1 Introduction

There is a great theoretical and evidently also practical interest in the problem of convergence of numerical methods used for simulation of fluids in continuum mechanics. Ignoring the influence of temperature changes we consider a mathematical model of a compressible, barotropic, viscous fluid occupying a bounded physical domain \(\Omega \subset R^3\). In the Eulerian coordinate system, the time evolution of the fluid is described by means of the mass density \(\varrho = \varrho (t,x)\) and the velocity field \(\mathbf{u}= \mathbf{u}(t,x)\), \(t \in (0,T)\), \(x \in \Omega \), governed by the Navier–Stokes system of equations:

$$\begin{aligned}&\displaystyle \partial _t \varrho + \mathrm{div}_x(\varrho \mathbf{u}) = 0, \end{aligned}$$
(1.1)
$$\begin{aligned}&\displaystyle \partial _t (\varrho \mathbf{u}) + \mathrm{div}_x(\varrho \mathbf{u}\otimes \mathbf{u}) + \nabla _xp(\varrho ) = \mathrm{div}_x\mathbb {S}(\nabla _x\mathbf{u}), \end{aligned}$$
(1.2)

where \(p = p(\varrho )\) is the pressure, and the symbol \(\mathbb {S}(\nabla _x\mathbf{u})\) denotes the viscous stress tensor, here determined by Newton’s rheological law:

$$\begin{aligned} \mathbb {S} (\nabla _x\mathbf{u}) = \mu \left( \nabla _x\mathbf{u}+ \nabla _x^t \mathbf{u}- \frac{2}{3} \mathrm{div}_x\mathbf{u}\mathbb {I} \right) + \eta \mathrm{div}_x\mathbf{u}\mathbb {I},\quad \mu > 0, \quad \eta \ge 0. \end{aligned}$$
(1.3)

The barotropic pressure \(p = p(\varrho )\) is a continuously differentiable function of the density satisfying

$$\begin{aligned} p(0) \!= \!0 , \quad p'(\varrho ) \!>\! 0 \quad \text{ for } \text{ all }\quad \varrho \!\ge \! 0, \quad \lim _{\varrho \rightarrow \infty } \frac{p'(\varrho )}{\varrho ^{\gamma - 1}} \!=\! p_\infty \!>\! 0 \quad \text{ for } \text{ a } \text{ certain }\quad \gamma \!>\! 3.\qquad \end{aligned}$$
(1.4)

Remark 1.1

The condition \(\gamma > 3\) is technical; the so-called adiabatic exponent for real fluids ranges in the interval \(\gamma \in (1, 5/3]\), where the extremal value \(\gamma = 1\) corresponds to the isothermal case, while \(\gamma = 5/3\) characterizes the monoatomic gas.

Remark 1.2

Since the viscosity coefficients \(\mu \) and \(\eta \) are constant, we may write

$$\begin{aligned} \mathrm{div}_x\mathbb {S}(\nabla _x\mathbf{u}) = \mu \Delta \mathbf{u}+ \lambda \nabla _x\mathrm{div}_x\mathbf{u}, \quad \lambda = \frac{\mu }{3} + \eta > 0. \end{aligned}$$
(1.5)

The system is supplemented with the standard no-slip boundary condition

$$\begin{aligned} \mathbf{u}|_{\partial \Omega } = 0, \end{aligned}$$
(1.6)

and the initial conditions

$$\begin{aligned} \varrho (0, \cdot ) = \varrho _0, \quad \mathbf{u}(0, \cdot ) = \mathbf{u}_0, \quad \varrho _0 > 0 \quad \text{ in } \ \overline{\Omega }. \end{aligned}$$
(1.7)

Remark 1.3

We deliberately omitted the action of an external force to simplify the presentation. As will become clear in what follows, a bounded driving force can be incorporated in the system with only minor modifications of the proof of convergence.

1.1 Weak solutions

We adopt the standard weak formulation of the problem (1.1)–(1.7).

Definition 1.1

We say that \([\varrho , \mathbf{u}]\) is a weak solution to the problem (1.1)–(1.7) in \((0,T) \times \Omega \) if:

  • $$\begin{aligned}&\displaystyle \varrho \ge 0\quad \text{ a.a. } \text{ in }\ (0,T) \times \Omega , \ \varrho \in L^\infty (0,T; L^\gamma (\Omega )), \ \mathbf{u}\in L^2(0,T; W^{1,2}_0(\Omega ;R^3)),\nonumber \\ \end{aligned}$$
    (1.8)
    $$\begin{aligned}&\displaystyle p(\varrho ) \in L^1((0,T) \times \Omega ),\ \varrho \mathbf{u}\in L^\infty (0,T; L^{\frac{2 \gamma }{\gamma + 1}}(\Omega ;R^3)); \end{aligned}$$
    (1.9)
  • $$\begin{aligned} \int _0^T \int _{\Omega } \Big [ \varrho \partial _t \varphi + \varrho \mathbf{u}\cdot \nabla _x\varphi \Big ] \ \mathrm{d} {x} \ \mathrm{d} t = - \int _{\Omega } \varrho _0 \varphi (0, \cdot ) \ \mathrm{d} {x} \end{aligned}$$
    (1.10)

    for any \(\varphi \in C^\infty _c([0,T) \times \overline{\Omega })\);

  • $$\begin{aligned}&\int _0^T \int _{\Omega } \Big [ \varrho \mathbf{u}\cdot \partial _t \varphi + \varrho \mathbf{u}\otimes \mathbf{u}: \nabla _x\varphi + p(\varrho ) \mathrm{div}_x\varphi \Big ] \ \mathrm{d} {x} \ \mathrm{d} t \nonumber \\&\quad = \int _0^T \int _{\Omega } \Big [ \mu \nabla _x\mathbf{u}: \nabla _x\varphi + \lambda \mathrm{div}_x\mathbf{u}\ \mathrm{div}_x\varphi \Big ] \ \mathrm{d} {x} \ \mathrm{d} t - \int _{\Omega } \varrho _0 \mathbf{u}_0 \cdot \varphi (0, \cdot ) \ \mathrm{d} {x}\nonumber \\ \end{aligned}$$
    (1.11)

    for any \(\varphi \in C^\infty _c([0,T) \times {\Omega }; R^3)\);

  • the energy inequality

    $$\begin{aligned}&\int _{\Omega } \left[ \frac{1}{2} \varrho |\mathbf{u}|^2 + P(\varrho ) \right] (\tau , \cdot ) \ \mathrm{d} {x} + \int _0^\tau \int _{\Omega } \left[ \mu |\nabla _x\mathbf{u}|^2 + \lambda |\mathrm{div}_x\mathbf{u}|^2 \right] \ \mathrm{d} {x} \ \mathrm{d} t \nonumber \\&\quad \le \int _{\Omega } \left[ \frac{1}{2} \varrho _0 |\mathbf{u}_0|^2 + P(\varrho _0) \right] \ \mathrm{d} {x}, \quad \text{ with }\ P(\varrho ) = \varrho \int _1^\varrho \frac{p(z)}{z^2} \ \mathrm{d}z, \end{aligned}$$
    (1.12)

    holds for a.a. \(\tau \in (0,T)\).

The existence of global-in-time weak solutions under the hypothesis \(\gamma \ge 9/5\) in (1.4) was proved by Lions [20]. The result was later extended to the range \(\gamma > 3/2\) in [13]. Unfortunately, the proof of existence in the “subcritical” range \(\gamma \le 3\) consists of at least two steps performed at different level of approximations and as such therefore not directly transferable to the numerical setting.

1.2 Numerical method

Our goal is to propose a numerical method for solving the Navier–Stokes system (1.11.7) and to show its stability with respect to the underlying spatial domain and convergence towards a weak solution specified in Definition 1.1. To this end, we adapt the discontinuous Galerkin finite element scheme proposed in [17, 18] for the compressible Navier–Stokes system.

Since we are interested in smooth spatial domains, we consider an unfitted mesh on a family of polyhedral domains \(\{ \Omega _h \}_{h > 0}\) approximating the target physical space \(\Omega \) in the following sense: For any compact \(K_i \subset \Omega \) it holds

$$\begin{aligned} K_i \subset \Omega _h \quad \text{ for } \text{ all }\ h > 0 \quad \text{ small } \text{ enough }, \end{aligned}$$
(1.13)

and, similarly, for any compact \(K_e \subset R^3 {\setminus } \overline{\Omega }\),

$$\begin{aligned} K_e \subset R^3 {\setminus } \overline{\Omega }_h \quad \text{ for } \text{ all }\ h > 0 \quad \text{ small } \text{ enough }, \end{aligned}$$
(1.14)

cf. Babuška and Aziz [2, 3].

Besides the relatively straightforward modifications to accommodate the case of variable numerical domain, we also introduce a new “dissipative” discretization implemented in the upwind terms. In such a way, we eliminate completely the artificial viscosity regularization used by several authors (see e.g. Eymard et al. [9]) including the original scheme proposed in [18]. Very roughly indeed, this new approach may be compared to adding an artificial viscosity to both equations in (1.1, 1.2):

$$\begin{aligned}&\displaystyle \partial _t \varrho + \mathrm{div}_x(\varrho \mathbf{u}) \approx h^\alpha \mathrm{div}_x(g(|\mathbf{u}|) \nabla _x\varrho ) ,\\&\displaystyle \partial _t (\varrho \mathbf{u}) + \mathrm{div}_x(\varrho \mathbf{u}\otimes \mathbf{u}) + \nabla _xp(\varrho ) - \mathrm{div}_x\mathbb {S}(\nabla _x\mathbf{u}) \approx h^\alpha \mathrm{div}_x(g(|\mathbf{u}|) \nabla _x(\varrho \mathbf{u})), \end{aligned}$$

where the artificial viscosity is active only for small values of the velocity amplitude \(|\mathbf{u}|\). The resulting “dissipative” upwind operator remains therefore much closer to the approximated convective terms in the continuous equations.

We note that the fact that the limit problem is defined on a possibly smooth domain may be of interest when establishing convergence of the scheme. The problem (1.1)–(1.7) is known to possess a local regular solution that can be extended to the full time interval (0, T) as soon as we control the amplitude of the density, see Sun, Wang, and Zhang [21]. Moreover, any weak solution coincides with the strong solution as long as the latter exists, see [11]. Consequently, boundedness of the numerical densities implies unconditional convergence as long as the domain \(\Omega \) is sufficiently smooth, see Sect. 8 for details.

The paper is organized as follows. In Sect. 2, we introduce the necessary numerical framework including the basic notation and several useful properties of the underlying function spaces. The numerical scheme is introduced in Sect. 3, where we also state our main result concerning convergence towards a weak solution of the Navier–Stokes system. In Sect. 4, we derive a renormalized version of the continuity equation as well as the discrete version of the total energy balance. Section 5 is devoted to the stability of the scheme, containing the uniform bounds necessary for the limit passage. In Sect. 6, we discuss the problem of consistency of the method rewriting finally the numerical scheme in terms of the standard weak formulation based on smooth test functions. Having established consistency, we show convergence of the scheme by adapting the steps of [10, Chapter 7]. Here, similarly to the existence theory, the key idea is the weak continuity property of the effective viscous flux discovered by Lions [20]. Finally, we discuss the implications of some recent results concerning the weak-strong uniqueness property and regularity of the weak solutions on the problem of unconditional convergence of the numerical scheme in Sect. 8.

2 Preliminaries

In this section, we collect the necessary material from numerical analysis. For two numerical quantities a, b, we shall write

$$\begin{aligned} a \lesssim b \quad \text{ if } \ a \le c b, \quad c > 0 \quad \text{ a } \text{ constant }, \quad a \approx b \quad \text{ if } \ a \lesssim b \quad \text{ and } \quad b \lesssim a. \end{aligned}$$

Here, “constant” typically means a generic quantity independent of the size of the mesh and the time step used in the numerical scheme as well as other parameters as the case may be.

2.1 Mesh

We suppose that the numerical domains \(\Omega _h\) admit a tetrahedral mesh \(E_h\); the individual elements in the mesh will be denoted by \(E \in E_h\). Faces in the mesh are denoted by \(\Gamma \), whereas \(\Gamma _h\) is the set of all faces. Moreover, the set of faces \(\Gamma \subset \partial \Omega _h\) is denoted by \(\Gamma _{h, \mathrm{ext}}\), while \(\Gamma _{h,\mathrm{int}} = \Gamma _h {\setminus } \Gamma _{h, \mathrm{ext}}\). The size (diameter of elements in the mesh) is proportional to a positive parameter h. For \(E, F \in E_h\), \(E \ne F\), the intersection \(E \cap F\) is either a vertex, or an edge, or a face \(\Gamma \in \Gamma _h\). The mesh is assumed to be shape regular, meaning that the radius of the circumsphere and the biggest ball inside each element are “\(\approx \)” proportional to h. Finally, the family \(\{ \Omega _h \}_{h > 0}\) will approximate a limit domain \(\Omega \subset R^3\) in the sense specified in (1.13, 1.14).

Each face \(\Gamma \in \Gamma _h\) is associated with a fixed normal vector \(\mathbf{n}\). On the other hand, we write \(\Gamma _E\) whenever a face \(\Gamma _E \subset \partial E\) is considered as a part of the boundary of the element E. In such a case, the normal vector to \(\Gamma _E\) is always the outer normal vector with respect to E. Keeping this convention in mind we introduce for any function g, continuous on each element E,

$$\begin{aligned} g^\mathrm{out} |_{\Gamma }= & {} \lim _{\delta \rightarrow 0+ } g(\cdot + \delta \mathbf{n} ),\ g^\mathrm{in} |_{\Gamma } = \lim _{\delta \rightarrow 0+ } g(\cdot - \delta \mathbf{n} ), \nonumber \\ \left[ \left[ g \right] \right] _{\Gamma }= & {} g^\mathrm{out} - g^\mathrm{in}, \left\{ g \right\} _\Gamma = \frac{1}{2} \left( g^\mathrm{out} + g^\mathrm{in} \right) . \end{aligned}$$
(2.1)

For \(\Gamma _E \subset \partial E\) we simply write g for \(g^\mathrm{in}\). Occasionally, we also omit the subscript \(\Gamma \) if no confusion arises.

2.2 Piecewise constant finite elements

We introduce the space

$$\begin{aligned} Q_h (\Omega _h) = \left\{ v \in L^2(\Omega _h) \ \Big | \ v|_E = a_E \in R \quad \text{ for } \text{ any }\ E \in E_h \right\} \end{aligned}$$

of piecewise constant functions along with the associated projection

$$\begin{aligned} \Pi ^Q_h: L^1(\Omega _h) \rightarrow Q_h(\Omega _h), \quad \Pi ^Q_h [v]|_E = \frac{1}{|E|} \int _E v \ \mathrm{d} {x} ; \end{aligned}$$

we will occasionally denote

$$\begin{aligned} \Pi ^Q_h [v] \equiv \hat{v}. \end{aligned}$$

Finally, we recall various forms of (scaled) Poincaré’s inequality:

$$\begin{aligned}&\displaystyle \int _E \left| v - \frac{1}{|E|} \int _E v \ \mathrm{d} {x}\right| ^q \ \mathrm{d} {x}\lesssim h^q \int _E | \nabla _xv |^q \ \mathrm{d} {x},\nonumber \\&\displaystyle \int _E \left| v - \frac{1}{|\Gamma |} \int _\Gamma \left| v \right| \ \mathrm{dS}_x \right| ^q \ \mathrm{d} {x}\lesssim h^q \int _E | \nabla _xv |^q \ \mathrm{d} {x}, \quad \text{ for } \text{ any }\ \Gamma \subset \partial E, \end{aligned}$$
(2.2)
$$\begin{aligned}&\displaystyle \int _{\Gamma } \left| v - \frac{1}{|\Gamma |} \int _\Gamma v \ \mathrm{dS}_x \right| ^q \ \mathrm{dS}_x \lesssim h^{q-1} \int _E | \nabla _xv |^q \ \mathrm{d} {x}, \quad \text{ for } \text{ any }\ \Gamma \subset \partial E, \end{aligned}$$
(2.3)

for any \(1 \le q < \infty \), in particular,

$$\begin{aligned} \left\| v - \Pi ^Q_h [v] \right\| _{L^q(\Omega _h)} \lesssim h \Vert \nabla _xv \Vert _{L^q(\Omega _h; R^3)}, \quad 1 \le q \le \infty \quad \text{ for } \text{ any } \ v \in W^{1,q}(\Omega _h). \end{aligned}$$
(2.4)

2.3 Crouzeix–Raviart finite elements

A differential operator D acting on the x-variable will be discretized as

$$\begin{aligned} D_h v|_E = D (v|_E) \quad \text{ for } \text{ any }\ v \quad \text{ differentiable } \text{ on } \text{ each } \text{ element }\ E \in E_h. \end{aligned}$$

The Crouzeix–Raviart finite element spaces (see Brezzi and Fortin [4], among others) are defined as

(2.5)

together with

$$\begin{aligned} V_{h,0} (\Omega _h) = \left\{ {v} \in V_h \ \Big | \ \int _{\Gamma } {v} \ \mathrm{dS}_x = 0\quad \text{ for } \text{ any }\ \Gamma \in \Gamma _{h, \mathrm{ext}}\right\} . \end{aligned}$$
(2.6)

Next, we introduce the associated projection

$$\begin{aligned} \Pi ^V_h : W^{1,q}(\Omega _h) \rightarrow V_{h} (\Omega _h) \end{aligned}$$

requiring

$$\begin{aligned} \int _{\Gamma } \Pi ^V_h [v] \ \mathrm{dS}_x = \int _{\Gamma } v \ \mathrm{dS}_x \quad \text{ for } \text{ any }\ \Gamma \in \Gamma _h. \end{aligned}$$

It is easy to check that

$$\begin{aligned} \int _{\Omega _h} \mathrm{div}_h\Pi ^V_h[ \mathbf{u}] \ w \ \mathrm{d} {x} = \int _{\Omega _h} \mathrm{div}_h\mathbf{u} \ {w} \ \mathrm{d} {x} \quad \text{ for } \text{ any } \ {w} \in Q_{h} (\Omega _h), \end{aligned}$$
(2.7)

and

$$\begin{aligned} \int _{\Omega } \nabla _hv \cdot \nabla _h\Pi ^V_h[\varphi ] \ \mathrm{d} {x} = \int _{\Omega } \nabla _hv \cdot \nabla _x\varphi \ \mathrm{d} {x} \quad \text{ for } \text{ all }\ v \in V_{h,0}(\Omega ),\ \varphi \in W^{1,2}_0 (\Omega ), \end{aligned}$$
(2.8)

see [19, Lemma 2.11].

