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1 Introduction

There is a great theoretical and evidently also practical interest in the problem of con-
vergence of numerical methods used for simulation of fluids in continuum mechanics.
Ignoring the influence of temperature changes we consider a mathematical model
of a compressible, barotropic, viscous fluid occupying a bounded physical domain
Q C R>.1In the Eulerian coordinate system, the time evolution of the fluid is described
by means of the mass density ¢ = o(¢, x) and the velocity fieldu = u(¢, x),t € (0, T),
x € 2, governed by the Navier—Stokes system of equations:

0 + divy(ou) =0, (1.1)
9 (ou) +divy(ou ® u) + Vi p(0) = div,S(Vyu), (1.2)

where p = p(p) is the pressure, and the symbol S(V,u) denotes the viscous stress
tensor, here determined by Newton’s rheological law:

2
S(Viu) = (qu + fou — gdivxu]l) + ndiveul, w >0, n=>0. (1.3)

The barotropic pressure p = p(p) is a continuously differentiable function of the
density satisfying
P

p(0)=0, p'(0)>0 forall ¢>0, Qli)n;o o] =Poo>0 foracertain y>3. (1.4)

Remark 1.1 The condition y > 3istechnical; the so-called adiabatic exponent for real
fluids ranges in the interval y € (1, 5/3], where the extremal value y = 1 corresponds
to the isothermal case, while y = 5/3 characterizes the monoatomic gas.
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Convergence of a numerical method for the compressible. . . 669

Remark 1.2 Since the viscosity coefficients u and n are constant, we may write

div,S(V,u) = pAu + AV, diviu, A= % +n>0. (1.5)

The system is supplemented with the standard no-slip boundary condition
ule =0, (1.6)

and the initial conditions

0(0,) =00, u(0,-)=ug, go>0 inQ. (1.7)
Remark 1.3 We deliberately omitted the action of an external force to simplify the
presentation. As will become clear in what follows, a bounded driving force can be
incorporated in the system with only minor modifications of the proof of convergence.
1.1 Weak solutions
We adopt the standard weak formulation of the problem (1.1)—(1.7).
Definition 1.1 We say that [g, u] is a weak solution to the problem (1.1)—(1.7) in

0,7) x Qif:

020 aain(0,7)xQ, 0 € L0, T; LY(Q)), ue L0, T; Wy (2 RY)),
(1.8)

(2 R)); (1.9)

2

y
p(o) € L]((O, T) x Q), ou € L, T; L7+

T
/ /I:Q8,¢+Qu~vx(p:| dx dt:—/Q()(p(O, ) dx (1.10)
0 Q Q

for any ¢ € C°([0, T') x Q);

T
/ / [Qu -0 t+ou®u: Vep + p(Q)diVx(p:I dx dr
0 Q

T
=/ /[uvxuzvx(p+kdivxu divxgo] dx dt—/ o0uo - (0, -) dx
0 Q Q
(1.11)

for any ¢ € C2°([0, T') x €; R3);
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670 E. Feireisl et al.

e the energy inequality

1 T
/ [—Qlu|2+ P(@)} (t,) dx+/ / [M|qu|2+k|divxu|2] dx dr
Ql2 0 Jo

4
S/[lgoluolz—i-P(Qo)} ar witi P =0 [ 2P a2
al2 1z

holds for a.a. t € (0, T).

The existence of global-in-time weak solutions under the hypothesis y > 9/5 in
(1.4) was proved by Lions [20]. The result was later extended to the range y > 3/2 in
[13]. Unfortunately, the proof of existence in the “subcritical” range y < 3 consists of
at least two steps performed at different level of approximations and as such therefore
not directly transferable to the numerical setting.

1.2 Numerical method

Our goal is to propose a numerical method for solving the Navier-Stokes system
(1.1-1.7) and to show its stability with respect to the underlying spatial domain and
convergence towards a weak solution specified in Definition 1.1. To this end, we
adapt the discontinuous Galerkin finite element scheme proposed in [17,18] for the
compressible Navier—Stokes system.

Since we are interested in smooth spatial domains, we consider an unfitted mesh
on a family of polyhedral domains {€2j};~0 approximating the target physical space
2 in the following sense: For any compact K; C €2 it holds

K; C Qp forallh > 0 small enough, (1.13)
and, similarly, for any compact K, C R3\§,
K., C R3\§h forall » > 0 small enough, (1.14)

cf. Babuska and Aziz [2,3].

