). It can be shown that

$$\begin{aligned} X_p\left( \overline{\Omega }\right) =L^p(\overline{\Omega },d\mu ). \end{aligned}$$

In the spaces \(C\left( \overline{\Omega }\right) \) the trace of a function has a clear meaning. We recall, for the sake of completeness, the main generation theorem in the space \(X_p\left( \overline{\Omega }\right) \) proved in [7] (see Theorem 3.1).

Theorem 1.1

Let \(\Omega \) be an open bounded set in \({\mathbb {R}}^n\) with boundary of class \(C^2\). Let \(a\in C^1(\overline{\Omega })\) with \(a>0\) in \(\overline{\Omega }\), \(Au:=\nabla \cdot (a\nabla u)\), \(\Gamma :=\{x\in \partial \Omega : a(x)>0\}\ne \emptyset \). If \(\beta \) and \(\gamma \) are non negative functions in \(C^1(\partial \Omega )\) with \(\beta >0\), then \(\overline{G}\), the closure of the operator

$$\begin{aligned} G=\left[ \begin{array}{rr} A &{} 0\\ -\beta \frac{\partial }{\partial n}&{}-\gamma \end{array} \right] \end{aligned}$$
(1.5)

with domain

$$\begin{aligned} D_p(G)&:= \Big \{ u\in C^2(\Omega \cup \Gamma )\cap C(\overline{\Omega }):\ Au\in L^p(\Omega , dx),\ \ Au\\&\;\;+\,\beta \frac{\partial u}{\partial n}+\gamma u=0,\ \ on\ \ \Gamma \ \Big \} \end{aligned}$$

generates a \((C_0)\) contraction semigroup on \(X_p\), for \(p\in [1,\infty )\). The semigroup is analytic if \(p\in (1,\infty )\).

This result was significally extended in [6] and [4].

We are able to generalize the above result for ordinary differential operators in the space \(W^{1,p}([0,1])\) with Wentzell boundary conditions also for a degenerate case.

The plan of the paper is the following.

  • In Sect. 2 we give a generation result in \(W^{1,p}([0,1])\) with Wentzell boundary conditions.

  • In Sect. 3 we establish a generation result in \(C^1([0,1])\).

  • In Sect. 4 we prove a generation result for a degenerate operator in \(W^{1,p}([0,1])\) with Wentzell boundary conditions.

  • In Sect. 5 we consider a linear partial differential operator of the second order and prove a generation result in \(C(\overline{\Omega })\) with Wentzell boundary conditions.

We set \(I = [0,1]\) and, in the following, we shall always suppose that \(a, b, c\in C^{\infty }(I)\) and, for every \(x\in I\), \(a(x) \ge a_0 > 0\).

Set

$$\begin{aligned} \left( A^{\sharp }u\right) (x) : = a(x) u'' + b(x) u' + c(x) u, \qquad x\in [0,1], \end{aligned}$$

We make the following hypothesis:

  1. (H1)

    for every \(c_0, c_1 \in {\mathbf {C}}\), there exists a unique solution \(u\) of the boundary value problem

    $$\begin{aligned} A^{\sharp } u = 0, \quad u(0) = c_0, \quad u(1) = c_1. \end{aligned}$$

    Then, if \(B_0, B_1\) are boundary operators of order not greater than one, the mapping \((A^{\sharp }, B_0, B_1)\) is an isomorphism from \(W^{3,p}([0,1])\) onto \(W^{1,p}([0,1]) \times {\mathbb {C}} \times {\mathbb {C}}\), by e.g. [16], Theorem 5.5.2.

2 Generation results in \(W^{1,p}([0,1])\) with Wentzell boundary conditions

Theorem 2.1

Define, for \(p>1\), the operator

$$\begin{aligned} \left\{ \begin{array}{clcr} &{}\mathcal{D}(A)=\{ u\in W^{1,p}(I)\ :\ au''+bu'+cu\in W^{1,p}_0(I)\ \},\\ &{} Au:=au''+bu'+cu,\ \ \ u\in \mathcal{D}(A),\\ \end{array} \right. \end{aligned}$$
(2.1)

and suppose that \(A\) satisfies assumption \((H1)\). Then \((A, \mathcal{D}(A))\) generates an analytic semigroup in \( W^{1,p}(I)\).

Proof

If \(\lambda \in {\mathbb {C}}\setminus \{0\}\) and \(f\in W^{1,p}(I)\), consider the boundary problem

$$\begin{aligned} \left\{ \begin{array}{clcr} &{} \lambda u(x)-Au(x)=f(x),\qquad x\in I,\\ &{} Au(j)=0,\ \ j=0,1,\\ \end{array} \right. \end{aligned}$$
(2.2)

and the auxiliary problem

$$\begin{aligned} \left\{ \begin{array}{clcr} &{}AG(x)=0,\ \qquad x\in I,\\ &{} G(j)=f(j),\ \qquad j=0,1. \\ \end{array} \right. \end{aligned}$$
(2.3)

By hypothesis \((H1)\), problem (2.3) has a unique solution \(G\in W^{3,p}(I)\). Then we can rewrite Problem (2.2) as

$$\begin{aligned} \left\{ \begin{array}{clcr} &{} \lambda \Big ( u(x)- \frac{G(x)}{\lambda }\Big ) -A\Big ( u(x)- \frac{G(x)}{\lambda }\Big )=f(x)-G(x),\ \qquad x\in I,\\ &{} u(j)- \frac{G(j)}{\lambda }=0,\ \ \ A\Big ( u- \frac{G}{\lambda }\Big )(j)=0,\ \qquad j=0,1.\\ \end{array} \right. \end{aligned}$$
(2.4)