We also recall the the error estimates

$$\begin{aligned}&\left\| v - \Pi ^V_h [v] \right\| _{L^q(\Omega _h)} + h \left\| \nabla _h\left( v - \Pi ^V_h [v] \right) \right\| _{L^q(\Omega _h;R^3)} \nonumber \\&\quad \lesssim h^m \left\| \nabla ^m v \right\| _{L^{q} (\Omega _h; R^{3^m})} ,\ m= 1,2,\ 1 < q < \infty , \end{aligned}$$
(2.9)

for any \(v \in W^{m,q} (\Omega _h)\), see Crouzeix and Raviart [6], and [19, Lemma 2.7].

2.4 “Dissipative” upwind operator

Denoting

$$\begin{aligned}{}[c]^+ = \max \{ c, 0 \}, \quad [c]^-= \min \{ c, 0 \}, \quad \tilde{v} = \frac{1}{|\Gamma |} \int _{\Gamma } v \ \mathrm{dS}_x, \end{aligned}$$

we introduce a dissipative upwind operator \(\mathrm{Up}[r, \mathbf{u}]\) on a face \(\Gamma \) in the form

$$\begin{aligned} \mathrm{Up}[r ,\mathbf{u}]= & {} \frac{ r^\mathrm{in} }{2} \left( [{\tilde{\mathbf{u}}}\cdot \mathbf{n} + h^\alpha ]^+ + [{\tilde{\mathbf{u}}}\cdot \mathbf{n} - h^\alpha ]^+ \right) \nonumber \\&+ \frac{ r^\mathrm{out} }{2} \left( [{\tilde{\mathbf{u}}}\cdot \mathbf{n} + h^\alpha ]^- + [{\tilde{\mathbf{u}}}\cdot \mathbf{n} - h^\alpha ]^- \right) , \end{aligned}$$
(2.10)

with a positive exponent \(\alpha \) determined below. Note that such a definition makes sense as soon as \(r \in Q_h (\Omega _h)\), \(\mathbf{u}\in V_h(\Omega _h; R^3)\) and \(\Gamma \in \Gamma _{h, \mathrm{int}}\).

Setting, formally, \(h^\alpha \approx 0\) in (2.10), we obtain the conventional definition of the upwind operator

$$\begin{aligned} r^\mathrm{in} [{\tilde{\mathbf{u}}}\cdot \mathbf{n} ]^+ + r^\mathrm{out} [{\tilde{\mathbf{u}}}\cdot \mathbf{n} ]^- . \end{aligned}$$

To illuminate the dissipative character of the new upwind operator, we may also write

$$\begin{aligned} \mathrm{Up}[r ,\mathbf{u}] = \underbrace{ r^\mathrm{in} [{\tilde{\mathbf{u}}}\cdot \mathbf{n} ]^+ + r^\mathrm{out} [{\tilde{\mathbf{u}}}\cdot \mathbf{n} ]^- }_\mathrm{conventional \ upwind} - \underbrace{\left[ \left[ r \right] \right] _\Gamma h^\alpha \chi \left( \frac{ {\tilde{\mathbf{u}}}\cdot \mathbf{n} }{h^\alpha } \right) }_\mathrm{dissipative \ component}, \end{aligned}$$
(2.11)

where

$$\begin{aligned} \chi (z) = \left\{ \begin{array}{l} 0 \quad \text{ for }\ z < -1, \\ \frac{1}{2}(z + 1) \quad \text{ if } \ -1 \le z \le 0, \\ - \frac{1}{2} (z - 1) \quad \text{ if } \ 0 < z \le 1, \\ 0 \quad \text{ for }\ z > 1. \end{array} \right. \end{aligned}$$

Remark 2.1

The numerical diffusion supplied by the dissipative component is quite subtle; it acts only when \(| {\tilde{\mathbf{u}}}\cdot \mathbf{n}| < h^\alpha \) and has amplitude \(h^\alpha \). Note that the conventional artificial diffusion used by Eymard et al. [9] and [19] corresponds to

$$\begin{aligned} - h^\alpha \left[ \left[ r \right] \right] _\Gamma . \end{aligned}$$

For \(r, F \in Q_h(\Omega _h)\), \(\mathbf{u}\in V_h(\Omega _h, R^3)\), \(\phi \in C^1(\overline{\Omega }_h)\), we may use Green’s theorem to compute

$$\begin{aligned} \int _{\Omega _h} r \mathbf{u}\cdot \nabla _x\phi \ \mathrm{d} {x}= & {} \sum _{E \in E_h}\int _E r \mathbf{u}\cdot \nabla _x(\phi - F) \ \mathrm{d} {x} = \sum _{E \in E_h}\int _{\partial E} (\phi - F) r \mathbf{u}\cdot \mathbf{n} \ \mathrm{dS}_x \nonumber \\&+ \int _{\Omega _h} (F - \phi ) r \mathrm{div}_h\mathbf{u} \ \mathrm{d} {x}. \end{aligned}$$
(2.12)

Furthermore, going back to (2.11) we deduce that

$$\begin{aligned}&\sum _{\Gamma \in \Gamma _{h, \mathrm{int}}} \int _{\Gamma } \mathrm{Up}[r, \mathbf{u}] \ \left[ \left[ g \right] \right] \ \mathrm{dS}_x\\&\quad = - \sum _{E \in E_h} \sum _{\Gamma _E \subset \partial E} \int _{\Gamma _E} g \left( r [{\tilde{\mathbf{u}}}\cdot \mathbf{n}]^+ + r^\mathrm{out} [{\tilde{\mathbf{u}}}\cdot \mathbf{n} ]^- \right) \ \mathrm{dS}_x\nonumber \\&\qquad - \sum _{\Gamma \in \Gamma _{h, \mathrm{int}}} \int _{\Gamma } \left[ \left[ r \right] \right] \ \left[ \left[ g \right] \right] h^\alpha \chi \left( \frac{ {\tilde{\mathbf{u}}}\cdot \mathbf{n} }{h^\alpha } \right) \ \mathrm{dS}_x\nonumber \end{aligned}$$
(2.13)

for any \(r,g \in Q_h(\Omega _h)\), \(\mathbf{u}\in V_{h,0}(\Omega _h; R^3)\). Finally, using formula (2.13), we may compute the first integral on the right-hand side of (2.12) for \(\mathbf{u}\in V_{h,0}(\Omega _h; R^3)\), specifically,

$$\begin{aligned}&\sum _{E \in E_h}\int _{\partial E} (\phi - F) r \mathbf{u}\cdot \mathbf{n} \ \mathrm{dS}_x\\&\quad = \sum _{E \in E_h}\int _{\partial E} \phi r \mathbf{u}\cdot \mathbf{n} \ \ \mathrm{dS}_x - \sum _{E \in E_h} \sum _{\Gamma _E \subset \partial E} \int _{\Gamma _E} F r \Big ( [{\tilde{\mathbf{u}}}\cdot \mathbf{n}]^+ + [{\tilde{\mathbf{u}}}\cdot \mathbf{n} ]^- \Big ) \ \mathrm{dS}_x\\&\quad = \sum _{\Gamma \in \Gamma _h}\int _{\Gamma } \mathrm{Up}[r, \mathbf{u}] \left[ \left[ F \right] \right] \ \mathrm{dS}_x + h^\alpha \sum _{\Gamma \in \Gamma _{h, \mathrm{int}}} \int _{\Gamma } \left[ \left[ r \right] \right] \ \left[ \left[ F \right] \right] \chi \left( \frac{ {\tilde{\mathbf{u}}}\cdot \mathbf{n} }{h^\alpha } \right) \ \mathrm{dS}_x\\&\qquad + \sum _{E \in E_h}\int _{\partial E} \phi r \mathbf{u}\cdot \mathbf{n} \ \ \mathrm{dS}_x - \sum _{E \in E_h} \sum _{\Gamma _E \subset \partial E} \int _{\Gamma _E} F (r - r^\mathrm{out}) [{\tilde{\mathbf{u}}}\cdot \mathbf{n}]^- \ \mathrm{dS}_x. \end{aligned}$$

Thus, plugging the resulting expression in (2.12) we obtain a universal formula

$$\begin{aligned} \int _{\Omega _h} r \mathbf{u}\cdot \nabla _x\phi \ \mathrm{d} {x}= & {} \sum _{\Gamma \in \Gamma _h}\int _{\Gamma } \mathrm{Up}[r, \mathbf{u}] \left[ \left[ F \right] \right] \ \mathrm{dS}_x + h^\alpha \sum _{\Gamma \in \Gamma _{h, \mathrm{int}}} \int _{\Gamma } \left[ \left[ r \right] \right] \ \left[ \left[ F \right] \right] \chi \left( \frac{ {\tilde{\mathbf{u}}}\cdot \mathbf{n} }{h^\alpha } \right) \ \mathrm{dS}_x\nonumber \\&+ \sum _{E \in E_h} \sum _{\Gamma _E \subset \partial E} \int _{\Gamma _E} (F - \phi ) \ \left[ \left[ r \right] \right] \ [{\tilde{\mathbf{u}}}\cdot \mathbf{n}]^- \ \mathrm{dS}_x\nonumber \\&+ \sum _{E \in E_h} \int _{\partial E} \phi r (\mathbf{u}- \tilde{\mathbf{u}}) \cdot \mathbf{n} \ \mathrm{dS}_x + \int _{\Omega _h} (F - \phi ) r \mathrm{div}_h\mathbf{u} \ \mathrm{d} {x} \end{aligned}$$
(2.14)

for any \(r, F \in Q_h(\Omega _h)\), \(\mathbf{u}\in V_{h,0}(\Omega _h; R^3)\), \(\phi \in C^1(\overline{\Omega }_h)\).

2.5 \(L^p-L^q\) and trace estimates for finite elements

The estimates listed below are direct consequences of the assumed shape regularity of the mesh and follow by a scaling argument. We claim that

$$\begin{aligned} \Vert v \Vert ^q_{L^q(\partial E)} \lesssim \frac{1}{h} \left( \Vert v \Vert ^q_{L^q(E)} + h^q \Vert \nabla _xv \Vert ^q_{L^q(E; R^3)} \right) ,\quad 1 \le q < \infty \quad \text{ for } \text{ any }\ v \in C^1(E); \end{aligned}$$
(2.15)

whence

$$\begin{aligned} \Vert w \Vert _{L^q(\partial E)}^q \lesssim \frac{1}{h} \Vert w \Vert _{L^q(E)}^q \quad \text{ for } \text{ any }\ 1 \le q < \infty , \quad w \in P_m, \end{aligned}$$
(2.16)

where \(P_m\) denotes the space of polynomials of degree m.

Similarly,

$$\begin{aligned} \Vert w \Vert _{L^p(E)} \lesssim h^{3 \left( \frac{1}{p} - \frac{1}{q} \right) } \Vert w \Vert _{L^q(E)}, \quad 1 \le q < p \le \infty , \quad w \in P_m, \end{aligned}$$
(2.17)

and, making use of the inequality

$$\begin{aligned} \left( \sum _i |a_i|^p \right) ^{1/p} \le \left( \sum _i |a_i|^q \right) ^{1/q} \quad \text{ whenever } \ p \ge q, \end{aligned}$$

with the summation over a finite index set for i, we finally obtain

$$\begin{aligned} \Vert w \Vert _{L^p(\Omega _h)} \le c h^{3 \left( \frac{1}{p} - \frac{1}{q} \right) } \Vert w \Vert _{L^q(\Omega _h)}, \quad 1 \le q < p \le \infty , \quad \text{ for } \text{ any } \ w|_E \in P_m (E), \quad E \in E_h.\nonumber \\ \end{aligned}$$
(2.18)

We will also need a variant of (2.17) and (2.18) for the functions of the time variable \(t \in (0,T)\), where the discretization is of order \(\Delta t\). Evidently,

$$\begin{aligned} \Vert w \Vert _{L^p([j\Delta t, (j+1) \Delta t])} \lesssim (\Delta t)^{ \left( \frac{1}{p} - \frac{1}{q} \right) } \Vert w \Vert _{L^q([j\Delta t, (j+1) \Delta t])}, \quad 1 \le q < p \le \infty , \end{aligned}$$
(2.19)

and, therefore

$$\begin{aligned} \Vert w \Vert _{L^p(0,T)} \lesssim (\Delta t)^{ \left( \frac{1}{p} - \frac{1}{q} \right) } \Vert w \Vert _{L^q(0,T)}, \quad 1 \le q < p \le \infty \end{aligned}$$
(2.20)

for any w that is constant on any time segment \([j\Delta t, (j+1) \Delta t]\) contained in [0, T].

Finally, we recall the estimate

$$\begin{aligned} \sum _{\Gamma \in \Gamma _h} \int _{\Gamma } | v - \tilde{v} |^2 \ \mathrm{dS}_x \lesssim h \int _{\Omega _h} |\nabla _hv |^2 \ \mathrm{d} {x} \quad \text{ for } \text{ any } \quad v \in V_{h,0}(\Omega _h;R^3) \end{aligned}$$
(2.21)

that follows directly from Poincarè’s inequality (2.3).

2.6 Discrete Sobolev spaces

We introduce the discrete \(H^1\)-(semi)norm

$$\begin{aligned} \Vert v \Vert _{H^1_{Q_h}(\Omega _h)}^2 = \sum _{\Gamma \in \Gamma _{h, \mathrm{int}}} \int _{\Gamma } \frac{ \left[ \left[ v \right] \right] ^2 }{h} \ \mathrm{dS}_x \end{aligned}$$

for \(v \in Q_h(\Omega _h)\). We report the following estimate that may be seen as a discrete analogue of the well-known estimates for Sobolev functions in \(W^{1,2}\):

$$\begin{aligned} \int _{K_i } | {v} (x) - {v}(x - \xi ) |^2 \ \mathrm{d} {x}\lesssim \left( |\xi |^2 + h |\xi | \right) \Vert {v} \Vert ^2_{H^1_{Q_h} (\Omega _h; R^3)}, \ \end{aligned}$$
(2.22)

for any compact \(K_i \subset \Omega \), \(|\xi | < \mathrm{dist}[K_i, \partial \Omega _h]\), \(v \in Q_h(\Omega _h)\), see Eymard et al. [8, Section 5].

Remark 2.2

In view of our hypothesis (1.13), the expression on the left is defined provided \(h = h(K_i)\) is small enough.

Similarly, we may define a discrete \(H^1\)-norm on the space \(V_{h,0}(\Omega _h)\) by setting

$$\begin{aligned} \Vert {v} \Vert _{H^1_{V_h}(\Omega _h)}^2 = \int _{\Omega _h} |\nabla _h{v} |^2 \ \mathrm{d} {x}. \end{aligned}$$
(2.23)

In view of the limit passage \(\Omega _h \rightarrow \Omega \), it is convenient to extend a function \(v \in V_{h,0}(\Omega )\) to be zero outside \(\Omega \). With this convention, we have

$$\begin{aligned} \Vert {v} \Vert _{L^6(R^3)} \lesssim \Vert {v} \Vert _{H^1_{V_h} (\Omega _h)}, \end{aligned}$$
(2.24)

and

$$\begin{aligned} \int _{x \in R^3} | {v} (x) - {v}(x - \xi ) |^2 \ \mathrm{d} {x}\lesssim \left( |\xi |^2 + h |\xi | \right) \Vert {v} \Vert ^2_{H^1_{V_h} (\Omega _h)} \end{aligned}$$
(2.25)

for any \({v} \in V_{h,0}(\Omega _h)\), see Gallouët et al. [16].

Finally, the following assertion follows from (2.22), (2.25) and can be seen as a special case of the results of Christiansen, Munthe-Kaas and Owren [5, Proposition 5.67]:

Lemma 2.1

For any function \(v \in V_{h,0}(\Omega _h)\) there exists an \(R^V_h [v] \in C^\infty _c(R^3)\) such that

$$\begin{aligned} \Vert \nabla _xR^V_h[v] \Vert _{L^2(R^3; R^3)} \lesssim \Vert v \Vert _{H^1_{V_h}(\Omega _h)},\quad \Vert v - R^V_h[v] \Vert _{L^2(R^3; R^3)} \lesssim h \Vert v \Vert _{H^1_{V_h}(\Omega _h)}. \end{aligned}$$

Moreover,

$$\begin{aligned} R^V_h |_{K_e} = 0 \quad \text{ for } \text{ any } \text{ compact }\ K_e \subset R^3 {\setminus } \overline{\Omega } \quad \text{ whenever }\ h > 0 \quad \text{ is } \text{ small } \text{ enough. } \end{aligned}$$
(2.26)

Similarly, for any \(g \in Q_h(\Omega _h)\) there is an \(R^Q_h [g] \in C^\infty (R^3)\) such that

$$\begin{aligned} \Vert \nabla _xR^Q_h[g] \Vert _{L^2(K_i; R^3)} \lesssim \Vert g \Vert _{H^1_{Q_h}(\Omega _h)} , \Vert g - R^Q_h[g] \Vert _{L^2(K_i; R^3)} \lesssim h \Vert g \Vert _{H^1_{Q_h}(\Omega _h)} \end{aligned}$$

for any compact \(K_i \subset \Omega \).

Remark 2.3

The regularizing operators \(R^V_h[v]\), \(R^Q_h[v]\) can be taken as a spatial convolution with a regularizing kernel, see [5] for details.

3 Numerical scheme, main result

Having collected the necessary material, we introduce the numerical scheme to solve the Navier–Stokes system (1.1)–(1.7).

