

RESEARCH ARTICLE

Generation of analytic semigroups with generalized Wentzell boundary condition

Fabrizio Colombo · Angelo Favini · Enrico Obrecht

Received: 10 June 2014 / Accepted: 7 August 2014 / Published online: 25 September 2014 © Springer Science+Business Media New York 2014

Abstract In this paper we study second order ordinary and partial differential equations with generalized Wentzell boundary condition. We prove, by a perturbation method, that certain second order ordinary differential operators generate an analytic semigroup in $W^{1,p}([0, 1])$ and the same result has been extended for the degenerate operator Au(x) := x(1 - x)u''(x). Finally, we prove that certain linear partial differential operators of the second order generate analytic semigroups in the space of continuous functions.

Keywords Analytic semigroups \cdot Generation of semigroups \cdot Wentzell boundary conditions

1 Introduction

The study of ordinary and partial differential equations with Wentzell boundary conditions was stimulated by the theory of probability in the pioneering paper of Wentzell [17]. He considered a second order elliptic differential operator A in a domain Ω in \mathbb{R}^n ,

F. Colombo

A. Favini (⊠) · E. Obrecht
Dipartimento di Matematica, Università di Bologna, Piazza di Porta S. Donato 5, 40126 Bologna, Italy
e-mail: angelo.favini@unibo.it

E. Obrecht e-mail: enrico.obrecht@unibo.it

Communicated by Jerome A. Goldstein.

Dipartimento di Matematica, Politecnico di Milano, Via E. Bonardi 9, 20133 Milan, Italy e-mail: fabrizio.colombo@polimi.it

with sufficiently smooth boundary $\partial \Omega$, and he looked for the most general supplementary conditions which restrict the given operator A to be the infinitesimal generator of a semigroup corresponding to a Markov process in the domain. In [17] it is proved that, when the domain Ω has some special shape, the boundary conditions could involve the operator A. Generalized Wentzell boundary conditions contain, as special cases, Dirichlet, Neumann and Robin boundary conditions. In a paper by Feller [9] we find a diffusion process involving the operator

$$Au(x) := x(1-x)u''(x), \quad x \in (0,1), \tag{1.1}$$

with the boundary conditions

$$\lim_{x \to 0^+, \ x \to 1^-} Au(x) = 0.$$
(1.2)

In [3] it is proved that A with the domain

$$\mathcal{D}(A) = \{ u \in C[0,1] \cap C^1(0,1) : \lim_{x \to 0^+, \ x \to 1^-} Au(x) = 0 \}$$
(1.3)

is the generator of a C_0 -contraction semigroup on C[0, 1]. For this reason in this paper we will consider the operator x(1 - x)u''(x). Several motivations to study elliptic operators with Wentzell boundary conditions can also be found in [11,13–15].

In [7] generation results in suitable L^p spaces were proved. The present paper can be considered an extension of that work to the case $W^{1,p}$. We recall what has been proved in [7], introducing the problem

$$\begin{cases} \lambda u - \nabla \cdot (a \nabla u) = f, \text{ in } \Omega, \\ \nabla \cdot (a \nabla u) + \beta \frac{\partial u}{\partial n} + \gamma u = 0, \text{ on } \partial \Omega, \end{cases}$$
(1.4)

where Ω is a bounded open set with smooth boundary $\partial \Omega$, $\frac{\partial u}{\partial n}$ is the outward normal derivative, a(x) is a strictly positive C^2 function for all $x \in \overline{\Omega}$ and $\beta(x) > 0$, $\gamma(x) \ge 0$, for all $x \in \partial \Omega$.

We start by pointing out the surprising fact that the presence of the term $\beta \frac{\partial u}{\partial n}$ in the boundary conditions led in [7] to introduce suitable L^p weighted spaces to prove a generation result. More precisely the authors in [7] define $L^p(\overline{\Omega}, d\mu)$, where

$$d\mu = dx\Big|_{\Omega} \oplus \frac{a}{\beta} \ dS\Big|_{\Gamma};$$

here dx denotes the Lebesgue measure on Ω , while $(a/\beta) dS$ denotes the measure with weight a/β on Γ : it is assumed that a > 0 in $\Omega \cup \Gamma$, where $\emptyset \neq \Gamma \subset \partial \Omega$ and $a \in C^2(\Omega \cup \Gamma) \cap C(\overline{\Omega})$. Let $U = (u, v) \in L^p(\overline{\Omega}, d\mu)$, where $u : \Omega \to \mathbb{C}$ and $v : \partial\Omega \to \mathbb{C}$ are measurable functions such that

$$\int_{\Omega} |u(x)|^p \, dx + \int_{\partial \Omega} |v(x)|^p \, \frac{a}{\beta} \, dS$$

is finite. With the norm

$$\|U\|_{L^{p}(\overline{\Omega},d\mu)} := \left[\int_{\Omega} |u(x)|^{p} dx + \int_{\partial\Omega} |v(x)|^{p} \frac{a}{\beta} dS\right]^{1/p}$$

 $L^{p}(\overline{\Omega}, d\mu)$ becomes a Banach space. Moreover, the space $L^{p}(\overline{\Omega}, d\mu)$ can be identified with

$$L^{p}(\Omega, dx) \times L^{p}\left(\Gamma, \frac{a}{\beta} dS\right).$$

This space can be defined in an equivalent way: consider $u \in C(\overline{\Omega})$, set $U = (u|_{\Omega}, u|_{\partial\Omega})$ and define $X_p(\overline{\Omega})$ to be the completion of $C(\overline{\Omega})$ with the norm $||U||_{L^p(\overline{\Omega},du)}$. It can be shown that

$$X_p\left(\overline{\Omega}\right) = L^p(\overline{\Omega}, d\mu).$$

In the spaces $C(\overline{\Omega})$ the trace of a function has a clear meaning. We recall, for the sake of completeness, the main generation theorem in the space $X_p(\overline{\Omega})$ proved in [7] (see Theorem 3.1).

Theorem 1.1 Let Ω be an open bounded set in \mathbb{R}^n with boundary of class C^2 . Let $a \in C^1(\overline{\Omega})$ with a > 0 in $\overline{\Omega}$, $Au := \nabla \cdot (a\nabla u)$, $\Gamma := \{x \in \partial\Omega : a(x) > 0\} \neq \emptyset$. If β and γ are non negative functions in $C^1(\partial\Omega)$ with $\beta > 0$, then \overline{G} , the closure of the operator

$$G = \begin{bmatrix} A & 0\\ -\beta \frac{\partial}{\partial n} & -\gamma \end{bmatrix}$$
(1.5)

with domain

$$D_p(G) := \left\{ u \in C^2(\Omega \cup \Gamma) \cap C(\overline{\Omega}) : Au \in L^p(\Omega, dx), Au + \beta \frac{\partial u}{\partial n} + \gamma u = 0, \text{ on } \Gamma \right\}$$

generates a (C_0) contraction semigroup on X_p , for $p \in [1, \infty)$. The semigroup is analytic if $p \in (1, \infty)$.

