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Abstract In this paper we study second order ordinary and partial differential equa-
tions with generalized Wentzell boundary condition. We prove, by a perturbation
method, that certain second order ordinary differential operators generate an analytic
semigroup in W 1,p([0, 1]) and the same result has been extended for the degenerate
operator Au(x) := x(1 − x)u′′(x). Finally, we prove that certain linear partial dif-
ferential operators of the second order generate analytic semigroups in the space of
continuous functions.

Keywords Analytic semigroups · Generation of semigroups · Wentzell boundary
conditions

1 Introduction

The study of ordinary and partial differential equations with Wentzell boundary con-
ditions was stimulated by the theory of probability in the pioneering paper ofWentzell
[17]. He considered a second order elliptic differential operator A in a domain� inRn ,
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616 F. Colombo et al.

with sufficiently smooth boundary ∂�, and he looked for the most general supplemen-
tary conditions which restrict the given operator A to be the infinitesimal generator of
a semigroup corresponding to aMarkov process in the domain. In [17] it is proved that,
when the domain � has some special shape, the boundary conditions could involve
the operator A. Generalized Wentzell boundary conditions contain, as special cases,
Dirichlet, Neumann and Robin boundary conditions. In a paper by Feller [9] we find
a diffusion process involving the operator

Au(x) := x(1 − x)u′′(x), x ∈ (0, 1), (1.1)

with the boundary conditions

lim
x→0+, x→1− Au(x) = 0. (1.2)

In [3] it is proved that A with the domain

D(A) = {u ∈ C[0, 1] ∩ C1(0, 1) : lim
x→0+, x→1− Au(x) = 0} (1.3)

is the generator of aC0-contraction semigroup onC[0, 1]. For this reason in this paper
we will consider the operator x(1 − x)u′′(x). Several motivations to study elliptic
operators with Wentzell boundary conditions can also be found in [11,13–15].

In [7] generation results in suitable L p spaces were proved. The present paper can
be considered an extension of that work to the case W 1,p. We recall what has been
proved in [7], introducing the problem

{
λu − ∇ · (a∇u) = f, in �,

∇ · (a∇u) + β ∂u
∂n + γ u = 0, on ∂�,

(1.4)

where � is a bounded open set with smooth boundary ∂�,
∂u

∂n
is the outward normal

derivative, a(x) is a strictly positiveC2 function for all x ∈ � andβ(x) > 0, γ (x) ≥ 0,
for all x ∈ ∂�.

We start by pointing out the surprising fact that the presence of the term β ∂u
∂n in

the boundary conditions led in [7] to introduce suitable L p weighted spaces to prove
a generation result. More precisely the authors in [7] define L p(�, dμ), where

dμ = dx
∣∣∣
�

⊕ a

β
dS
∣∣∣
�

;

here dx denotes the Lebesgue measure on �, while (a/β) dS denotes the measure
with weight a/β on �: it is assumed that a > 0 in � ∪ �, where ∅ �= � ⊂ ∂� and
a ∈ C2(� ∪ �) ∩ C

(
�
)
.
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Generation of analytic semigroups 617

Let U = (u, v) ∈ L p(�, dμ), where u : � → C and v : ∂� → C are measurable
functions such that

∫
�

|u(x)|p dx +
∫

∂�

|v(x)|p a

β
dS

is finite. With the norm

‖U‖L p(�,dμ) :=
[∫

�

|u(x)|p dx +
∫

∂�

|v(x)|p a

β
dS

]1/p
,

L p(�, dμ) becomes aBanach space.Moreover, the space L p(�, dμ) can be identified
with

L p(�, dx) × L p
(
�,

a

β
dS
)
.

This space can be defined in an equivalent way: consider u ∈ C
(
�
)
, set

U = (u|�, u|∂�) and define X p(�) to be the completion of C(�) with the norm
‖U‖L p(�,dμ). It can be shown that

X p
(
�
) = L p(�, dμ).

In the spaces C
(
�
)
the trace of a function has a clear meaning. We recall, for the sake

of completeness, the main generation theorem in the space X p
(
�
)
proved in [7] (see

Theorem 3.1).

Theorem 1.1 Let � be an open bounded set in R
n with boundary of class C2. Let

a ∈ C1(�) with a > 0 in �, Au := ∇ · (a∇u), � := {x ∈ ∂� : a(x) > 0} �= ∅. If
β and γ are non negative functions in C1(∂�) with β > 0, then G, the closure of the
operator

G =
[

A 0
−β ∂

∂n −γ

]
(1.5)

with domain

Dp(G) :=
{
u ∈ C2(� ∪ �) ∩ C(�) : Au ∈ L p(�, dx), Au

+β
∂u

∂n
+ γ u = 0, on �

}

generates a (C0) contraction semigroup on X p, for p ∈ [1,∞). The semigroup is
analytic if p ∈ (1,∞).