Since \(f\in W^{1,p}(I)\) we have \(f-G\in W^{1,p}_0(I)\), and the operator

$$\begin{aligned} \left\{ \begin{array}{clcr} &{} \mathcal{D}(A_0)=\{ u\in W_0^{1,p}(I)\ :\ au''+bu'+cu\in W_0^{1,p}(I)\ \},\\ &{} A_0u:=au''+bu'+cu,\ \ \ u\in \mathcal{D}(A_0),\\ \end{array} \right. \end{aligned}$$
(2.5)

generates an analytic semigroup in \(W_0^{1,p}(I)\), by [1]. So we have proved that Problem (2.4) has a unique solution \(v:=u-G/\lambda \in \mathcal{D}\left( A_0\right) \) and the estimate

$$\begin{aligned} \Vert v\Vert _{W_0^{1,p}(I)} \le \frac{c_p}{|\lambda |} \Vert f-G\Vert _{W_0^{1,p}(I)} \end{aligned}$$
(2.6)

holds, where \(c_p\) is a positive real constant independent of \(\lambda \). Moreover, for Problem (2.3) we have

$$\begin{aligned} \Vert G\Vert _{W^{1,p}(I)} \le K_p\ \Vert f\Vert _{W^{1,p}(I)} \end{aligned}$$
(2.7)

where \(K_p\) is a positive real constant. Then we get the generation estimate

$$\begin{aligned} \left\| u\right\| _{W^{1,p}(I)}&\le \left\| u- \frac{G}{\lambda }\right\| _{W^{1,p}(I)} + \left\| \frac{G}{\lambda }\right\| _{W^{1,p}(I)} \le \frac{c_p}{|\lambda |}\ \Vert f-G\Vert _{W^{1,p}(I)} \nonumber \\&+\,\frac{K_p}{|\lambda |} \left\| f\right\| _{W^{1,p}(I)}. \end{aligned}$$
(2.8)

\(\square \)

Theorem 2.2

Define, for \(p>1\), the operator

$$\begin{aligned} \left\{ \begin{array}{clcr} &{} \mathcal{D}(A_0)=\{ u\in W^{1,p}(I)\ :\ au''\in W^{1,p}(I),\ \ au''+bu'+cu\in W_0^{1,p}(I) \ \}, \\ &{} A_0u:=au'',\ \ \ u\in \mathcal{D}(A_0).\\ \end{array} \right. \end{aligned}$$
(2.9)

Then \(\left( A_0, \mathcal{D}(A_0)\right) \) generates an analytic semigroup in \( W^{1,p}(I)\).

Proof

The proof is based on a perturbation method and on Theorem 2.1. Consider the operator \(B\) defined on \(W^{1,p}(I)\) as follows:

$$\begin{aligned} \left\{ \begin{array}{clcr} &{} \mathcal{D}(B)=\mathcal{D}(A_0),\\ &{} Bu:=-bu'-cu,\ \ \ \forall u\in \mathcal{D}(B).\\ \end{array} \right. \end{aligned}$$
(2.10)

Consider the chain of inequalities, for \(\varepsilon >0\):

$$\begin{aligned} \Vert Bu\Vert _{L^p(I)}&\le K_0\Vert u'\Vert _{L^p(I)}+M_0\Vert u\Vert _{L^p(I)} \le \displaystyle {\frac{K_0\varepsilon }{a_0} }\Vert au''\Vert _{L^p(I)}+M_{\varepsilon } \Vert u\Vert _{L^p(I)} \nonumber \\&+M_0\Vert u\Vert _{L^p(I)}\nonumber \\&\le \displaystyle {\frac{K_0\varepsilon }{a_0}}\Vert au''+bu'+cu\Vert _{L^p(I)} + \displaystyle {\frac{K_0\varepsilon }{a_0}}\Vert bu'+cu\Vert _{L^p(I)}+M_{\varepsilon } \Vert u\Vert _{L^p(I)}\nonumber \\&+K_0\Vert u\Vert _{L^p(I)}\nonumber \\&= \displaystyle {\frac{K_0\varepsilon }{a_0}}\Vert Au\Vert _{L^p(I)} +\displaystyle {\frac{K_0\varepsilon }{a_0}}\Vert Bu\Vert _{L^p(I)}+\left( M_{\varepsilon } +K_0\right) \Vert u\Vert _{L^p(I)}, \end{aligned}$$
(2.11)

where, here and in the sequel, \(K_i\), \(M_i\), \(M_{\varepsilon }, M_{\varepsilon }'\) and \(M_{\varepsilon }''\) denote positive constants. Furthermore,

$$\begin{aligned} \Vert (Bu)'\Vert _{L^p(I)}&\le K_0\Vert u''\Vert _{L^p(I)}+\Vert (b'+c)u'\Vert _{L^p(I)}+\Vert c'u\Vert _{L^p(I)}\nonumber \\&\le K_0\ \varepsilon \ \Vert u'''\Vert _{L^p(I)}+M_{\varepsilon } \Vert u'\Vert _{L^p(I)} +M_1\Vert u'\Vert _{L^p(I)} +M_2\Vert u\Vert _{L^p(I)}\nonumber \\&= K_0\ \varepsilon \ \Vert u'''\Vert _{L^p(I)}+M_{\varepsilon } \Vert u\Vert _{W^{1,p}(I)}\nonumber \\&\le \displaystyle {\frac{K_0 }{a_0}} \ \varepsilon \ \Vert (au'')'-a'u''\Vert _{L^p(I)}+M'_{\varepsilon } \Vert u\Vert _{W^{1,p}(I)}\nonumber \\&\le \displaystyle {\frac{K_0 }{a_0}} \ \varepsilon \ \Vert (au''+bu'+cu)'- (bu'+cu)'\Vert _{L^p(I)} +\frac{K_1 \varepsilon }{a_0}\Vert u''\Vert _{L^p(I)}\nonumber \\&+\, M'_{\varepsilon } \Vert u\Vert _{W^{1,p}(I)}\nonumber \\&\le \displaystyle {\frac{K_0 }{a_0}}\ \varepsilon \ \left( \Vert Au\Vert _{W^{1,p}(I)}+ \Vert (Bu)'\Vert _{L^p(I)}\right) \nonumber \\&+\,\frac{K_1 }{a_0^2}\ \varepsilon \left( \Vert Au\Vert _{L^p(I)} + \Vert Bu\Vert _{L^p(I)} \right) +M'_{\varepsilon } \Vert u\Vert _{W^{1,p}(I)}. \end{aligned}$$
(2.12)

Then, from (2.11)–(2.12), we get the estimates

$$\begin{aligned} \left( 1-\frac{K_0\varepsilon }{a_0}\right) \Vert (Bu)'\Vert _{L^p(I)}&\le M_1\varepsilon \Vert Au\Vert _{W^{1,p}(I)}+M'_{\varepsilon } \Vert u\Vert _{W^{1,p}(I)},\end{aligned}$$
(2.13)
$$\begin{aligned} \left( 1-\frac{K_0\varepsilon }{a_0}\right) \Vert Bu\Vert _{L^p(I)}&\le \displaystyle {\frac{K_0\varepsilon }{a_0}}\Vert Au\Vert _{L^p(I)} +M''_{\varepsilon } \Vert u\Vert _{L^p(I)}. \end{aligned}$$
(2.14)

By taking \(\varepsilon \) sufficiently small we get the desired estimate:

$$\begin{aligned} \Vert Bu\Vert _{W^{1,p}(I)} \le M \varepsilon \Vert Au\Vert _{W^{1,p}(I)} +M'''_{\varepsilon } \Vert u\Vert _{W^{1,p}(I)}. \end{aligned}$$
(2.15)

Since \(A\) generates an analytic semigroup in \(W^{1,p}(I)\), thanks to Theorem 2.1, and \(B\) is \(A\)-bounded with \(A\)-bound equal to zero, we conclude that \(A_0=A+B\) generates an analytic semigroup as well. \(\square \)

Remark

The above result should be compared with Warma [18].