This result was significally extended in [6] and [4].

We are able to generalize the above result for ordinary differential operators in the space $W^{1,p}([0, 1])$ with Wentzell boundary conditions also for a degenerate case. The plan of the paper is the following.

- In Sect. 2 we give a generation result in $W^{1,p}([0, 1])$ with Wentzell boundary conditions.
- In Sect. 3 we establish a generation result in $C^{1}([0, 1])$.
- In Sect. 4 we prove a generation result for a degenerate operator in $W^{1,p}([0, 1])$ with Wentzell boundary conditions.
- In Sect. 5 we consider a linear partial differential operator of the second order and prove a generation result in $C(\overline{\Omega})$ with Wentzell boundary conditions.

We set I = [0, 1] and, in the following, we shall always suppose that $a, b, c \in C^{\infty}(I)$ and, for every $x \in I$, $a(x) \ge a_0 > 0$.

Set

$$(A^{\sharp}u)(x) := a(x)u'' + b(x)u' + c(x)u, \qquad x \in [0, 1],$$

We make the following hypothesis:

(H1) for every $c_0, c_1 \in \mathbb{C}$, there exists a unique solution u of the boundary value problem

$$A^{\sharp}u = 0, \quad u(0) = c_0, \quad u(1) = c_1.$$

Then, if B_0 , B_1 are boundary operators of order not greater than one, the mapping (A^{\sharp}, B_0, B_1) is an isomorphism from $W^{3, p}([0, 1])$ onto $W^{1, p}([0, 1]) \times \mathbb{C} \times \mathbb{C}$, by e.g. [16], Theorem 5.5.2.

2 Generation results in $W^{1,p}([0, 1])$ with Wentzell boundary conditions

Theorem 2.1 Define, for p > 1, the operator

$$\begin{cases} \mathcal{D}(A) = \{ u \in W^{1,p}(I) : au'' + bu' + cu \in W_0^{1,p}(I) \}, \\ Au := au'' + bu' + cu, \quad u \in \mathcal{D}(A), \end{cases}$$
(2.1)

and suppose that A satisfies assumption (H1). Then $(A, \mathcal{D}(A))$ generates an analytic semigroup in $W^{1,p}(I)$.

Proof If $\lambda \in \mathbb{C} \setminus \{0\}$ and $f \in W^{1,p}(I)$, consider the boundary problem

$$\begin{cases} \lambda u(x) - Au(x) = f(x), & x \in I, \\ Au(j) = 0, & j = 0, 1, \end{cases}$$
(2.2)

and the auxiliary problem

$$\begin{cases}
AG(x) = 0, & x \in I, \\
G(j) = f(j), & j = 0, 1.
\end{cases}$$
(2.3)

By hypothesis (*H*1), problem (2.3) has a unique solution $G \in W^{3,p}(I)$. Then we can rewrite Problem (2.2) as

$$\begin{cases} \lambda \left(u(x) - \frac{G(x)}{\lambda} \right) - A \left(u(x) - \frac{G(x)}{\lambda} \right) = f(x) - G(x), & x \in I, \\ u(j) - \frac{G(j)}{\lambda} = 0, & A \left(u - \frac{G}{\lambda} \right)(j) = 0, & j = 0, 1. \end{cases}$$
(2.4)

Since $f \in W^{1,p}(I)$ we have $f - G \in W_0^{1,p}(I)$, and the operator

$$\begin{bmatrix}
\mathcal{D}(A_0) = \{ u \in W_0^{1,p}(I) : au'' + bu' + cu \in W_0^{1,p}(I) \}, \\
A_0 u := au'' + bu' + cu, \quad u \in \mathcal{D}(A_0),
\end{bmatrix}$$
(2.5)

generates an analytic semigroup in $W_0^{1,p}(I)$, by [1]. So we have proved that Problem (2.4) has a unique solution $v := u - G/\lambda \in \mathcal{D}(A_0)$ and the estimate

$$\|v\|_{W_0^{1,p}(I)} \le \frac{c_p}{|\lambda|} \|f - G\|_{W_0^{1,p}(I)}$$
(2.6)

holds, where c_p is a positive real constant independent of λ . Moreover, for Problem (2.3) we have

$$\|G\|_{W^{1,p}(I)} \le K_p \, \|f\|_{W^{1,p}(I)} \tag{2.7}$$

where K_p is a positive real constant. Then we get the generation estimate

$$\|u\|_{W^{1,p}(I)} \leq \left\|u - \frac{G}{\lambda}\right\|_{W^{1,p}(I)} + \left\|\frac{G}{\lambda}\right\|_{W^{1,p}(I)} \leq \frac{c_p}{|\lambda|} \|f - G\|_{W^{1,p}(I)} + \frac{K_p}{|\lambda|} \|f\|_{W^{1,p}(I)}.$$
(2.8)

Theorem 2.2 Define, for p > 1, the operator

$$\begin{bmatrix} \mathcal{D}(A_0) = \{ u \in W^{1,p}(I) : au'' \in W^{1,p}(I), au'' + bu' + cu \in W_0^{1,p}(I) \}, \\ A_0u := au'', u \in \mathcal{D}(A_0). \end{bmatrix}$$
(2.9)

Then $(A_0, \mathcal{D}(A_0))$ generates an analytic semigroup in $W^{1,p}(I)$.