3.1 Numerical scheme

We start by approximating the initial data by their projections onto the space \(Q_h(\Omega _h)\). To this end, we assume that both \(\varrho _0\) and \(\mathbf{u}_0\) are functions defined on the whole space \(R^3\) and set

$$\begin{aligned} \varrho ^0_{h} = \Pi ^Q_h [\varrho _0] \in Q_h(\Omega _h), \quad \mathbf{u}^0_{h} = \Pi ^Q_h [\mathbf{u}_0] \in Q_h (\Omega _h;R^3). \end{aligned}$$
(3.1)

Next, we introduce the discrete time derivative

$$\begin{aligned} D_t b^k_h = \frac{ b^k_h - b^{k-1}_h }{\Delta t }, \quad \Delta t \approx h, \end{aligned}$$

and define successively the sequence of numerical solutions \([\varrho ^k_h, \mathbf{u}^k_h]_{h > 0}\), \(k=1,2,\ldots \),

$$\begin{aligned} \varrho ^k_h \in Q_h(\Omega _h), \quad \mathbf{u}^k_h \in V_{h,0}(\Omega _h; R^3) \end{aligned}$$

satisfying:

Continuity method

$$\begin{aligned} \int _{\Omega _h} D_t \varrho ^k_h \phi \ \mathrm{d} {x} - \sum _{\Gamma \in \Gamma _{h, \mathrm{int}}} \int _{\Gamma } \mathrm{Up}[\varrho ^k_h, \mathbf{u}^k_h] \ \left[ \left[ \phi \right] \right] \ \mathrm{dS}_x = 0 \quad \text{ for } \text{ all }\ \phi \in Q_h (\Omega _h); \end{aligned}$$
(3.2)

Momentum method

$$\begin{aligned}&\int _{\Omega _h} D_t (\varrho ^k_h \widehat{\mathbf{u}}^k_h) \cdot \phi \ \mathrm{d} {x} - \sum _{\Gamma \in \Gamma _{h, \mathrm{int}}} \int _{\Gamma } \mathrm{Up}[\varrho ^k_h \widehat{\mathbf{u}}^k_h, \mathbf{u}^k_h] \cdot \left[ \left[ \widehat{\phi } \right] \right] \ \mathrm{dS}_x\nonumber \\&\quad + \int _{\Omega _h} \left[ \mu \nabla _h\mathbf{u}^k_h : \nabla _h\phi + \lambda \mathrm{div}_h\mathbf{u}^k_h \mathrm{div}_h\phi \right] \ \mathrm{d} {x} \nonumber \\&\quad - \int _{\Omega _h} p(\varrho ^k_h) \mathrm{div}_h\phi \ \mathrm{d} {x} = 0\quad \text{ for } \text{ all }\ \phi \in V_{h,0}(\Omega _h; R^3). \end{aligned}$$
(3.3)

Remark 3.1

We recall that \(\widehat{\mathbf{u}}^k_h = \Pi ^Q_h [\mathbf{u}^k_h]\) denotes the projection onto the space \(Q_h\) of piecewise constant functions. As we will see, our discretization of the convective term in (3.3), taken over from [19], yields a numerical analogue of the energy inequality providing the necessary stability estimates.

3.2 Main result

Before stating our main result, it is convenient to extend the numerical solution to be defined for any \(t \ge 0\). To this end, we set

$$\begin{aligned}&\displaystyle \varrho _h (t,\cdot ) = \varrho ^0_h,\quad \mathbf{u}_h(t, \cdot ) = \mathbf{u}^0_h \quad \text{ for } \ t \le 0,\\&\displaystyle \varrho _h(t, \cdot ) = \varrho ^k_h,\quad \mathbf{u}_h (t, \cdot ) = \mathbf{u}^k_h \ \text{ for } \ t \in [k \Delta t, (k+1) \Delta t ), \quad k=1,2, \dots . \end{aligned}$$

Accordingly, we set

$$\begin{aligned} D_t v_h(t, \cdot ) = \frac{ v_h(t) - v_h(t - \Delta t) }{\Delta t},\quad t > 0. \end{aligned}$$

Besides, we also frequently use the already introduced convention that the functions in \(V_{h,0}(\Omega _h)\) are defined on the whole space \(R^3\), being extended to be zero outside \(\Omega _h\).

Our main result may be stated as follows:

Theorem 3.1

Let \(\Omega \subset R^3\) be a bounded Lipschitz domain approximated by a family of polyhedral domains \(\{ \Omega _h \}_{h > 0}\) as in (1.13, 1.14), where each \(\Omega _h\) admits a tetrahedral mesh satisfying the hypotheses specified in Sect. 2.1. Let \(\mu > 0\), \(\lambda \ge 0\), and let the pressure \(p = p(\varrho )\) satisfy the hypothesis (1.4) with

$$\begin{aligned} \gamma >3. \end{aligned}$$

Let \([ \varrho _h, \mathbf{u}_h ]_{h > 0}\) be a family of numerical solutions constructed by means of the method (3.1)–(3.3) such that

$$\begin{aligned} \varrho _h > 0\quad \text{ for } \text{ all }\quad h > 0, \end{aligned}$$

with

$$\begin{aligned} \Delta t \approx h,\quad 0<\alpha <1, \end{aligned}$$

where \(\alpha \) is the exponent in the dissipative upwinding (2.11).

Then, extending \(\varrho _h\), \(\mathbf{u}_h\) to be zero outside \(\Omega _h\) we have, at least for a suitable subsequence,

$$\begin{aligned}&\displaystyle \varrho _h \rightarrow \varrho \quad \text{ weakly-(*) } \text{ in }\ L^\infty (0,T; L^\gamma (\Omega )) \ \text{ and } \text{ strongly } \text{ in }\ L^1((0,T) \times \Omega ),\\&\displaystyle \mathbf{u}_h \rightarrow \mathbf{u}\quad \text{ weakly } \text{ in }\ L^2(0,T; L^6(\Omega ;R^3)), \\&\displaystyle \nabla _h\mathbf{u}_h \rightarrow \nabla _x\mathbf{u}\quad \text{ weakly } \text{ in }\ L^2((0,T) \times \Omega ; R^{3 \times 3}), \end{aligned}$$

where \([\varrho , \mathbf{u}]\) is a weak solution of the problem (1.1)–(1.7) in \((0,T) \times \Omega \) in the sense of Definition 1.1.

Remark 3.2

As a matter of fact, the assumption that \(\Omega \) is Lipschitz is not really necessary and can be considerably relaxed, see [14]. It is enough to assume that the limit domain enjoys the so-called segment property, meaning that each point on the boundary \(\partial \Omega \) is an endpoint of a segment of fixed length, the interior of which is contained in \(R^3 {\setminus } \overline{\Omega }\).

Remark 3.3

The existence of the numerical solutions \([\varrho _h, \mathbf{u}_h]\) can be shown by means of a fixed point argument exactly as in [19].

Remark 3.4

The assumption \(p'(0) > 0\) facilitates the analysis but can also be relaxed, see [19].

4 Renormalization and the total energy balance

We introduce a renormalized variant of the continuity method (3.2) and derive a discrete analogue of the total energy balance (1.12). In what follows we use the notation

$$\begin{aligned} \mathrm{co}\{ A , B \} = [ \min \{A,B\}, \max \{A,B\} ]. \end{aligned}$$

4.1 Renormalized equation of continuity

Take \(\phi = b'(\varrho ^k_h)\), where b is a smooth function, as a test function in the continuity method (3.2) to obtain

$$\begin{aligned} \int _{\Omega _h} b'(\varrho ^k_h) D_t \varrho ^k_h \ \mathrm{d} {x}\equiv & {} \int _{\Omega _h} \frac{ \varrho ^k_h - \varrho ^{k-1}_h }{\Delta t} b'(\varrho ^k_h) \ \mathrm{d} {x}\\= & {} \int _{\Omega _h} \left[ \frac{ b(\varrho ^k_h) - b(\varrho ^{k-1}_h ) }{\Delta t} -\frac{ \Delta t}{2} b''(\xi ^k_h) \left( \frac{ \varrho ^k_h - \varrho ^{k-1}_h }{\Delta t} \right) ^2 \right] \ \mathrm{d} {x}\\= & {} \int _{\Omega _h} D_t b(\varrho ^k_h) \ \mathrm{d} {x} - \int _{\Omega _h} \frac{ \Delta t}{2} b''(\xi ^k_h) \left( \frac{ \varrho ^k_h - \varrho ^{k-1}_h }{\Delta t} \right) ^2 \ \mathrm{d} {x} \end{aligned}$$

for a certain \(\xi ^{k}_h \in \mathrm{co}\{ \varrho ^{k-1}_h, \varrho ^{k}_h \}\).

Similarly to (2.13), the upwind term can be written as

$$\begin{aligned}&\sum _{\Gamma \in \Gamma _h} \int _{\Gamma } \mathrm{Up} [ \varrho ^k_h, u^k_h ] \ \left[ \left[ b'(\varrho ^k_h) \right] \right] \ \mathrm{dS}_x + h^\alpha \sum _{\Gamma \in \Gamma _{h, \mathrm{int}}} \int _{\Gamma } \left[ \left[ \varrho ^k_h \right] \right] \ \left[ \left[ b'(\varrho ^k_h) \right] \right] \chi \left( \frac{ {\tilde{\mathbf{u}}}\cdot \mathbf{n} }{h^\alpha } \right) \ \mathrm{dS}_x\\&\quad = - \sum _{E \in E_h} \sum _{\Gamma _E \subset \partial E} \int _{\Gamma _E} b'(\varrho ^k_h) \left[ \varrho ^k_h [{\tilde{\mathbf{u}}}^k_h \cdot \mathbf{n}]^+ + \left( \varrho ^{k}_h \right) ^\mathrm{out} [{\tilde{\mathbf{u}}}^k_h \cdot \mathbf{n}]^- \right] \ \mathrm{dS}_x\\&\quad = - \sum _{E \in E_h} \sum _{\Gamma _E \subset \partial E} \int _{\Gamma _E} \left[ b(\varrho ^k_h) [{\tilde{\mathbf{u}}}^k_h \cdot \mathbf{n}]^+ + b \left( \left( \varrho ^{k}_h \right) ^\mathrm{out} \right) [{\tilde{\mathbf{u}}}^k_h \cdot \mathbf{n}]^- \right] \ \mathrm{dS}_x\\&\qquad + \sum _{E \in E_h} \sum _{\Gamma _E \subset \partial E} \int _{\Gamma _E} \left( b(\varrho ^k_h) - b'(\varrho ^k_h) \varrho ^h_h \right) [{\tilde{\mathbf{u}}}^k_h \cdot \mathbf{n}]^+ \ \mathrm{dS}_x\\&\qquad + \sum _{E \in E_h} \sum _{\Gamma _E \subset \partial E} \int _{\Gamma _E} \left( b\left( \left( \varrho ^k_h \right) ^\mathrm{out} \right) - b'(\varrho ^k_h) \left( \varrho ^k_h \right) ^\mathrm{out} \right) [{\tilde{\mathbf{u}}}^k_h \cdot \mathbf{n}]^- \ \mathrm{dS}_x\\&\quad = \int _{\Omega _h} \left( b(\varrho ^k_h) - b'(\varrho ^k_h) \varrho ^k_h \right) \mathrm{div}_h\mathbf{u}^k_h \ \mathrm{d} {x}\\&\qquad + \sum _{E \in E_h} \sum _{\Gamma _E \subset \partial E} \int _{\Gamma _E} \left( b\left( \left( \varrho ^k_h \right) ^\mathrm{out} \right) - b'(\varrho ^k_h) \left( \varrho ^k_h \right) ^\mathrm{out} \right) [{\tilde{\mathbf{u}}}^k_h \cdot \mathbf{n}]^- \ \mathrm{dS}_x\\&\qquad - \sum _{E \in E_h} \sum _{\Gamma _E \subset \partial E} \int _{\Gamma _E} \left( b(\varrho ^k_h) - b'(\varrho ^k_h) \varrho ^k_h \right) [{\tilde{\mathbf{u}}}^k_h \cdot \mathbf{n}]^- \ \mathrm{dS}_x\\&\quad = \int _{\Omega _h} \left( b(\varrho ^k_h) - b'(\varrho ^k_h) \varrho ^k_h \right) \mathrm{div}_h\mathbf{u}^k_h \ \mathrm{d} {x}\\&\qquad + \frac{1}{2} \sum _{E \in E_h} \sum _{\Gamma _E \subset \partial E} \int _{\Gamma _E} b''(\eta ^k_h) \left[ \left[ \varrho ^k_h \right] \right] ^2 [{\tilde{\mathbf{u}}}^k_h \cdot \mathbf{n}]^- \ \mathrm{dS}_x. \end{aligned}$$

Thus, summing up the previous estimates we obtain the integrated renormalized continuity method:

$$\begin{aligned}&\int _{\Omega _h} D_t b(\varrho ^k_h) \ \mathrm{d} {x} + \int _{\Omega _h} \left( b'(\varrho ^k_h) \varrho ^k_h - b(\varrho ^k_h) \right) \mathrm{div}_h\mathbf{u}^k_h \ \mathrm{d} {x}\nonumber \\&\quad = - \int _{\Omega _h} \frac{ \Delta t}{2} b''(\xi ^k_h) \left( \frac{ \varrho ^k_h - \varrho ^{k-1}_h }{\Delta t} \right) ^2 \ \mathrm{d} {x} + \frac{1}{2} \sum _{E \in E_h} \sum _{\Gamma _E \subset \partial E} \int _{\Gamma _E} b''(\eta ^k_h) \left[ \left[ \varrho ^k_h \right] \right] ^2 [{\tilde{\mathbf{u}}}^k_h \cdot \mathbf{n}]^- \ \mathrm{dS}_x\nonumber \\&\qquad - h^\alpha \sum _{\Gamma \in \Gamma _{h, \mathrm{int}}} \int _{\Gamma } b''(\omega ^k_h) \left[ \left[ \varrho ^k_h \right] \right] ^2 \chi \left( \frac{ {\tilde{\mathbf{u}}}\cdot \mathbf{n} }{h^\alpha } \right) \ \mathrm{dS}_x \end{aligned}$$
(4.1)

with

$$\begin{aligned} \xi ^k_h \!\in \! \mathrm{co}\{ \varrho ^{k-1}_h , \varrho ^k_h \} \ \text{ on } \text{ each } \text{ element }\ E \!\in \! E_h,\ \eta ^k_h, \omega ^k_h \!\in \! \mathrm{co}\{ \varrho ^k_h , (\varrho ^k_h)^\mathrm{out} \} \ \text{ on } \text{ each } \text{ face }\ \Gamma \!\in \! \Gamma _h. \end{aligned}$$

4.2 Energy inequality

Our goal is to derive a discrete counterpart of the energy inequality (1.12). To this end, we take \(\phi = \mathbf{u}^k_h\) as a test function in the momentum method (3.3). First, in accordance with the renormalized continuity method (4.1), we claim that

$$\begin{aligned} \int _{\Omega _h} p(\varrho ^k_h) \mathrm{div}_h\mathbf{u}^k_h \ \mathrm{d} {x}= & {} - \int _{\Omega _h} D_t P(\varrho ^k_h) \ \mathrm{d} {x} + \frac{1}{2} \sum _{E \in E_h} \sum _{ \Gamma _E \subset \partial E}\nonumber \\&\times \int _{\Gamma _E} P''(\eta ^k_h) \left( \left( \varrho ^k_h \right) ^\mathrm{out} - \varrho _k \right) ^2 [{\tilde{\mathbf{u}}}^k_h \cdot \mathbf{n}]^- \ \mathrm{dS}_x\nonumber \\&- h^\alpha \sum _{\Gamma \in \Gamma _{h, \mathrm{int}}} \int _{\Gamma } P''(\omega ^k_h) \left[ \left[ \varrho ^k_h \right] \right] ^2 \chi \left( \frac{ {\tilde{\mathbf{u}}}\cdot \mathbf{n} }{h^\alpha } \right) \ \mathrm{dS}_x\nonumber \\&- \int _{\Omega _h} \frac{ \Delta t}{2} P''(\xi ^k_h) \left( \frac{ \varrho ^k_h - \varrho ^{k-1}_h }{\Delta t} \right) ^2 \ \mathrm{d} {x}, \end{aligned}$$
(4.2)

where the pressure potential P has been introduced in (1.12).

Next, we compute

$$\begin{aligned} \int _{\Omega _h} \widehat{\mathbf{u}}^k_h \cdot D_t (\varrho ^k_h \widehat{\mathbf{u}}^k_h) \ \mathrm{d} {x}= & {} \int _{\Omega _h} \widehat{\mathbf{u}}^k_h \cdot \frac{ \varrho ^k_h \widehat{\mathbf{u}}^k_h - \varrho ^{k-1}_h \widehat{\mathbf{u}}^{k-1}_h }{\Delta t} \ \mathrm{d} {x}\nonumber \\= & {} \int _{\Omega _h} \left[ \left| \widehat{\mathbf{u}}^k_h \right| ^2 \frac{ \varrho ^k_h - \varrho ^{k-1}_h }{\Delta t} + \varrho ^{k-1}_h \widehat{\mathbf{u}}^k_h \cdot \frac{ \widehat{\mathbf{u}}^k_h - \widehat{\mathbf{u}}^{k-1}_h }{\Delta t} \right] \ \mathrm{d} {x}\nonumber \\= & {} \int _{\Omega _h} \left[ \left| \widehat{\mathbf{u}}^k_h \right| ^2 D_t \varrho ^k_h + \varrho ^{k-1}_h \frac{1}{2} D_t \left| \widehat{\mathbf{u}}^k_h \right| ^2 \right] \ \mathrm{d} {x}\nonumber \\&+ \int _{\Omega _h} \frac{\Delta t}{2} \varrho ^{k-1}_h \left| \frac{ \widehat{\mathbf{u}}^k_h - \widehat{\mathbf{u}}^{k-1}_h }{\Delta t} \right| ^2 \ \mathrm{d} {x}. \end{aligned}$$
(4.3)