More generally, we have the following result.

Theorem 2.3

Let \(A_1\) be the operator in \(W^{1,p}(I)\), with \(p>1\),

$$\begin{aligned} \left\{ \begin{array}{clcr} &{} \mathcal{D}\left( A_1\right) =\{ u\in W^{1,p}(I)\ :\ au''+b_1u'+c_1u\in W^{1,p}_0(I)\ \},\\ &{} A_1 u:=au''+bu'+cu,\ \ \ \forall u\in \mathcal{D}\left( A_1\right) ,\\ \end{array} \right. \end{aligned}$$
(2.16)

where \(b_1, c_1 \in C^{\infty }(I)\). Then \(\left( A_1, D\left( A_1\right) \right) \) generates an analytic semigroup in \(W^{1,p}([0,1])\).

Proof

Define the operator \(C\) in \(W^{1,p}([0,1])\) by

$$\begin{aligned} {\mathcal {D}}\left( C\right) = {\mathcal {D}}\left( A\right) , \qquad Cu = \left( b_1 - b\right) u' + \left( c_1 - c\right) u. \end{aligned}$$
(2.17)

Then \(A_1 u = Au + Cu\), where \(A\) is the operator defined in Theorem 2.1.

It is well known (see, e.g., [5], Example III.2.2) that the operator \(B\), defined by

$$\begin{aligned} {\mathcal {D}}\left( B\right) = W^{1,p}(I), \qquad Bu = u', \end{aligned}$$

is \({\mathcal {A}}\)-bounded, with \({\mathcal {A}}\)-bound equal to \(0\), where

$$\begin{aligned} {\mathcal {D}}\left( {\mathcal {A}}\right) = W^{2,p}(I), \qquad {\mathcal {A}}u = u''. \end{aligned}$$

Therefore, for every \(\varepsilon \in \mathbf{R}^+\), we have

$$\begin{aligned} \Vert Cu\Vert _{L^p(I)}&\le K_1\left( \Vert u'\Vert _{L^p(I)} + \Vert u\Vert _{L^p(I)} \right) \\&\le K_1 \left( \varepsilon \Vert u''\Vert _{L^p(I)} + M_{\varepsilon } \Vert u\Vert _{L^p(I)} + \Vert u\Vert _{L^p(I)} \right) \\&\le K_1a_0^{-1}\ \varepsilon \ \Vert au''\Vert _{L^p(I)} + K_2 M_{\varepsilon } \Vert u\Vert _{L^p(I)}\\&\le K_1a_0^{-1}\ \varepsilon \ \Vert au'' + bu' + cu\Vert _{L^p(I)} + K_1a_0^{-1}\ \varepsilon \ \Vert bu'\Vert _{L^p(I)}\\&\quad + K_1a_0^{-1}\ \varepsilon \ \Vert cu\Vert _{L^p(I)} + K_2 M_{\varepsilon } \Vert u\Vert _{L^p(I)}\\&\le K_1a_0^{-1}\ \varepsilon \ \Vert Au\Vert _{L^p(I)} + M'_{\varepsilon } \Vert u\Vert _{W^{1,p}(I)} \le K_1a_0^{-1}\ \varepsilon \Vert Au\Vert _{W^{1,p}(I)}\\&\quad + M'_{\varepsilon } \Vert u\Vert _{W^{1,p}(I)}. \end{aligned}$$

Furthermore,

$$\begin{aligned} \Vert (Cu)'\Vert _{L^p(I)}&\le \Vert Cu\Vert _{W^{1,p}(I)} \le K_3 \left( \Vert u'\Vert _{W^{1,p}(I)} + \Vert u\Vert _{W^{1,p}(I)}\right) \\&\le K_3 \varepsilon \Vert u''\Vert _{W^{1,p}(I)} + M''_\varepsilon \Vert u\Vert _{W^{1,p}(I)} \\&\le K_3 a_0^{-1} \varepsilon \left( \Vert au'' + bu' + cu\Vert _{W^{1,p}(I)} + \Vert bu' + cu\Vert _{W^{1,p}(I)}\right) \\&\quad +\,M''_\varepsilon \Vert u\Vert _{W^{1,p}(I)} \\&\le K_3 a_0^{-1} \varepsilon \Vert Au\Vert _{W^{1,p}(I)} + K_4 a_0^{-1} \varepsilon \Vert u'\Vert _{W^{1,p}(I)} \\&\quad + \left( K_5 a_0^{-1} \varepsilon + M''_\varepsilon \right) \Vert u\Vert _{W^{1,p}(I)}. \end{aligned}$$

Hence,

$$\begin{aligned}&\left( K_3 - K_4 a_0^{-1} \varepsilon \right) \Vert u'\Vert _{W^{1,p}(I)} + \left( K_3 - K_5 a_0^{-1} \varepsilon \right) \Vert u\Vert _{W^{1,p}(I)} \\&\quad \le K_3 a_0^{-1} \varepsilon \Vert Au\Vert _{W^{1,p}(I)} + M'_\varepsilon \Vert u\Vert _{W^{1,p}(I)}. \end{aligned}$$

Taking \(\varepsilon \) sufficiently small, we get

$$\begin{aligned} \Vert u\Vert _{W^{1,p}(I)}&\le K_6 \varepsilon \Vert Au\Vert _{W^{1,p}(I)} + M'''_\varepsilon \Vert u\Vert _{W^{1,p}(I)} ,\\ \Vert u'\Vert _{W^{1,p}(I)}&\le K_6 \varepsilon \Vert Au\Vert _{W^{1,p}(I)} + M'''_\varepsilon \Vert u\Vert _{W^{1,p}(I)} \, \end{aligned}$$

whence

$$\begin{aligned} \Vert (Cu)'\Vert _{L^p(I)} \le K_7 \varepsilon \Vert Au\Vert _{W^{1,p}(I)} + M'''_\varepsilon \Vert u\Vert _{W^{1,p}(I)}. \end{aligned}$$