Proof The proof is based on a perturbation method and on Theorem 2.1. Consider the operator *B* defined on $W^{1,p}(I)$ as follows:

$$\begin{cases} \mathcal{D}(B) = \mathcal{D}(A_0), \\ Bu := -bu' - cu, \quad \forall u \in \mathcal{D}(B). \end{cases}$$
(2.10)

Consider the chain of inequalities, for $\varepsilon > 0$:

$$\|Bu\|_{L^{p}(I)} \leq K_{0}\|u'\|_{L^{p}(I)} + M_{0}\|u\|_{L^{p}(I)} \leq \frac{K_{0}\varepsilon}{a_{0}}\|au''\|_{L^{p}(I)} + M_{\varepsilon}\|u\|_{L^{p}(I)} + M_{0}\|u\|_{L^{p}(I)}$$

Deringer

$$\leq \frac{K_{0}\varepsilon}{a_{0}} \|au'' + bu' + cu\|_{L^{p}(I)} + \frac{K_{0}\varepsilon}{a_{0}} \|bu' + cu\|_{L^{p}(I)} + M_{\varepsilon}\|u\|_{L^{p}(I)} + K_{0}\|u\|_{L^{p}(I)} = \frac{K_{0}\varepsilon}{a_{0}} \|Au\|_{L^{p}(I)} + \frac{K_{0}\varepsilon}{a_{0}} \|Bu\|_{L^{p}(I)} + (M_{\varepsilon} + K_{0}) \|u\|_{L^{p}(I)}, \quad (2.11)$$

where, here and in the sequel, K_i , M_i , M_{ε} , M'_{ε} and M''_{ε} denote positive constants. Furthermore,

$$\begin{split} \|(Bu)'\|_{L^{p}(I)} &\leq K_{0}\|u''\|_{L^{p}(I)} + \|(b'+c)u'\|_{L^{p}(I)} + \|c'u\|_{L^{p}(I)} \\ &\leq K_{0} \varepsilon \|u'''\|_{L^{p}(I)} + M_{\varepsilon}\|u'\|_{L^{p}(I)} + M_{1}\|u'\|_{L^{p}(I)} + M_{2}\|u\|_{L^{p}(I)} \\ &= K_{0} \varepsilon \|u'''\|_{L^{p}(I)} + M_{\varepsilon}\|u\|_{W^{1,p}(I)} \\ &\leq \frac{K_{0}}{a_{0}} \varepsilon \|(au'')' - a'u''\|_{L^{p}(I)} + M_{\varepsilon}'\|u\|_{W^{1,p}(I)} \\ &\leq \frac{K_{0}}{a_{0}} \varepsilon \|(au'' + bu' + cu)' - (bu' + cu)'\|_{L^{p}(I)} + \frac{K_{1}\varepsilon}{a_{0}}\|u''\|_{L^{p}(I)} \\ &+ M_{\varepsilon}'\|u\|_{W^{1,p}(I)} \\ &\leq \frac{K_{0}}{a_{0}} \varepsilon \left(\|Au\|_{W^{1,p}(I)} + \|(Bu)'\|_{L^{p}(I)}\right) \\ &+ \frac{K_{1}}{a_{0}^{2}} \varepsilon \left(\|Au\|_{L^{p}(I)} + \|Bu\|_{L^{p}(I)}\right) + M_{\varepsilon}'\|u\|_{W^{1,p}(I)}. \end{split}$$
(2.12)

Then, from (2.11)–(2.12), we get the estimates

$$\left(1 - \frac{K_0 \varepsilon}{a_0}\right) \|(Bu)'\|_{L^p(I)} \le M_1 \varepsilon \|Au\|_{W^{1,p}(I)} + M'_{\varepsilon} \|u\|_{W^{1,p}(I)}, \quad (2.13)$$

$$\left(1 - \frac{K_0\varepsilon}{a_0}\right) \|Bu\|_{L^p(I)} \le \frac{K_0\varepsilon}{a_0} \|Au\|_{L^p(I)} + M_{\varepsilon}''\|u\|_{L^p(I)}.$$
(2.14)

By taking ε sufficiently small we get the desired estimate:

$$\|Bu\|_{W^{1,p}(I)} \le M\varepsilon \|Au\|_{W^{1,p}(I)} + M_{\varepsilon}^{'''} \|u\|_{W^{1,p}(I)}.$$
(2.15)

Since A generates an analytic semigroup in $W^{1,p}(I)$, thanks to Theorem 2.1, and *B* is *A*-bounded with *A*-bound equal to zero, we conclude that $A_0 = A + B$ generates an analytic semigroup as well.

Remark The above result should be compared with Warma [18].

More generally, we have the following result.

Theorem 2.3 Let A_1 be the operator in $W^{1,p}(I)$, with p > 1,

$$\begin{cases} \mathcal{D}(A_1) = \{ u \in W^{1,p}(I) : au'' + b_1u' + c_1u \in W_0^{1,p}(I) \}, \\ A_1u := au'' + bu' + cu, \quad \forall u \in \mathcal{D}(A_1) , \end{cases}$$
(2.16)

Deringer

.

where $b_1, c_1 \in C^{\infty}(I)$. Then $(A_1, D(A_1))$ generates an analytic semigroup in $W^{1,p}([0, 1])$.

Proof Define the operator C in $W^{1,p}([0, 1])$ by

$$\mathcal{D}(C) = \mathcal{D}(A), \quad Cu = (b_1 - b)u' + (c_1 - c)u.$$
 (2.17)

Then $A_1u = Au + Cu$, where A is the operator defined in Theorem 2.1.

It is well known (see, e.g., [5], Example III.2.2) that the operator *B*, defined by

$$\mathcal{D}(B) = W^{1,p}(I), \qquad Bu = u',$$

is A-bounded, with A-bound equal to 0, where

$$\mathcal{D}(\mathcal{A}) = W^{2,p}(I), \qquad \mathcal{A}u = u''.$$

Therefore, for every $\varepsilon \in \mathbf{R}^+$, we have

$$\begin{split} \|Cu\|_{L^{p}(I)} &\leq K_{1} \left(\|u'\|_{L^{p}(I)} + \|u\|_{L^{p}(I)} \right) \\ &\leq K_{1} \left(\varepsilon \|u''\|_{L^{p}(I)} + M_{\varepsilon} \|u\|_{L^{p}(I)} + \|u\|_{L^{p}(I)} \right) \\ &\leq K_{1}a_{0}^{-1} \varepsilon \|au''\|_{L^{p}(I)} + K_{2}M_{\varepsilon} \|u\|_{L^{p}(I)} \\ &\leq K_{1}a_{0}^{-1} \varepsilon \|au'' + bu' + cu\|_{L^{p}(I)} + K_{1}a_{0}^{-1} \varepsilon \|bu'\|_{L^{p}(I)} \\ &+ K_{1}a_{0}^{-1} \varepsilon \|cu\|_{L^{p}(I)} + K_{2}M_{\varepsilon} \|u\|_{L^{p}(I)} \\ &\leq K_{1}a_{0}^{-1} \varepsilon \|Au\|_{L^{p}(I)} + M_{\varepsilon}' \|u\|_{W^{1,p}(I)} \leq K_{1}a_{0}^{-1} \varepsilon \|Au\|_{W^{1,p}(I)} \\ &+ M_{\varepsilon}' \|u\|_{W^{1,p}(I)}. \end{split}$$

