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Abstract In this paper we study second order ordinary and partial differential equa-
tions with generalized Wentzell boundary condition. We prove, by a perturbation
method, that certain second order ordinary differential operators generate an analytic
semigroup in W7 ([0, 1]) and the same result has been extended for the degenerate
operator Au(x) := x(1 — x)u”(x). Finally, we prove that certain linear partial dif-
ferential operators of the second order generate analytic semigroups in the space of
continuous functions.

Keywords Analytic semigroups - Generation of semigroups - Wentzell boundary
conditions

1 Introduction

The study of ordinary and partial differential equations with Wentzell boundary con-
ditions was stimulated by the theory of probability in the pioneering paper of Wentzell
[17]. He considered a second order elliptic differential operator A in a domain €2 in R",
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with sufficiently smooth boundary 9€2, and he looked for the most general supplemen-
tary conditions which restrict the given operator A to be the infinitesimal generator of
a semigroup corresponding to a Markov process in the domain. In [17] it is proved that,
when the domain €2 has some special shape, the boundary conditions could involve
the operator A. Generalized Wentzell boundary conditions contain, as special cases,
Dirichlet, Neumann and Robin boundary conditions. In a paper by Feller [9] we find
a diffusion process involving the operator

Au(x) :=x(1 —x)u”"(x), x e (0,1), (1.1)
with the boundary conditions

lim  Au(x) =0. (1.2)

x—=0t, x—>1—

In [3] it is proved that A with the domain

D(A) = {u e C[0,11NC O, 1) :  lim _Au() =0) (1.3)

x—07F, x

is the generator of a Cyp-contraction semigroup on C[0, 1]. For this reason in this paper
we will consider the operator x(1 — x)u”(x). Several motivations to study elliptic
operators with Wentzell boundary conditions can also be found in [11,13-15].

In [7] generation results in suitable L?” spaces were proved. The present paper can
be considered an extension of that work to the case W!?. We recall what has been
proved in [7], introducing the problem

A —V-(aVu)=f, in Q, (1.4)
V- (aVu) + B3 + yu =0, on 3, '

0
where €2 is a bounded open set with smooth boundary 0€2, 8_u is the outward normal

derivative, a(x) is a strictly positive C 2 function forall x € Qand B(x)>0,y(x) >0,
for all x € 9%2.

We start by pointing out the surprising fact that the presence of the term ,Bg—z in
the boundary conditions led in [7] to introduce suitable L? weighted spaces to prove
a generation result. More precisely the authors in [7] define L? (2, du), where

a
d =d’ —dS‘ :
H XQEB,B r

here dx denotes the Lebesgue measure on €2, while (a/f) dS denotes the measure
with weight a/8 on I': it is assumed thata > 0in QU T, where ¥ # I' C 92 and
aeCHQuD)NC(Q).
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Generation of analytic semigroups 617

Let U = (u,v) € LP(Q,dup), where u : Q@ — Cand v : 92 — C are measurable
functions such that

/|u(x)|1’dx+/ weol? < as
Q a0 B

is finite. With the norm

1
WUl @ = lu(x)|P dx + Iv(x)l”gdS "
Lr@dw | [ o 3 ,

LP (R, d) becomes a Banach space. Moreover, the space L” (2, d ) can be identified
with

LP(Q, dx) x L? (F, % dS),

This space can be defined in an equivalent way: consider u € C @, set

U = (ulg, ulpe) and define X,(Q) to be the completion of C($2) with the norm
IU Nl L @.ay)- It can be shown that

Xp (Q) =LP(Q.dw).

In the spaces C (5) the trace of a function has a clear meaning. We recall, for the sake

of completeness, the main generation theorem in the space X, (5) proved in [7] (see
Theorem 3.1).

Theorem 1.1 Let 2 be an open bounded set in R" with boundary of class C 2. Let
aeCY Q) witha>0in, Au:=V-(@Vu), T :={x € 0Q :a(x) > 0} # 0. If
B and y are non negative functions in C'(3Q) with B > 0, then G, the closure of the

operator
A 0
G = 1.5
[—ﬁa% —y] (-

with domain
D, (G) = {u € CZ(Q UDNCIQ): Au e LP(Q,dx), Au
ou
+B—+yu=0, on F}
on

generates a (Cyp) contraction semigroup on X p, for p € [1, 00). The semigroup is
analytic if p € (1, 00).

This result was significally extended in [6] and [4].