Then,

$$\begin{aligned} \Vert Cu\Vert _{W^{1,p}(I)} \le \varepsilon \Vert Au\Vert _{W^{1,p}(I)} + K_\varepsilon \Vert u\Vert _{W^{1,p}(I)}. \end{aligned}$$

This proves that \(C\) is \(A\)-bounded, with \(A\)-bound equal to \(0\) and hence \(A_1 = A + C\) generates an analytic semigroup in \(W^{1,p}(I)\). \(\square \)

3 A generation result in \(C^1(I)\)

In the monograph [12] it is proved the generation theorem of an analytic semigroup in \(C^1_0\left( \overline{\Omega }\right) \), where \(\Omega \) is a bounded open subset of \(R^N\) with smooth boundary. Here

$$\begin{aligned} C^1_0\left( \overline{\Omega }\right) = \left\{ u\in C^1\left( \overline{\Omega }\right) ; u_{/\partial \Omega } = 0 \right\} . \end{aligned}$$

Let \({\mathcal {L}}(\cdot , D)\) denote a linear second order partial differential operator in \(\overline{\Omega }\) with smooth coefficients, whose leading part satifies the uniform ellipticity condition

$$\begin{aligned} \forall x\in \overline{\Omega }, \forall z\in {\mathbb {C}}^n, \quad \sum _{i,j=1}^N a_{ij}(x) z_i \overline{z_j} \ge \alpha _0 |z|^2, \end{aligned}$$

and set

$$\begin{aligned} \left\{ \begin{array}{clcr} &{} \mathcal{D}\left( A_N\right) =\left\{ u\in {\mathcal {D}}(A_{00})\ : A_Nu \in C^1_0\left( \overline{\Omega }\right) \ \right\} ,\\ &{} A_N u:= {\mathcal {L}}(\cdot , D)u.\\ \end{array} \right. \end{aligned}$$
(3.1)

Here

$$\begin{aligned} {\mathcal {D}}(A_{00}) = \left\{ u\in \bigcap _{p=1}^{\infty } W^{2,p}_{loc} (\Omega ) : u,\ {\mathcal {L}}(\cdot , D)u \in C\left( \overline{\Omega }\right) \right\} . \end{aligned}$$

Notice that, if \(N=1\), then \({\mathcal {D}}(A_{00}) = \left\{ u\in C^2\left( \overline{\Omega }\right) : u_{/\partial \Omega } = 0 \right\} \).

It is known (see [12], Theorem 3.1.25), that \(A_N\) is sectorial in \(C^1_0\left( \overline{\Omega }\right) \).

We confine to \(N=1\) and define the operator \(E\) by

$$\begin{aligned} \left\{ \begin{array}{clcr} &{} \mathcal{D}\left( E\right) =\left\{ u \in C^1_0(I)\ : \alpha u'' \in C^1_0(I) \right\} ,\\ &{} Eu:= \alpha u'', \end{array} \right. \end{aligned}$$
(3.2)

where \(\alpha \in C^1(I)\), with \(\alpha (x) \ge \alpha _0 > 0\) in \(I\).

Theorem 3.1

Under the previous assumptions, the operator \(E\) is sectorial in \(C^1(I)\).

Proof

Recall that the operator \(A_1\) defined above is sectorial in \(C^1_0(I)\). Then, if \(f\in C^1(I)\), for any \(\lambda \in {\mathbb {C}}\), with \(\mathrm{Re}\ \lambda \) large enough, there exists a unique \(u\in \mathcal{D}\left( A_1\right) \), such that

$$\begin{aligned}&\lambda u(x) - \alpha u''(x) = f(x) - (1 - x) f(0) - xf(1), \nonumber \\&\Vert u\Vert _{C^1_0(I)} \le C|\lambda |^{-1} \Vert f(x) - (1-x) f(0) - xf(1) \Vert _{C^1_0(I)}. \end{aligned}$$
(3.3)

Observe that Eq. (3.3) reads

$$\begin{aligned}&\lambda \left( u(x) + \lambda ^{-1}( (1-x) f(0) + x f(1)) \right) \\&\quad - \alpha (x) \left( u(x) + \lambda ^{-1} ((1-x) f(0) + x f(1)) \right) '' = f(x). \end{aligned}$$

Set \(v(x) = u(x) + \lambda ^{-1} ((1-x) f(0) + x f(1))\); then \(v\in C^2(I)\) and \(\alpha v'' (=\alpha u'') \in C^1_0(I)\). Moreover,

$$\begin{aligned} \Vert v\Vert _{C^1(I)}&\le \Vert u\Vert _{C^1(I)} + 2 |\lambda |^{-1} \Vert f\Vert _{C(I)} \\&\le K |\lambda |^{-1} \Vert f\Vert _{C(I)} + 2 |\lambda |^{-1} \Vert f\Vert _{C(I)} = K_1 |\lambda |^{-1} \Vert f\Vert _{C(I)}. \end{aligned}$$

On the other hand, if \(\lambda v_1 - Ev_1 = f = \lambda v_2 - Ev_2\), then \(\lambda \left( v_1 - v_2\right) - E \left( v_1 - v_2\right) = 0\), and hence \(\alpha \left( v_1 - v_2\right) ''_{/ \partial [0,1]} = 0\), so that \( \left( v_1 - v_2\right) (0) = \left( v_1 - v_2\right) (1) = 0\).

Then, \(v_1 - v_2 \in \mathcal{D}\left( A_1\right) \) and

$$\begin{aligned} \lambda \left( v_1 - v_2\right) - A_1 \left( v_1 - v_2\right) = 0. \end{aligned}$$

It follows that \(v_1 = v_2\) and uniqueness of solutions follows. This implies that \(E\) is sectorial in \(C^1([0,1])\), as required. \(\square \)

4 A generation result for a degenerate operator in \(W^{1,p}([0,1])\) with Wentzell boundary condition

In this section we show that a second order degenerate operator in \(I\) generates an analytic semigroup in \(W^{1,p}(I)\), where \(1 < p <\infty \). This result must be compared to Theorem 7.9, in the monograph [8]. Here we give an alternative proof of an important case of large interest.