Besides the relatively straightforward modifications to accommodate the case of
variable numerical domain, we also introduce a new “dissipative” discretization imple-
mented in the upwind terms. In such a way, we eliminate completely the artificial
viscosity regularization used by several authors (see e.g. Eymard et al. [9]) including
the original scheme proposed in [18]. Very roughly indeed, this new approach may be
compared to adding an artificial viscosity to both equations in (1.1, 1.2):

d0 + divy(ow) ~ h*divy(g(Ju))Vyo),
3 (ou) + divy(ou ® u) + Vi p(0) — divyS(Vym) ~ h*divy (g(lul) Vi (ow)),
where the artificial viscosity is active only for small values of the velocity amplitude

|u|. The resulting “dissipative” upwind operator remains therefore much closer to the
approximated convective terms in the continuous equations.

@ Springer



Convergence of a numerical method for the compressible. . . 671

We note that the fact that the limit problem is defined on a possibly smooth domain
may be of interest when establishing convergence of the scheme. The problem (1.1)-
(1.7) is known to possess a local regular solution that can be extended to the full time
interval (0, T') as soon as we control the amplitude of the density, see Sun, Wang, and
Zhang [21]. Moreover, any weak solution coincides with the strong solution as long
as the latter exists, see [11]. Consequently, boundedness of the numerical densities
implies unconditional convergence as long as the domain €2 is sufficiently smooth, see
Sect. 8 for details.

The paper is organized as follows. In Sect. 2, we introduce the necessary numerical
framework including the basic notation and several useful properties of the underlying
function spaces. The numerical scheme is introduced in Sect. 3, where we also state
our main result concerning convergence towards a weak solution of the Navier—Stokes
system. In Sect. 4, we derive a renormalized version of the continuity equation as well
as the discrete version of the total energy balance. Section 5 is devoted to the stability
of the scheme, containing the uniform bounds necessary for the limit passage. In Sect.
6, we discuss the problem of consistency of the method rewriting finally the numerical
scheme in terms of the standard weak formulation based on smooth test functions.
Having established consistency, we show convergence of the scheme by adapting the
steps of [ 10, Chapter 7]. Here, similarly to the existence theory, the key idea is the weak
continuity property of the effective viscous flux discovered by Lions [20]. Finally, we
discuss the implications of some recent results concerning the weak-strong unique-
ness property and regularity of the weak solutions on the problem of unconditional
convergence of the numerical scheme in Sect. 8.

2 Preliminaries

In this section, we collect the necessary material from numerical analysis. For two
numerical quantities a, b, we shall write

a<b ifa<ch, ¢>0 aconstant, a~b ifa<b and b <a.

Here, “constant” typically means a generic quantity independent of the size of the
mesh and the time step used in the numerical scheme as well as other parameters as
the case may be.

2.1 Mesh

We suppose that the numerical domains €2, admit a tetrahedral mesh E},; the individual
elements in the mesh will be denoted by E € Ej,. Faces in the mesh are denoted by
I', whereas I'j, is the set of all faces. Moreover, the set of faces ' C 9€2j, is denoted
by T's.ext> While Iy int = T'n\T's.ext- The size (diameter of elements in the mesh) is
proportional to a positive parameter i. For E, F € Ej, E # F,the intersection EN F
is either a vertex, or an edge, or a face I' € I'j,. The mesh is assumed to be shape
regular, meaning that the radius of the circumsphere and the biggest ball inside each
element are “~” proportional to 4. Finally, the family {€2;},~0 will approximate a
limit domain © C R? in the sense specified in (1.13, 1.14).

@ Springer



672 E. Feireisl et al.

Each face I' € I'j, is associated with a fixed normal vector n. On the other hand,
we write ['g whenever a face ' C 0F is considered as a part of the boundary of the
element E. In such a case, the normal vector to I'g is always the outer normal vector
with respect to E. Keeping this convention in mind we introduce for any function g,
continuous on each element £,

¢r = lim g(-+én), g"r = lim g(- — dn),
§—0+ §—0+

__ ,out _ _in _l out in
[elr = ¢ — g™ {g)r = 5 (s + &™) - @1

For I'r C 9E we simply write g for g". Occasionally, we also omit the subscript I
if no confusion arises.