The upwind term reads

$$\begin{aligned}&\sum _{\Gamma \in \Gamma _{h, \mathrm{int}}} \int _{\Gamma } \mathrm{Up}[ \varrho ^k_h \widehat{\mathbf{u}}^k_h , \mathbf{u}^k_h ] \cdot \left[ \left[ \widehat{\mathbf{u}}^k_h \right] \right] \mathrm{dS}_x + h^\alpha \sum _{\Gamma \in \Gamma _{h, \mathrm{int}}} \int _{\Gamma } \left[ \left[ \varrho ^k_h \widehat{\mathbf{u}}^k_h \right] \right] \cdot \left[ \left[ \widehat{\mathbf{u}}^k_h \right] \right] \chi \left( \frac{{\tilde{\mathbf{u}}}^k_h \cdot \mathbf{n}}{h^\alpha } \right) \ \mathrm{dS}_x \nonumber \\&\quad =- \sum _{E \in E_h} \sum _{\Gamma _E \subset \partial E} \int _{\Gamma _E} \widehat{\mathbf{u}}^k_h \cdot \left( ( \varrho ^k_h \widehat{\mathbf{u}}^k_h ) [{\tilde{\mathbf{u}}}^k_h \cdot \mathbf{n}]^+ + \left( \varrho ^k_h \widehat{\mathbf{u}}^k_h \right) ^\mathrm{out} [{\tilde{\mathbf{u}}}^k_h \cdot \mathbf{n}]^- \right) \ \mathrm{dS}_x\nonumber \\&\quad = - \sum _{E \in E_h} \sum _{\Gamma _E \subset \partial E} \int _{\Gamma _E} \left| \widehat{\mathbf{u}}^k_h \right| ^2 \left( \varrho ^k_h \ [{\tilde{\mathbf{u}}}^k_h \cdot \mathbf{n}]^+ + \left( \varrho ^k_h \right) ^\mathrm{out} [{\tilde{\mathbf{u}}}^k_h \cdot \mathbf{n}]^- \right) \ \mathrm{dS}_x\nonumber \\&\qquad + \sum _{E \in E_h} \sum _{\Gamma _E \subset \partial E} \int _{\Gamma _E} \left( \varrho ^k_h \right) ^\mathrm{out} [{\tilde{\mathbf{u}}}^k_h \cdot \mathbf{n}]^- \widehat{\mathbf{u}}^k_h \cdot \left( \widehat{\mathbf{u}}^k_h - \left( \widehat{\mathbf{u}}^k_h \right) ^\mathrm{out} \right) \ \mathrm{dS}_x\nonumber \\&\quad = \sum _{\Gamma \in \Gamma _{h, \mathrm{int}}} \int _{\Gamma } \mathrm{Up}(\varrho ^k_h,\mathbf{u}^k_h)\ \left[ \left[ \left| \widehat{\mathbf{u}}^k_h \right| ^2 \right] \right] \ \mathrm{dS}_x + h^\alpha \sum _{\Gamma \in \Gamma _{h, \mathrm{int}}} \int _{\Gamma } \left[ \left[ \varrho ^k_h \right] \right] \cdot \left[ \left[ \left| \widehat{\mathbf{u}}^k_h \right| ^2 \right] \right] \chi \left( \frac{{\tilde{\mathbf{u}}}^k_h \cdot \mathbf{n}}{h^\alpha } \right) \ \mathrm{dS}_x\nonumber \\&\qquad + \frac{1}{2} \sum _{E \in E_h} \sum _{\Gamma _E \subset \partial E} \int _{\Gamma _E} \left( \varrho ^k_h \right) ^\mathrm{out} [{\tilde{\mathbf{u}}}^k_h \cdot \mathbf{n}]^- \left( \left| \widehat{\mathbf{u}}^k_h \right| ^2 - \left| \left( \widehat{\mathbf{u}}^k_h \right) ^\mathrm{out} \right| ^2 \right) \ \mathrm{dS}_x\nonumber \\&\qquad + \frac{1}{2} \sum _{E \in E_h} \sum _{\Gamma _E \subset \partial E} \int _{\Gamma _E} \left| \widehat{\mathbf{u}}^k_h - \left( \widehat{\mathbf{u}}^k_h \right) ^\mathrm{out} \right| ^2\left( \varrho ^k_h \right) ^\mathrm{out} [{\tilde{\mathbf{u}}}^k_h \cdot \mathbf{n}]^- \ \mathrm{dS}_x\nonumber \\&\quad = \frac{1}{2} \sum _{\Gamma \in \Gamma _{h, \mathrm{int}}} \int _{\Gamma } \mathrm{Up}(\varrho ^k_h,\mathbf{u}^k_h)\ \left[ \left[ \left| \widehat{\mathbf{u}}^k_h \right| ^2 \right] \right] \ \mathrm{dS}_x + \frac{h^\alpha }{2} \sum _{\Gamma \in \Gamma _{h, \mathrm{int}}} \int _{\Gamma } \left[ \left[ \varrho ^k_h \right] \right] \cdot \left[ \left[ \left| \widehat{\mathbf{u}}^k_h \right| ^2 \right] \right] \chi \left( \frac{{\tilde{\mathbf{u}}}^k_h \cdot \mathbf{n}}{h^\alpha } \right) \ \mathrm{dS}_x\nonumber \\&\qquad + \frac{1}{2} \sum _{E \in E_h} \sum _{\Gamma _E \subset \partial E} \int _{\Gamma _E} \left| \widehat{\mathbf{u}}^k_h - \left( \widehat{\mathbf{u}}^k_h \right) ^\mathrm{out} \right| ^2\left( \varrho ^k_h \right) ^\mathrm{out} [{\tilde{\mathbf{u}}}^k_h \cdot \mathbf{n}]^- \ \mathrm{dS}_x. \end{aligned}$$
(4.4)

Summing up (4.2)–(4.4) and making use of the continuity method (3.2) we deduce the energy inequality

$$\begin{aligned}&D_t \int _{\Omega _h} \left[ \frac{1}{2} \varrho ^k_h | \widehat{\mathbf{u}}^k_h |^2 + P(\varrho ^k_h) \right] \ \mathrm{d} {x} + \mu \int _{\Omega _h} |\nabla _h\mathbf{u}^k_h |^2 \ \mathrm{d} {x} + \lambda \int _{\Omega _h} | \mathrm{div}_h\mathbf{u}^k_h |^2 \ \mathrm{d} {x}\nonumber \qquad \quad \\&\qquad + \frac{\Delta t}{2} \int _{\Omega _h} \left( A \left| \frac{\varrho ^k_h - \varrho ^{k-1}_h }{\Delta t} \right| ^2 + \varrho ^{k-1}_h \left| \frac{ \widehat{\mathbf{u}}^k_h - \widehat{\mathbf{u}}^{k-1}_h }{\Delta t} \right| ^2 \right) \ \mathrm{d} {x}\nonumber \\&\qquad - \sum _{E \in E_h} \sum _{\Gamma _E \subset \partial E} \int _{\Gamma _E} \left( \varrho ^k_h \right) ^\mathrm{out} [ {\tilde{\mathbf{u}}}^k_h \cdot \mathbf{n} ]^- \frac{ \left| \widehat{\mathbf{u}}^k_h - \left( \widehat{\mathbf{u}}^k_h \right) ^\mathrm{out} \right| ^2 }{2} \ \mathrm{dS}_x\nonumber \\&\qquad + h^\alpha \sum _{\Gamma \in \Gamma _{h, \mathrm{int}}} \int _{\Gamma } \left\{ \varrho ^k_h \right\} \left| \widehat{\mathbf{u}}^k_h - \left( \widehat{\mathbf{u}}^k_h \right) ^\mathrm{out} \right| ^2 \chi \left( \frac{{\tilde{\mathbf{u}}}^k_h \cdot \mathbf{n}}{h^\alpha } \right) \ \mathrm{dS}_x\nonumber \\&\qquad + \frac{A}{2} \sum _{\Gamma \in \Gamma _{h, \mathrm{int}}} \int _{\Gamma } \left( h^\alpha \chi \left( \frac{{\tilde{\mathbf{u}}}^k_h \cdot \mathbf{n}}{h^\alpha } \right) + |{\tilde{\mathbf{u}}}^k_h \cdot \mathbf{n} | \right) \left[ \left[ \varrho ^k_h \right] \right] ^2 \ \mathrm{dS}_x \le 0 \end{aligned}$$
(4.5)

with \(A = \inf _{\varrho > 0} \left\{ P''(\varrho ) \right\} \). Since \(P''(\rho ) = p'(\rho )\slash \rho \), we have \(A>0\) according to (1.4).

5 Stability

In this section, we derive uniform bounds for the family \([ \varrho _h, \mathbf{u}_h ]_{h > 0}\) independent of the time step \(\Delta t \approx h\) and the element size h.

5.1 Mass conservation

Taking \(\phi \equiv 1\) in the continuity method (3.2) we obtain

$$\begin{aligned} \int _{\Omega _h} \varrho _h (t, \cdot ) \ \mathrm{d} {x} = \int _{\Omega _h} \varrho ^0_h \ \mathrm{d} {x} = \int _{\Omega _h} \varrho _0 \ \mathrm{d} {x} \quad \text{ for } \text{ any } \quad h > 0, \end{aligned}$$
(5.1)

meaning that the total mass is conserved by the scheme.

5.2 Energy bounds

The energy inequality (4.5) yields

$$\begin{aligned}&\int _{\Omega _h} \left[ \frac{1}{2} \varrho _h | \widehat{\mathbf{u}}_h |^2 + P(\varrho _h) \right] (\tau , \cdot ) \ \mathrm{d} {x} + \mu \int _0^\tau \int _{\Omega _h} |\nabla _h\mathbf{u}_h |^2 \ \mathrm{d} {x} \ \mathrm{d} t \nonumber \\&\qquad + \lambda \int _0^\tau \int _{\Omega _h} |\mathrm{div}_h\mathbf{u}_h |^2 \ \mathrm{d} {x} \ \mathrm{d} t \nonumber \\&\quad \le \int _{\Omega _h} \left[ \frac{1}{2} \varrho ^0_h | \widehat{\mathbf{u}}^0_h |^2 + P(\varrho ^0_h) \right] \ \mathrm{d} {x} \equiv E_{0,h},\ E_{0,h} \lesssim 1; \end{aligned}$$
(5.2)

whence

$$\begin{aligned}&\displaystyle \mathrm{sup}_{\tau \in (0,T)} \Vert \sqrt{ \varrho _h } \widehat{\mathbf{u}}_h (\tau , \cdot ) \Vert _{L^2(\Omega _h;R^3)} \lesssim 1, \end{aligned}$$
(5.3)
$$\begin{aligned}&\displaystyle \mathrm{sup}_{\tau \in (0,T)} \Vert \varrho _h (\tau , \cdot ) \Vert _{L^\gamma (\Omega _h)} \lesssim 1, \end{aligned}$$
(5.4)

and

$$\begin{aligned} \int _0^T \int _{\Omega _h} |\nabla _h\mathbf{u}_h |^2 \ \mathrm{d} {x} \ \mathrm{d} t \lesssim 1; \end{aligned}$$
(5.5)

whence, in accordance with (2.24),

$$\begin{aligned} \Vert \mathbf{u}_h \Vert _{L^2(0,T; L^6(R^3; R^3))} \lesssim 1, \end{aligned}$$
(5.6)

where the bounds are uniform for \(h \rightarrow 0\). We recall that \(\mathbf{u}_h\) as well as other quantities, extended to be zero outside the numerical domain \(\Omega _h\), may be regarded as functions on the whole space \(R^3\).

Finally, we record the bounds resulting from numerical dissipation :

$$\begin{aligned}&\displaystyle \sum _{k \ge 0} \int _{\Omega _h} \left[ \left| \varrho ^k_h - \varrho ^{k-1}_h \right| ^2 + \varrho ^{k-1}_h \left| \widehat{\mathbf{u}}^k_h - \widehat{\mathbf{u}}^{k-1}_h \right| ^2 \right] \ \mathrm{d} {x} \lesssim 1, \end{aligned}$$
(5.7)
$$\begin{aligned}&\displaystyle - \sum _{E \in E_h} \sum _{\Gamma _E \subset \partial E} \int _0^T \int _{\Gamma _E} \left( \varrho _h \right) ^\mathrm{out} [ {\tilde{\mathbf{u}}}_h \cdot \mathbf{n} ]^- { \left| \widehat{\mathbf{u}}_h - \left( \widehat{\mathbf{u}}_h \right) ^\mathrm{out} \right| ^2 } \ \mathrm{dS}_x\ \mathrm{d} t \lesssim 1, \end{aligned}$$
(5.8)
$$\begin{aligned}&\displaystyle h^\alpha \sum _{\Gamma \in \Gamma _{h, \mathrm{int}}} \int _0^T \int _{\Gamma } \left\{ \varrho _h \right\} \left| \widehat{\mathbf{u}}_h - \left( \widehat{\mathbf{u}}_h \right) ^\mathrm{out} \right| ^2 \chi \left( \frac{{\tilde{\mathbf{u}}}_h \cdot \mathbf{n}}{h^\alpha } \right) \ \mathrm{dS}_x \ \mathrm{d} t \lesssim 1, \end{aligned}$$
(5.9)

and

$$\begin{aligned} \sum _{\Gamma \in \Gamma _{h, \mathrm{int}}} \int _0^T \int _{\Gamma } \left( | {\tilde{\mathbf{u}}}_h \cdot \mathbf{n}| + h^\alpha \chi \left( \frac{{\tilde{\mathbf{u}}}_h \cdot \mathbf{n}}{h^\alpha } \right) \right) \left[ \left[ \varrho _h \right] \right] ^2 \ \mathrm{dS}_x \ \mathrm{d} t \lesssim 1. \end{aligned}$$
(5.10)

6 Consistency formulation

Having collected all the available uniform bounds, our next task is to verify that our numerical method is consistent with the variational formulation of the original problem.

6.1 Continuity method

For \(\phi \in C^\infty _c(R^3)\), take \(\Pi ^Q_h[\phi ]\) as a test function in the continuity method (3.1). Using the formula (2.14) for \(r = \varrho ^k_h\), \(\mathbf{u}= \mathbf{u}^k_h\), \(F = \Pi ^Q_h[\phi ]\) we check without difficulty that

$$\begin{aligned} \int _{\Omega _h} \varrho ^k_h \mathbf{u}^k_h \cdot \nabla _x\phi \ \mathrm{d} {x}= & {} \sum _{\Gamma \in \Gamma _h } \int _{\Gamma } \mathrm{Up}[\varrho ^k_h, \mathbf{u}^k_h] \ \left[ \left[ \ \Pi ^Q_h [\phi ]\ \right] \right] \ \mathrm{dS}_x\\&- \sum _{E \in E_h} \sum _{\Gamma _E \subset \partial E} \int _{\Gamma _E} \left( \phi - \Pi ^Q_h [\phi ] \right) \left[ \left[ \varrho ^k_h \right] \right] \ [{\tilde{\mathbf{u}}}^k_h \cdot \mathbf{n}]^- \ \mathrm{dS}_x\\&+ \sum _{E \in E_h} \int _{\partial E} \phi \varrho ^k_h (\mathbf{u}^k_h - {\tilde{\mathbf{u}}}^k_h ) \cdot \mathbf{n} \ \mathrm{dS}_x\\&+ h^\alpha \sum _{\Gamma \in \Gamma _{h, \mathrm{int}}} \int _{\Gamma } \left[ \left[ \varrho ^k_h \right] \right] \left[ \left[ \ \Pi ^Q_h [\phi ] \ \right] \right] \chi \left( \frac{ \tilde{\mathbf{u}}^k_h \cdot \mathbf{n} }{h^\alpha } \right) \ \mathrm{dS}_x. \end{aligned}$$

Note that here

$$\begin{aligned} \int _{\Omega _h} (\Pi ^Q_h [ \phi ] - \phi ) \varrho ^k_h \mathrm{div}_h\mathbf{u}^k_h \ \mathrm{d} {x} = \sum _{E \in E_h}\int _E (\Pi ^Q_h [ \phi ] - \phi ) \varrho ^k_h \mathrm{div}_h\mathbf{u}^k_h \ \mathrm{d} {x} = 0 \end{aligned}$$

as \(\mathrm{div}_h\mathbf{u}^k_h\) is constant on each element E.

Now, by Hölder’s inequality,

$$\begin{aligned}&\left| \sum _{E \in E_h} \sum _{\Gamma _E \subset \partial E} \int _{\Gamma _E} \left( \phi - \Pi ^Q_h [\phi ] \right) \left[ \left[ \varrho ^k_h \right] \right] \ [{\tilde{\mathbf{u}}}^k_h \cdot \mathbf{n}]^- \ \mathrm{dS}_x \right| \\&\quad \lesssim \sum _{\Gamma \in \Gamma _h} \int _{\Gamma } \left| \phi - \Pi ^Q_h [\phi ] \right| \left| \ \left[ \left[ \varrho ^k_h \right] \right] \ \right| \ \left| \ [{\tilde{\mathbf{u}}}^k_h \cdot \mathbf{n}]^- \ \right| \ \mathrm{dS}_x\\&\quad \lesssim \left( \sum _{\Gamma \in \Gamma _h} \int _{\Gamma } \left[ \left[ \varrho ^k_h \right] \right] ^2 \left| \ [ {\tilde{\mathbf{u}}}^k_h \cdot \mathbf{n}]^- \ \right| \ \mathrm{dS}_x \right) ^{1/2}\\&\qquad \times \left( \sum _{E \in E_h} \sum _{\Gamma _E \subset \partial E} \int _{\Gamma _E} \left( \phi - \Pi ^Q_h [\phi ] \right) ^2 \left| \ {\tilde{\mathbf{u}}}^k_h \cdot \mathbf{n} \ \right| \ \mathrm{dS}_x \right) ^{1/2}, \end{aligned}$$

where the first integral on the right-hand side is controlled in \(L^2(0,T)\) by (5.10).

As for the second integral, we may apply Hölder’s inequality, combined with Poincaré’s inequality (2.4) and the trace estimates (2.15), (2.16) to obtain

$$\begin{aligned}&\sum _{E \in E_h} \sum _{\Gamma _E \subset \partial E} \int _{\Gamma _E} \left( \phi - \Pi ^Q_h [\phi ] \right) ^2 \left| \ {\tilde{\mathbf{u}}}^k_h \cdot \mathbf{n} \ \right| \ \mathrm{dS}_x\\&\quad \lesssim \sum _{E \in E_h } \left( \sum _{\Gamma _E \subset \partial E} \int _{\Gamma _E} \left( \phi - \Pi ^Q_h [\phi ] \right) ^{\frac{6 \gamma }{\gamma + 6}} \ \mathrm{dS}_x \right) ^{\frac{\gamma + 6}{3\gamma }} \left( \sum _{\Gamma _E \subset \partial E} \int _{\Gamma _E} \left| {\tilde{\mathbf{u}}}^k_h \right| ^{\frac{3 \gamma }{2 \gamma - 6}} \ \mathrm{dS}_x \right) ^{\frac{2 \gamma - 6}{3\gamma }}\\&\quad \!\lesssim \! h \sum _{E \in E_h } \left\| \mathbf{u}^k_h \right\| _{L^{\frac{3 \gamma }{2 \gamma - 6}}(E; R^3)} \left\| \nabla _x\phi \right\| ^2_{L^{\frac{6 \gamma }{\gamma + 6}}(E; R^3)} \!\lesssim \! h \left\| \mathbf{u}^k_h \right\| _{L^{\frac{3 \gamma }{2 \gamma - 6}}(\Omega _h; R^3)} \left\| \nabla _x\phi \right\| ^2_{L^{\frac{6 \gamma }{\gamma + 6}}(\Omega _h; R^3)}. \end{aligned}$$

Finally, we use the interpolation \(L^p-L^q\) estimates (2.18, 2.20), and (5.6) to conclude

$$\begin{aligned}&h \left\| \mathbf{u}^k_h \right\| _{L^{\frac{3 \gamma }{2 \gamma - 6}}(\Omega _h; R^3)} \left\| \nabla _x\phi \right\| ^2_{L^{\frac{6 \gamma }{\gamma + 6}}(\Omega _h; R^3)} \\&\quad \lesssim h^{\mathrm{min} \{ 1, \frac{5 \gamma - 12}{2 \gamma } \} } \left\| \mathbf{u}^k_h \right\| _{L^{6}(\Omega _h; R^3)} \left\| \nabla _x\phi \right\| ^2_{L^{\frac{6 \gamma }{\gamma + 6}}(\Omega _h; R^3)}\\&\quad = h^{\mathrm{min} \{ 1, \frac{5 \gamma - 12}{2 \gamma } \} } (\Delta t)^{-1/2} (\Delta t)^{1/2} \left\| \mathbf{u}^k_h \right\| _{L^{6}(\Omega _h; R^3)} \left\| \nabla _x\phi \right\| ^2_{L^{\frac{6 \gamma }{\gamma + 6}}(\Omega _h; R^3)}\\&\quad \lesssim h^{\mathrm{min} \{ 1, \frac{5 \gamma - 12}{2 \gamma } \} } (\Delta t)^{-1/2} \left\| \nabla _x\phi \right\| ^2_{L^{\frac{6 \gamma }{\gamma + 6}}(\Omega _h; R^3)}. \end{aligned}$$