Recall that the norms

$$\begin{aligned} \left( \int _0^1 |u(x)|^p\, dx\right) ^{1/p}+\left( \int _0^1 |u'(x)|^p\, dx\right) ^{1/p} \ \ \ \ \mathrm{and}\ \ \ \ \left( \int _0^1 |u'(x)|^p\, dx\right) ^{1/p} \end{aligned}$$

are equivalent in \(W_0^{1,p}(I)\), and define the operator:

$$\begin{aligned} \left\{ \begin{array}{clcr} &{} \mathcal{D}\left( A_{(p)}\right) =\{ u\in W_0^{1,p}(I); \ x(1-x)u''\in W_0^{1,p}(I)\ \},\\ &{}A_{(p)}u=x(1-x)u'',\ \ \ u\in \mathcal{D}\left( A_{(p)}\right) . \end{array} \right. \end{aligned}$$
(4.1)

We prove the following generation result.

Theorem 4.1

The operator \(\left( A_{(p)}, \mathcal{D}\left( A_{(p)}\right) \right) \) defined in (4.1) generates an analytic semigroup in \(W_0^{1,p}(I)\), for \(1<p<\infty \).

Proof

Consider the resolvent equation for \(\lambda \in {\mathbb {C}}\), such that \(\mathrm{Re} \lambda > 0\), and \(f \in W_0^{1,p}(I)\),

$$\begin{aligned} \lambda u(x)-A_{(p)}u(x)=f(x),\ \ \end{aligned}$$

so that

$$\begin{aligned} \displaystyle { \frac{\lambda u(x)}{x(1-x)} }-u''(x)=\displaystyle { \frac{f(x) }{x(1-x)}}. \end{aligned}$$

Note that \(f\in W_0^{1,p}(I)\) implies

$$\begin{aligned} \int _0^1 \Big |\displaystyle { \frac{f(x) }{x(1-x)}} \Big |^p\, dx\le c \Vert f\Vert ^p_{ W_0^{1,p}(I)}, \end{aligned}$$

by the Hardy inequality. On the other hand, if \(x(1-x)u''=g\in W_0^{1,p}(I)\), then

$$\begin{aligned} |g(x)|\le x^{1/p'}\Vert g\Vert _{L^p(I)},\ \ \ \ |g(x)|\le (1-x)^{1/p'}\Vert g\Vert _{L^p(I)} \end{aligned}$$

so that

$$\begin{aligned} u'(x)-u'(y)=\int _y^x u''(t)\, dt=\int _y^x\displaystyle { \frac{g(t) }{t(1-t)}}\, dt \end{aligned}$$

and in a neighborhood of zero for \(y<x\) we have

$$\begin{aligned} |u'(x)-u'(y)|\le \int _y^x\displaystyle { \frac{|g(t)| }{t(1-t)}}\, dt \le c \int _y^x t^{-(1-1/p')}\, dt\le c (x-y)^{1-1/p}, \end{aligned}$$

where \(c\), here and in the sequel, denotes a real positive constant. Analogously one has the same bound near \(1\). Hence, from

$$\begin{aligned} \lambda \int _0^1 \displaystyle { \frac{|u(x)|^p }{x(1-x)}} \, dx -\int _0^1 u''(x) \,\overline{u(x)}\, |u(x)|^{p-2}\, dx= \int _0^1\displaystyle { \frac{f(x)\, \overline{u(x)} }{x(1-x)}}\, |u(x)|^{p-2}\, dx \end{aligned}$$

by integration by parts, one obtains, using the boundary conditions, if \(p \ge 2\):

$$\begin{aligned}&\lambda \int _0^1 \displaystyle { \frac{|u(x)|^p }{x(1-x)}} \, dx +\int _0^1 |u'(x)|^2 \, |u(x)|^{p-2}\, dx\\&\quad +\,(p-2)\int _0^1 u'(x)\overline{u(x)} (\mathrm{Re}( u'(x)\overline{u(x)}) )\, |u(x)|^{p-4}\, dx\\&\quad \le \int _0^1\displaystyle { \frac{f(x)\, \overline{u(x)} }{x(1-x)}}\, |u(x)|^{p-2}\, dx. \end{aligned}$$

We consider the case \(p\ge 2\) to show the strategy to obtain suitable estimates for our problem. Attention must be devoted to the case \(1<p<2\) that follows with a few modifications of the previous case. Taking real and imaginary parts and integrating by parts yields

$$\begin{aligned}&\left( \mathrm{Re}\ \lambda \right) \int _0^1 \displaystyle { \frac{|u(x)|^p }{x(1-x)}} \, dx +\int _0^1|u'(x)|^2 |u(x)|^{p-2}\, dx\nonumber \\&\quad +\,(p-2)\int _0^1 \left( \mathrm{Re} ( u'(x)\overline{u(x)}) \right) ^2\, |u(x)|^{p-4}\, dx\nonumber \\&\quad = \mathrm{Re}\; \int _0^1 \frac{f(x)\, \overline{u(x)} }{x(1-x)}\, |u(x)|^{p-2}\, dx \end{aligned}$$
(4.2)

and

$$\begin{aligned} \left( \mathrm{Im} \ \lambda \right) \int _0^1 \displaystyle { \frac{|u(x)|^p }{x(1-x)}} \, dx = \mathrm{Im} \ \ \int _0^1\displaystyle { \frac{f(x)\, \overline{u}(x) }{x(1-x)}}\, |u(x)|^{p-2}\, dx. \end{aligned}$$
(4.3)

Then we get, for any \(\varepsilon >0\),

$$\begin{aligned}&|\mathrm{Im}\ \lambda | \int _0^1 \displaystyle { \frac{|u(x)|^p }{x(1-x)}}\, dx \!\le \! (p\!-\!2)\ \int _0^1 \left| \mathrm{Im}( u'(x)\overline{u(x)} ) \right| \, \left| \mathrm{Re}( u'(x)\overline{u(x)}) \right| \, |u(x)|^{p-4}\, dx\\&\qquad +\left| \int _0^1\displaystyle { \frac{f(x)\, \overline{u(x)} }{x(1-x)}}\, |u(x)|^{p-2}\, dx\right| \\&\quad \le (p-2)\left( \varepsilon \int _0^1 \left| \mathrm{Im}\left( u'(x)\overline{u(x)}\right) \right| ^2\, |u(x)|^{p-4}\, dx\right. \\&\qquad \left. +\,\frac{1}{\varepsilon } \int _0^1 \left| \mathrm{Re}\left( u'(x)\overline{u(x)}\right) \right| ^2\, |u(x)|^{p-4}\, dx\right) \\&\qquad +\left| \int _0^1\displaystyle { \frac{f(x)\, \overline{u(x)} }{x(1-x)}}\, |u(x)|^{p-2}\, dx\right| . \end{aligned}$$