Furthermore,

$$\begin{split} \|(Cu)'\|_{L^{p}(I)} &\leq \|Cu\|_{W^{1,p}(I)} \leq K_{3}\left(\|u'\|_{W^{1,p}(I)} + \|u\|_{W^{1,p}(I)}\right) \\ &\leq K_{3}\varepsilon\|u''\|_{W^{1,p}(I)} + M_{\varepsilon}''\|u\|_{W^{1,p}(I)} \\ &\leq K_{3}a_{0}^{-1}\varepsilon\left(\|au'' + bu' + cu\|_{W^{1,p}(I)} + \|bu' + cu\|_{W^{1,p}(I)}\right) \\ &\quad + M_{\varepsilon}''\|u\|_{W^{1,p}(I)} \\ &\leq K_{3}a_{0}^{-1}\varepsilon\|Au\|_{W^{1,p}(I)} + K_{4}a_{0}^{-1}\varepsilon\|u'\|_{W^{1,p}(I)} \\ &\quad + \left(K_{5}a_{0}^{-1}\varepsilon + M_{\varepsilon}''\right)\|u\|_{W^{1,p}(I)}. \end{split}$$

Hence,

$$\left(K_3 - K_4 a_0^{-1} \varepsilon \right) \| u' \|_{W^{1,p}(I)} + \left(K_3 - K_5 a_0^{-1} \varepsilon \right) \| u \|_{W^{1,p}(I)}$$

$$\leq K_3 a_0^{-1} \varepsilon \| A u \|_{W^{1,p}(I)} + M'_{\varepsilon} \| u \|_{W^{1,p}(I)}.$$

Taking ε sufficiently small, we get

$$\begin{aligned} \|u\|_{W^{1,p}(I)} &\leq K_6 \varepsilon \|Au\|_{W^{1,p}(I)} + M_{\varepsilon}^{\prime\prime\prime} \|u\|_{W^{1,p}(I)}, \\ \|u'\|_{W^{1,p}(I)} &\leq K_6 \varepsilon \|Au\|_{W^{1,p}(I)} + M_{\varepsilon}^{\prime\prime\prime} \|u\|_{W^{1,p}(I)} \end{aligned}$$

whence

$$\|(Cu)'\|_{L^{p}(I)} \leq K_{7}\varepsilon \|Au\|_{W^{1,p}(I)} + M_{\varepsilon}'''\|u\|_{W^{1,p}(I)}.$$

Then,

$$\|Cu\|_{W^{1,p}(I)} \le \varepsilon \|Au\|_{W^{1,p}(I)} + K_{\varepsilon} \|u\|_{W^{1,p}(I)}.$$

This proves that *C* is *A*-bounded, with *A*-bound equal to 0 and hence $A_1 = A + C$ generates an analytic semigroup in $W^{1,p}(I)$.

3 A generation result in $C^{1}(I)$

In the monograph [12] it is proved the generation theorem of an analytic semigroup in $C_0^1(\overline{\Omega})$, where Ω is a bounded open subset of \mathbb{R}^N with smooth boundary. Here

$$C_0^1\left(\overline{\Omega}\right) = \left\{ u \in C^1\left(\overline{\Omega}\right); u_{/\partial\Omega} = 0 \right\}.$$

Let $\mathcal{L}(\cdot, D)$ denote a linear second order partial differential operator in $\overline{\Omega}$ with smooth coefficients, whose leading part satisfies the uniform ellipticity condition

$$\forall x \in \overline{\Omega}, \forall z \in \mathbb{C}^n, \quad \sum_{i,j=1}^N a_{ij}(x) z_i \overline{z_j} \ge \alpha_0 |z|^2,$$

and set

$$\begin{cases} \mathcal{D}(A_N) = \left\{ u \in \mathcal{D}(A_{00}) : A_N u \in C_0^1(\overline{\Omega}) \right\}, \\ A_N u := \mathcal{L}(\cdot, D) u. \end{cases}$$
(3.1)

Here

$$\mathcal{D}(A_{00}) = \left\{ u \in \bigcap_{p=1}^{\infty} W^{2,p}_{loc}(\Omega) : u, \ \mathcal{L}(\cdot, D)u \in C\left(\overline{\Omega}\right) \right\}.$$

Notice that, if N = 1, then $\mathcal{D}(A_{00}) = \{ u \in C^2(\overline{\Omega}) : u_{\partial\Omega} = 0 \}.$

It is known (see [12], Theorem 3.1.25), that A_N is sectorial in $C_0^1(\overline{\Omega})$.

We confine to N = 1 and define the operator E by

$$\begin{bmatrix} \mathcal{D}(E) = \{ u \in C_0^1(I) : \alpha u'' \in C_0^1(I) \}, \\ Eu := \alpha u'', \end{bmatrix}$$
(3.2)

where $\alpha \in C^1(I)$, with $\alpha(x) \ge \alpha_0 > 0$ in *I*.

Theorem 3.1 Under the previous assumptions, the operator E is sectorial in $C^{1}(I)$.

Proof Recall that the operator A_1 defined above is sectorial in $C_0^1(I)$. Then, if $f \in C^1(I)$, for any $\lambda \in \mathbb{C}$, with Re λ large enough, there exists a unique $u \in \mathcal{D}(A_1)$, such that

$$\lambda u(x) - \alpha u''(x) = f(x) - (1 - x)f(0) - xf(1), \|u\|_{C_0^1(I)} \le C |\lambda|^{-1} \|f(x) - (1 - x)f(0) - xf(1)\|_{C_0^1(I)}.$$
(3.3)

Observe that Eq. (3.3) reads

$$\lambda \left(u(x) + \lambda^{-1}((1-x)f(0) + xf(1)) \right)$$
$$-\alpha(x) \left(u(x) + \lambda^{-1}((1-x)f(0) + xf(1)) \right)'' = f(x)$$

Set $v(x) = u(x) + \lambda^{-1}((1 - x)f(0) + xf(1))$; then $v \in C^2(I)$ and $\alpha v''(= \alpha u'') \in C_0^1(I)$. Moreover,

$$\begin{aligned} \|v\|_{C^{1}(I)} &\leq \|u\|_{C^{1}(I)} + 2|\lambda|^{-1} \|f\|_{C(I)} \\ &\leq K|\lambda|^{-1} \|f\|_{C(I)} + 2|\lambda|^{-1} \|f\|_{C(I)} = K_{1}|\lambda|^{-1} \|f\|_{C(I)}. \end{aligned}$$

On the other hand, if $\lambda v_1 - Ev_1 = f = \lambda v_2 - Ev_2$, then $\lambda (v_1 - v_2) - E (v_1 - v_2) = 0$, and hence $\alpha (v_1 - v_2)''_{\partial[0,1]} = 0$, so that $(v_1 - v_2) (0) = (v_1 - v_2) (1) = 0$. Then, $v_1 - v_2 \in \mathcal{D}(A_1)$ and

$$\lambda (v_1 - v_2) - A_1 (v_1 - v_2) = 0.$$

It follows that $v_1 = v_2$ and uniqueness of solutions follows. This implies that E is sectorial in $C^1([0, 1])$, as required.