2.2 Piecewise constant finite elements
We introduce the space
On(Q2p) = {v € Lz(Qh) ’ V|[g =ag € R forany E € Eh}

of piecewise constant functions along with the associated projection

0.1 0 1
I, 0 L (2p) = Qn(2p), T, [vllg = Il v dx;
E

we will occasionally denote

Finally, we recall various forms of (scaled) Poincaré’s inequality:
q
v—— [ vdx

/E |E| JE

7
v—— [ |v]| dS
Tl Jr !

q

dxghq/ Vvl dx,
E

q
dx < hq/ |Viv|? dx, forany C 9E, (2.2)
E

J
J

forany 1 < g < o0, in particular,

1
v— — v dS
Il e

ds, < hq—l/ |V,v|9 dx, forany C 3E, (2.3)
E

Hv — l'IhQ[v]HLq(g2 ) S hlIVavllipeq,:r3), 1 <¢g <oo foranyv e wha Q).
h
2.4)
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2.3 Crouzeix—Raviart finite elements
A differential operator D acting on the x-variable will be discretized as
Dpv|g = D(v|g) forany v differentiable on each element E € Ej,.

The Crouzeix—Raviart finite element spaces (see Brezzi and Fortin [4], among
others) are defined as

Vi(Q2p) = [v € L2(Qh) ‘ v|g = affine function, E € Ej,
/ [[v]] dSy =0 foranyI € Fh,im] , 2.5)
r

together with

Vi o(Qn) = ’v € Vi ‘ / vdS, =0 forany I e rh,ext] . 2.6)
r

Next, we introduce the associated projection
My, Wha(Qp) — V()

requiring

/ ) [v] dS, = / vdS, forany I € TI.
r r

It is easy to check that

/ divy, l'[;‘l/[u] w dx :/ divyu w dx for any w € Q,(2p), 2.7
Qp Qp

and
/ Viv-V 1) [g] dx =/ Viv-Vegpdx forallv € Vi o(Q), ¢ € Wy (RQ), (2.8)
Q Q

see [19, Lemma 2.11].
We also recall the the error estimates

o~ nio)

5 hm va

+h th (v — HX[U])‘

La(Qp) L9(Q;R?)

v||Lq(Qh;R3”’)’ m=1,2,1<q < oo, 2.9)

for any v € W™4(L2y,), see Crouzeix and Raviart [6], and [19, Lemma 2.7].
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2.4 “Dissipative’” upwind operator

Denoting
+ - - ~ 1
[c]" = max{c, 0}, [c]” = min{c, 0}, v:ﬁ v dSy,
r

we introduce a dissipative upwind operator Up[r, u] on a face I" in the form
rin
Uplr, ul = — ([-n+ %" 4+ [@-n—A“]7)

out

3

([@-n+h*" +[@-n—hr%"), (2.10)

with a positive exponent « determined below. Note that such a definition makes sense
assoonasr € Q5(R2p),u € Vy(Q2p; R3) and I € Iy jnt-

Setting, formally, #* = 0 in (2.10), we obtain the conventional definition of the
upwind operator

Fa -]t 4 O n] .

To illuminate the dissipative character of the new upwind operator, we may also write

Uplr, ul = A% - n]* + r°"[ - 0]~ — [[r]]r A% (“h'a“), @.11)

conventional upwind
dissipative component

where

0 forz < —1,
le+D if —1<z<0,
—1e@-1 ifo<z=1,

0 forz>1.

x(2) =

Remark 2.1 The numerical diffusion supplied by the dissipative component is quite
subtle; it acts only when [t -n| < 2% and has amplitude #%. Note that the conventional
artificial diffusion used by Eymard et al. [9] and [19] corresponds to

—h* [[r1Ir -

Forr, F € Qn(Q),u € Vi, (R, R?), ¢ € C(Qy), we may use Green’s theorem
to compute
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Convergence of a numerical method for the compressible. . . 675

Ve dx = -Vy(p — F)dx = —F -n dS,
/Qhru ¢ dx Z/Eru (¢ ) dx Z/aE(d) yru-n

EcEy E€E)

+ (F — ¢)rdivyu dx. (2.12)
Q)

Furthermore, going back to (2.11) we deduce that

> [ Uplr.ul [[g]] dS, (2.13)
el int r
=-> > / g (rl@-n]* 4+ r°"[@-n]7) dS,
E€E, TpcoE” TE
-2 / [[1] [Lg11 A% x (“h'a“) as,
el int

forany r, g € Qn(Q2p), u € Vi 0(Qp; R3). Finally, using formula (2.13), we may
compute the first integral on the right-hand side of (2.12) for u € Vj 0(2p; RY),
specifically,