Let \(\eta >0\) be an arbitrary real number. Multiplying the last inequality by \(\eta \) and adding it to Eq. (4.2), one gets

$$\begin{aligned}&\left( \mathrm{Re}\lambda +\eta |\mathrm{Im} \lambda |\right) \displaystyle { \int _0^1 \frac{|u(x)|^p }{x(1-x)} \, dx}\\&\quad + \left( p-1- (p-2)\frac{\eta }{\varepsilon }\right) \displaystyle {\int _0^1 \left( \mathrm{Re}\left( u'(x)\overline{u(x)}\right) \right) ^2\, |u(x)|^{p-4}\, dx}\\&\quad +\,(1-(p-2)\varepsilon \eta )\displaystyle { \int _0^1\left( \mathrm{Im} \left( u'(x)\overline{u(x)}\right) \right) ^2|u(x)|^{p-4}\, dx}\\&\quad \le \left| \mathrm{Re}\displaystyle { \int _0^1\displaystyle { \frac{f(x)\, \overline{u(x)} }{x(1-x)}}\, |u(x)|^{p-2}\, dx}\right| \\&\quad +\,\eta \left| \mathrm{Im} \int _0^1\displaystyle { \frac{f(x)\, \overline{u(x)} }{x(1-x)}}\, |u(x)|^{p-2}\, dx\right| . \end{aligned}$$

Since \(\eta \) and \(\varepsilon \) are arbitrary positive constants, we can choose them so that

$$\begin{aligned} \eta < \varepsilon , \quad \varepsilon ^2 (p-2) < 1\,; \end{aligned}$$

this assures that \(p-1- (p-2)\eta /\varepsilon > 0\) and that \(1-(p-2)\varepsilon \eta > 0\); then in the sector \(\Sigma :=\{ \lambda \in {\mathbb {C}}\ :\ \mathrm{Re}\lambda +\eta |\mathrm{Im}\lambda |\ge \delta _0>0\ \}\), we have the estimates

$$\begin{aligned} \int _0^1 \left( \mathrm{Re}\left( u'(x)\overline{u(x)}\right) \right) ^2\, |u(x)|^{p-4}\, dx&\le c\Vert f\Vert _{W^{1,p}_0(I)}\Vert u\Vert ^{p-1}_{L^p(I)},\\ \int _0^1\left( \mathrm{Im} \left( u'(x)\overline{u(x)}\right) \right) ^2|u(x)|^{p-4}\, dx&\le c\Vert f\Vert _{W^{1,p}_0(I)}\Vert u\Vert ^{p-1}_{L^p(I)}. \end{aligned}$$

Furthermore,

$$\begin{aligned} \mathrm{Re}\lambda \; \int _0^1 \displaystyle { \frac{|u(x)|^p }{x(1-x)}} \, dx&\le c\Vert f\Vert _{W^{1,p}_0(I)}\Vert u\Vert ^{p-1}_{L^p(I)}, \\ |\mathrm{Im }\lambda |\; \int _0^1 \displaystyle { \frac{|u(x)|^p }{x(1-x)}} \, dx&\le c\Vert f\Vert _{W^{1,p}_0(I)}\Vert u\Vert ^{p-1}_{L^p(I)}. \end{aligned}$$

Therefore

$$\begin{aligned} \left( \mathrm{Re}\lambda + |\mathrm{Im} \lambda |\right) \Vert u\Vert ^p_{L^p(I)} \le \left( \mathrm{Re}\lambda + |\mathrm{Im} \lambda |\right) \int _0^1 \displaystyle { \frac{|u(x)|^p }{x(1-x)}} \, dx \le c\Vert f\Vert _{W^{1,p}_0(I)}\Vert u\Vert ^{p-1}_{L^p(I)}, \end{aligned}$$

which gives

$$\begin{aligned} \left( \mathrm{Re}\lambda + |\mathrm{Im} \lambda |\right) \Vert u\Vert _{L^p(I)} \le c\Vert f\Vert _{W^{1,p}_0(I)}. \end{aligned}$$

We need now to estimate \(\Vert u'\Vert _{L^p(I)}\). Consider

$$\begin{aligned} \lambda u'(x)-[x(1-x)u''(x)]'=f'(x) \end{aligned}$$

and multiply it by \(\overline{u'(x)}|u'(x)|^{p-2}\), so that

$$\begin{aligned}&\lambda \int _0^1|u'(x)|^p\, dx-\big [ x(1-x)u''(x)\overline{u'(x)}|u'(x)|^{p-2}\big ]_0^1\\&\quad +\int _0^1 x(1-x)|u''(x)|^2\, |u'(x)|^{p-2}\, dx\\&\quad +\,(p-2)\int _0^1 x(1-x)\overline{u'(x)}\, u''(x)\, \mathrm{Re}\left( \overline{u'(x)}\, u''(x)\right) \,|u'(x)|^{p-4}\, dx\\&\quad =\int _0^1 f(x)\, \overline{u'(x)}\, |u'(x)|^{p-2}\, dx. \end{aligned}$$

As \(x(1-x)u''(x)\) vanishes on the boundary and \(u'(x)\) has a finite limit as \(x\rightarrow 0\) or \(x\rightarrow 1\), we obtain

$$\begin{aligned} \left[ x(1-x)u''(x)\overline{u}'(x)|u'(x)|^{p-2}\right] _0^1=0. \end{aligned}$$

By repeating for \(u'\) the arguments above for \(u\) we get the estimate, if \(\lambda \in \Sigma \),

$$\begin{aligned} |\lambda |\Vert u'\Vert _{L^p(I)} \le c \Vert f'\Vert _{L^p(I)}\,; \end{aligned}$$

so we have the bound, if \(\lambda \in \Sigma \),

$$\begin{aligned} |\lambda |\Vert u\Vert _{W^{1,p}_0(I)} \le c \Vert f'\Vert _{W^{1,p}_0(I)}. \end{aligned}$$

Take now \(f\in W^{1,p}_0(I)\), so that \(f'\in L^p(I)\) and consider the problem

$$\begin{aligned} \left\{ \begin{array}{clcr} &{} \lambda v(x)-(x(1-x)v'(x))'=f'(x),\ \ \ x\in I,\\ &{} x(1-x)v'(x)\in W^{1,p}_0(I), \end{array} \right. \end{aligned}$$
(4.4)

for \(\mathrm{Re} \lambda >0\). It is known, from the paper [2], that it has a unique solution such that

$$\begin{aligned} |\lambda |\Vert v\Vert _{L^p(I)} \le c \Vert f'\Vert _{L^p(I)}. \end{aligned}$$