4 A generation result for a degenerate operator in $W^{1,p}([0, 1])$ with Wentzell boundary condition

In this section we show that a second order degenerate operator in I generates an analytic semigroup in $W^{1,p}(I)$, where 1 . This result must be compared to Theorem 7.9, in the monograph [8]. Here we give an alternative proof of an important case of large interest.

Recall that the norms

$$\left(\int_0^1 |u(x)|^p \, dx\right)^{1/p} + \left(\int_0^1 |u'(x)|^p \, dx\right)^{1/p} \quad \text{and} \quad \left(\int_0^1 |u'(x)|^p \, dx\right)^{1/p}$$

are equivalent in $W_0^{1,p}(I)$, and define the operator:

$$\begin{bmatrix} \mathcal{D}(A_{(p)}) = \{ u \in W_0^{1,p}(I); \ x(1-x)u'' \in W_0^{1,p}(I) \}, \\ A_{(p)}u = x(1-x)u'', \ u \in \mathcal{D}(A_{(p)}) . \end{bmatrix}$$
(4.1)

We prove the following generation result.

Theorem 4.1 The operator $(A_{(p)}, \mathcal{D}(A_{(p)}))$ defined in (4.1) generates an analytic semigroup in $W_0^{1,p}(I)$, for 1 .

Proof Consider the resolvent equation for $\lambda \in \mathbb{C}$, such that $\operatorname{Re} \lambda > 0$, and $f \in W_0^{1,p}(I)$,

$$\lambda u(x) - A_{(p)}u(x) = f(x),$$

so that

$$\frac{\lambda u(x)}{x(1-x)} - u''(x) = \frac{f(x)}{x(1-x)}.$$

Note that $f \in W_0^{1,p}(I)$ implies

$$\int_0^1 \left| \frac{f(x)}{x(1-x)} \right|^p dx \le c \|f\|_{W_0^{1,p}(I)}^p,$$

by the Hardy inequality. On the other hand, if $x(1-x)u'' = g \in W_0^{1,p}(I)$, then

$$|g(x)| \le x^{1/p'} ||g||_{L^p(I)}, \quad |g(x)| \le (1-x)^{1/p'} ||g||_{L^p(I)}$$

so that

$$u'(x) - u'(y) = \int_{y}^{x} u''(t) dt = \int_{y}^{x} \frac{g(t)}{t(1-t)} dt$$

and in a neighborhood of zero for y < x we have

$$|u'(x) - u'(y)| \le \int_y^x \frac{|g(t)|}{t(1-t)} dt \le c \int_y^x t^{-(1-1/p')} dt \le c(x-y)^{1-1/p},$$

where c, here and in the sequel, denotes a real positive constant. Analogously one has the same bound near 1. Hence, from

$$\lambda \int_0^1 \frac{|u(x)|^p}{x(1-x)} \, dx - \int_0^1 u''(x) \, \overline{u(x)} \, |u(x)|^{p-2} \, dx = \int_0^1 \frac{f(x) \, \overline{u(x)}}{x(1-x)} \, |u(x)|^{p-2} \, dx$$

by integration by parts, one obtains, using the boundary conditions, if $p \ge 2$:

$$\begin{split} \lambda & \int_0^1 \frac{|u(x)|^p}{x(1-x)} \, dx + \int_0^1 |u'(x)|^2 \, |u(x)|^{p-2} \, dx \\ & + (p-2) \int_0^1 u'(x) \overline{u(x)} (\operatorname{Re}(u'(x) \overline{u(x)})) \, |u(x)|^{p-4} \, dx \\ & \leq \int_0^1 \frac{f(x) \, \overline{u(x)}}{x(1-x)} \, |u(x)|^{p-2} \, dx. \end{split}$$

We consider the case $p \ge 2$ to show the strategy to obtain suitable estimates for our problem. Attention must be devoted to the case 1 that follows with a few modifications of the previous case. Taking real and imaginary parts and integrating by parts yields

$$(\operatorname{Re} \lambda) \int_{0}^{1} \frac{|u(x)|^{p}}{x(1-x)} dx + \int_{0}^{1} |u'(x)|^{2} |u(x)|^{p-2} dx + (p-2) \int_{0}^{1} \left(\operatorname{Re}(u'(x)\overline{u(x)}) \right)^{2} |u(x)|^{p-4} dx = \operatorname{Re} \int_{0}^{1} \frac{f(x)\overline{u(x)}}{x(1-x)} |u(x)|^{p-2} dx$$
(4.2)

and

$$(\operatorname{Im} \lambda) \int_0^1 \frac{|u(x)|^p}{x(1-x)} dx = \operatorname{Im} \int_0^1 \frac{f(x)\overline{u}(x)}{x(1-x)} |u(x)|^{p-2} dx.$$
(4.3)

Then we get, for any $\varepsilon > 0$,

$$\begin{split} |\mathrm{Im}\,\lambda| \int_{0}^{1} \frac{|u(x)|^{p}}{x(1-x)} \, dx &\leq (p-2) \int_{0}^{1} \left| \mathrm{Im}(u'(x)\overline{u(x)}) \right| \left| \mathrm{Re}(u'(x)\overline{u(x)}) \right| \, |u(x)|^{p-4} \, dx \\ &+ \left| \int_{0}^{1} \frac{f(x)\,\overline{u(x)}}{x(1-x)} \, |u(x)|^{p-2} \, dx \right| \\ &\leq (p-2) \left(\varepsilon \int_{0}^{1} \left| \mathrm{Im}\left(u'(x)\overline{u(x)}\right) \right|^{2} \, |u(x)|^{p-4} \, dx \\ &+ \frac{1}{\varepsilon} \int_{0}^{1} \left| \mathrm{Re}\left(u'(x)\overline{u(x)}\right) \right|^{2} \, |u(x)|^{p-4} \, dx \right) \\ &+ \left| \int_{0}^{1} \frac{f(x)\,\overline{u(x)}}{x(1-x)} \, |u(x)|^{p-2} \, dx \right|. \end{split}$$