We are able to generalize the above result for ordinary differential operators in the
space wbP ([0, 1]) with Wentzell boundary conditions also for a degenerate case.
The plan of the paper is the following.

@ Springer



618 F. Colombo et al.

e In Sect. 2 we give a generation result in wL-P([0, 1]) with Wentzell boundary
conditions.

e In Sect. 3 we establish a generation result in C Lo, 17).

e In Sect. 4 we prove a generation result for a degenerate operator in W17 ([0, 1])
with Wentzell boundary conditions.

e In Sect. 5 we consider a linear partial differential operator of the second order and
prove a generation result in C(€2) with Wentzell boundary conditions.

We set I = [0, 1] and, in the following, we shall always suppose that a, b, ¢ €
C°°(I) and, for every x € I, a(x) > ag > 0.
Set

(Aﬁu) x) =a@u”" +bxX)u' +c(x)u, x e]0,1],

We make the following hypothesis:

(H1) for every cp, c; € C, there exists a unique solution u# of the boundary value
problem

A'u=0, u©) =co, u(l)=cy.
Then, if By, B; are boundary operators of order not greater than one, the map-

ping (A%, By, Bj) is an isomorphism from W37 ([0, 1]) onto W17 ([0, 1]) x
C x C, by e.g. [16], Theorem 5.5.2.

2 Generation results in W17 ([0, 1]) with Wentzell boundary conditions

Theorem 2.1 Define, for p > 1, the operator

[ D(A) = {u e WhP(I) : au’ +bu' +cu € WP (1)}, o

Au :=au” +bu' +cu, uc D(A),

and suppose that A satisfies assumption (H1). Then (A, D(A)) generates an analytic
semigroup in WP (I).

Proof If » € C\ {0} and f € WP (I), consider the boundary problem

Au(x) — Au(x) = f(x), x€l,
[ Au(j)=0, j=0,1, (2.2)
and the auxiliary problem
AG(X) = 0’ X € I’
[ G() = f. j=0,1. (2.3)

By hypothesis (H 1), problem (2.3) has a unique solution G € W?3P(I). Then we can
rewrite Problem (2.2) as
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Generation of analytic semigroups 619

A(u(x) _ %) _ A(u(x) _ %) — f) - Gk), xel,

) 2.4)
u() -4 =0, A(u-g)r=0. j=0.1.
Since f € WP (I) we have f—Ge W(}‘p(l), and the operator
D(Ag) = {u € Wy'P(I) = au’ + bu' + cu e Wy'"(I) }, 2.5)
Aou :=au” +bu' +cu, u € D(Ap), '

generates an analytic semigroup in WOl "P(I), by [1]. So we have proved that Problem
(2.4) has a unique solution v := u — G/A € D (Ap) and the estimate

Cp

holds, where ¢, is a positive real constant independent of A. Moreover, for Prob-
lem (2.3) we have

1Gllwiry < Kp 1 f lwirn (2.7)

where K, is a positive real constant. Then we get the generation estimate

llwirgr) < GH +HGH <& r-al
u [y, < |lu—— — <= - Lp
Whp ) )\. Wl,p([) )\. Wl,p([) |)\.| WhPD)
Kp
+ i A llwrr ey - (2.8)
O
Theorem 2.2 Define, for p > 1, the operator
D(Ag) = {u € WhP(I) : au” € WhP(D), au” +bu' +cu € W(}’p(l) 1,
Aou :=au”, u € D(Ag).
2.9

Then (Ao, D(Ao)) generates an analytic semigroup in WP (I).

Proof The proof is based on a perturbation method and on Theorem 2.1. Consider the
operator B defined on WP (I) as follows:

[ D(B) = D(Ay), (2.10)

Bu := —bu' — cu, Vu € D(B).

Consider the chain of inequalities, for ¢ > 0:

Kope
| Bullzry < Kollu' ey + Mollullrry < a—ollau//llu(l) + Mg lullLrry

+MollullLrry
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620 F. Colombo et al.