This result was significally extended in [6] and [4].
We are able to generalize the above result for ordinary differential operators in the

space W 1,p([0, 1]) with Wentzell boundary conditions also for a degenerate case.
The plan of the paper is the following.
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618 F. Colombo et al.

• In Sect. 2 we give a generation result in W 1,p([0, 1]) with Wentzell boundary
conditions.

• In Sect. 3 we establish a generation result in C1([0, 1]).
• In Sect. 4 we prove a generation result for a degenerate operator in W 1,p([0, 1])
with Wentzell boundary conditions.

• In Sect. 5 we consider a linear partial differential operator of the second order and
prove a generation result in C(�) with Wentzell boundary conditions.

We set I = [0, 1] and, in the following, we shall always suppose that a, b, c ∈
C∞(I ) and, for every x ∈ I , a(x) ≥ a0 > 0.

Set

(
A�u
)
(x) := a(x)u′′ + b(x)u′ + c(x)u, x ∈ [0, 1],

We make the following hypothesis:

(H1) for every c0, c1 ∈ C, there exists a unique solution u of the boundary value
problem

A�u = 0, u(0) = c0, u(1) = c1.

Then, if B0, B1 are boundary operators of order not greater than one, the map-
ping (A�, B0, B1) is an isomorphism from W 3,p([0, 1]) onto W 1,p([0, 1]) ×
C × C, by e.g. [16], Theorem 5.5.2.

2 Generation results in W1, p([0, 1]) with Wentzell boundary conditions

Theorem 2.1 Define, for p > 1, the operator

{
D(A) = {u ∈ W 1,p(I ) : au′′ + bu′ + cu ∈ W 1,p

0 (I ) },
Au := au′′ + bu′ + cu, u ∈ D(A),

(2.1)

and suppose that A satisfies assumption (H1). Then (A,D(A)) generates an analytic
semigroup in W 1,p(I ).

Proof If λ ∈ C \ {0} and f ∈ W 1,p(I ), consider the boundary problem

{
λu(x) − Au(x) = f (x), x ∈ I,
Au( j) = 0, j = 0, 1,

(2.2)

and the auxiliary problem

{
AG(x) = 0, x ∈ I,
G( j) = f ( j), j = 0, 1.

(2.3)

By hypothesis (H1), problem (2.3) has a unique solution G ∈ W 3,p(I ). Then we can
rewrite Problem (2.2) as
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Generation of analytic semigroups 619

⎧⎨
⎩

λ
(
u(x) − G(x)

λ

)
− A
(
u(x) − G(x)

λ

)
= f (x) − G(x), x ∈ I,

u( j) − G( j)
λ

= 0, A
(
u − G

λ

)
( j) = 0, j = 0, 1.

(2.4)

Since f ∈ W 1,p(I ) we have f − G ∈ W 1,p
0 (I ), and the operator

{
D(A0) = {u ∈ W 1,p

0 (I ) : au′′ + bu′ + cu ∈ W 1,p
0 (I ) },

A0u := au′′ + bu′ + cu, u ∈ D(A0),
(2.5)

generates an analytic semigroup in W 1,p
0 (I ), by [1]. So we have proved that Problem

(2.4) has a unique solution v := u − G/λ ∈ D (A0) and the estimate

‖v‖
W 1,p

0 (I )
≤ cp

|λ| ‖ f − G‖
W 1,p

0 (I )
(2.6)

holds, where cp is a positive real constant independent of λ. Moreover, for Prob-
lem (2.3) we have

‖G‖W 1,p(I ) ≤ Kp ‖ f ‖W 1,p(I ) (2.7)

where Kp is a positive real constant. Then we get the generation estimate

‖u‖W 1,p(I ) ≤
∥∥∥∥u − G

λ

∥∥∥∥
W 1,p(I )

+
∥∥∥∥Gλ
∥∥∥∥
W 1,p(I )

≤ cp
|λ| ‖ f − G‖W 1,p(I )

+ Kp

|λ| ‖ f ‖W 1,p(I ) . (2.8)

��
Theorem 2.2 Define, for p > 1, the operator

{
D(A0) = {u ∈ W 1,p(I ) : au′′ ∈ W 1,p(I ), au′′ + bu′ + cu ∈ W 1,p

0 (I ) },
A0u := au′′, u ∈ D(A0).