Let $\eta > 0$ be an arbitrary real number. Multiplying the last inequality by η and adding it to Eq. (4.2), one gets

$$\begin{aligned} (\operatorname{Re}\lambda + \eta |\operatorname{Im}\lambda|) & \int_{0}^{1} \frac{|u(x)|^{p}}{x(1-x)} dx \\ & + \left(p-1-(p-2)\frac{\eta}{\varepsilon}\right) \int_{0}^{1} \left(\operatorname{Re}\left(u'(x)\overline{u(x)}\right)\right)^{2} |u(x)|^{p-4} dx \\ & + (1-(p-2)\varepsilon\eta) \int_{0}^{1} \left(\operatorname{Im}\left(u'(x)\overline{u(x)}\right)\right)^{2} |u(x)|^{p-4} dx \\ & \leq \left|\operatorname{Re}\int_{0}^{1} \frac{f(x)\overline{u(x)}}{x(1-x)} |u(x)|^{p-2} dx\right| \\ & + \eta \left|\operatorname{Im}\int_{0}^{1} \frac{f(x)\overline{u(x)}}{x(1-x)} |u(x)|^{p-2} dx\right|. \end{aligned}$$

Since η and ε are arbitrary positive constants, we can choose them so that

$$\eta < \varepsilon, \quad \varepsilon^2(p-2) < 1;$$

this assures that $p - 1 - (p - 2)\eta/\varepsilon > 0$ and that $1 - (p - 2)\varepsilon\eta > 0$; then in the sector $\Sigma := \{\lambda \in \mathbb{C} : \operatorname{Re}\lambda + \eta |\operatorname{Im}\lambda| \ge \delta_0 > 0\}$, we have the estimates

$$\int_{0}^{1} \left(\operatorname{Re}\left(u'(x)\overline{u(x)} \right) \right)^{2} |u(x)|^{p-4} dx \leq c \|f\|_{W_{0}^{1,p}(I)} \|u\|_{L^{p}(I)}^{p-1},$$

$$\int_{0}^{1} \left(\operatorname{Im}\left(u'(x)\overline{u(x)} \right) \right)^{2} |u(x)|^{p-4} dx \leq c \|f\|_{W_{0}^{1,p}(I)} \|u\|_{L^{p}(I)}^{p-1}.$$

Furthermore,

$$\begin{aligned} & \operatorname{Re}\lambda \ \int_0^1 \frac{|u(x)|^p}{x(1-x)} \, dx \le c \|f\|_{W_0^{1,p}(I)} \|u\|_{L^p(I)}^{p-1}, \\ & |\operatorname{Im}\lambda| \ \int_0^1 \frac{|u(x)|^p}{x(1-x)} \, dx \le c \|f\|_{W_0^{1,p}(I)} \|u\|_{L^p(I)}^{p-1}. \end{aligned}$$

Therefore

$$(\operatorname{Re}\lambda + |\operatorname{Im}\lambda|) \|u\|_{L^{p}(I)}^{p} \le (\operatorname{Re}\lambda + |\operatorname{Im}\lambda|) \int_{0}^{1} \frac{|u(x)|^{p}}{x(1-x)} dx \le c \|f\|_{W_{0}^{1,p}(I)} \|u\|_{L^{p}(I)}^{p-1},$$

which gives

$$(\operatorname{Re}\lambda + |\operatorname{Im}\lambda|) \|u\|_{L^{p}(I)} \le c \|f\|_{W_{0}^{1,p}(I)}.$$

We need now to estimate $||u'||_{L^p(I)}$. Consider

$$\lambda u'(x) - [x(1-x)u''(x)]' = f'(x)$$

and multiply it by $\overline{u'(x)}|u'(x)|^{p-2}$, so that

$$\begin{split} \lambda & \int_0^1 |u'(x)|^p \, dx - \left[x(1-x)u''(x)\overline{u'(x)}|u'(x)|^{p-2} \right]_0^1 \\ & + \int_0^1 x(1-x)|u''(x)|^2 |u'(x)|^{p-2} \, dx \\ & + (p-2) \int_0^1 x(1-x)\overline{u'(x)} \, u''(x) \operatorname{Re}\left(\overline{u'(x)} \, u''(x) \right) \, |u'(x)|^{p-4} \, dx \\ & = \int_0^1 f(x) \, \overline{u'(x)} \, |u'(x)|^{p-2} \, dx. \end{split}$$

As x(1-x)u''(x) vanishes on the boundary and u'(x) has a finite limit as $x \to 0$ or $x \to 1$, we obtain

$$\left[x(1-x)u''(x)\overline{u}'(x)|u'(x)|^{p-2}\right]_0^1 = 0.$$

By repeating for u' the arguments above for u we get the estimate, if $\lambda \in \Sigma$,

$$|\lambda| ||u'||_{L^p(I)} \le c ||f'||_{L^p(I)};$$

so we have the bound, if $\lambda \in \Sigma$,

$$|\lambda| ||u||_{W_0^{1,p}(I)} \le c ||f'||_{W_0^{1,p}(I)}.$$

Take now $f \in W_0^{1,p}(I)$, so that $f' \in L^p(I)$ and consider the problem

$$\begin{cases} \lambda v(x) - (x(1-x)v'(x))' = f'(x), & x \in I, \\ x(1-x)v'(x) \in W_0^{1,p}(I), \end{cases}$$
(4.4)

for $\text{Re}\lambda > 0$. It is known, from the paper [2], that it has a unique solution such that

$$|\lambda| ||v||_{L^p(I)} \le c ||f'||_{L^p(I)}.$$

Integrating over (0, x) we obtain

$$\lambda \int_0^x v(t) \, dt - x(1-x)v'(x) = f(x).$$

Set

$$u(x) = \int_0^x v(t) \, dt \,;$$

then

$$\lambda u(x) - x(1-x)u''(x) = f(x), \quad 0 \le x \le 1,$$

Deringer

so *u* is the desired solution to our problem. Therefore $A_{(p)}$ generates an analytic semigroup in $W_0^{1,p}(I)$.

We now define the operator W, for 1 ,

$$\begin{cases} \mathcal{D}(W) = \{ u \in W^{1,p}(I) : x(1-x)u'' \in W_0^{1,p}(I) \}, \\ Wu := x(1-x)u'', \ \forall u \in \mathcal{D}(W). \end{cases}$$
(4.5)

Theorem 4.2 The operator $(W, \mathcal{D}(W))$ generates an analytic semigroup in $W^{1,p}(I)$.