Koe Koe
< a—0||au” +bu' + cullLray + Kllbu/ + cullpry + MellullLr
+Kollullzr

Koe Koe
= W”A"‘HU’U) + a—ollBulle(I) + (Mg + Ko) llullpry,  (2.11)

where, here and in the sequel, K;, M;, M., M} and M denote positive constants.
Furthermore,

I1(Bw) ey < Kol Loy + 1B+ ullLeay + I<ull ey
< Ko e llu" ey + Mellu' Loy + Millw'llery + Mo llull ey
= KO & ”u///”LP(I) + M&‘”””Wl.p(])

Ko
=% e (au") —a'u"||r 1y + M lullwir

A

IA

Ky Ki¢e

— ¢ |l(au” +bu' + cu) — (bu" + cu)' || Loty + —— " |l Le 1y
ap ap

+Mé ||’4||W1»p(1)

Ko ,
< . e (lAullwrpy + 1(Bw) e (1))

K
+ ¢ (lAullzrry + |BullLrry) + Millullyip - (2.12)
0

Then, from (2.11)—(2.12), we get the estimates

A

Koe / /
1 - a0 l(Bu) ey < MiellAullwrey + Mellullwiogy, — (2.13)

A

Koe Kope
(1 - 0 )”Bu”LP(I) =% |Au|lLr(r) +Mé/||u||Lp(1). (2.14)

By taking ¢ sufficiently small we get the desired estimate:

||BM||W1.11(1) = M8||AM||W1,p(1) + M;N”M”Wl,p([)- (2.15)

Since A generates an analytic semigroup in W7 (I), thanks to Theorem 2.1, and
B is A-bounded with A-bound equal to zero, we conclude that A) = A + B generates
an analytic semigroup as well. O

Remark The above result should be compared with Warma [18].

More generally, we have the following result.

Theorem 2.3 Let Ay be the operator in WP (I), with p > 1,

D(A) =f{ue WhP(D) : au’ + by + ciu € Wy (I) ),

2.16
Awu:=au” +bu' +cu, YueD(A), ( )
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Generation of analytic semigroups 621

where by,c; € C®(I). Then (A1, D (A})) generates an analytic semigroup in
Wwhr ([0, 1]).

Proof Define the operator C in W7 ([0, 1]) by
D(C)=D(A), Cu= (b —b)u' + (c; —c)u. (2.17)

Then Aju = Au + Cu, where A is the operator defined in Theorem 2.1.
It is well known (see, e.g., [5], Example I11.2.2) that the operator B, defined by

D(B)=W"P(I), Bu=u,
is A-bounded, with A-bound equal to 0, where

DA =W>P(I), Au=u".
Therefore, for every e € RT, we have

ICullrcry < Kt (' lliecry + NullLery)
< Ky (ellu”llrcry + Mellullrcry + lullLe)
< Kiay " e lau" || Loy + KoM llull ooy
< Klao_1 e llau” + bu' + cull ey + Klao_1 e |lbu'|lLrr
+ Kiag " & lleullLoy + KaMellull Loy
< Kiay ' ¢ lAullzeay + M lullwipgy < Kiag ' el Aullyiog
+ Mé”””wl,p([)«

Furthermore,

I(Cw) ey < ICullwiry < K3 (||u/||wl,p(1) + ||u||W1~p(1))
< Kzelu" oy + M lullwio
< Kzay e (lau” + bu' + cullyp gy + 10w’ + cullyip)
+ M |lullyror)

< Ksag ‘el Aullyipy + Kaag el Il

+ (K5a0_18 + Mé/) ”l/l”Wl,p(I).

Hence,

(K3 - K4a0_l€) ||M/||Wl.p(1) + (K3 - Ksao_lg) el

—1
< Kzay ellAullyi.py + M,;“M”Wl,p(l)-
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622 F. Colombo et al.

Taking ¢ sufficiently small, we get

||M||W1,17(1) = K68||AM||W1~1J(1) + M;//”M”Wl,p([),
”u/”WLI’(I) < KeellAullwi.py + M,;N”“”Wl,p([)

whence
1(Cw)llLry < Kre|lAullwrpy + Mé//”u”WI-P(I)'
Then,
ICullwpgy < ellAullyrpgy + Kellwlyio -

This proves that C is A-bounded, with A-bound equal to 0 and hence Ay = A+ C
generates an analytic semigroup in W7 (). O
3 A generation result in C1(I)

In the monograph [12] it is proved the generation theorem of an analytic semigroup
in C} (Q2), where Q is a bounded open subset of R with smooth boundary. Here

Cé@Z{MGCl@;u/QQZO}.