— F)ru-ndS,
Z/aEw )ru-n

EcEy
- Z/ gru-nds,— > > / Fr([ﬁ~n]++[ﬁ-n]_)dsx
EcE,” 9E EcE,TrcdE”TE
= / Uplr, ul [[FT] dS, +h* > / (011 [T (“h—“) as,
rer,’T relpim” T
+Z/ gru-ndS,— > > / F(r — r®Y[@-n]~ dS,.
EcE,” 9E EcE,TgcoE”VE

Thus, plugging the resulting expression in (2.12) we obtain a universal formula

/Q o Vepdi= 3 /F Uplr, ul[F1] dS, +h% > /F (A [[F]]x(%) aS,
h

el Felp int

+ Z Z / (F —¢) [[r]] [u-n]™ dSy
EcE,TpcoE’VE

+ Z / ¢r(u—1u) -ndSy +/ (F — ¢)rdivju dx (2.14)
EEEh OE Qh

forany r, F € Qn(Qn),u € Vj.o(Qn; R?), ¢ € CL(Qp).
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2.5 L? — L1 and trace estimates for finite elements

The estimates listed below are direct consequences of the assumed shape regularity
of the mesh and follow by a scaling argument. We claim that

1
olZaom S 7 (||v||‘1q(E) +hf ||va||‘1q(E;R3)) , 1<g<oo foranyve C'(E);

(2.15)
whence |
||w||iq(aE) < E||w||‘zq(E) forany | < g <00, w € Py, (2.16)
where P, denotes the space of polynomials of degree m.
Similarly,
o(-)
lwliLeey S A\ wllLae), 1<g<p=<o0, we Py, (2.17)

and, making use of the inequality

1/p 1/q
(Z |ai|‘") < (Z Iaglq) whenever p > ¢,
i i

with the summation over a finite index set for i, we finally obtain

3(L_1
lwllLr,) <ch (” ")llwllLv(Q,,), 1<g<p=<oo, foranyw|g € Py(E), E €Ej.
(2.18)

We will also need a variant of (2.17) and (2.18) for the functions of the time variable
t € (0, T), where the discretization is of order Az. Evidently,

11
lwleeqjang+nam S (Af)(” ")IIwIILq([jAz,(j+1)Az]), l<g<p=oo,
(2.19)
and, therefore

1_1
lwllizro,7) S (At)<” ")llwlqu(o,T), I<g<p=o (2.20)

for any w that is constant on any time segment [j A¢, (j + 1) At] contained in [0, T'].
Finally, we recall the estimate

Z/|v—ﬁ|2dsx§h/ |Vyul> dx forany v e Vio(Q2u: R (2.21)
rer, /T S

that follows directly from Poincare’s inequality (2.3).
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2.6 Discrete Sobolev spaces

We introduce the discrete H !-(semi)norm

2 B [[v]1
Wy o= > [ Lo s,

el int

for v € Qp(2,). We report the following estimate that may be seen as a discrete
analogue of the well-known estimates for Sobolev functions in W2

2 2 2
/K,. 00) = v =) dx 5 (16 + HIEN) 100,y g, s (2.22)

for any compact K; C €, || < dist[K;, 02,], v € On(2p), see Eymard et al. [8,
Section 5].

Remark 2.2 In view of our hypothesis (1.13), the expression on the left is defined
provided & = h(K;) is small enough.

Similarly, we may define a discrete H'-norm on the space V}, o(£2;) by setting

1% @ =/Q Vhvl? dx. (2.23)
h h

In view of the limit passage €2, — €2, itis convenient to extend a function v € Vj, o(2)
to be zero outside 2. With this convention, we have

lvllzocr3) S ”U”H\l/h Q) (2.24)

and

/xeRs 0@ = v = F dr 5 (168 + HEN) 10l g, 229

for any v € Vj 0(21), see Gallouét et al. [16].

Finally, the following assertion follows from (2.22), (2.25) and can be seen as a
special case of the results of Christiansen, Munthe-Kaas and Owren [5, Proposition
5.67]:

Lemma 2.1 For any function v € Vj 0(2) there exists an R}Y[v] € CSO(R3) such
that

v < —RY <
VxR, [U]||L2(R3;R3) ~ ”v”H‘l/h(Qh)’ lv— R, [U]||L2(R3;R3) ~ h||U||H‘1/h(Qh)~
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678 E. Feireisl et al.

Moreover,
R,‘,/|Ke =0 for any compact K, C R3\§ whenever h > 0 is small enough.