(2.9)
Then (A0,D(A0)) generates an analytic semigroup in W 1,p(I ).

Proof The proof is based on a perturbation method and on Theorem 2.1. Consider the
operator B defined on W 1,p(I ) as follows:

{ D(B) = D(A0),

Bu := −bu′ − cu, ∀u ∈ D(B).
(2.10)

Consider the chain of inequalities, for ε > 0:

‖Bu‖L p(I ) ≤ K0‖u′‖L p(I ) + M0‖u‖L p(I ) ≤ K0ε

a0
‖au′′‖L p(I ) + Mε‖u‖L p(I )

+M0‖u‖L p(I )
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620 F. Colombo et al.

≤ K0ε

a0
‖au′′ + bu′ + cu‖L p(I ) + K0ε

a0
‖bu′ + cu‖L p(I ) + Mε‖u‖L p(I )

+K0‖u‖L p(I )

= K0ε

a0
‖Au‖L p(I ) + K0ε

a0
‖Bu‖L p(I ) + (Mε + K0) ‖u‖L p(I ), (2.11)

where, here and in the sequel, Ki , Mi , Mε, M ′
ε and M ′′

ε denote positive constants.
Furthermore,

‖(Bu)′‖L p(I ) ≤ K0‖u′′‖L p(I ) + ‖(b′ + c)u′‖L p(I ) + ‖c′u‖L p(I )

≤ K0 ε ‖u′′′‖L p(I ) + Mε‖u′‖L p(I ) + M1‖u′‖L p(I ) + M2‖u‖L p(I )

= K0 ε ‖u′′′‖L p(I ) + Mε‖u‖W 1,p(I )

≤ K0

a0
ε ‖(au′′)′ − a′u′′‖L p(I ) + M ′

ε‖u‖W 1,p(I )

≤ K0

a0
ε ‖(au′′ + bu′ + cu)′ − (bu′ + cu)′‖L p(I ) + K1ε

a0
‖u′′‖L p(I )

+ M ′
ε‖u‖W 1,p(I )

≤ K0

a0
ε
(‖Au‖W 1,p(I ) + ‖(Bu)′‖L p(I )

)

+ K1

a20
ε
(‖Au‖L p(I ) + ‖Bu‖L p(I )

)+ M ′
ε‖u‖W 1,p(I ). (2.12)

Then, from (2.11)–(2.12), we get the estimates
(
1 − K0ε

a0

)
‖(Bu)′‖L p(I ) ≤ M1ε‖Au‖W 1,p(I ) + M ′

ε‖u‖W 1,p(I ), (2.13)

(
1 − K0ε

a0

)
‖Bu‖L p(I ) ≤ K0ε

a0
‖Au‖L p(I ) + M ′′

ε ‖u‖L p(I ). (2.14)

By taking ε sufficiently small we get the desired estimate:

‖Bu‖W 1,p(I ) ≤ Mε‖Au‖W 1,p(I ) + M ′′′
ε ‖u‖W 1,p(I ). (2.15)

Since A generates an analytic semigroup in W 1,p(I ), thanks to Theorem 2.1, and
B is A-bounded with A-bound equal to zero, we conclude that A0 = A+ B generates
an analytic semigroup as well. ��
Remark The above result should be compared with Warma [18].

More generally, we have the following result.

Theorem 2.3 Let A1 be the operator in W 1,p(I ), with p > 1,

{
D (A1) = {u ∈ W 1,p(I ) : au′′ + b1u′ + c1u ∈ W 1,p

0 (I ) },
A1u := au′′ + bu′ + cu, ∀u ∈ D (A1) ,

(2.16)
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Generation of analytic semigroups 621

where b1, c1 ∈ C∞(I ). Then (A1, D (A1)) generates an analytic semigroup in
W 1,p([0, 1]).

Proof Define the operator C in W 1,p([0, 1]) by

D (C) = D (A) , Cu = (b1 − b) u′ + (c1 − c) u. (2.17)

Then A1u = Au + Cu, where A is the operator defined in Theorem 2.1.
It is well known (see, e.g., [5], Example III.2.2) that the operator B, defined by

D (B) = W 1,p(I ), Bu = u′,

is A-bounded, with A-bound equal to 0, where

D (A) = W 2,p(I ), Au = u′′.