Proof We only need to observe, see Theorem 2.1, that

$$x(1-x)u''(x) = 0, x \in I,$$

and

$$u(0) = u_0, \ u(1) = u_1$$

has a unique solution in $C^{\infty}([0, 1])$.

5 A generation result in $C(\overline{\Omega})$ with Wentzell boundary conditions

In this case we have a more general result. Let Ω be a bounded domain in \mathbb{R}^n with smooth boundary Γ . Let us assume the conditions

- $(K1) a_{jk}, b_k, d$ are real $C^{\infty}(\overline{\Omega})$ functions, with $a_{jk} = a_{kj}, k, j = 1, ..., n$, and d(x) < 0;
- (K2) $\sum_{j,k=1}^{n} a_{jk}(x)\xi_j\xi_k \ge c\sum_{j=1}^{k}\xi_j^2$, $\forall x \in \overline{\Omega} \text{ and } (\xi_1, ..., \xi_n) \in \mathbb{R}^n$; here c > 0.

Let us define the elliptic operator :

$$Lu(x) = \sum_{j,k=1}^{n} \frac{\partial}{\partial x_j} \left(a_{jk}(x) \frac{\partial u(x)}{\partial x_k} \right) + \sum_{k=1}^{n} b_k(x) \frac{\partial u(x)}{\partial x_k} + d(x)u(x)$$
(5.1)

with domain

$$\mathcal{D}(L) = \left\{ u \in \bigcap_{p>1} W^{2,p}_{\text{loc}}(\Omega) : u, \ Lu \in C(\overline{\Omega}) \right\}.$$
 (5.2)

We recall the following well known theorem (see [10] Corollary 9.18).

.

Theorem 5.1 Let *L* be the operator defined in (5.1)–(5.2), satisfying assumptions (K1) and (K2). Then, for any $\phi \in C(\Gamma)$, the boundary value problem

$$\begin{cases} LG(x) = 0, \ x \in \Omega, \\ G(x) = \phi(x), \ x \in \Gamma, \end{cases}$$
(5.3)

h

Deringer

has a unique solution $G \in \mathcal{D}(L)$ and there exists a positive constant M such that

$$\|G\|_{C(\overline{\Omega})} \le M \|\phi\|_{C(\Gamma)}.$$
(5.4)

In this section we will use the functional space

$$C_0(\overline{\Omega}) = \{ u \in C(\overline{\Omega}) : u|_{\Gamma} = 0 \}$$
(5.5)

with its natural norm. Thanks to Corollary 3.1.21 (ii) in Lunardi [12] we observe that operator

$$\begin{cases} \mathcal{D}(L_0) = \left\{ u \in \bigcap_{p>1} W^{2,p}_{\text{loc}}(\Omega) : u, Lu \in C(\overline{\Omega}), \ u|_{\Gamma} = 0 \right\}, \\ L_0 u = Lu, \ u \in \mathcal{D}(L_0), \end{cases}$$
(5.6)

is sectorial in $C(\overline{\Omega})$. This implies that the operator L_1

$$\begin{cases}
\mathcal{D}(L_1) = \left\{ u \in \bigcap_{p>1} W_{\text{loc}}^{2,p}(\Omega) : u, Lu \in C_0(\overline{\Omega}) \right\} \\
L_1 u = Lu, \quad u \in \mathcal{D}(L_1)
\end{cases}$$
(5.7)

generates an analytic semigroup in $C_0(\overline{\Omega})$. We are now in position to prove the following generation result.

Theorem 5.2 Let *L* be the operator defined in (5.1), satisfying assumptions (K1) and (K2). Then the operator L_W defined by

$$\left\{\begin{array}{l}
\mathcal{D}\left(L_{W}\right) = \left\{u \in \bigcap_{p>1} W_{\text{loc}}^{2,p}(\Omega) : u \in C(\overline{\Omega}), \quad Lu \in C_{0}(\overline{\Omega}) \right\}, \\
L_{W}u = Lu, \quad u \in \mathcal{D}\left(L_{W}\right),
\end{array}$$
(5.8)

generates an analytic semigroup in $C(\overline{\Omega})$.

Proof Consider the resolvent equation, for $f \in C(\overline{\Omega})$

$$\begin{cases} \lambda u(x) - Lu(x) = f(x), & x \in \overline{\Omega}, \\ Lu(x)|_{\Gamma} = 0, \end{cases}$$
(5.9)

and let G be the solution of the problem

$$\begin{cases} LG(x) = 0, \ x \in \overline{\Omega}, \\ G|_{\Gamma} = f|_{\Gamma}. \end{cases}$$
(5.10)

Problem (5.9), taking into account (5.10), can be transformed into

$$\left| \begin{array}{c} \lambda \left(u - \frac{G}{\lambda} \right) - L \left(u - \frac{G}{\lambda} \right) = f - G, \quad x \in \overline{\Omega}, \\ \left(u - \frac{G}{\lambda} \right) \right|_{\Gamma} = 0, \quad L \left(u - \frac{G}{\lambda} \right) \right|_{\Gamma} = 0.$$

$$(5.11)$$

🖄 Springer

Note that $f - G \in C_0(\overline{\Omega})$ so that there is a unique $u - \frac{G}{\lambda} \in C_0(\overline{\Omega})$, in view of the previous considerations, that satisfies:

$$\left\| u - \frac{G}{\lambda} \right\|_{C_0(\overline{\Omega})} \le \frac{c}{|\lambda|} \| f - G \|_{C_0(\overline{\Omega})}.$$
(5.12)

On the other hand, if $v := u - G/\lambda$ satisfies $\lambda v - A_W v = f - G$, then $u = v + G/\lambda$ belongs to $\mathcal{D}(A_W)$ and satisfies Problem (5.9). Moreover,

$$\|u\|_{C(\overline{\Omega})} \le \left\|u - \frac{G}{\lambda}\right\|_{C(\overline{\Omega})} + \left\|\frac{G}{\lambda}\right\|_{C(\overline{\Omega})} \le \frac{c}{|\lambda|} \left(\|f - G\|_{C(\overline{\Omega})} + \|f\|_{C(\Gamma)}\right)$$
(5.13)

$$\leq \frac{c_1}{|\lambda|} \Big(\|f\|_{C(\overline{\Omega})} + 2\|f\|_{C(\Gamma)} \Big) \leq \frac{c_2}{|\lambda|} \|f\|_{C(\overline{\Omega})}, \tag{5.14}$$

where c_i denote positive constants, so that L_W generates an analytic semigroup in $C(\overline{\Omega})$.