(2.26)
Similarly, for any g € Qn(2) there is an R,? [g] € C(R3) such that

||VthQ[g]||L2(K,~;R3) S ”g”Héh(Qh)’ lg — RhQ[g]||L2(K,-;R3) S hHgHHlQh(Qh)
for any compact K; C .

Remark 2.3 The regularizing operators R,Y [v], RhQ [v] can be taken as a spatial con-
volution with a regularizing kernel, see [5] for details.

3 Numerical scheme, main result

Having collected the necessary material, we introduce the numerical scheme to solve
the Navier—Stokes system (1.1)—(1.7).

3.1 Numerical scheme
We start by approximating the initial data by their projections onto the space Qj (£2j).

To this end, we assume that both pp and ug are functions defined on the whole space
R? and set

oh = T2lool € Qi(y), uj) = M2 [wgl € Qu(s; RY). 3.1
Next, we introduce the discrete time derivative

bk — bkt

Dib}, = At

, At =~h,

and define successively the sequence of numerical solutions [Qﬁ, ulg] ns0,k=1,2,...,

ok € On(Qu), uf € Vio(Qu: RY)
satisfying:

CONTINUITY METHOD

/Q Dighep dx — > / Uploj, w;] [[#1] dS, =0 forall ¢ € Q1 (Qn); (3.2)
h Felp int
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Convergence of a numerical method for the compressible. . . 679

MOMENTUM METHOD

/Q Dk - pdr— > [ Uplokk, ut1- [[#]] dS.
h

Felp int

+ / [Mvhu’,; : vh¢+xdivhu’,§divh¢] dx
Qp

—/ p(ob)divig dx =0 forall ¢ € V0(Q; RY). (3.3)
Qp

Remark 3.1 We recall thatﬁkh =11 hQ [u’h‘] denotes the projection onto the space Qj, of
piecewise constant functions. As we will see, our discretization of the convective term
in (3.3), taken over from [19], yields a numerical analogue of the energy inequality
providing the necessary stability estimates.

3.2 Main result

Before stating our main result, it is convenient to extend the numerical solution to be
defined for any t > 0. To this end, we set
_ 0 _ .0
on(t,") =0, up(t,-)=uw, forr <0,

on(t,) =0k, w,(t,-) =uf fort e [kAr, (k+ DAL, k=12,....

Accordingly, we set

vp (1) — vp(t — Ar)

Dtvh(tv )= At

t > 0.

Besides, we also frequently use the already introduced convention that the functions
in Vj,0(€2) are defined on the whole space R3, being extended to be zero outside €2,.
Our main result may be stated as follows:

Theorem 3.1 Let Q@ C R3 be a bounded Lipschitz domain approximated by a family
of polyhedral domains {2}~ asin (1.13, 1.14), where each 2, admits a tetrahedral
mesh satisfying the hypotheses specified in Sect. 2.1. Let © > 0, A > 0, and let the
pressure p = p(o) satisfy the hypothesis (1.4) with

y > 3.

Let [on, up]n=0 be afamily of numerical solutions constructed by means of the method
(3.1)—(3.3) such that

on >0 forall h >0,
with

At~h, O<a<l,

where « is the exponent in the dissipative upwinding (2.11).
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680 E. Feireisl et al.

Then, extending op, 0y, to be zero outside 2y we have, at least for a suitable
subsequence,

on — 0 weakly-(*)in L*(0, T; LY (2)) and strongly in Ll((O, T) x ),
u, — u weakly in L>(0, T; L%(2: R?)),
Viw, — Veu weakly in L>((0, T) x Q; R,

where [p, 1] is a weak solution of the problem (1.1)—(1.7) in (0, T) x Q in the sense
of Definition 1.1.

Remark 3.2 As a matter of fact, the assumption that €2 is Lipschitz is not really nec-
essary and can be considerably relaxed, see [14]. It is enough to assume that the limit
domain enjoys the so-called segment property, meaning that each point on the bound-
ary 0€2 is an endpoint of a segment of fixed length, the interior of which is contained
in R3\Q.

Remark 3.3 The existence of the numerical solutions [gy,, u;,] can be shown by means
of a fixed point argument exactly as in [19].

Remark 3.4 The assumption p’(0) > 0 facilitates the analysis but can also be relaxed,

see [19].

4 Renormalization and the total energy balance

We introduce a renormalized variant of the continuity method (3.2) and derive a dis-
crete analogue of the total energy balance (1.12). In what follows we use the notation

co{A, B} = [min{A, B}, max{A, B}].