Therefore, for every ε ∈ R+, we have

‖Cu‖L p(I ) ≤ K1
(‖u′‖L p(I ) + ‖u‖L p(I )

)
≤ K1

(
ε‖u′′‖L p(I ) + Mε‖u‖L p(I ) + ‖u‖L p(I )

)
≤ K1a

−1
0 ε ‖au′′‖L p(I ) + K2Mε‖u‖L p(I )

≤ K1a
−1
0 ε ‖au′′ + bu′ + cu‖L p(I ) + K1a

−1
0 ε ‖bu′‖L p(I )

+ K1a
−1
0 ε ‖cu‖L p(I ) + K2Mε‖u‖L p(I )

≤ K1a
−1
0 ε ‖Au‖L p(I ) + M ′

ε‖u‖W 1,p(I ) ≤ K1a
−1
0 ε‖Au‖W 1,p(I )

+ M ′
ε‖u‖W 1,p(I ).

Furthermore,

‖(Cu)′‖L p(I ) ≤ ‖Cu‖W 1,p(I ) ≤ K3
(‖u′‖W 1,p(I ) + ‖u‖W 1,p(I )

)
≤ K3ε‖u′′‖W 1,p(I ) + M ′′

ε ‖u‖W 1,p(I )

≤ K3a
−1
0 ε
(‖au′′ + bu′ + cu‖W 1,p(I ) + ‖bu′ + cu‖W 1,p(I )

)
+ M ′′

ε ‖u‖W 1,p(I )

≤ K3a
−1
0 ε‖Au‖W 1,p(I ) + K4a

−1
0 ε‖u′‖W 1,p(I )

+
(
K5a

−1
0 ε + M ′′

ε

)
‖u‖W 1,p(I ).

Hence,
(
K3 − K4a

−1
0 ε
)

‖u′‖W 1,p(I ) +
(
K3 − K5a

−1
0 ε
)

‖u‖W 1,p(I )

≤ K3a
−1
0 ε‖Au‖W 1,p(I ) + M ′

ε‖u‖W 1,p(I ).
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622 F. Colombo et al.

Taking ε sufficiently small, we get

‖u‖W 1,p(I ) ≤ K6ε‖Au‖W 1,p(I ) + M ′′′
ε ‖u‖W 1,p(I ),

‖u′‖W 1,p(I ) ≤ K6ε‖Au‖W 1,p(I ) + M ′′′
ε ‖u‖W 1,p(I )

whence

‖(Cu)′‖L p(I ) ≤ K7ε‖Au‖W 1,p(I ) + M ′′′
ε ‖u‖W 1,p(I ).

Then,

‖Cu‖W 1,p(I ) ≤ ε‖Au‖W 1,p(I ) + Kε‖u‖W 1,p(I ).

This proves that C is A-bounded, with A-bound equal to 0 and hence A1 = A + C
generates an analytic semigroup in W 1,p(I ). ��

3 A generation result in C1(I)

In the monograph [12] it is proved the generation theorem of an analytic semigroup
in C1

0

(
�
)
, where � is a bounded open subset of RN with smooth boundary. Here

C1
0

(
�
) =
{
u ∈ C1 (�) ; u/∂� = 0

}
.

Let L(·, D) denote a linear second order partial differential operator in � with
smooth coefficients, whose leading part satifies the uniform ellipticity condition

∀x ∈ �,∀z ∈ C
n,

N∑
i, j=1

ai j (x)zi z j ≥ α0|z|2,

and set
{ D (AN ) = {u ∈ D(A00) : ANu ∈ C1

0

(
�
) }

,

ANu := L(·, D)u.
(3.1)

Here

D(A00) =
⎧⎨
⎩u ∈

∞⋂
p=1

W 2,p
loc (�) : u, L(·, D)u ∈ C

(
�
)
⎫⎬
⎭ .

Notice that, if N = 1, then D(A00) = {u ∈ C2
(
�
) : u/∂� = 0

}
.

It is known (see [12], Theorem 3.1.25), that AN is sectorial in C1
0

(
�
)
.
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Generation of analytic semigroups 623

We confine to N = 1 and define the operator E by

{ D (E) = {u ∈ C1
0(I ) : αu′′ ∈ C1

0(I )
}
,

Eu := αu′′, (3.2)

where α ∈ C1(I ), with α(x) ≥ α0 > 0 in I .

Theorem 3.1 Under the previous assumptions, the operator E is sectorial in C1(I ).