Let L£(-, D) denote a linear second order partial differential operator in Q with
smooth coefficients, whose leading part satifies the uniform ellipticity condition

N
VxeQ.Vze ' D aj(0)zzj = aolzl,
i,j=1

and set

{ D (Ay) = {u € D(Aw) : Ayu € C} (Q) }. G.1)
Ayu = L(-, D)u. '

Here

D(Aw) = Jue [\ Wil () :u, L(.Du e C ()
p=1

Notice that, if N = 1, then D(Ago) = {u € C? (Q) : uspq = 0}.
It is known (see [12], Theorem 3.1.25), that A y is sectorial in Cé (5)
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We confine to N = 1 and define the operator E by

D(E)={ueClU) :au” € CH(D}.

Eu :=au”, (3.2)

where o € C'(I), with (x) > a9 > Oin 1.
Theorem 3.1 Under the previous assumptions, the operator E is sectorial in C'(I).
Proof Recall that the operator A; defined above is sectorial in Cé([ ). Then, if f €

cl (I), for any A € C, with Re A large enough, there exists a unique u € D (A}), such
that

hu(x) — au(x) = f(x) = (1 = x) f(0) = xf (1),
lullpay < CTHLAE) = (A =0 £O) = xF D1y (3.3)

Observe that Eq. (3.3) reads

3 (w00 + 271 =0 £ O +x£ (1))
(@) (w00 + 2711 =0 O +2£(1) = [,

Set v(x) = u(x) + A7'((1 — x) £(0) + xf(1)); then v € C*(I) and v (= au’) €
Cé (I). Moreover,

lliciy < lullergy + 2147 Fllea
< KM flleay + 207 M flleay = K™ fllea-
Onthe otherhand, if Avi —Ev) = f = Avo—Evy,thenA (v; — v2)—FE (v — ) =

0, and hence o (v| — v2)7a[0,1] = 0, so that (v; — v2) (0) = (v —v2) (1) = 0.
Then, vi — vy € D (A}) and

A —v2) — Ay (v —v2) =0.

It follows that v = v, and uniqueness of solutions follows. This implies that E is
sectorial in C! ([0, 11), as required. O

4 A generation result for a degenerate operator in wl.P ([0, 1]) with Wentzell
boundary condition

In this section we show that a second order degenerate operator in / generates an
analytic semigroup in W7 (I), where 1 < p < oo. This result must be compared to
Theorem 7.9, in the monograph [8]. Here we give an alternative proof of an important
case of large interest.

@ Springer



624 F. Colombo et al.

Recall that the norms

1 1/p 1 1/p 1 I/p
(/ |u(x)|pdx) + (/ |t/ (x)|P dx) and (/ |u’(x)|pdx)
0 0 0

are equivalent in W(} "P(I), and define the operator:

[ D (Agp) = {u e Wy (I); x(1 —x)u” € Wyl (1)}, @)

Apu=x(1—-x)u”", ueD (A(p)) .

We prove the following generation result.

Theorem 4.1 The operator (A(y), D (A(p))) defined in (4.1) generates an analytic
semigroup in Wol’p(l),forl < p < o0

Proof Consider the resolvent equation for A € C, such that Rer > 0, and f €
Lp
Wy (1),

ru(x) — Apyu(x) = f(x),
so that

Au(x) non S
D ey = L
x(1 —x) x(1—x)

Note that f € Wy'” () implies

1
fx) p P
| =l ar=ein

wy (1)’
by the Hardy inequality. On the other hand, if x(1 — x)u” = g € WO1 "P(I), then

18 < x P ligliray,  1g@) < (=) liglLea

so that

/ ’ _ * i _ * g(1)
u(x)—u(y)_/y u (t)dt_ﬂ Ty

and in a neighborhood of zero for y < x we have

lg(®)]
t(1—1)

X X
W) — ' () s/ dt < c/ 0P g < ex — )P,
y y

where c, here and in the sequel, denotes a real positive constant. Analogously one has
the same bound near 1. Hence, from
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1 1 1 )
x/ Ju@l” dx—/ W) a0 a2 dx = [ LD p=2 gy
0 0

o x(1—x) x(1—x)

by integration by parts, one obtains, using the boundary conditions, if p > 2:

1
/\/ lu(x)|? RLIC +/ ' (O ()| P~2 dx
x(l—x)

+(p—2) /0 u' (x)u(x) (Re(u (x)u(x))) |u(x)|P~*dx

U Foyulx)

p—2
L x(d—x) [u(x)| dx.