The next step is to estimate

$$\begin{aligned} \sum _{\Gamma \in \Gamma _h} \int _{\Gamma } \phi \varrho ^k_n (\mathbf{u}^k_n - {\tilde{\mathbf{u}}}^k_n ) \cdot \mathbf{n} \ \mathrm{dS}_x = \sum _{\Gamma \in \Gamma _h} \int _{\Gamma } (\phi - \tilde{\phi }) \varrho ^k_n (\mathbf{u}^k_n - {\tilde{\mathbf{u}}}^k_n ) \cdot \mathbf{n} \ \mathrm{dS}_x, \end{aligned}$$

where, by Hölder’s inequality, (2.21), and (2.15),

$$\begin{aligned}&\left| \sum _{\Gamma \in \Gamma _h} \int _{\Gamma } (\phi - \tilde{\phi }) \varrho ^k_n (\mathbf{u}^k_n - {\tilde{\mathbf{u}}}^k_n ) \cdot \mathbf{n} \ \mathrm{dS}_x \right| \\&\quad \le \sum _{\Gamma \in \Gamma _h} \left\| \phi - \tilde{\phi }\right\| _{L^{2} (\Gamma )} \left\| \varrho ^k_h \right\| _{L^\gamma (\Gamma )} \left\| \mathbf{u}- \tilde{\mathbf{u}}\right\| _{L^{\frac{2 \gamma }{\gamma - 2}} (\Gamma ;R^3)}\\&\quad \lesssim h^{\frac{\gamma - 3}{\gamma }} \Vert \varrho ^k_h \Vert _{L^\gamma (\Omega _h)} \Vert \nabla _h\mathbf{u}^k_h \Vert _{L^2(\Omega _h; R^{3 \times 3})} \Vert \nabla _x\phi \Vert _{L^2(\Omega _h; R^3)}. \end{aligned}$$

The last step consists in controlling the numerical viscosity. To this end, we first claim that (5.10) gives rise to

$$\begin{aligned} h^\alpha \sum _{\Gamma \in \Gamma _{h, \mathrm{int}}} \int _0^T \int _{\Gamma } \left[ \left[ \varrho _h \right] \right] ^2 \ \mathrm{dS}_x \ \mathrm{d} t \lesssim 1. \end{aligned}$$
(6.1)

Next, we get

$$\begin{aligned}&\left| \sum _{\Gamma \in \Gamma _{h, \mathrm{int}}} \int _{\Gamma } \left[ \left[ \varrho _h \right] \right] \ \left[ \left[ \Pi ^Q_h [\phi ] \right] \right] \ \mathrm{dS}_x \right| \\&\quad \lesssim \sum _{E \in E_h} \sum _{\Gamma _E \subset \partial E \cap \Gamma _{h, \mathrm{int}}} \int _{\Gamma _E} \Big | \left[ \left[ \varrho _h \right] \right] \Big | \left| \Pi ^Q_h [\phi ] - \phi \right| \ \mathrm{dS}_x; \end{aligned}$$

whence, by virtue of (6.1) combined with (2.4) and (2.15), we may infer that

$$\begin{aligned}&h^\alpha \left| \sum _{\Gamma \in \Gamma _{h, \mathrm{int}}} \int _{\Gamma } \left[ \left[ \varrho ^k_h \right] \right] \ \left[ \left[ \Pi ^Q_h [\phi ] \right] \right] \chi \left( \frac{ \tilde{\mathbf{u}}^k_h \cdot \mathbf{n} }{h^\alpha } \right) \ \mathrm{dS}_x \right| \\&\quad \lesssim h^{\frac{1 + \alpha }{2}} r^1_h(t) \Vert \nabla _x\phi \Vert _{L^2(\Omega _h;R^3)}, \quad \Vert r^1_h \Vert _{L^2(0,T)} \lesssim 1. \end{aligned}$$

Remark 6.1

Our estimates of the numerical viscosity are in fact considerably better than in [19, Section 5.3, Lemma 5.5]. This is due to the fact that the pressure considered here satisfies \(p'(0) > 0\) yielding (5.10).

Using the standard representation theorems for bounded linear forms on Sobolev spaces, we reformulate the continuity method as:

$$\begin{aligned} \int _{R^3} \left[ D_t \varrho _h \phi - \varrho _h \mathbf{u}_h \cdot \nabla _x\phi \right] \quad \mathrm{d} {x}= \int _{R^3} \mathbf{R}^1_h (t, \cdot ) \cdot \nabla _x\phi \ \mathrm{d} {x}\end{aligned}$$
(6.2)

for any \(\phi \in C^\infty _c(R^3)\), where \(\mathbf{R}^1_h\) is a piecewise constant with respect to the time variable \(t \in [0,T]\) such that

$$\begin{aligned} \left\| \mathbf{R}^1_h \right\| _{L^2(0,T; L^{\frac{6 \gamma }{5 \gamma - 6}}(R^3; R^3))} \lesssim h^\beta \quad \text{ for } \text{ a } \text{ certain }\quad \beta > 0. \end{aligned}$$
(6.3)

6.2 Momentum method

In order to derive a consistency formulation of the momentum method, we take

$$\begin{aligned} \Pi ^V_h [\phi ], \ \phi \in C^\infty _c({\Omega }; R^3), \end{aligned}$$

as a test function in the momentum method (3.3). Note that, in accordance with the hypothesis (1.13), \(\phi \in C^\infty _c(\Omega _h;R^3)\) as soon as \(h > 0\) is small enough. By virtue of (2.7), (2.8), we have

$$\begin{aligned}&\int _{\Omega } \left[ \mu \nabla _h\mathbf{u}^k_h : \nabla _h\Pi ^V_h[\phi ] + \lambda \mathrm{div}_h\mathbf{u}^k_h \mathrm{div}_h\Pi ^V_h [\phi ] \right] \ \mathrm{d} {x} \\&\quad = \int _{\Omega } \left[ \mu \nabla _h\mathbf{u}^k_h : \nabla _x\phi + \lambda \mathrm{div}_h\mathbf{u}^k_h \mathrm{div}_x\phi \right] \ \mathrm{d} {x}, \end{aligned}$$

and

$$\begin{aligned} \int _{\Omega } p(\varrho _h) \mathrm{div}_x\Pi ^V_h [\phi ] \ \mathrm{d} {x} = \int _{\Omega } p(\varrho _h) \mathrm{div}_x\phi \ \mathrm{d} {x}. \end{aligned}$$

Consequently, we may rewrite (3.3) in the form

$$\begin{aligned}&\int _{\Omega } D_t \varrho ^k_h \widehat{\mathbf{u}}^k_h \cdot \phi \ \mathrm{d} {x} - \int _{\Omega } \varrho ^k_h { \mathbf{u}^k_h } \otimes \widehat{\mathbf{u}^k_h} : \nabla _x\phi \ \mathrm{d} {x}\nonumber \\&\qquad + \int _{\Omega } \left[ \mu \nabla _h\mathbf{u}^k_h \cdot \nabla _x\phi + \lambda \mathrm{div}_h\mathbf{u}^k_h \mathrm{div}_x\phi \right] \ \mathrm{d} {x} - \int _{\Omega } p(\varrho ^k_h, \vartheta ^k_h) \mathrm{div}_x\phi \ \mathrm{d} {x}\nonumber \\&\quad = \int _{\Omega _h} D_t \varrho ^k_h \widehat{\mathbf{u}}^k_h \cdot \left( \phi - \Pi ^V_h [\phi ] \right) \ \mathrm{d} {x} \nonumber \\&\qquad + \sum _{\Gamma \in \Gamma _h} \int _{\Gamma } \mathrm{Up}[\varrho ^k_h \widehat{\mathbf{u}}^k_h, \mathbf{u}^k_h] \cdot \left[ \left[ \widehat{ \Pi ^V_h [ \phi ] } \right] \right] \ \mathrm{dS}_x- \int _{\Omega } \varrho ^k_h { \mathbf{u}^k_h } \otimes \widehat{\mathbf{u}^k_h} : \nabla _x\phi \ \mathrm{d} {x}\nonumber \\&\quad = \int _{\Omega _h} D_t \varrho ^k_h \widehat{\mathbf{u}}^k_h \cdot \left( \phi - \Pi ^V_h [\phi ] \right) \ \mathrm{d} {x}\nonumber \\&\qquad + \sum _{\Gamma \in \Gamma _h} \int _{\Gamma } \left( (\varrho _h \mathbf{u}_h)^\mathrm{in} [{\tilde{\mathbf{u}}}\cdot \mathbf{n}]^+ + (\varrho _h \mathbf{u}_h)^\mathrm{out} [{\tilde{\mathbf{u}}}\cdot \mathbf{n}]^- \right) \cdot \left[ \left[ \widehat{ \Pi ^V_h [\phi ] } \right] \right] \mathrm{dS}_x \nonumber \\&\qquad - \int _{\Omega } \varrho ^k_h { \mathbf{u}^k_h } \otimes \widehat{\mathbf{u}^k_h} : \nabla _x\phi \ \mathrm{d} {x} - h^\alpha \sum _{\Gamma \in \Gamma _{h, \mathrm{int}}} \int _{\Gamma } \left[ \left[ \varrho _h \mathbf{u}_h \right] \right] \cdot \left[ \left[ \widehat{ \Pi ^V_h [\phi ] } \right] \right] \chi \left( \frac{ \tilde{\mathbf{u}}^k_h \cdot \mathbf{n} }{h^\alpha } \right) \ \mathrm{dS}_x.\nonumber \\ \end{aligned}$$
(6.4)

Our goal is to estimate the four integrals on the right-hand side of (6.4). We proceed in several steps.

6.2.1 Error in the discretized time derivative

We have

$$\begin{aligned}&\displaystyle \int _{\Omega _h} D_t \varrho ^k_h \widehat{\mathbf{u}}^k_h \cdot \left( \phi - \Pi ^V_h [\phi ] \right) \ \mathrm{d} {x}\\&\displaystyle \int _{\Omega _h} \sqrt{ \varrho ^{k-1}_h } \sqrt{ \varrho ^{k-1}_h} \frac{ \mathbf{u}^k_h - \mathbf{u}^{k-1}_h }{\Delta t} \cdot \left( \phi - \Pi ^V_h [\phi ] \right) \ \mathrm{d} {x} \!+\! \int _{\Omega _h} \frac{ \varrho ^k_h - \varrho ^{k-1}_h }{\Delta t} \mathbf{u}^{k}_h \cdot \left( \phi - \Pi ^V_h [\phi ] \right) \ \mathrm{d} {x}, \end{aligned}$$

where, by virtue of Hölder’s inequality and the estimate (2.9),

$$\begin{aligned}&\left| \int _{\Omega _h} \sqrt{ \varrho ^{k-1}_h } \sqrt{ \varrho ^{k-1}_h} \frac{ \mathbf{u}^{k - 1}_h - \mathbf{u}^{k-1}_h }{\Delta t} \cdot \left( \phi - \Pi ^V_h [\phi ] \right) \ \mathrm{d} {x} \right| \\&\quad \le \Vert \varrho ^{k-1}_h \Vert _{L^\gamma (\Omega _h)}^{1/2} \left( \int _{\Omega } \varrho ^{k-1}_h \left( \frac{ \mathbf{u}^{k - 1}_h - \mathbf{u}^{k-1}_h }{\Delta t} \right) ^2 \ \mathrm{d} {x} \right) ^{1/2} \left\| \phi - \Pi ^V_h [\phi ] \right\| _{L^{\frac{2 \gamma }{\gamma - 1}}(\Omega _h)}\\&\quad \lesssim \Vert \varrho ^{k-1}_h \Vert _{L^\gamma (\Omega _h)}^{1/2} \left( \Delta t \int _{\Omega _h} \varrho ^{k-1}_h \left( \frac{ \mathbf{u}^{k - 1}_h \!-\! \mathbf{u}^{k-1}_h }{\Delta t} \right) ^2 \ \mathrm{d} {x} \right) ^{1/2} (\Delta t)^{-1/2} h \left\| \nabla _x\phi \right\| _{L^{\frac{2 \gamma }{\gamma - 1}}(\Omega ; R^3)}. \end{aligned}$$

In accordance with the energy estimates (5.7), we have

$$\begin{aligned} \sum _{k \ge 0} \Delta t \left( \Delta t \int _{\Omega _h} \varrho ^{k-1}_h \left( \frac{ \mathbf{u}^{k - 1}_h - \mathbf{u}^{k-1}_h }{\Delta t} \right) ^2 \ \mathrm{d} {x} \right) \lesssim 1. \end{aligned}$$
(6.5)

Applying a similar treatment to the second integral we get

$$\begin{aligned}&\left| \int _{\Omega } \frac{ \varrho ^k_h - \varrho ^{k-1}_h }{\Delta t} \mathbf{u}^k_h \cdot \left( \phi - \Pi ^V_h [\phi ] \right) \ \mathrm{d} {x} \right| \\&\quad \le \left( \Delta t \int _{\Omega _h} \left( \frac{ \varrho ^k_h - \varrho ^{k-1}_h }{ \Delta t } \right) ^2 \ \mathrm{d} {x} \right) ^{1/2} \Vert \mathbf{u}^k_h \Vert _{L^6(\Omega _h;R^3)} (\Delta t)^{-1/2} h \Vert \nabla _x\phi \Vert _{L^3(\Omega )}, \end{aligned}$$

where the first integral on the right-hand side is controlled by means of (5.7).

Thus we may infer that

$$\begin{aligned} \left| \int _{\Omega _h} D_t (\varrho _h \widehat{\mathbf{u}}_h) \cdot \left( \phi - \Pi ^V_h [\phi ] \right) \ \mathrm{d} {x} \right| \lesssim \sqrt{h} \ r^2_h(t) \Vert \nabla _x\phi \Vert _{L^\gamma (\Omega )},\ \Vert r^2_h \Vert _{L^2(0,T)} \lesssim 1. \end{aligned}$$
(6.6)

6.2.2 Error in the upwind term

Take \(F = \widehat{ \Pi ^V_h [ \phi ] } = \Pi ^Q_h \Pi ^V_h [\phi ]\) in (2.14) to obtain

$$\begin{aligned}&\sum _{\Gamma \in \Gamma _h} \int _{\Gamma } \left( (\varrho _h \mathbf{u}_h)^\mathrm{in} [{\tilde{\mathbf{u}}}\cdot \mathbf{n}]^+ + (\varrho _h \mathbf{u}_h)^\mathrm{out} [{\tilde{\mathbf{u}}}\cdot \mathbf{n}]^- \right) \\&\qquad \cdot \left[ \left[ \widehat{ \Pi ^V_h [\phi ] } \right] \right] \mathrm{dS}_x- \int _{\Omega } \varrho ^k_h { \mathbf{u}^k_h } \otimes \widehat{\mathbf{u}^k_h} : \nabla _x\phi \ \mathrm{d} {x}\\&\quad = \sum _{E \in E_h} \sum _{\Gamma _E \subset \partial E} \int _{\Gamma _E} \left( \Pi ^Q_h \Pi ^V_h [ \phi ] - \phi \right) \cdot \left[ \left[ \varrho ^k_h \widehat{ \mathbf{u}^k_h } \right] \right] [ {\tilde{\mathbf{u}}}^k_h \cdot \mathbf{n} ]^- \ \mathrm{dS}_x \\&\qquad + \sum _{E \in E_h } \int _E \varrho ^k_h \widehat{\mathbf{u}}^k_h ( \phi - \Pi ^Q_h \Pi ^V_h [\phi ] ) \mathrm{div}_x\mathbf{u}^k_h \ \mathrm{d} {x}\\&\qquad + \sum _{E \in E_h} \sum _{\Gamma _E \subset \partial E} \int _{\Gamma _E} \phi \cdot \widehat{ \mathbf{u}^k_h } \varrho ^k_h ({\tilde{\mathbf{u}}}^k_n - \mathbf{u}^k_h ) \cdot \mathbf{n} \ \mathrm{dS}_x\\&\quad = \sum _{E \in E_h} \sum _{\Gamma _E \subset \partial E} \int _{\Gamma _E} ( \varrho ^k_h )^+ \left( \phi - \Pi ^Q_h \Pi ^V_h [ \phi ] \right) [ {\tilde{\mathbf{u}}}^k_h \cdot \mathbf{n} ]^- \left[ \left[ \widehat{ \mathbf{u}^k_h } \right] \right] \ \mathrm{dS}_x\\&\qquad + \sum _{E \in E_h} \sum _{\Gamma _E \subset \partial E} \int _{\Gamma _E} \widehat{\mathbf{u}}^k_h \cdot \left( \phi - \Pi ^Q_h \Pi ^V_h [ \phi ] \right) [ {\tilde{\mathbf{u}}}^k_h \cdot \mathbf{n} ]^- \left[ \left[ { \varrho ^k_h} \right] \right] \ \mathrm{dS}_x\\&\qquad + \sum _{E \in E_h } \int _E \varrho ^k_h \widehat{\mathbf{u}}^k_h ( \phi - \Pi ^Q_h \Pi ^V_h [\phi ] ) \mathrm{div}_h\mathbf{u}^k_h \ \mathrm{d} {x}\\&\qquad + \sum _{E \in E_h} \sum _{\Gamma _E \subset \partial E} \int _{\Gamma _E} \phi \cdot \widehat{ \mathbf{u}^k_h } \varrho ^k_h ({\tilde{\mathbf{u}}}^k_n - \mathbf{u}^k_h ) \cdot \mathbf{n} \ \mathrm{dS}_x \equiv I_1 + I_2 + I_3 + I_4. \end{aligned}$$

Step 1 Applying Hölder’s inequality to \(I_1\) we obtain

$$\begin{aligned} |I_1|= & {} \left| \sum _{E \in E_h} \int _{\partial E_h} ( \varrho ^k_h )^+ \left( \Pi ^Q_h \Pi ^V_h [ \phi ] - \phi \right) [ {\tilde{\mathbf{u}}}^k_h \cdot \mathbf{n} ]^- \left[ \left[ \widehat{ \mathbf{u}^k_h } \right] \right] \ \mathrm{dS}_x \right| \\\lesssim & {} \left( \sum _{E \in E_h} \sum _{\Gamma _E \subset \partial E} \int _{\Gamma _E} ( \varrho ^k_h )^+ \left| {\tilde{\mathbf{u}}}^k_h \cdot \mathbf{n} \right| { \left[ \left[ \widehat{ \mathbf{u}^k_h } \right] \right] }^2 \ \mathrm{dS}_x \right) ^{1/2} \\&\times \left( \sum _{E \in E_h} \sum _{\Gamma _E \subset \partial E} \int _{\Gamma _E} ( \varrho ^k_h )^+ \left| {\tilde{\mathbf{u}}}^k_h \cdot \mathbf{n} \right| \left( \Pi ^Q_h \Pi ^V_h [ \phi ] - \phi \right) ^2 \ \mathrm{dS}_x \right) ^{1/2}, \end{aligned}$$

where the first term is bounded in \(L^2(0,T)\) in view of the energy estimates (5.8).