Proof Recall that the operator A1 defined above is sectorial in C1
0(I ). Then, if f ∈

C1(I ), for any λ ∈ C, with Re λ large enough, there exists a unique u ∈ D (A1), such
that

λu(x) − αu′′(x) = f (x) − (1 − x) f (0) − x f (1),

‖u‖C1
0 (I ) ≤ C |λ|−1‖ f (x) − (1 − x) f (0) − x f (1)‖C1

0 (I ). (3.3)

Observe that Eq. (3.3) reads

λ
(
u(x) + λ−1((1 − x) f (0) + x f (1))

)

−α(x)
(
u(x) + λ−1((1 − x) f (0) + x f (1))

)′′ = f (x).

Set v(x) = u(x) + λ−1((1 − x) f (0) + x f (1)); then v ∈ C2(I ) and αv′′(= αu′′) ∈
C1
0(I ). Moreover,

‖v‖C1(I ) ≤ ‖u‖C1(I ) + 2|λ|−1‖ f ‖C(I )

≤ K |λ|−1‖ f ‖C(I ) + 2|λ|−1‖ f ‖C(I ) = K1|λ|−1‖ f ‖C(I ).

On the other hand, ifλv1−Ev1 = f = λv2−Ev2, thenλ (v1 − v2)−E (v1 − v2) =
0, and hence α (v1 − v2)

′′
/∂[0,1] = 0, so that (v1 − v2) (0) = (v1 − v2) (1) = 0.

Then, v1 − v2 ∈ D (A1) and

λ (v1 − v2) − A1 (v1 − v2) = 0.

It follows that v1 = v2 and uniqueness of solutions follows. This implies that E is
sectorial in C1([0, 1]), as required. ��

4 A generation result for a degenerate operator in W1, p([0, 1]) with Wentzell
boundary condition

In this section we show that a second order degenerate operator in I generates an
analytic semigroup in W 1,p(I ), where 1 < p < ∞. This result must be compared to
Theorem 7.9, in the monograph [8]. Here we give an alternative proof of an important
case of large interest.
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624 F. Colombo et al.

Recall that the norms

(∫ 1

0
|u(x)|p dx

)1/p
+
(∫ 1

0
|u′(x)|p dx

)1/p
and

(∫ 1

0
|u′(x)|p dx

)1/p

are equivalent in W 1,p
0 (I ), and define the operator:

{
D (A(p)

) = {u ∈ W 1,p
0 (I ); x(1 − x)u′′ ∈ W 1,p

0 (I ) },
A(p)u = x(1 − x)u′′, u ∈ D (A(p)

)
.

(4.1)

We prove the following generation result.

Theorem 4.1 The operator
(
A(p),D

(
A(p)
))

defined in (4.1) generates an analytic

semigroup in W 1,p
0 (I ), for 1 < p < ∞.

Proof Consider the resolvent equation for λ ∈ C, such that Reλ > 0, and f ∈
W 1,p

0 (I ),

λu(x) − A(p)u(x) = f (x),

so that

λu(x)

x(1 − x)
− u′′(x) = f (x)

x(1 − x)
.

Note that f ∈ W 1,p
0 (I ) implies

∫ 1

0

∣∣∣ f (x)

x(1 − x)

∣∣∣p dx ≤ c‖ f ‖p

W 1,p
0 (I )

,

by the Hardy inequality. On the other hand, if x(1 − x)u′′ = g ∈ W 1,p
0 (I ), then

|g(x)| ≤ x1/p
′ ‖g‖L p(I ), |g(x)| ≤ (1 − x)1/p

′ ‖g‖L p(I )

so that

u′(x) − u′(y) =
∫ x

y
u′′(t) dt =

∫ x

y

g(t)

t (1 − t)
dt

and in a neighborhood of zero for y < x we have

|u′(x) − u′(y)| ≤
∫ x

y

|g(t)|
t (1 − t)

dt ≤ c
∫ x

y
t−(1−1/p′) dt ≤ c(x − y)1−1/p,

where c, here and in the sequel, denotes a real positive constant. Analogously one has
the same bound near 1. Hence, from
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Generation of analytic semigroups 625

λ

∫ 1

0

|u(x)|p
x(1 − x)

dx −
∫ 1

0
u′′(x) u(x) |u(x)|p−2 dx =

∫ 1

0

f (x) u(x)

x(1 − x)
|u(x)|p−2 dx

by integration by parts, one obtains, using the boundary conditions, if p ≥ 2:

λ

∫ 1

0

|u(x)|p
x(1 − x)

dx +
∫ 1

0
|u′(x)|2 |u(x)|p−2 dx

+ (p − 2)
∫ 1

0
u′(x)u(x)(Re(u′(x)u(x))) |u(x)|p−4 dx

≤
∫ 1

0

f (x) u(x)

x(1 − x)
|u(x)|p−2 dx .