4.1 Renormalized equation of continuity

Take ¢ = b’ (Q];l), where b is a smooth function, as a test function in the continuity
method (3.2) to obtain

k—1

or—o
/ b/(Q’Z)D,Qﬁ dx = / %b’(gﬁ) dx
Qp Qp 4

B ZIN2
:/ beh) —bey D) _ A (eh=a Y |,
- At 2 h At

2
At Qﬁ — Qﬁfl
= [ Db(") dx—/ —p'EH— ) dx
/Qh t h @ ) h At

for a certain E,f € CO{Q],;_I, Qﬁ}-

@ Springer



Convergence of a numerical method for the compressible. . . 681

Similarly to (2.13), the upwind term can be written as

> /FUP[Q'Z,u'Z] [[b/(gﬁ)]] Sy +h* > /r[[gﬁ]] [[b/(gﬁ)]]x (ﬁh'an) ds,

el Felp int
out
=—> > / V' (of) [Q,ﬁ[ﬁi o+ (of) ra -nr] ds,
EeEy TpcoE’VE
out
=—> > / [b(g’,i)[ﬁ’,i~n]++b((g’,;) )[ﬁfg ~n]_] ds,
EcE,TpcoE’ TE
+>> / (b(eh) —¥'(@hef) Lk -m1* as,
EcE,TrcoE”TE

+ Z Z . (b ((gﬁ)%) _ b/(Qﬁ) (Qﬁ)om) [ﬁﬁ .n]” dS,

EecE, TpcaE” T
= / (b(QIZ) - b/(Qﬁ)Qﬁ) divyuf dx
Q2

+2 2 /FE (b ((Qf.)om) —b'(ep) (Q,’j)om) [@ - n]~ dS,

EcE,TECOE

>3

EcE, TpcaE’ T

= /Q (b(g];) — b/(Qlfl)Qﬁ) divhuﬁ dx
i

+% > 2 /rEb”(nfi)[[Qﬁﬂz[ﬁ,ﬁ-nr ds,.

EcE, TECOE

(bteh) — b'(ef)e} ) L -1~ ds,
E

Thus, summing up the previous estimates we obtain the integrated renormalized
continuity method:

[ Dibteyax+ [ (behck - beh) aiviuf ax
JQy Jp

2
_ Aty k Qll;_QfL_l 1 1"k 7P s -
-, 5 <éh)(m wiy 3 3 [ b [] e as.

E€E, TECOE

S /bf/(w,ﬁ)[[gﬂ]zx(%) a5, @.1)

el int

with

£ ecoloh ™", ok} on each element E € Ej, nk, o} ecolof, (0F)°'} on each face ' eI

4.2 Energy inequality

Our goal is to derive a discrete counterpart of the energy inequality (1.12). To this end,
we take ¢ = ufl as a test function in the momentum method (3.3). First, in accordance
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with the renormalized continuity method (4.1), we claim that

/p(g,’;)divhu’;dx=—/ D,P(Qh)dx+ Z >
Qp Q

EEE;, FgCoE

x/ P’/(nﬁ)((gﬁ)om—@k) [ii} - n]~ dS,
e
“© > /P”(w,,) o) ] X (uha ) dS,

1-‘Erh int

EP// k Q]Zl 2d (42
—/th (&) —At X, 2)

where the pressure potential P has been introduced in (1.12).
Next, we compute

k—lak—1
ll — u
@ Dt ar= [ gt G G
o nWy o Ar
h h
k—1 ~t k-1
_ [ [ o g BT o,
Q, k At h - At
2 1 2
Qp
~k—1|2
At oy (W — W,
— dx. 4.3
+/S2h ) Qp AL (4.3)

The upwind term reads

> fomitoir [l 3 [ o] [5](%) o

Fely int r Fely int r
out
=—> > / i - ((gﬁuﬁ)[ﬁh-nﬁJr(g’ﬁﬁ"h) [ﬁ’,‘l-n]*) dSy
E€E,TECAE
2 out
=2 2> / o) (in (af - n1* + (of) [ﬁ’,;-nr) dsy
E€E, TpcoE’TE
out
+ > > / ) [u’;l.n]‘ﬁ];l-(ﬁfl—(ﬁi) )de
E€E, T COE
<k
2 u, -n
= > /Up(@h uj) H ‘]] dSy + h® Z / gh Huh ]]x( ’;la )dsx
Tely in
1 out out|?
UZZ/@)MMWM )" ) s
EcE, TpcoE”’VE
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3 ot m \ﬂ sy 2 L () o
Fth int 1_'El_'h,im
PN *(“k)()[] )
EcE, TpCIE"