Next, as \(\mathbf{u}^k_h\) are continuous on each element, we have

$$\begin{aligned}&\sum _{E \in E_h} \sum _{\Gamma _E \subset \partial E} \int _{\Gamma _E} ( \varrho ^k_h )^+ \left| {\tilde{\mathbf{u}}}^k_h \cdot \mathbf{n} \right| \left( \Pi ^Q_h \Pi ^V_h [ \phi ] - \phi \right) ^2 \ \mathrm{dS}_x\\&\quad \le \sum _{E \in E_h} \Vert \varrho ^k_h \Vert _{L^q(\partial E)} \Vert \mathbf{u}^k_h \Vert _{L^\infty (E, R^3)} \left\| \Pi ^Q_h \Pi ^V_h [ \phi ] - \phi \right\| ^2_{L^\gamma (\partial E; R^3)}, \ \frac{1}{q} + \frac{2}{\gamma } = 1, \end{aligned}$$

where, in accordance with the trace estimates (2.15, 2.16), and the \(L^p-L^q\) estimates (2.18),

$$\begin{aligned}&\sum _{E \in E_h} \Vert \varrho ^k_h \Vert _{L^q(\partial E)} \Vert \mathbf{u}^k_h \Vert _{L^\infty (E, R^3)} \left\| \Pi ^Q_h \Pi ^V_h [ \phi ] - \phi \right\| ^2_{L^\gamma (\partial E; R^3)}\\&\quad \le \frac{1}{h} \Vert \mathbf{u}^k_h \Vert _{L^\infty (\Omega _h, R^3)} \sum _{E \in E_h} \Vert \varrho ^k_h \Vert _{L^q(E)} \left( \left\| \Pi ^Q_h \Pi ^V_h [ \phi ] - \phi \right\| ^2_{L^\gamma (E; R^3)} + h^2 \left\| \nabla _x\phi \right\| _{L^\gamma (E; R^3)}^2 \right) \\&\quad = \frac{1}{h^{3/2}} \Vert \mathbf{u}^k_h \Vert _{L^6(\Omega _h, R^3)} \sum _{E \in E_h} \Vert \varrho ^k_h \Vert _{L^q(E)} \left( \left\| \Pi ^Q_h \Pi ^V_h [ \phi ] \!-\! \phi \right\| ^2_{L^\gamma (E; R^3)} \!+\! h^2 \left\| \nabla _x\phi \right\| _{L^\gamma (E; R^3)}^2 \right) \\&\quad \le \frac{1}{h^{3/2}} \Vert \mathbf{u}^k_h \Vert _{L^6(\Omega _h, R^3)} \Vert \varrho ^k_h \Vert _{L^q(\Omega _h)} \left( \left\| \Pi ^Q_h \Pi ^V_h [ \phi ] - \phi \right\| ^2_{L^\gamma (\Omega _h; R^3)} + h^2 \left\| \nabla _x\phi \right\| _{L^\gamma (\Omega ; R^3)}^2 \right) . \end{aligned}$$

Finally, by virtue of (2.4, 2.9),

$$\begin{aligned}&\left\| \Pi ^Q_h \Pi ^V_h [ \phi ] - \phi \right\| _{L^\gamma (\Omega _h; R^3)} \le \left\| \Pi ^Q_h [ \Pi ^V_h [\phi ] - \phi ] \right\| _{L^\gamma (\Omega _h; R^3)} + \left\| \Pi ^Q_h [\phi ] - \phi \right\| _{L^\gamma (\Omega _h; R^3)}\\&\quad \le \left\| \Pi ^V_h [\phi ] - \phi \right\| _{L^\gamma (\Omega _h; R^3)} + \left\| \Pi ^Q_h [\phi ] - \phi \right\| _{L^\gamma (\Omega _h; R^3)} \le c h \Vert \nabla _x\phi \Vert _{L^\gamma (\Omega ; R^3)}. \end{aligned}$$

As \(\gamma > 3\), we conclude that

$$\begin{aligned} |I_1|= & {} \left| \sum _{E \in E_h} \int _{\partial E_h} \left( \Pi ^Q_h \Pi ^V_h [ \phi ] - \phi \right) [ {\tilde{\mathbf{u}}}^k_h \cdot \mathbf{n} ]^- \left[ \left[ \varrho ^k_h \widehat{ \mathbf{u}^k_h } \right] \right] \ \mathrm{dS}_x \right| \nonumber \\\lesssim & {} h^{\frac{1}{4}} r^3_h (t) \Vert \nabla _x\phi \Vert _{L^\gamma (\Omega )}, \ \Vert r^3_h \Vert _{L^1(0,T)} \lesssim 1. \end{aligned}$$
(6.7)

Step 2 Next, we have

$$\begin{aligned} | I_2 |= & {} \left| \sum _{E \in E_h} \sum _{\Gamma _E \subset \partial E} \int _{\Gamma _E} \widehat{\mathbf{u}}^k_h \cdot \left( \Pi ^Q_h \Pi ^V_h [ \phi ] - \phi \right) [ {\tilde{\mathbf{u}}}^k_h \cdot \mathbf{n} ]^- \left[ \left[ { \varrho ^k_h } \right] \right] \ \mathrm{dS}_x \right| \\\lesssim & {} \left( - \sum _{\Gamma \in \Gamma _h} \int _{\Gamma } [ {\tilde{\mathbf{u}}}^k_h \cdot \mathbf{n} ]^- \left[ \left[ \varrho ^k_h \right] \right] ^2 \ \mathrm{dS}_x \right) ^{1/2} \\&\quad \times \left( \sum _{E \in E_h} \sum _{\Gamma _E \subset \partial E} \int _{\Gamma _E} |\widehat{\mathbf{u}}^k_h |^2 |{\tilde{\mathbf{u}}}^k_h \cdot \mathbf{n} | \left| \Pi ^Q_h \Pi ^V_h [ \phi ] - \phi \right| ^2 \ \mathrm{dS}_x \right) ^{1/2} \end{aligned}$$

where, in accordance with (5.10), the first integral is uniformly bounded in \(L^2(0,T)\).

As for the second integral, we use Hölder’s inequality to deduce that

$$\begin{aligned}&\sum _{E \in E_h} \sum _{\Gamma _E \subset \partial E} \int _{\Gamma _E} |\widehat{\mathbf{u}}^k_h |^2 |{\tilde{\mathbf{u}}}^k_h \cdot \mathbf{n} | \left| \Pi ^Q_h \Pi ^V_h [ \phi ] - \phi \right| ^2 \ \mathrm{dS}_x\\&\quad \le \sum _{E \in E_h} \Vert \Pi ^Q_h \Pi ^V_h [ \phi ] - \phi \Vert ^2_{L^\gamma (\partial E)} \left( \sum _{\Gamma _E \subset \partial E} \int _{\Gamma _E} |\widehat{\mathbf{u}}^k_h |^{\frac{2\gamma }{\gamma - 2}} |{\tilde{\mathbf{u}}}|^{\frac{\gamma }{\gamma - 2}} \ \mathrm{dS}_x \right) ^{\frac{\gamma - 2}{\gamma }}. \end{aligned}$$

Next, by virtue of the trace estimate (2.15) and Hölder’s inequality,

$$\begin{aligned}&\sum _{E \in E_h} \Vert \Pi ^Q_h \Pi ^V_h [ \phi ] - \phi \Vert ^2_{L^\gamma (\partial E)} \left( \sum _{\Gamma _E \subset \partial E} \int _{\Gamma _E} |\widehat{\mathbf{u}}^k_h |^{\frac{2\gamma }{\gamma - 2}} |{\tilde{\mathbf{u}}}|^{\frac{\gamma }{\gamma - 2}} \ \mathrm{dS}_x \right) ^{\frac{\gamma - 2}{\gamma }}\\&\quad \lesssim \sum _{E \in E_h} \left( h^{- \frac{2}{\gamma }}\Vert \Pi ^Q_h \Pi ^V_h [ \phi ] - \phi \Vert ^2_{L^\gamma (E)} + h^{2 - \frac{2}{\gamma }} \Vert \nabla _x\phi \Vert ^2_{L^\gamma (E)} \right) \\&\qquad \times \left( \sum _{\Gamma _E \subset \partial E} \int _{\Gamma _E} |\widehat{\mathbf{u}}^k_h |^{\frac{\gamma }{2 \gamma - 1}} |{\tilde{\mathbf{u}}}^k_h \cdot \mathbf{n} |^{\frac{2 \gamma }{2 \gamma - 1}} \ \mathrm{dS}_x \right) ^{\frac{2 \gamma - 1}{2\gamma }}\\&\quad \lesssim \sum _{E \in E_h} \left( h^{- \frac{2}{\gamma }}\Vert \Pi ^Q_h \Pi ^V_h [ \phi ] - \phi \Vert ^2_{L^\gamma (E)} + h^{2 - \frac{2}{\gamma }} \Vert \nabla _x\phi \Vert ^2_{L^\gamma (E)} \right) \\&\qquad \times \left( \int _{\partial E} |\widehat{\mathbf{u}}^k_h |^{\frac{3 \gamma }{\gamma - 2}} \ \mathrm{dS}_x \right) ^{2 \frac{\gamma - 2}{3 \gamma }}\left( \sum _{\Gamma _E \subset \partial E} \int _{\Gamma _E} |{{\tilde{\mathbf{u}}}}^k_h |^{\frac{3 \gamma }{\gamma - 2}} \ \mathrm{dS}_x \right) ^{\frac{\gamma - 2}{3 \gamma }}. \end{aligned}$$

Furthermore, by (2.16) and Hölder’s inequality,

$$\begin{aligned}&\sum _{E \in E_h} \left( h^{- \frac{2}{\gamma }}\Vert \Pi ^Q_h \Pi ^V_h [ \phi ] - \phi \Vert ^2_{L^\gamma (E)} + h^{2 - \frac{2}{\gamma }} \Vert \nabla _x\phi \Vert ^2_{L^\gamma (E)} \right) \left( \int _{\partial E} |\widehat{\mathbf{u}}^k_h |^{\frac{3 \gamma }{\gamma - 2}} \ \mathrm{dS}_x \right) ^{2 \frac{\gamma - 2}{3 \gamma }} \\&\qquad \times \left( \sum _{\Gamma _E \subset \partial E} \int _{\Gamma _E} |{{\tilde{\mathbf{u}}}}^k_h |^{\frac{3 \gamma }{\gamma - 2}} \ \mathrm{dS}_x \right) ^{\frac{\gamma - 2}{3 \gamma }}\\&\quad \lesssim \sum _{E \in E_h} \left( \frac{1}{h} \Vert \Pi ^Q_h \Pi ^V_h [ \phi ] - \phi \Vert ^2_{L^\gamma (E)} + h \Vert \nabla _x\phi \Vert ^2_{L^\gamma (E)} \right) \\&\qquad \times \left( \int _{E} |\widehat{\mathbf{u}}^k_h |^{\frac{3 \gamma }{\gamma - 2}} \ \mathrm{d} {x}\right) ^{2 \frac{\gamma - 2}{3 \gamma }} \left( \int _{E} |{\mathbf{u}}^k_h |^{\frac{3 \gamma }{\gamma - 2}} \ \mathrm{d} {x}\right) ^{\frac{\gamma - 2}{3 \gamma }}\\&\quad \lesssim \frac{1}{h} \Vert \Pi ^Q_h \Pi ^V_h [ \phi ] - \phi \Vert ^2_{L^\gamma (\Omega _h)} \left\| \widehat{\mathbf{u}}^k_h \right\| _{L^{\frac{3 \gamma }{\gamma - 2}}(\Omega _h)}^2 \left\| {\mathbf{u}}^k_h \right\| _{L^{\frac{3 \gamma }{\gamma - 2}}(\Omega _h)} \\&\qquad + h \Vert \nabla _x\phi \Vert ^2_{L^\gamma (\Omega )} \left\| \widehat{\mathbf{u}}^k_h \right\| _{L^{\frac{3 \gamma }{\gamma - 2}}(\Omega _h)}^2 \left\| {\mathbf{u}}^k_h \right\| _{L^{\frac{3 \gamma }{\gamma - 2}}(\Omega _h)}\\&\quad \lesssim h \Vert \nabla _x\phi \Vert ^2_{L^\gamma (\Omega )} \left\| {\mathbf{u}}^k_h \right\| _{L^{\frac{3 \gamma }{\gamma - 2}}(\Omega _h)}^3 \\&\quad \lesssim h^{\frac{5}{2} - \max \{ \frac{6}{\gamma }; \frac{3}{2} \} }\Vert \nabla _x\phi \Vert ^2_{L^\gamma (\Omega )} \left\| {\mathbf{u}}^k_h \right\| _{L^{6}(\Omega _h)}^3 \ \text{ provided }\ \gamma > 3, \end{aligned}$$

where we have used (2.17).

Finally, using the time estimates (2.20) we infer that

$$\begin{aligned}&h^{\frac{5}{2} - \max \{ \frac{6}{\gamma }; \frac{3}{2} \} }\Vert \nabla _x\phi \Vert ^2_{L^\gamma (\Omega )} \left\| {\mathbf{u}}^k_h \right\| _{L^{6}(\Omega _h)}^3 \\&\quad \le (\Delta t)^{-\frac{1}{2}} h^{\frac{5}{2} - \max \{ \frac{6}{\gamma }; \frac{3}{2} \} }\Vert \nabla _x\phi \Vert ^2_{L^\gamma (\Omega )} (\Delta t)^{\frac{1}{2}} \left\| {\mathbf{u}}^k_h \right\| _{L^{6}(\Omega _h)}^3. \end{aligned}$$

Summarizing we conclude that

$$\begin{aligned} |I_2|= & {} \left| \sum _{E \in E_h} \sum _{\Gamma _E \subset \partial E} \int _{\Gamma _E} \widehat{\mathbf{u}}^k_h \cdot \left( \Pi ^Q_h \Pi ^V_h [ \phi ] - \phi \right) [ \mathbf{u}^k_h \cdot \mathbf{n} ]^- \left[ \left[ { \varrho ^k_h } \right] \right] \ \mathrm{dS}_x \right| \nonumber \\\lesssim & {} h^{2 - \max \{ \frac{3}{\gamma }; \frac{3}{4} \} } r^4_h(t) \Vert \nabla _x\phi \Vert _{L^\gamma (\Omega )}, \ \Vert r^4_h \Vert _{L^1(0,T)} \lesssim 1. \end{aligned}$$
(6.8)

Step 3 Another application of Hölder’s inequality gives rise to

$$\begin{aligned} |I_3|= & {} \left| \sum _{E \in E_h } \int _E \varrho ^k_h \widehat{\mathbf{u}}^k_h ( \phi - \Pi ^Q_h \Pi ^V_h [\phi ] ) \mathrm{div}_h\mathbf{u}^k_h \ \mathrm{d} {x}\right| \\= & {} \left| \sum _{E \in E_h } \int _K \varrho ^k_h \widehat{\mathbf{u}}^k_h ( \phi - \Pi ^V_h [\phi ] ) \mathrm{div}_h\mathbf{u}^k_h \ \mathrm{d} {x}\right| \\\le & {} \Vert \varrho ^k_h \Vert _{L^\infty (\Omega _h;R^3)} \sum _{E \in E_h} \Vert \mathrm{div}_h\mathbf{u}^k_h \Vert _{L^2(E)} \Vert \mathbf{u}^k_h \Vert _{L^6 (E)} \left\| \phi - \Pi ^V_h [\phi ] \right\| _{L^3(E; R^3)} . \end{aligned}$$

Now, by virtue of (2.17) and (2.9),

$$\begin{aligned}&\Vert \varrho ^k_h \Vert _{L^\infty (\Omega _h)} \sum _{E \in E_h} \Vert \mathrm{div}_h\mathbf{u}^k_h \Vert _{L^2(E)} \Vert \mathbf{u}^k_h \Vert _{L^6 (E; R^3)} \left\| \phi - \Pi ^V_h [\phi ] \right\| _{L^3(E; R^3)}\\&\quad \lesssim \frac{1}{{h}^{3/ \gamma }} \Vert \varrho ^k_h \Vert _{L^\gamma (\Omega _h)} \Vert \mathrm{div}_h\mathbf{u}^k_h \Vert _{L^2(\Omega _h)} \Vert \mathbf{u}^k_h \Vert _{L^6 (\Omega _h;R^3)} \left\| \phi - \Pi ^V_h [\phi ] \right\| _{L^3(\Omega _h; R^3)}\\&\quad \lesssim h^{1 - \frac{3}{\gamma }} \Vert \varrho ^k_h \Vert _{L^\gamma (\Omega _h)} \Vert \mathrm{div}_h\mathbf{u}^k_h \Vert _{L^2(\Omega _h)} \Vert \mathbf{u}^k_h \Vert _{L^6 (\Omega _h;R^3)} \left\| \nabla _x\phi \right\| _{L^3(\Omega ; R^3)} \end{aligned}$$

yielding the desired conclusion

$$\begin{aligned} |I_3|= & {} \left| \sum _{E \in K_h } \int _E \varrho ^k_h \widehat{\mathbf{u}}^k_h ( \phi - \Pi ^Q_h \Pi ^V_h [\phi ] ) \mathrm{div}_x\mathbf{u}^k_h \ \mathrm{d} {x}\right| \nonumber \\\lesssim & {} \sqrt{h} r^5_h(t) \Vert \nabla _x\phi \Vert _{L^\gamma (\Omega )},\ \Vert r^5_h \Vert _{L^1(0,T)} \lesssim 1. \end{aligned}$$
(6.9)

Step 4 The last integral

$$\begin{aligned} |I_4| = \left| \sum _{E \in E_h} \sum _{\Gamma _E \subset \partial E} \int _{\Gamma _E} \phi \cdot \widehat{ \mathbf{u}^k_h } \varrho ^k_h ({\tilde{\mathbf{u}}}^k_n - \mathbf{u}^k_h ) \cdot \mathbf{n} \ \mathrm{dS}_x \right| \end{aligned}$$

can be handled in the same way as its counterpart in the continuity method.