Integrating over \((0,x)\) we obtain

$$\begin{aligned} \lambda \int _0^x v(t)\, dt-x(1-x)v'(x)=f(x). \end{aligned}$$

Set

$$\begin{aligned} u(x)=\int _0^x v(t)\, dt\,; \end{aligned}$$

then

$$\begin{aligned} \lambda u(x)-x(1-x)u''(x)=f(x), \quad 0\le x\le 1, \end{aligned}$$

so \(u\) is the desired solution to our problem. Therefore \(A_{(p)}\) generates an analytic semigroup in \(W_0^{1,p}(I)\). \(\square \)

We now define the operator \(W\), for \(1< p < \infty \),

$$\begin{aligned} \left\{ \begin{array}{clcr} &{}\mathcal{D}(W)=\{ u\in W^{1,p}(I)\ :\ x(1-x)u''\in W^{1,p}_0(I)\ \},\\ &{} Wu:=x(1-x)u'',\ \ \forall \ u\in \mathcal{D}(W). \end{array} \right. \end{aligned}$$
(4.5)

Theorem 4.2

The operator \((W, \mathcal{D}(W))\) generates an analytic semigroup in \(W^{1,p}(I)\).

Proof

We only need to observe, see Theorem 2.1, that

$$\begin{aligned} x(1-x)u''(x)=0, \ \ \ x\in I, \end{aligned}$$

and

$$\begin{aligned} u(0)=u_0,\ \ u(1)=u_1 \end{aligned}$$

has a unique solution in \(C^\infty ([0,1])\). \(\square \)

5 A generation result in \(C(\overline{\Omega })\) with Wentzell boundary conditions

In this case we have a more general result. Let \(\Omega \) be a bounded domain in \({\mathbb {R}}^n\) with smooth boundary \(\Gamma \). Let us assume the conditions

  • \((K1)\) \(a_{jk}, b_k, d\) are real \(C^\infty (\overline{\Omega })\) functions, with \(a_{jk}=a_{kj}\), \(k,j=1,...,n\), and \(d(x)<0\);

  • (K2) \( \sum _{j,k=1}^n a_{jk}(x)\xi _j\xi _k\ge c\sum _{j=1}^k\xi _j^2\), \(\forall x\in \overline{\Omega }\) and \((\xi _1,...,\xi _n)\in {\mathbb {R}}^n\); here \(c>0\).

Let us define the elliptic operator :

$$\begin{aligned} Lu(x)= \sum _{j,k=1}^n \frac{\partial }{\partial x_j}\left( a_{jk}(x)\frac{\partial u(x)}{\partial x_k}\right) +\sum _{k=1}^n b_{k}(x) \frac{\partial u(x)}{\partial x_k} +d(x)u(x) \end{aligned}$$
(5.1)

with domain

$$\begin{aligned} \mathcal{D}(L)=\left\{ u\in \bigcap _{p>1}W^{2,p}_{\mathrm{loc}}(\Omega )\ :\ \ u,\ Lu\in C(\overline{\Omega }) \ \right\} . \end{aligned}$$
(5.2)

We recall the following well known theorem (see [10] Corollary 9.18).

Theorem 5.1

Let \(L\) be the operator defined in (5.1)–(5.2), satisfying assumptions \((K1)\) and \((K2)\). Then, for any \(\phi \in C(\Gamma )\), the boundary value problem

$$\begin{aligned} \left\{ \begin{array}{clcr} &{}LG(x)=0, \ \ x\in \Omega ,\\ &{}G(x)=\phi (x),\ \ \ x\in \Gamma ,\\ \end{array} \right. \end{aligned}$$
(5.3)

has a unique solution \(G\in \mathcal{D}(L)\) and there exists a positive constant \(M\) such that

$$\begin{aligned} \Vert G\Vert _{C(\overline{\Omega })}\le M\Vert \phi \Vert _{C(\Gamma )}. \end{aligned}$$
(5.4)

In this section we will use the functional space

$$\begin{aligned} C_0(\overline{\Omega })=\{ u\in C(\overline{\Omega })\ :\ \ u|_{\Gamma }=0\ \} \end{aligned}$$
(5.5)

with its natural norm. Thanks to Corollary 3.1.21 (ii) in Lunardi [12] we observe that operator

$$\begin{aligned} \left\{ \begin{array}{clcr} &{} \mathcal{D}\left( L_0\right) =\left\{ u \in \bigcap \nolimits _{p>1} W^{2,p}_{\mathrm{loc}} (\Omega )\ : \ u, Lu\in C(\overline{\Omega }),\ \ u|_{\Gamma }=0\right\} ,\\ &{} L_0u=Lu,\ \ \ u\in \mathcal{D}\left( L_0\right) , \end{array} \right. \end{aligned}$$
(5.6)

is sectorial in \(C(\overline{\Omega })\). This implies that the operator \(L_1\)

$$\begin{aligned} \left\{ \begin{array}{clcr} &{} \mathcal{D}\left( L_1\right) = \left\{ u\in \bigcap \nolimits _{p>1} W^{2,p}_{\mathrm{loc}}(\Omega )\ :\ u, Lu\in C_0(\overline{\Omega })\ \right\} \\ &{} L_1u=Lu,\ \ \ u\in \mathcal{D}\left( L_1\right) \end{array} \right. \end{aligned}$$
(5.7)

generates an analytic semigroup in \(C_0(\overline{\Omega })\). We are now in position to prove the following generation result.

Theorem 5.2

Let \(L\) be the operator defined in (5.1), satisfying assumptions \((K1)\) and \((K2)\). Then the operator \(L_W\) defined by

$$\begin{aligned} \left\{ \begin{array}{clcr} &{} \mathcal{D}\left( L_W\right) =\left\{ u\in \bigcap \nolimits _{p>1} W^{2,p}_{\mathrm{loc}}(\Omega )\ :\ u\in C(\overline{\Omega }),\ \ Lu\in C_0(\overline{\Omega })\ \right\} ,\\ &{} L_Wu=Lu,\ \ \ u\in \mathcal{D}\left( L_W\right) , \end{array} \right. \end{aligned}$$
(5.8)

generates an analytic semigroup in \(C(\overline{\Omega })\).