We consider the case p ≥ 2 to show the strategy to obtain suitable estimates for our
problem. Attention must be devoted to the case 1 < p < 2 that follows with a few
modifications of the previous case. Taking real and imaginary parts and integrating by
parts yields

(Re λ)

∫ 1

0

|u(x)|p
x(1 − x)

dx +
∫ 1

0
|u′(x)|2|u(x)|p−2 dx

+ (p − 2)
∫ 1

0

(
Re(u′(x)u(x))

)2 |u(x)|p−4 dx

= Re
∫ 1

0

f (x) u(x)

x(1 − x)
|u(x)|p−2 dx (4.2)

and

(Im λ)

∫ 1

0

|u(x)|p
x(1 − x)

dx = Im
∫ 1

0

f (x) u(x)

x(1 − x)
|u(x)|p−2 dx . (4.3)

Then we get, for any ε > 0,

|Im λ|
∫ 1

0

|u(x)|p
x(1 − x)

dx≤(p−2)
∫ 1

0

∣∣∣Im(u′(x)u(x))
∣∣∣ ∣∣∣Re(u′(x)u(x))

∣∣∣ |u(x)|p−4 dx

+
∣∣∣∣∣
∫ 1

0

f (x) u(x)

x(1 − x)
|u(x)|p−2 dx

∣∣∣∣∣
≤ (p − 2)

(
ε

∫ 1

0

∣∣∣Im (u′(x)u(x)
)∣∣∣2 |u(x)|p−4 dx

+ 1

ε

∫ 1

0

∣∣∣Re (u′(x)u(x)
)∣∣∣2 |u(x)|p−4 dx

)

+
∣∣∣∣∣
∫ 1

0

f (x) u(x)

x(1 − x)
|u(x)|p−2 dx

∣∣∣∣∣ .

Let η > 0 be an arbitrary real number. Multiplying the last inequality by η and
adding it to Eq. (4.2), one gets
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(Reλ + η|Imλ|)
∫ 1

0

|u(x)|p
x(1 − x)

dx

+
(
p − 1 − (p − 2)

η

ε

) ∫ 1

0

(
Re
(
u′(x)u(x)

))2 |u(x)|p−4 dx

+ (1 − (p − 2)εη)

∫ 1

0

(
Im
(
u′(x)u(x)

))2 |u(x)|p−4 dx

≤
∣∣∣∣∣Re
∫ 1

0

f (x) u(x)

x(1 − x)
|u(x)|p−2 dx

∣∣∣∣∣
+ η

∣∣∣∣∣Im
∫ 1

0

f (x) u(x)

x(1 − x)
|u(x)|p−2 dx

∣∣∣∣∣ .

Since η and ε are arbitrary positive constants, we can choose them so that

η < ε, ε2(p − 2) < 1 ;

this assures that p − 1 − (p − 2)η/ε > 0 and that 1 − (p − 2)εη > 0; then in the
sector � := {λ ∈ C : Reλ + η|Imλ| ≥ δ0 > 0 }, we have the estimates

∫ 1

0

(
Re
(
u′(x)u(x)

))2 |u(x)|p−4 dx ≤ c‖ f ‖
W 1,p

0 (I )
‖u‖p−1

L p(I ),∫ 1

0

(
Im
(
u′(x)u(x)

))2 |u(x)|p−4 dx ≤ c‖ f ‖
W 1,p

0 (I )
‖u‖p−1

L p(I ).

Furthermore,

Reλ
∫ 1

0

|u(x)|p
x(1 − x)

dx ≤ c‖ f ‖
W 1,p

0 (I )
‖u‖p−1

L p(I ),

|Imλ|
∫ 1

0

|u(x)|p
x(1 − x)

dx ≤ c‖ f ‖
W 1,p

0 (I )
‖u‖p−1

L p(I ).

Therefore

(Reλ + |Imλ|) ‖u‖p
L p(I ) ≤ (Reλ + |Imλ|)

∫ 1

0

|u(x)|p
x(1 − x)

dx ≤ c‖ f ‖
W 1,p

0 (I )
‖u‖p−1

L p(I ),

which gives

(Reλ + |Imλ|) ‖u‖L p(I ) ≤ c‖ f ‖
W 1,p

0 (I )
.