6.2.3 Bounds on numerical dissipation

Finally, the numerical viscosity

$$\begin{aligned} h^\alpha \sum _{\Gamma \in \Gamma _{h, \mathrm{int}}} \int _{\Gamma } \left[ \left[ \varrho _h \mathbf{u}_h \right] \right] \cdot \left[ \left[ \widehat{ \Pi ^V_h [\phi ] } \right] \right] \chi \left( \frac{ \tilde{\mathbf{u}}^k_h \cdot \mathbf{n} }{h^\alpha } \right) \ \mathrm{dS}_x \end{aligned}$$

can be estimated by means of (5.9, 5.10) in a similar way as in the continuity method

$$\begin{aligned} h^\alpha \left| \sum _{\Gamma \in \Gamma _{h, \mathrm{int}}} \int _{\Gamma } \left[ \left[ \varrho _h \mathbf{u}_h \right] \right] \cdot \left[ \left[ \widehat{ \Pi ^V_h [\phi ] } \right] \right] \chi \left( \frac{ \tilde{\mathbf{u}}^k_h \cdot \mathbf{n} }{h^\alpha } \right) \ \mathrm{dS}_x \right| \!\lesssim \! h^{\alpha /2} r^6_h(t) \Vert \nabla _x\phi \Vert _{L^\gamma (\Omega ; R^3)}.\nonumber \\ \end{aligned}$$
(6.10)

Summing up (6.7)–(6.10) we obtain the consistency formulation of the momentum method:

$$\begin{aligned}&\int _{\Omega } D_t ( \varrho _h \widehat{\mathbf{u}}_h ) \cdot \phi \ \mathrm{d} {x} - \int _{\Omega } (\varrho _h \widehat{\mathbf{u}}_h \otimes \mathbf{u}_h) : \nabla _x\phi \ \mathrm{d} {x}\nonumber \\&\qquad + \int _{\Omega } \left[ \mu \nabla _h\mathbf{u}_h : \nabla _x\phi + \lambda \mathrm{div}_h\mathbf{u}_h \mathrm{div}_x\phi \right] \ \mathrm{d} {x} - \int _{\Omega } p(\varrho _h) \mathrm{div}_x\phi \ \mathrm{d} {x}\nonumber \\&\quad = \int _{\Omega } \mathbb {R}^2_h (t, \cdot ) : \nabla _x\phi \ \mathrm{d} {x}, \end{aligned}$$
(6.11)

for any \(\phi \in C^\infty _c({\Omega }; R^3)\), where \(\mathbb {R}^2_h\) is piecewise constant in time,

$$\begin{aligned} \left\| \mathbb {R}^2_h \right\| _{L^1(0,T; L^{\frac{\gamma }{\gamma - 1}}(\Omega ;R^3))} \lesssim h^\beta , \ \beta > 0. \end{aligned}$$
(6.12)

7 Convergence of the numerical solutions

We are ready to establish convergence of solutions of our numerical method to a weak solution of the limit problem. We take advantage of the consistency formulation derived in the preceding section that converts the problem to the framework of the mathematical theory developed in [10] and [20]. The reader may also consult [1] for a complete existence proof based on the technique of time discretization very close to the numerical method applied in the present paper. Throughout the whole section we shall systematically use our convention that all quantities defined on \(\Omega _h\) are extended to be zero outside \(\Omega _h\).

7.1 Local pressure estimates

The uniform bound (5.4) is not sufficient for passing to the limit in the pressure \(p(\varrho )\), the latter being bounded only in the non-reflexive space \(L^\infty (0,T; L^1(R^3))\). To get better integrability of the pressure, we use the quantities

$$\begin{aligned} \phi = \varphi \nabla _x\Delta ^{-1} [\eta \varrho _h] , \end{aligned}$$

where

$$\begin{aligned} \varphi (t,x)= & {} \psi (t) \omega (x) , \psi \in C^\infty _c(0,T),\ \eta , \ \omega \in C^\infty _c(\Omega ), \ - \Delta ^{-1}[v] \\ {}\equiv & {} \mathcal {F}^{-1}_{\xi \rightarrow x} \left[ \frac{1}{|\xi |^2 } \mathcal {F}_{x \rightarrow \xi } [ v] \right] , \end{aligned}$$

and \(\mathcal {F}\) denotes the standard Fourier transform, as test functions in the consistency formulation (6.11) of the momentum method:

$$\begin{aligned}&\int _0^T \int _{\Omega } \varphi \eta \Big [ p(\varrho _h) \varrho _h - \lambda \varrho _h \mathrm{div}_x\mathbf{u}_h \Big ] \ \mathrm{d} {x} \ \mathrm{d} t \nonumber \\&\quad =\int _0^T \int _{\Omega } \Big [ \lambda \mathrm{div}_x\mathbf{u}_h - p(\varrho _h) \Big ] \nabla _x\varphi \cdot \nabla _x(\Delta ^{-1} [\eta \varrho _h] ) \ \mathrm{d} {x} \ \mathrm{d} t \nonumber \\&\qquad - \int _0^T \int _{\Omega } \mathbb {R}^2_h : \nabla _x( \varphi \nabla _x(\Delta ^{-1} [ \eta \varrho _h] ) ) \ \mathrm{d} {x} \mathrm{d} t \nonumber \\&\qquad + \int _0^T \int _{\Omega } \mu \nabla _h\mathbf{u}_h : \nabla _x\left[ \varphi \nabla _x(\Delta ^{-1} [ \eta \varrho _h] ) \right] \ \mathrm{d} {x} \ \mathrm{d} t \nonumber \\&\qquad - \int _0^T \int _{\Omega } (\varrho _h \widehat{\mathbf{u}}_h \otimes \mathbf{u}_h) : \nabla _x\left( \varphi \nabla _x(\Delta ^{-1} [\eta \varrho _h] ) \right) \ \mathrm{d} {x} \ \mathrm{d} t \nonumber \\&\qquad + \int _0^T \int _{\Omega } D_t (\varrho _h \widehat{\mathbf{u}}_h) \cdot \varphi \nabla _x(\Delta ^{-1} [ \eta \varrho _h] ) \ \mathrm{d} {x} \ \mathrm{d} t . \end{aligned}$$
(7.1)

Furthermore, using a discretized version of the integration by parts formula and the consistency formulation of the momentum method (6.2), we deduce that

$$\begin{aligned}&\int _0^T \int _{\Omega } D_t (\varrho _h \widehat{\mathbf{u}}_h) \cdot \varphi \nabla _x(\Delta ^{-1} [\eta \varrho _h] ) \ \mathrm{d} {x} \ \mathrm{d} t \nonumber \\&\quad = - \int _0^T \int _{\Omega } \frac{ \varphi (t+ \Delta t) - \varphi (t) }{\Delta t} \varrho _h \widehat{\mathbf{u}}_h \cdot \nabla _x(\Delta ^{-1} [ \eta \varrho _h] ) \ \mathrm{d} {x} \ \mathrm{d} t \nonumber \\&\qquad - \int _0^T \int _{\Omega } \varphi \varrho _h (t- \Delta t) \widehat{\mathbf{u}}_h (t- \Delta t) \cdot \nabla _x\Delta ^{-1} [\eta D_t \varrho _h] \ \mathrm{d} {x} \ \mathrm{d} t \nonumber \\&\quad = - \int _0^T \int _{\Omega } \frac{ \varphi (t+ \Delta t) - \varphi (t) }{\Delta t} \varrho _h \widehat{\mathbf{u}}_h \cdot \nabla _x(\Delta ^{-1} [\eta \varrho _h] ) \ \mathrm{d} {x} \ \mathrm{d} t \nonumber \\&\qquad + \int _0^T \int _{\Omega } \varphi \varrho _h(t-\Delta t) \widehat{\mathbf{u}}_h(t- \Delta t) \cdot \nabla _x\Delta ^{-1}\left[ \eta \mathrm{div}_x(\varrho _h \mathbf{u}_h) \right] \ \mathrm{d} {x} \ \mathrm{d} t \nonumber \\&\qquad + \int _0^T \int _{\Omega } \varphi \varrho _h (t- \Delta t) \widehat{\mathbf{u}}_h(t- \Delta t) \cdot \nabla _x\Delta ^{-1}\left[ \eta \mathrm{div}_x\mathbf{R}^1_h \right] \ \mathrm{d} {x} \ \mathrm{d} t . \end{aligned}$$
(7.2)

We observe that the expression on the right-hand side of (7.1) is bounded uniformly for \(h \rightarrow 0\). Indeed combining the estimates (5.3), (5.4) we have

$$\begin{aligned}&\displaystyle \sup _{\tau \in (0,T)} \Vert \varrho _h \mathbf{u}_h (\tau , \cdot ) \Vert _{L^q(R^3, R^3)} \lesssim 1,\ q = \frac{2 \gamma }{\gamma + 1}, \end{aligned}$$
(7.3)
$$\begin{aligned}&\displaystyle \Vert \varrho _h \mathbf{u}_h \Vert _{L^2(0,T; L^s(R^3;R^3))} \lesssim 1,\ s = \frac{6 \gamma }{\gamma + 6} > 2 \ \text{ if }\ \gamma > 3. \end{aligned}$$
(7.4)

The integrals on the right-hand side of (7.1) can therefore be estimated in the same way as in [10, Chapter 5] and we may conclude that

$$\begin{aligned} \Vert \varrho _h \Vert _{L^{\gamma + 1}((0,T) \times K)} \le 1 \ \text{ for } \text{ any } \text{ compact }\ K \subset \Omega . \end{aligned}$$
(7.5)

7.2 Weak sequential compactness

In accordance with the uniform estimates (5.4)–(5.6), there is a subsequence of numerical solutions such that

$$\begin{aligned} \varrho _h \rightarrow \varrho \ \text{ weakly-(*) } \ \text{ in }\ L^\infty (0,T; L^\gamma (R^3)), \end{aligned}$$
(7.6)

and

$$\begin{aligned} \mathbf{u}_h \rightarrow \mathbf{u}\ \text{ weakly } \text{ in } \ L^2(0,T; L^6(R^3; R^3)). \end{aligned}$$
(7.7)

Moreover, we have \(\varrho \ge 0\), and, by virtue of (5.1),

$$\begin{aligned} \int _{\Omega } \varrho (\tau , \cdot ) \ \mathrm{d} {x} = \int _{\Omega } \varrho _0 \ \mathrm{d} {x} \ \text{ for } \text{ a.a. }\ t \in (0,T). \end{aligned}$$

Next, it follows from (2.9) that

$$\begin{aligned} \Vert \widehat{ \mathbf{u}}_h - \mathbf{u}_h \Vert _{L^2((0,T) \times \Omega _h;R^3)} \rightarrow 0, \end{aligned}$$
(7.8)

in particular,

$$\begin{aligned} \widehat{ \mathbf{u}}_h \rightarrow \mathbf{u}\ \text{ weakly } \text{ in } \ L^2(0,T; L^6(R^3; R^3)) \end{aligned}$$
(7.9)

provided \(\widehat{\mathbf{u}}_h\) is extended to be zero outside \(\Omega _h\).

Finally, we observe that (5.5) implies

$$\begin{aligned} \nabla _h\mathbf{u}_h \rightarrow \nabla _x\mathbf{u}\ \text{ weakly } \text{ in }\ L^2((0,T) \times R^3; R^{3 \times 3}); \end{aligned}$$
(7.10)

whence the limit velocity field satisfies

$$\begin{aligned} \mathbf{u}\in L^2(0,T; W^{1,2}(R^3; R^3)). \end{aligned}$$

Remark 7.1

The fact that the weak limit of \(\nabla _h\mathbf{u}_h\) coincides with \(\nabla _x\mathbf{u}\) follows from the “density” of the spaces \(V_{h,0}\) in \(W^{1,2}_0\) stated in (2.9).

In addition, we may use Lemma 2.1 to construct the smooth approximations \(R^V_h[ \mathbf{u}_h ]\),

$$\begin{aligned} R^V_h [\mathbf{u}_h] \rightarrow \mathbf{u}\ \text{ weakly } \text{ in }\ L^2(0,T; W^{1,2}(R^3;R^3)). \end{aligned}$$

It follows from (2.26) that the limit \(\mathbf{u}\) vanishes on any compact \(K_e \subset R^3 {\setminus } \overline{\Omega }\). Since \(\Omega \) is Lipschitz, we conclude that

$$\begin{aligned} \mathbf{u}\in L^2(0,T; W^{1,2}_0(\Omega ; R^3)). \end{aligned}$$

Remark 7.2

Note that this is the only point, where certain regularity of \(\partial \Omega \) is needed. As already pointed out, the assumption that \(\Omega \) is Lipschitz can be considerably relaxed.

To establish the weak convergence of convective terms, we need the following result that can be seen as a variant of [18, Lemma 2.3].

Lemma 7.1

Let \(\{ v_h \}_{h > 0}\), \(\{ w_h \}_{h > 0}\) be two sequences of functions in \((0,T) \times Q\), Q a domain in \(R^N\), such that

$$\begin{aligned}&v_h , w_h \ \text{ are } \text{ constant } \text{ functions } \text{ in } \text{ time } \text{ on } \text{ any } \text{ interval }\ [k \Delta t, (k+1) \Delta t), \\&\quad k= 0,1,\dots , \ \Delta t \approx h,\\&v_h \rightarrow v \ \text{ weakly } \text{ in }\ L^{p_1}(0,T; L^{q_1}(Q)), \ \\&w_h \rightarrow w \ \text{ weakly } \text{ in }\ L^{p_2}(0,T; L^{q_2}(Q)),\ \frac{1}{p_1} + \frac{1}{p_2} = \frac{1}{q_1} + \frac{1}{q_2} = 1, \end{aligned}$$
$$\begin{aligned}&\displaystyle \left| \int _{\Omega } D_t v_h \phi \ \mathrm{d} {x} \right| \le r_h(t) \Vert \phi \Vert _{W^{k,p}(Q)} \ \text{ for } \text{ certain }\ k, p \ge 1,\ \Vert r^h \Vert _{L^1(0,T)} \lesssim 1,\qquad \quad \end{aligned}$$
(7.11)
$$\begin{aligned}&\displaystyle \left\| w_h(t,x) - w_h(t, x - \xi ) \right\| _{L^{p_2}(0,T; L^{q_2}(Q))} \rightarrow 0 \ \text{ as }\ |\xi | \rightarrow 0 \ \text{ uniformly } \text{ in }\ h.\qquad \quad \end{aligned}$$
(7.12)

Then

$$\begin{aligned} v_h w_h \rightarrow v w \ \text{ in } \text{ the } \text{ sense } \text{ of } \text{ distributions } \text{ in }\ (0,T) \times Q. \end{aligned}$$

In agreement with the gradient estimates (5.5) and the compactness properties of the space \(H^1_{V_h}\) stated in (2.25), we observe that the sequence \(\{ \mathbf{u}_h \}_{h > 0}\) satisfies the hypothesis (7.12) with \(p_2 = q_2 = 2\;Q = \Omega \), while the hypothesis (7.11) can be checked for \(\varrho _h\), \(\varrho _h \widehat{\mathbf{u}}_h\) with the help of the consistency formulations (6.2, 6.11). Thus successive application of Lemma 7.1 gives rise to the following limits:

$$\begin{aligned} \varrho _h \mathbf{u}_h \rightarrow \varrho \mathbf{u}\ \text{ weakly } \text{ in }\ L^2(0,T; L^{\frac{6 \gamma }{\gamma + 6}}(\Omega ; R^3)), \end{aligned}$$
(7.13)

and

$$\begin{aligned} \varrho _h \widehat{\mathbf{u}}_h \otimes \mathbf{u}_h \rightarrow \varrho \mathbf{u}\otimes \mathbf{u}\ \text{ weakly } \text{ in } \ L^q((0,T) \times \Omega ; R^{3 \times 3}) \ \text{ for } \text{ some }\ q > 1, \end{aligned}$$
(7.14)

Remark 7.3

As for the exponent q in (7.14), we recall that

by interpolation.

7.3 Limit in the field equations

At this stage we are ready to pass to the limit in the consistency formulation of the numerical method. Letting \(h \rightarrow 0\) in (6.2, 6.11) we obtain

$$\begin{aligned} \int _0^T \int _{R^3} \Big [ \varrho \partial _t \varphi + \varrho \mathbf{u}\cdot \nabla _x\varphi \Big ] \ \mathrm{d} {x}\ \mathrm{d} t = - \int _{R^3} \varrho _0 \varphi (0, \cdot ) \ \mathrm{d} {x}\end{aligned}$$
(7.15)

for any \(\varphi \in C^\infty _c([0,T) \times R^3)\);

$$\begin{aligned}&\int _0^T \int _{\Omega } \Big [ \varrho \mathbf{u}\cdot \partial _t \varphi + \varrho \mathbf{u}\otimes \mathbf{u}: \nabla _x\varphi + \overline{p(\varrho )} \mathrm{div}_x\varphi \Big ] \ \mathrm{d} {x} \ \mathrm{d} t \\&\quad = \int _0^T \int _{\Omega } \Big [ \mu \nabla _x\mathbf{u}: \nabla _x\varphi + \lambda \mathrm{div}_x\mathbf{u}\ \mathrm{div}_x\varphi \Big ] \ \mathrm{d} {x} \ \mathrm{d} t - \int _{\Omega } \varrho _0 \mathbf{u}_0 \cdot \varphi (0,\cdot ) \ \mathrm{d} {x}\nonumber \end{aligned}$$
(7.16)

for any \(\varphi \in C^\infty _c([0,T) \times {\Omega }; R^3)\).