Summing up (4.2)—(4.4) and making use of the continuity method (3.2) we deduce
the energy inequality

Dt/ [ of [k |? +P(Qh)i| dx—l—,u/ |Vjubk | dx+x/ |diviuf | dx
Q 2 Q) Q)

k=112 <k—11?
At o) — 0, —1 | — U,
— A dx
2 ), Ar | T At
~k ~Jc\ out 2
out _ ‘uh o (uh)
_ Z Z / uh n] — ds,
EcE, TECOE
out |2 ﬁk .n
> [ e} - @)™ () oS,
I‘EI‘h int

(ha ( )+ ak ~n|) [[Q,’;]]z ds, <0 (4.5)
Fer‘h int

with A = inf,-0 {P”(0)}. Since P"(p) = p’(p)/p, we have A > 0 according to
(1.4).

5 Stability

In this section, we derive uniform bounds for the family [0y, uy];~0 independent of
the time step At ~ h and the element size A.

5.1 Mass conservation

Taking ¢ = 1 in the continuity method (3.2) we obtain

/ on(t, ~)dx:/ g2dx=/ oodx forany h >0, (5.1
Qp Qp S

meaning that the total mass is conserved by the scheme.
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5.2 Energy bounds

The energy inequality (4.5) yields

1
/ |:2Qh|uh| +P(Qh)] (7, )dx—i—M// |Vauy,|* dx dr
Qh
—I—A// |d1vhuh| dx dt
Qh

< / |:§Q2|ﬁ2|2 + P(g,?)] dx = Eop, Eon S 1; (5.2)
Qp
whence

Supre(o,T)H«/Qhﬁh(T, ')||L2(Q,1;R3) S, (5.3)
supzco.myllon (T, v,y S 1 (54)

and r
/ / |Viuy|? dx dr < 1; (5.5)

0 Qn

whence, in accordance with (2.24),
||uh||L2(O,T;L6(R3;R2)) N l (56)

where the bounds are uniform for 7 — 0. We recall that uy, as well as other quantities,
extended to be zero outside the numerical domain €2;,, may be regarded as functions
on the whole space R>.

Finally, we record the bounds resulting from numerical dissipation :

Z/ Ugh—gh ‘ +o5” l‘ﬁﬁ—ﬁ’;l‘z] dx <1, (5.7)
k=0 S

-2 2 / / (o)™ [y - m] ™[0 — @)™ 7 dS, dr S 1, (5.8)
EcE, TECOE

Z / /{Qh}\uh—(uh)"‘“\ ( ) ds, dr <1, (5.9)

el in

and

2 ) e (%

Felp int

)) [[on]]” dS. dr S 1. (5.10)
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6 Consistency formulation

Having collected all the available uniform bounds, our next task is to verify that our
numerical method is consistent with the variational formulation of the original prob-
lem.

6.1 Continuity method

For¢ € C* (R3), take T1 hQ [¢] as a test function in the continuity method (3.1). Using

the formula (2.14) for r = Qﬁ, u= uﬁ, F = l'IhQ[qﬁ] we check without difficulty
that

/ Qﬁu],j - Vi dx =
Q2

> [ vrteh b1 [[ 1101 ]] as.

Tel’y
-3 3 [ (e nfio) [[eh]] ks,
EcE, TpciE”TE
+E§h/aE¢Q,’§(u’,§ — i) - nds,
o 3 [ [led] [[ngﬂx(ﬁi;) 5.
rely int

Note that here

/Q (MP21p1 — p)ojdiviuf dx = > /E (M2 [¢] — $)odivpu dx =0
h

EcEy

as divy, u];l is constant on each element E.
Now, by Holder’s inequality,

> 3 [ (o= P[] hnr s,

EcE, TECOE
s> [ fo-nei|[[a]]| |- | as.
rer,’T
172
(5 L) o |,
rer, /T
172
(X X /F (0 - n1) | @ n|as.)
E

E€E, TpCOE

where the first integral on the right-hand side is controlled in L%(0,T) by (5.10).
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As for the second integral, we may apply Holder’s inequality, combined with
Poincaré’s inequality (2.4) and the trace estimates (2.15), (2.16) to obtain

> Z/ HQ[¢] (ﬁﬁ-n’dsx

E€E, TpCOE
yt6 2-6
3y 3y 3y
V‘H) ~k|2r—6
Z/ ¢ - 11L1g]) Z/ i7" ds,
EEE;, [ECOE recoe’TE
k
sh > (o] Vel ,éh\uh 1901
EcE) L2Y=0(E;R3) Ly+6 (E;R3) L2V=6(Qy;R3) LV+6 (Qn:R?)