We need now to estimate ‖u′‖L p(I ). Consider

λu′(x) − [x(1 − x)u′′(x)]′ = f ′(x)
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and multiply it by u′(x)|u′(x)|p−2, so that

λ

∫ 1

0
|u′(x)|p dx − [x(1 − x)u′′(x)u′(x)|u′(x)|p−2]1

0

+
∫ 1

0
x(1 − x)|u′′(x)|2 |u′(x)|p−2 dx

+ (p − 2)
∫ 1

0
x(1 − x)u′(x) u′′(x)Re

(
u′(x) u′′(x)

)
|u′(x)|p−4 dx

=
∫ 1

0
f (x) u′(x) |u′(x)|p−2 dx .

As x(1 − x)u′′(x) vanishes on the boundary and u′(x) has a finite limit as x → 0 or
x → 1, we obtain

[
x(1 − x)u′′(x)u′(x)|u′(x)|p−2

]1
0

= 0.

By repeating for u′ the arguments above for u we get the estimate, if λ ∈ �,

|λ|‖u′‖L p(I ) ≤ c‖ f ′‖L p(I ) ;

so we have the bound, if λ ∈ �,

|λ|‖u‖
W 1,p

0 (I )
≤ c‖ f ′‖

W 1,p
0 (I )

.

Take now f ∈ W 1,p
0 (I ), so that f ′ ∈ L p(I ) and consider the problem
{

λv(x) − (x(1 − x)v′(x))′ = f ′(x), x ∈ I,

x(1 − x)v′(x) ∈ W 1,p
0 (I ),

(4.4)

for Reλ > 0. It is known, from the paper [2], that it has a unique solution such that

|λ|‖v‖L p(I ) ≤ c‖ f ′‖L p(I ).

Integrating over (0, x) we obtain

λ

∫ x

0
v(t) dt − x(1 − x)v′(x) = f (x).

Set

u(x) =
∫ x

0
v(t) dt ;

then

λu(x) − x(1 − x)u′′(x) = f (x), 0 ≤ x ≤ 1,
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so u is the desired solution to our problem. Therefore A(p) generates an analytic

semigroup in W 1,p
0 (I ). ��

We now define the operator W , for 1 < p < ∞,
{

D(W ) = {u ∈ W 1,p(I ) : x(1 − x)u′′ ∈ W 1,p
0 (I ) },

Wu := x(1 − x)u′′, ∀ u ∈ D(W ).
(4.5)

Theorem 4.2 The operator (W,D(W )) generates an analytic semigroup in W 1,p(I ).

Proof We only need to observe, see Theorem 2.1, that

x(1 − x)u′′(x) = 0, x ∈ I,

and

u(0) = u0, u(1) = u1

has a unique solution in C∞([0, 1]). ��

5 A generation result in C(�) with Wentzell boundary conditions

In this case we have a more general result. Let � be a bounded domain in R
n with

smooth boundary �. Let us assume the conditions

• (K1) a jk, bk, d are real C∞(�) functions, with a jk = akj , k, j = 1, ..., n, and
d(x) < 0;

• (K2)
∑n

j,k=1 a jk(x)ξ jξk ≥ c
∑k

j=1 ξ2j , ∀x ∈ � and (ξ1, ..., ξn) ∈ R
n ; here

c > 0.

Let us define the elliptic operator :

Lu(x) =
n∑

j,k=1

∂

∂x j

(
a jk(x)

∂u(x)

∂xk

)
+

n∑
k=1

bk(x)
∂u(x)

∂xk
+ d(x)u(x) (5.1)

with domain

D(L) =
⎧⎨
⎩u ∈

⋂
p>1

W 2,p
loc (�) : u, Lu ∈ C(�)

⎫⎬
⎭ . (5.2)

We recall the following well known theorem (see [10] Corollary 9.18).

Theorem 5.1 Let L be the operator defined in (5.1)–(5.2), satisfying assumptions
(K1) and (K2). Then, for any φ ∈ C(�), the boundary value problem

{
LG(x) = 0, x ∈ �,

G(x) = φ(x), x ∈ �,
(5.3)
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has a unique solution G ∈ D(L) and there exists a positive constant M such that

‖G‖C(�) ≤ M‖φ‖C(�). (5.4)

In this section we will use the functional space

C0(�) = {u ∈ C(�) : u|� = 0 } (5.5)

with its natural norm. Thanks to Corollary 3.1.21 (ii) in Lunardi [12] we observe that
operator

{
D (L0) =

{
u ∈⋂p>1 W

2,p
loc (�) : u, Lu ∈ C(�), u|� = 0

}
,

L0u = Lu, u ∈ D (L0) ,
(5.6)

is sectorial in C(�). This implies that the operator L1

{
D (L1) =

{
u ∈⋂p>1 W

2,p
loc (�) : u, Lu ∈ C0(�)

}
L1u = Lu, u ∈ D (L1)

(5.7)

generates an analytic semigroup in C0(�). We are now in position to prove the fol-
lowing generation result.