Remark 7.4

In view of the local pressure estimate (7.5) we may assume that

$$\begin{aligned} p(\varrho ^k_h) \rightarrow \overline{p(\varrho )} \ \text{ weakly } \text{ in } \ L^{\frac{\gamma + 1}{\gamma }}(K) \ \text{ for } \text{ any } \text{ compact }\ K \subset \Omega . \end{aligned}$$

7.4 Strong convergence of the density

In order to finish the proof of convergence we have to show a.e. pointwise convergence of the numerical densities in order to replace \(\overline{p(\varrho )}\) by \(p(\varrho )\) in (7.16). To this end, we use the method of Lions [20] based on a “weak continuity” property of the effective viscous flux. Going back to (7.1), (7.2), we focus on the term

$$\begin{aligned} \int _0^T \int _{\Omega } \nabla _h\mathbf{u}_h : \nabla _x\left[ \varphi \nabla _x(\Delta ^{-1} [\eta \varrho _h] ) \right] \ \mathrm{d} {x} \ \mathrm{d} t . \end{aligned}$$
(7.17)

Following [19], we perform integration by parts to obtain

$$\begin{aligned} \int _{\Omega } \nabla _h\mathbf{u}_h : \nabla _x\phi \ \mathrm{d} {x}= & {} \int _{\Omega } \nabla _h\mathbf{u}_h : \left( \nabla _x- \nabla _x^T \right) \phi \ \mathrm{d} {x} + \int _{\Omega } \nabla _h\mathbf{u}_h : \nabla _x^T \phi \ \mathrm{d} {x}\\= & {} \int _{\Omega } \mathbf{curl}_h \mathbf{u}_h : \mathbf{curl}_x\phi \ \mathrm{d} {x} + \int _{\Omega } \nabla _h\mathbf{u}_h : \nabla _x^T \phi \ \mathrm{d} {x}\\= & {} \int _{\Omega } \mathbf{curl}_h \mathbf{u}_h : \mathbf{curl}_x\phi \ \mathrm{d} {x} + \int _{\Omega } \mathrm{div}_h\mathbf{u}_h : \mathrm{div}_x\phi \ \mathrm{d} {x} + \ \text{ error } \text{ term }, \end{aligned}$$

where the error is estimated by means of [19, Lemma 8.2] as

$$\begin{aligned} \left| \int _{\Omega } \nabla _h\mathbf{u}_h : \nabla _x^T \phi \ \mathrm{d} {x} - \int _{\Omega } \mathrm{div}_h\mathbf{u}_h : \mathrm{div}_x\phi \ \mathrm{d} {x} \right| \lesssim h \Vert \nabla _h\mathbf{u}_h \Vert _{L^2(\Omega ; R^{3 \times 3})} \Vert \nabla ^2 \phi \Vert _{L^2(\Omega ; R^{27})}. \end{aligned}$$
(7.18)

Returning to (7.17), we get

$$\begin{aligned}&\int _0^T \int _{\Omega } \nabla _h\mathbf{u}_h : \nabla _x\left[ \varphi \nabla _x(\Delta ^{-1} [\eta \varrho _h] ) \right] \ \mathrm{d} {x} \ \mathrm{d} t \\&\quad =\int _0^T \int _{\Omega } \mathbf{curl}_h \mathbf{u}_h : \mathbf{curl}_x\left[ \varphi \nabla _x(\Delta ^{-1} [ \eta \varrho _h] ) \right] \ \mathrm{d} {x} \ \mathrm{d} t \\&\qquad + \int _0^T \int _{\Omega } \nabla _h\mathbf{u}_h : \nabla _x^T \left[ \varphi \nabla _x(\Delta ^{-1} [ \eta \varrho _h] ) \right] \ \mathrm{d} {x} \ \mathrm{d} t , \end{aligned}$$

with

$$\begin{aligned}&\int _0^T \int _{\Omega } \nabla _h\mathbf{u}_h : \nabla _x^T \left[ \varphi \nabla _x(\Delta ^{-1} [\eta \varrho _h] ) \right] \ \mathrm{d} {x} \ \mathrm{d} t \\&\quad = \int _0^T \int _{\Omega } \nabla _h\mathbf{u}_h : \nabla _x^T \left[ \varphi \nabla _x\left( \Delta ^{-1} \left[ \eta \varrho _h - \eta R^Q_h [\varrho _h] \right] \right) \right] \ \mathrm{d} {x} \ \mathrm{d} t \\&\qquad + \int _0^T \int _{\Omega } \nabla _h\mathbf{u}_h : \nabla _x^T \left[ \varphi \nabla _x\left( \Delta ^{-1} \left[ \eta R^Q_h [\varrho _h] \right] \right) \right] \ \mathrm{d} {x} \ \mathrm{d} t \end{aligned}$$

where \(R^Q_h\) are the regularizing operators introduced in Lemma 2.1. Thus, recalling the bounds (5.10) and applying Lemma 2.1, we obtain

$$\begin{aligned} \int _0^T \Vert \varrho _h - R^Q_h [\varrho _h] \Vert _{L^2(K)}^2 \ \mathrm{d} t \lesssim h^2 \int _0^T \Vert \varrho _h \Vert ^2_{H^1_{Q_h}(\Omega _h)} \ \mathrm{d} t \lesssim h^{1 - \alpha }, \end{aligned}$$

where \(K \subset \Omega \) is a compact set containing the spatial support of the function \(\eta \). In particular, the integral

$$\begin{aligned} \int _0^T \int _{\Omega } \nabla _h\mathbf{u}_h : \nabla _x^T \left[ \varphi \nabla _x\left( \Delta ^{-1} \left[ \eta \varrho _h - \eta R^Q_h [\varrho _h] \right] \right) \right] \ \mathrm{d} {x} \ \mathrm{d} t \end{aligned}$$

vanishes for \(h \rightarrow 0\) and may be included in the error term on the right-hand side of (7.1).

Similarly, by the same token,

$$\begin{aligned} \Vert \nabla _xR^Q_h [\varrho _h] \Vert _{L^2(0,T; L^2(K;R^3))} \approx \left( \int _0^T \Vert \varrho _h \Vert ^2_{H^1_{Q_h}(\Omega )} \ \mathrm{d} t \right) ^{1/2} \lesssim h^{- \frac{1 + \alpha }{2}}; \end{aligned}$$

whence, in accordance with (7.18) we may replace

$$\begin{aligned}&\int _0^T \int _{\Omega } \nabla _h\mathbf{u}_h : \nabla _x^T \left[ \varphi \nabla _x\left( \Delta ^{-1} \left[ \eta R^Q_h [\varrho _h] \right] \right) \right] \ \mathrm{d} {x} \ \mathrm{d} t \\&\quad \approx \int _0^T \int _{\Omega } \mathrm{div}_h\mathbf{u}_h : \mathrm{div}_x\left[ \varphi \nabla _x\left( \Delta ^{-1} \left[ \eta R^Q_h [\varrho _h] \right] \right) \right] \ \mathrm{d} {x} \ \mathrm{d} t \\&\quad \approx \int _0^T \int _{\Omega } \mathrm{div}_h\mathbf{u}_h : \mathrm{div}_x\left[ \varphi \nabla _x\left( \Delta ^{-1} \left[ \eta \varrho _h \right] \right) \right] \ \mathrm{d} {x} \ \mathrm{d} t . \end{aligned}$$

Summing up the previous estimates and regrouping terms in (7.1) we obtain

$$\begin{aligned}&\int _0^T \int _{\Omega } \varphi \eta \Big [ p(\varrho _h) \varrho _h - (\lambda + \mu ) \varrho _h \mathrm{div}_x\mathbf{u}_h \Big ] \ \mathrm{d} {x} \ \mathrm{d} t \nonumber \\&\quad =\int _0^T \int _{\Omega } \Big [ (\lambda + \mu ) \mathrm{div}_x\mathbf{u}_h - p(\varrho _h) \Big ] \nabla _x\varphi \cdot \nabla _x(\Delta ^{-1} [\eta \varrho _h] ) \ \mathrm{d} {x} \ \mathrm{d} t \nonumber \\&\qquad - \int _0^T \int _{\Omega } \frac{ \varphi (t+ \Delta t) - \varphi (t) }{\Delta t} \varrho _h \widehat{\mathbf{u}}_h \cdot \nabla _x(\Delta ^{-1} [\eta \varrho _h] ) \ \mathrm{d} {x} \ \mathrm{d} t \nonumber \\&\qquad + \int _0^T \int _{\Omega } \mu \mathbf{curl}_h \mathbf{u}_h \cdot \mathbf{curl}_x\left[ \varphi \nabla _x(\Delta ^{-1} [\eta \varrho _h] ) \right] \ \mathrm{d} {x} \ \mathrm{d} t \nonumber \\&\qquad - \int _0^T \int _{\Omega } (\varrho _h \widehat{\mathbf{u}}_h \otimes \mathbf{u}_h) : \left( \nabla _x\varphi \otimes \nabla _x(\Delta ^{-1} [\eta \varrho _h] ) \right) \ \mathrm{d} {x} \ \mathrm{d} t \nonumber \\&\qquad - \int _0^T \int _{\Omega } \varphi (\varrho _h \widehat{\mathbf{u}}_h \otimes \mathbf{u}_h) : (\nabla _x\otimes \nabla _x) (\Delta ^{-1} [\eta \varrho _h] ) \ \mathrm{d} {x} \ \mathrm{d} t \nonumber \\&\qquad + \int _0^T \int _{\Omega } \varphi (\varrho _h \widehat{\mathbf{u}}_h)(t - \Delta t) \cdot \nabla _x\Delta ^{-1}\left[ \eta \mathrm{div}_x(\varrho _h \mathbf{u}_h) \right] \ \mathrm{d} {x} \ \mathrm{d} t \! + \!E_h(\varphi , \eta ),\qquad \end{aligned}$$
(7.19)

with the error term \(E_h (\varphi , \eta ) \rightarrow 0\) as \(h \rightarrow 0\) for any fixed \(\varphi , \eta \).

Remark 7.5

It is worth noting that this is the only step in the proof, where we have used the artificial viscosity term included in the upwinding.

Now we apply a similar treatment to the limit Eq. (7.16), specifically, we use the test functions

$$\begin{aligned} \phi = \varphi \nabla _x\Delta ^{-1} [\eta \varrho ] . \end{aligned}$$

After a straightforward manipulation (cf. [10, Chapter 6]) we arrive at

$$\begin{aligned}&\int _0^T \int _{\Omega } \varphi \eta \Big [ \overline{p(\varrho )} \varrho - (\lambda + \mu ) \varrho \mathrm{div}_x\mathbf{u}\Big ] \ \mathrm{d} {x} \ \mathrm{d} t \nonumber \\&\quad =\int _0^T \int _{\Omega } \Big [ \lambda \mathrm{div}_x\mathbf{u}- \overline{p(\varrho )} \Big ] \nabla _x\varphi \cdot \nabla _x(\Delta ^{-1} [\eta \varrho ] ) \ \mathrm{d} {x} \ \mathrm{d} t \nonumber \\&\qquad - \int _0^T \int _{\Omega } \partial _t \varphi \varrho \mathbf{u}\cdot \nabla _x(\Delta ^{-1} [\eta \varrho ] ) \ \mathrm{d} {x} \ \mathrm{d} t \nonumber \\&\qquad + \int _0^T \int _{\Omega } \mu \mathbf{curl}_x\mathbf{u}\cdot \mathbf{curl}_x\left[ \varphi \nabla _x(\Delta ^{-1} [\eta \varrho ] ) \right] \ \mathrm{d} {x} \ \mathrm{d} t \nonumber \\&\qquad - \int _0^T \int _{\Omega } (\varrho {\mathbf{u}} \otimes \mathbf{u}) : \left( \nabla _x\varphi \otimes \nabla _x(\Delta ^{-1} [\eta \varrho ] ) \right) \ \mathrm{d} {x} \ \mathrm{d} t \nonumber \\&\qquad - \int _0^T \int _{\Omega } \varphi (\varrho {\mathbf{u}} \otimes \mathbf{u}) : (\nabla _x\otimes \nabla _x) (\Delta ^{-1} [\eta \varrho ] ) \ \mathrm{d} {x} \ \mathrm{d} t \nonumber \\&\qquad + \int _0^T \int _{\Omega } \varphi \varrho {\mathbf{u}} \cdot \nabla _x\Delta ^{-1}\left[ \eta \mathrm{div}_x(\varrho \mathbf{u}) \right] \ \mathrm{d} {x} \ \mathrm{d} t . \end{aligned}$$
(7.20)

The principal idea due to Lions [20] is that all terms on the right-hand side of (7.19) converge to their counterparts in (7.20). This has been proved in the continuous case in [20] and for the time discretization problem in [1, Section 3.3], Lions [20]. The same result at the level of numerical discretization was obtained by Karlsen and Karper [18], Karper [19]. Here, we recall that the error terms in (7.19) vanish for \(h \rightarrow 0\); whence the most difficult task is to show that

$$\begin{aligned}&- \int _0^T \int _{\Omega } \varphi (\varrho _h \widehat{\mathbf{u}}_h \otimes \mathbf{u}_h) : (\nabla _x\otimes \nabla _x) (\Delta ^{-1} [\eta \varrho _h] ) \ \mathrm{d} {x} \ \mathrm{d} t \nonumber \\&\quad + \int _0^T \int _{\Omega } \varphi (\varrho _h \widehat{\mathbf{u}}_h)(t - \Delta t) \cdot \nabla _x\Delta ^{-1} \mathrm{div}_x(\eta \varrho _h \mathbf{u}_h) \ \mathrm{d} {x} \ \mathrm{d} t \nonumber \\&\quad \rightarrow \nonumber \\&\quad - \int _0^T \int _{\Omega } \varphi (\varrho {\mathbf{u}} \otimes \mathbf{u}) : (\nabla _x\otimes \nabla _x) (\Delta ^{-1} [\eta \varrho ] ) \ \mathrm{d} {x} \ \mathrm{d} t \nonumber \\&\quad + \int _0^T \int _{\Omega } \varphi \varrho {\mathbf{u}} \cdot \nabla _x\Delta ^{-1} \mathrm{div}_x(\eta \varrho \mathbf{u}) \ \mathrm{d} {x} \ \mathrm{d} t . \end{aligned}$$
(7.21)

Moreover, in view of the numerical dissipation estimates (5.7), we may replace \((\varrho _h \widehat{\mathbf{u}}_h)(t - \Delta t)\) by \(\varrho _h \widehat{\mathbf{u}}_h\). Finally, we observe that the velocity field \(\mathbf{u}_h\) can be approximated by its spatial regularization in the spirit of Lemma 2.1,

$$\begin{aligned} \Vert \mathbf{u}_h - R^V_h[\mathbf{u}_h] \Vert _{L^2(0,T; L^q(\Omega ; R^3))} \lesssim h ^\beta , \ \beta = \beta (q) > 0 \ \text{ for } \text{ any }\ 2 \le q < 6. \end{aligned}$$

In particular, we may write \(R^V_h[ \mathbf{u}_h ]\) in place of \(\mathbf{u}_h\) in (7.21). Now, the limit (7.21) can be verified exactly as in [1, Section 3.3] or Karper [19, Lemma 9.3].

Thus we get the desired conclusion - the effective viscous flux identity due to Lions [20]:

$$\begin{aligned}&\int _0^T \int _{\Omega } \varphi \Big [ p(\varrho _h) \varrho _h - (\lambda + \mu ) \varrho _h \mathrm{div}_x\mathbf{u}_h \Big ] \ \mathrm{d} {x} \ \mathrm{d} t \nonumber \\&\quad \rightarrow \int _0^T \int _{\Omega } \varphi \Big [ \overline{p(\varrho )} \varrho - (\lambda + \mu ) \varrho \mathrm{div}_x\mathbf{u}\Big ] \ \mathrm{d} {x} \ \mathrm{d} t \end{aligned}$$
(7.22)

as \(h \rightarrow 0\) for any \(\varphi \in C^\infty _c((0,T) \times \Omega )\), which yields the crucial relation

$$\begin{aligned} \overline{\varrho \mathrm{div}_x\mathbf{u}} \ge \varrho \mathrm{div}_x\mathbf{u}. \end{aligned}$$
(7.23)

The inequality (7.23) implies convergence \(\varrho _h \rightarrow \varrho \) a.e. in \((0,T) \times \Omega \). Indeed the regularization procedure of DiPerna and Lions [7] can be applied to show that \(\varrho \) is a renormalized solution of the continuity equation, in particular,

$$\begin{aligned} \int _{\Omega } \varrho \log (\varrho ) (\tau , \cdot ) \ \mathrm{d} {x} + \int _0^\tau \int _{\Omega } \varrho \mathrm{div}_x\mathbf{u} \ \mathrm{d} {x} \ \mathrm{d} t \le \int _{\Omega } \varrho _0 \log (\varrho _0) \ \mathrm{d} {x} \ \text{ for } \text{ any }\ \tau \in [0,T], \end{aligned}$$
(7.24)

cf. [10, Chapter 6]. On the other hand, passing to the limit in the renormalized continuity method (4.1) for \(b(\varrho ) = \varrho \log (\varrho )\) we obtain

$$\begin{aligned} \int _{\Omega } \overline{ \varrho \log (\varrho )} (\tau , \cdot ) \ \mathrm{d} {x} + \int _0^\tau \int _{\Omega } \overline{\varrho \mathrm{div}_x\mathbf{u}} \ \mathrm{d} {x} \ \mathrm{d} t \le \int _{\Omega } \varrho _0 \log (\varrho _0) \ \mathrm{d} {x} \ \text{ for } \text{ a.a }\ \tau \in (0,T). \end{aligned}$$
(7.25)

Combining (7.23)–(7.25) we get

$$\begin{aligned} \overline{\varrho \log (\varrho )} = \varrho \log (\varrho ) \end{aligned}$$

yielding the desired conclusion

$$\begin{aligned} \varrho _h \rightarrow \varrho \ \text{ in }\ L^1((0,T) \times \Omega ). \end{aligned}$$
(7.26)

Seeing that the energy inequality (1.12) follows from (4.5) we have completed the proof of Theorem 3.1.

8 Unconditional convergence

Our ultimate goal is to discuss the situation when both the data \(\varrho _0\), \(\mathbf{u}_0\) and the underlying physical domain \(\Omega \) are regular. Specifically, we claim the following result concerning unconditional convergence of bounded numerical solutions.

Theorem 8.1

In addition to the hypotheses of Theorem 3.1, suppose that \(\Omega \) is a bounded domain of class \(C^{2 + \nu }\) and the initial data satisfy

$$\begin{aligned} \varrho _0 \in W^{1,6}(\Omega ), \quad \varrho _0 \ge \underline{\varrho } > 0 \quad \text{ in } \quad \Omega , \quad \mathbf{u}\in W^{2,2}(\Omega ;R^3), \end{aligned}$$

and \(\eta = 0\). Moreover, suppose that there exists a positive constant r such that

$$\begin{aligned} \varrho ^k_h \le r \quad \text{ for } \text{ all } \quad k = 1,2, \dots ,\ h \rightarrow 0. \end{aligned}$$
(8.1)

Then the convergence claimed in Theorem 3.1 is unconditional, meaning the limit solution \(\varrho \), \(\mathbf{u}\) is regular, unique, and the whole family of numerical solutions converges to it.

Proof

The hypothesis (8.1) implies that the density component of the limit solution is bounded. Using the conditional regularity result proved in [11, Theorem 2.4] and [15, Theorem 4.6] we conclude that the limit solution is regular whence unique.\(\square \)

Under the condition described in Theorem 8.1, it is possible to obtain qualitative estimates on the rate of convergence of the numerical scheme, see [12].