We consider the case p > 2 to show the strategy to obtain suitable estimates for our
problem. Attention must be devoted to the case 1 < p < 2 that follows with a few
modifications of the previous case. Taking real and imaginary parts and integrating by

parts yields
1 1
(Rek)/ der/ i’ ()P u(x)|P~2 dx
o x(I—x) 0
1
+(p—2) / Re(u/(mM))2 lu(x)|P~* dx
_Re f(x)u(x)| )72 dx
o x(1-—
and

1 p—
(Im ,\)/ Jutol” )|p x =Im M|u(x)|p_2dx.

x(l —x) o x(I—x)
Then we get, for any ¢ > 0,

4.2)

4.3)

U lu(x)lP ! p— Jp— 4
i [ EE s dx=(p-2) | [im@ outo)| [Rer uGe)| lu) P dx
o x(I—x) 0

P ulx)
x(1—x)

<(p-2 (e /0 l [tm (u’mm)f ()P~ dx
1 /! —\ 2
+-/ ‘Re u’(x)u(x))( |u(x)|1’4dx)

‘ f()()

|u(x)|P~% dx

p—2
(1 — ()"~ dx|.

Let n > 0 be an arbitrary real number. Multiplying the last inequality by 7 and

adding it to Eq. (4.2), one gets
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626 F. Colombo et al.

U ()P
(1—-x)

+(r= 1= [ (re o)) oo

+(1 = (p—2)en) /0 1 (1m (u’(x)@))2 lu(x) |7~ dx

(Rex + nIImM)/

] -
< |Re M lu()|P~2 dx
o x(1—x)
| _
fplm [ LD =2 g
o x(I—x)

Since n and ¢ are arbitrary positive constants, we can choose them so that
2 .
n<e &(p-2) <l

this assures that p — 1 — (p — 2)n/e > 0 and that 1 — (p — 2)en > O; then in the
sector ¥ := {A € C : ReX + n|ImA| > &9 > 0}, we have the estimates

1 —
| (Re (i) el s < el iy s,

! Ry —4
[ (1m0 () = dx < el gyl

Furthermore,
Rey [ HI”
e x(l 5 4% = el o Il oy
[TmA| | ( )|p (Il fluel?
C lp(l) u LP(I)
Therefore
ReA + |ImA < (Rei + [ImA |()|p
(ReA + [ImAl) IIMIILp(,) (ReA + | I) ) <cl|fl lp(,)llulle(l),

which gives

(Red + [ImA]) llullry = el fllyre -

We need now to estimate ||u’||» (). Consider

' (x) = [x(1 = x0)u" ()] = f'(x)
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and multiply it by u/(x)|u’(x)|?~2, so that

) /0 WG dx — [x(1 = x)u" Co)u' o’ (072
+/01 x(1 = x)|u” (o) * |’ ()P~ dx
+(p— 2)/01 x(1 — )@ @) u”(x) Re (m;ﬂ(x)) ' ()P~ dx
=/01f(x)mlu/(x)l”‘2dx.

As x(1 — x)u” (x) vanishes on the boundary and u’(x) has a finite limit as x — 0 or
x — 1, we obtain

1
[x(l — x)u”(x)ﬁ’(x)|u’(x)|f’—2]0 —0.
By repeating for u’ the arguments above for u we get the estimate, if A € X,

M ey < el fllieeay s

so we have the bound, if A € X,

!
Al < €1F i -

Take now f € WOl "P(I), so that f" € LP(I) and consider the problem

Ax) — (x(1—x)'x) = f/(x), xel,

x(1—x)v'(x) € Wy'P (1), i

for ReA > 0. It is known, from the paper [2], that it has a unique solution such that
MvllLey < el f lea-
Integrating over (0, x) we obtain

A/x v(t)dt —x(1 —x)v'(x) = f(x).
0

Set

ulx) = /X v(t)dt;
0

then

au(x) —x(1 —x)u"(x) = f(x), 0<x<1,
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so u is the desired solution to our problem. Therefore A(,) generates an analytic
semigroup in Wol""(l). O

We now define the operator W, for 1 < p < oo,

DW) = {ue W) : x(1—xu’ € Wy'P(I) },

Wu :=x(1 —x)u”, Yu e DW). 43)

Theorem 4.2 The operator (W, D(W)) generates an analytic semigroup in whr(r.