We now apply a perturbation argument to obtain the following generation result. Let \tilde{L} be the operator in $C(\overline{\Omega})$ defined by

$$\mathcal{D}\left(\tilde{L}\right) = \left\{ u \in \bigcap_{p>1} W_{\text{loc}}^{2,p}(\Omega) : \sum_{j,k=1}^{n} \frac{\partial}{\partial x_{j}} \left(a_{jk}(\cdot) \frac{\partial u}{\partial x_{k}} \right) + \sum_{k=1}^{n} b_{k}(\cdot) \frac{\partial u}{\partial x_{k}} + d(\cdot)u \in C_{0}\left(\overline{\Omega}\right) \right\},$$

$$\tilde{L}u = \sum_{j,k=1}^{n} \frac{\partial}{\partial x_{j}} \left(a_{jk}(x) \frac{\partial u(x)}{\partial x_{k}} \right), \quad u \in \mathcal{D}\left(\tilde{L}\right).$$
(5.15)

By a perturbation method we get the following generation result.

Theorem 5.3 The operator \tilde{L} , defined in (5.15), generates an analytic semigroup in $C(\overline{\Omega})$.

Proof From Theorem 5.2 we know that A_W , defined in (5.8) generates an analytic semigroup in $C(\overline{\Omega})$. Let us introduce the operator

$$\mathcal{D}(\tilde{C}) = \mathcal{D}(\tilde{L}) = \left\{ u \in \bigcap_{p>1} W_{\text{loc}}^{2,p}(\Omega) : \sum_{j,k=1}^{n} \frac{\partial}{\partial x_j} \left(a_{jk}(\cdot) \frac{\partial u}{\partial x_k} \right) + \sum_{k=1}^{n} b_k(\cdot) \frac{\partial u}{\partial x_k} + d(\cdot)u \in C_0(\overline{\Omega}) \right\},$$

$$\tilde{C}u = -\sum_{k=1}^{n} b_k(\cdot) \frac{\partial u}{\partial x_k} - d(\cdot)u, \quad u \in \mathcal{D}(\tilde{C}).$$
(5.16)

Then

$$\mathcal{D}(\tilde{C}) \hookrightarrow W^{2,p}(\Omega), \text{ for any } p > 1,$$

and by the Rellich's imbedding theorem we have

$$W^{2,p}(\Omega) \hookrightarrow^{c} C^{1}(\overline{\Omega}) \hookrightarrow C(\overline{\Omega}), \text{ for any } p > n.$$

Applying the Ehrling Lemma (see, e.g. [19], Theorem 7A16), we have that for every $\varepsilon > 0$ there exists $c(\varepsilon) > 0$ such that

$$\|u\|_{C^1(\overline{\Omega})} \le \varepsilon \|u\|_{\mathcal{D}(\tilde{C})} + M_{\varepsilon} \|u\|_{C(\overline{\Omega})}$$

in other words $||Cu||_{C(\overline{\Omega})}$ is estimated by

$$\|Cu\|_{C(\overline{\Omega})} \le \varepsilon \|A_W u\|_{C(\overline{\Omega})} + M_{\varepsilon} \|u\|_{C(\overline{\Omega})}.$$

Since \tilde{C} is A_W -bounded with A_W -bound equal to zero, the statement follows. \Box

References

- Colombo, F., Vespri, V.: Generation of analytic semigroups in W^k, p(Ω) and C^k(Ω). Diff. Integral Equ. 6, 421–436 (1996)
- Campiti, M., Metafune, G., Pallara, D.: Degenerate self-adjoint evolution equations on the unit interval. Semigroup Forum 57, 1–36 (1998)
- Clément, P., Timmermans, C.A.: On C₀-semigroups generated by differential operators satisfying Ventcel's boundary conditions. Indag. Math. 89, 379–387 (1986)
- Coclite, G.M., Favini, A., Ruiz Goldstein, G., Goldstein, J.A., Romanelli, S.: Continuous dependence in hyperbolic problems with Wentzell boundary conditions. Commun. Pure Appl. Anal. 13, 419–433 (2014)
- Engel, K.J., Nagel, R.: One-Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics. Springer, Berlin (2000)
- Favini, A., Ruiz Goldstein, G., Goldstein, J.A., Obrecht, E., Romanelli, S.: Elliptic operators with general Wentzell boundary conditions, analytic semigroups and the angle concavity theorem. Math. Nachr. 283, 504–521 (2010)
- Favini, A., Goldstein, G.R., Goldstein, J.A.G.R., Romanelli, S.: The heat equation with generalized Wentzell boundary condition. J. Evol. Equ. 2, 1–19 (2002)
- 8. Favini, A., Yagi, A.: Degenerate Differential Equations in Banach Spaces. M. Dekker, New York (1999)
- Feller, W.: The parabolic differential equations and the associated semigroup of transformations. Ann. Math. 55, 468–519 (1952)
- Gilbarg, D., Trudinger, N.: Classics in Mathematics. Elliptic partial differential equations of the second order, reprint of the 1998 edition. Springer, Berlin (2001)
- Korman, P.: Existence of solutions for a class of semilinear noncoercive problems. Nonlinear Anal. 10, 1471–1476 (1986)
- Lunardi, A.: Analytic Semigroups and Optimal Regularity in Parabolic Problems. Birkhäuser, Basel (1995)
- Luo, Y, Trudinger, N.S.: Quasilinear second order elliptic equations with Venttsel' boundary conditions, Research Report R45, Centre for Math. Anal. Aust. Nat. Univ. (1990)
- Luo, Y., Trudinger, N.S.: Linear second order elliptic equations with Venttsel' boundary conditions. Proc. R Soc. Edinburg 118A, 193–207 (1991)
- Shinbrot, M.: Water waves over periodic bottoms in three dimensions. J. Inst. Math. Appl. 25, 367–385 (1980)
- Triebel, H.: Interpolation Theory, Function Spaces, Differential Operators. North-Holland, Amsterdam (1978)
- Wentzell, A.D.: On boundary conditions for multidimensional diffusion processes. Theory Probab. Appl. 4, 164–177 (1959)
- 18. Warma, M.: Wentzell-Robin boundary conditions on C[0, 1]. Semigroup Forum 66, 162–170 (2003)
- Wloka, J.T., Rowley, B., Lawruk, B.: Boundary Value Problems for Elliptic Systems. Cambridge University Press, Cambridge (1995)