Proof

Consider the resolvent equation, for \(f\in C(\overline{\Omega })\)

$$\begin{aligned} \left\{ \begin{array}{clcr} &{} \lambda u(x)- Lu(x)=f(x),\ \ x\in \overline{\Omega },\\ &{} Lu(x)|_{\Gamma }=0, \end{array} \right. \end{aligned}$$
(5.9)

and let \(G\) be the solution of the problem

$$\begin{aligned} \left\{ \begin{array}{clcr} &{} LG(x)=0,\ \ x\in \overline{\Omega }, \\ &{} G|_{\Gamma }=f|_{\Gamma }. \end{array} \right. \end{aligned}$$
(5.10)

Problem (5.9), taking into account (5.10), can be transformed into

$$\begin{aligned} \left\{ \begin{array}{clcr} &{} \lambda \Big ( u -\frac{G}{\lambda }\Big ) - L\Big ( u -\frac{G}{\lambda }\Big )=f-G,\ \ x\in \overline{\Omega },\\ &{}\Big ( u -\frac{G}{\lambda }\Big )\Big |_{\Gamma }=0,\ \ \ \ L\Big ( u -\frac{G}{\lambda }\Big )\Big |_{\Gamma }=0. \end{array} \right. \end{aligned}$$
(5.11)

Note that \(f-G\in C_0 (\overline{\Omega })\) so that there is a unique \(u-\frac{G}{\lambda }\in C_0(\overline{\Omega })\), in view of the previous considerations, that satisfies:

$$\begin{aligned} \left\| u-\frac{G}{\lambda } \right\| _{C_0(\overline{\Omega })}\le \frac{c}{|\lambda |}\, \Vert f-G\Vert _{C_0(\overline{\Omega })}. \end{aligned}$$
(5.12)

On the other hand, if \(v:=u-G/\lambda \) satisfies \(\lambda v-A_Wv=f-G\), then \(u=v+G/\lambda \) belongs to \(\mathcal{D}\left( A_W\right) \) and satisfies Problem (5.9). Moreover,

$$\begin{aligned} \Vert u\Vert _{C(\overline{\Omega }) }&\le \left\| u-\frac{G}{\lambda }\right\| _{C(\overline{\Omega })}+\left\| \frac{G}{\lambda }\right\| _{C(\overline{\Omega })} \le \displaystyle {\frac{c}{|\lambda |}} \left( \Vert f-G\Vert _{C(\overline{\Omega })}+\Vert f\Vert _{C(\Gamma )}\right) \end{aligned}$$
(5.13)
$$\begin{aligned}&\le \displaystyle {\frac{c_1}{|\lambda |}} \Big ( \Vert f\Vert _{C(\overline{\Omega })}+2\Vert f\Vert _{C(\Gamma )}\Big ) \le \displaystyle {\frac{c_2}{|\lambda |}} \Vert f\Vert _{C(\overline{\Omega })}, \end{aligned}$$
(5.14)

where \(c_i\) denote positive constants, so that \(L_W\) generates an analytic semigroup in \(C(\overline{\Omega })\). \(\square \)

We now apply a perturbation argument to obtain the following generation result. Let \(\tilde{L}\) be the operator in \(C(\overline{\Omega })\) defined by

$$\begin{aligned} \left\{ \begin{array}{clcr} &{} \mathcal{D}\left( \tilde{L}\right) =\left\{ u\in \bigcap _{p>1} W^{2,p}_{\mathrm{loc}}(\Omega )\ : \ \ \ \sum _{j,k=1}^n \frac{\partial }{\partial x_j}\left( a_{jk}(\cdot )\frac{\partial u}{\partial x_k}\right) \right. \\ &{} +\sum _{k=1}^n b_{k}(\cdot ) \frac{\partial u}{\partial x_k} +d(\cdot )u\in C_0\left( \overline{\Omega }) \right\} , \\ &{} \tilde{L}u=\sum _{j,k=1}^n \frac{\partial }{\partial x_j} \left( a_{jk}(x)\frac{\partial u(x)}{\partial x_k}\right) ,\ \ \ u\in \mathcal{D}\left( \tilde{L}\right) . \end{array} \right. \end{aligned}$$
(5.15)

By a perturbation method we get the following generation result.

Theorem 5.3

The operator \(\tilde{L}\), defined in (5.15), generates an analytic semigroup in \(C(\overline{\Omega })\).

Proof

From Theorem 5.2 we know that \(A_W\), defined in (5.8) generates an analytic semigroup in \(C(\overline{\Omega })\). Let us introduce the operator

$$\begin{aligned} \left\{ \begin{array}{clcr} &{} \mathcal{D}(\tilde{C})=\mathcal{D}(\tilde{L})=\left\{ u\in \bigcap _{p>1} W^{2,p}_{\mathrm{loc}}(\Omega )\ : \ \ \ \sum _{j,k=1}^n \frac{\partial }{\partial x_j}\left( a_{jk}(\cdot )\frac{\partial u}{\partial x_k}\right) \right. \\ &{}\left. +\sum _{k=1}^n b_{k}(\cdot ) \frac{\partial u}{\partial x_k} +d(\cdot )u\in C_0(\overline{\Omega })\ \right\} ,\\ &{} \tilde{C} u=-\sum _{k=1}^n b_{k}(\cdot ) \frac{\partial u}{\partial x_k} -d(\cdot )u ,\ \ \ u\in \mathcal{D}(\tilde{C}). \end{array} \right. \end{aligned}$$
(5.16)

Then

$$\begin{aligned} \mathcal{D}(\tilde{C})\hookrightarrow W^{2,p}(\Omega ),\ \ \mathrm{for\ any}\ p>1, \end{aligned}$$

and by the Rellich’s imbedding theorem we have

$$\begin{aligned} W^{2,p}(\Omega )\hookrightarrow ^c C^1(\overline{\Omega })\hookrightarrow C(\overline{\Omega }) ,\ \ \mathrm{for\ any}\ p>n. \end{aligned}$$

Applying the Ehrling Lemma (see, e.g. [19], Theorem 7A16) , we have that for every \(\varepsilon >0\) there exists \(c(\varepsilon )>0\) such that

$$\begin{aligned} \Vert u\Vert _{ C^1(\overline{\Omega })}\le \varepsilon \Vert u\Vert _{ \mathcal{D}(\tilde{C})}+M_{\varepsilon }\Vert u\Vert _{ C(\overline{\Omega })} \end{aligned}$$

in other words \(\Vert Cu\Vert _{ C(\overline{\Omega })}\) is estimated by

$$\begin{aligned} \Vert Cu\Vert _{ C(\overline{\Omega })}\le \varepsilon \Vert A_Wu\Vert _{C(\overline{\Omega }) }++M_{\varepsilon }\Vert u\Vert _{ C(\overline{\Omega })}. \end{aligned}$$

Since \(\tilde{C}\) is \(A_W\)-bounded with \(A_W\)-bound equal to zero, the statement follows. \(\square \)