Proof We only need to observe, see Theorem 2.1, that

x(1—x)u"(x)=0, xel,

and

w(©0) = ug, u(l) =u

has a unique solution in C*°([0, 1]). O

5 A generation result in C () with Wentzell boundary conditions

In this case we have a more general result. Let €2 be a bounded domain in R" with
smooth boundary I'. Let us assume the conditions

e (K1) aji, by, d are real C*°(Q) functions, with ajx = axj, k, j = 1, ...,n, and
d(x) < 0; . o

° (KZ)OZ;'-,kzlajk(x)%‘jSk > C'Zj:15]2’ Vx € Q and (&1, ..., &) € R"; here
c>0.

Let us define the elliptic operator :

A du(x) " Au(x)
Lu) = X —— (a.;k(x) ™ )"‘;bk(x)m +dux) (5.1

jk=1 """
with domain

D(L)=que (\Wol (@ : u LueC@) . (5.2)
p>1

We recall the following well known theorem (see [10] Corollary 9.18).

Theorem 5.1 Let L be the operator defined in (5.1)—(5.2), satisfying assumptions
(K1) and (K?2). Then, for any ¢ € C(I"), the boundary value problem

[ LG(x) =0, x€Q, (5.3)

Gx)=¢(x), xeTl,
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has a unique solution G € D(L) and there exists a positive constant M such that
1Gllc@ = Mlellc. (5.4)
In this section we will use the functional space
Co@={ueC® : ulr=0} (5.5

with its natural norm. Thanks to Corollary 3.1.21 (ii) in Lunardi [12] we observe that
operator

2’ J—
DLo)={ue Moy Wed @ : wLue C@, ulr =0}, 5o
Lou=Lu, ue€D(Ly),
is sectorial in C(€2). This implies that the operator L
2’ J—
DLy ={ue N, Wol () 1 u, Lue Co@) | )
Liu=Lu, uecD(Ly)

generates an analytic semigroup in Co(2). We are now in position to prove the fol-
lowing generation result.

Theorem 5.2 Let L be the operator defined in (5.1), satisfying assumptions (K 1) and
(K2). Then the operator Ly defined by

D(Ly) = {u €Nyt Wi (@) : ue CE). Lu e Co(@) } 55
Lwu=Lu, ueD(Ly),
generates an analytic semigroup in C ().
Proof Consider the resolvent equation, for f € C(RQ)
Au(x) — Lu(x) = f(x), x € Q,
<mew=o, 62
and let G be the solution of the problem
LG(x) =0, x €L,
5.10
[Gh=ﬂp 610

Problem (5.9), taking into account (5.10), can be transformed into

A(u_g)_L<“_Q)=f—G, x€Q,
CHADgE
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Note that f — G € Co(S) so that there is a unique u — ¢ € Co(S), in view of the
previous considerations, that satisfies:

u— —

A

. |x| If = Gllcy@- (5.12)
0

On the other hand, if v := u — G /A satisfies A\v — Awv = f — G, thenu = v+ G/A
belongs to D (Aw) and satisfies Problem (5.9). Moreover,

G
lulle < Ju—+ ”— m — (I = Glley + Ifllem)  (.13)
c®@ c@)
1 =L (1l +20fllem) = = e (5.14)

where ¢; denote positive constants, so that Ly generates an analytic semigroup in
C(Q). o

We now apply a perturbation argument to obtain the following generation result. Let
L be the operator in C(Q) defined by

D ([:) = {” € Mps1 Wel (@) 2 k=1 387, (ajk(')%k)
+ X b+ du e Co (D) (5.15)
Lu= Z,/,k:l aij (a] (x) a”(x)) , ueD (I:) .

By a perturbation method we get the following generation result.

Theorem 5.3 The operator L, defined in (5.15), generates an analytic semigroup in
C(RQ).

Proof From Theorem 5.2 we know that Aw, defined in (5.8) generates an analytic
semigroup in C(£2). Let us introduce the operator

DE) = D) = {u e Nyt Wod @ = X uc 58 (a0 )
U OB d (O € co(sz)} (5.16)
Cu = — D= ”k(')m —d(u, ue D).

Then
D(C) — W>P(Q), forany p > 1,
and by the Rellich’s imbedding theorem we have

W2P(Q) ¢ C'(Q) — C(Q), forany p > n.
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Applying the Ehrling Lemma (see, e.g. [19], Theorem 7A16) , we have that for every
& > 0 there exists c(¢) > 0 such that

lullerig < ellullpe, + Mellulle

in other words ||Cu ||C(§) is estimated by

||C“||C(§) = SHAW“”C(ﬁ) + +Ms||u||c(§)~

Since C is Aw-bounded with Aw-bound equal to zero, the statement follows. O
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