Theorem 5.2 Let L be the operator defined in (5.1), satisfying assumptions (K1) and
(K2). Then the operator LW defined by

{
D (LW ) =

{
u ∈⋂p>1 W

2,p
loc (�) : u ∈ C(�), Lu ∈ C0(�)

}
,

LWu = Lu, u ∈ D (LW ) ,
(5.8)

generates an analytic semigroup in C(�).

Proof Consider the resolvent equation, for f ∈ C(�)

{
λu(x) − Lu(x) = f (x), x ∈ �,

Lu(x)|� = 0,
(5.9)

and let G be the solution of the problem

{
LG(x) = 0, x ∈ �,

G|� = f |�.
(5.10)

Problem (5.9), taking into account (5.10), can be transformed into

⎧⎨
⎩

λ
(
u − G

λ

)
− L
(
u − G

λ

)
= f − G, x ∈ �,(

u − G
λ

)∣∣∣
�

= 0, L
(
u − G

λ

)∣∣∣
�

= 0.
(5.11)
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Note that f − G ∈ C0(�) so that there is a unique u − G
λ

∈ C0(�), in view of the
previous considerations, that satisfies:

∥∥∥∥u − G

λ

∥∥∥∥
C0(�)

≤ c

|λ| ‖ f − G‖C0(�). (5.12)

On the other hand, if v := u −G/λ satisfies λv − AW v = f −G, then u = v +G/λ

belongs to D (AW ) and satisfies Problem (5.9). Moreover,

‖u‖C(�) ≤
∥∥∥∥u − G

λ

∥∥∥∥
C(�)

+
∥∥∥∥Gλ
∥∥∥∥
C(�)

≤ c

|λ|
(
‖ f − G‖C(�) + ‖ f ‖C(�)

)
(5.13)

≤ c1
|λ|
(
‖ f ‖C(�) + 2‖ f ‖C(�)

)
≤ c2

|λ| ‖ f ‖C(�), (5.14)

where ci denote positive constants, so that LW generates an analytic semigroup in
C(�). ��
We now apply a perturbation argument to obtain the following generation result. Let
L̃ be the operator in C(�) defined by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

D
(
L̃
)

=
{
u ∈⋂p>1 W

2,p
loc (�) : ∑n

j,k=1
∂

∂x j

(
a jk(·) ∂u

∂xk

)
+∑n

k=1 bk(·) ∂u
∂xk

+ d(·)u ∈ C0

(
�)
}

,

L̃u =∑n
j,k=1

∂
∂x j

(
a jk(x)

∂u(x)
∂xk

)
, u ∈ D

(
L̃
)

.

(5.15)

By a perturbation method we get the following generation result.

Theorem 5.3 The operator L̃, defined in (5.15), generates an analytic semigroup in
C(�).

Proof From Theorem 5.2 we know that AW , defined in (5.8) generates an analytic
semigroup in C(�). Let us introduce the operator

⎧⎪⎪⎨
⎪⎪⎩

D(C̃) = D(L̃) =
{
u ∈⋂p>1 W

2,p
loc (�) : ∑n

j,k=1
∂

∂x j

(
a jk(·) ∂u

∂xk

)
+∑n

k=1 bk(·) ∂u
∂xk

+ d(·)u ∈ C0(�)
}

,

C̃u = −∑n
k=1 bk(·) ∂u

∂xk
− d(·)u, u ∈ D(C̃).

(5.16)

Then

D(C̃) ↪→ W 2,p(�), for any p > 1,

and by the Rellich’s imbedding theorem we have

W 2,p(�) ↪→c C1(�) ↪→ C(�), for any p > n.
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Applying the Ehrling Lemma (see, e.g. [19], Theorem 7A16) , we have that for every
ε > 0 there exists c(ε) > 0 such that

‖u‖C1(�) ≤ ε‖u‖D(C̃)
+ Mε‖u‖C(�)

in other words ‖Cu‖C(�) is estimated by

‖Cu‖C(�) ≤ ε‖AWu‖C(�) + +Mε‖u‖C(�).

Since C̃ is AW -bounded with AW -bound equal to zero, the statement follows. ��
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