Finally, we use the interpolation L? — L7 estimates (2.18, 2.20), and (5.6) to
conclude

nlok] s Iviel
L2r=6(Q;:R3) LYF6 (9,: R3)
. ],Sy—lz
Shmm{ 2y }Hul;l‘ ) . ||Vx¢||2*
L%(Q2p;R7) Lv+6 (thRs)
. Sy—12
— pin{l = A =120 A 1/2 ”uk‘ V.ol
BOTOO o] o IV

<H AT V12
LV+6(Q, R*)

The next step is to estimate

Z/qbgn(u — ) nds, = Z/(cb Hokmk — i) n ds,,

el el

where, by Holder’s inequality, (2.21), and (2.15),

> [ @-dobl i nas,

rerly

srgrl H¢—<z3

y—3
1Ak k
Sh ||Qh||LV(S2h)||Vh“h||L2(Qh;R3x3)||Vx¢||L2(Qh;R3)-

lu—al 2
LY () LY=2(I';R3)

k
L2(T) HQ”

The last step consists in controlling the numerical viscosity. To this end, we first
claim that (5.10) gives rise to

Z// on]]” dS, dr S 1. (6.1)

Felp int
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Next, we get

> [ Mlesl) [[me161]] as.

el int r

S22

E€Ey TECOENT i * L E

[lenl]| 2191 - 6| ds.:

whence, by virtue of (6.1) combined with (2.4) and (2.15), we may infer that

nl > /F[[Q'Z]] [[H;?[m]]x(ﬁi;n) ds,

Ll int

Lo 1
SHE ROVl @erny Irblzom S 1.

Remark 6.1 Our estimates of the numerical viscosity are in fact considerably better
thanin [19, Section 5.3, Lemma 5.5]. This is due to the fact that the pressure considered
here satisfies p’(0) > 0 yielding (5.10).

Using the standard representation theorems for bounded linear forms on Sobolev
spaces, we reformulate the continuity method as:

/R3 [Diong — onun - Vi) dx = /R3 R;, (1, ) - Vi dx (6.2)

for any ¢ € C° (R%), where R,ﬁ is a piecewise constant with respect to the time
variable ¢ € [0, T'] such that

”R}l 6y < hP  for a certain B > 0. (6.3)

L2(0,T;L57 =5 (R3; R%))

6.2 Momentum method

In order to derive a consistency formulation of the momentum method, we take
Vv 0r0. p3
I, (9], ¢ € C7 (€2 RY),

as a test function in the momentum method (3.3). Note that, in accordance with the
hypothesis (1.13), ¢ € C°(Q2; R3) as soon as & > 0 is small enough. By virtue of
(2.7), (2.8), we have
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/Q [Vl < VT 6] + adiviufdiva 1] 191 dx

- / (1} : Vag + adiviufdivie] dx,
Q

and

| ptendivartiiglax = | plondiv ax.
Consequently, we may rewrite (3.3) in the form

/ D; o), - ¢ dx —/ opuf @ uf @ Vg dx
Q Q
+ / [Whu’,; v +xdivhuﬁdivx¢] dx — / p(of, 9F)divy¢ dx
v Q
— k=k %
= / Diofaf - (¢ — My lg1) dx
Q

+> /FUp[Qﬁﬁ,’i,U’,;] : [[H/Xﬁ]ﬂ ds, —/Qgﬁ‘,u’;, @ul : Vg dx

rel’y

= / Diofa - (¢ - 11} 191) dx
Qp

+> /F (o)™ - 01 + @uw) (- n1") - [[ 11} 161]] 05

rery,

—~ — ok .
_/QQﬁuﬁQbuz:Vde dx - > /[[Qhuh]]~[I:HX[(ﬁ]]]X(u};lan) ds,.

el int
6.4)

Our goal is to estimate the four integrals on the right-hand side of (6.4). We proceed
in several steps.

6.2.1 Error in the discretized time derivative

We have
| et (o mi101) as
h
1 [ 14 oh ey 14
/Qh Ve Ve = (¢ - 1} 19)) dx+/9h Sl (¢ - 11g) ax,
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where, by virtue of Holder’s inequality and the estimate (2.9),

J TS o )
) 12
<16k 12, </Q e,ﬁ‘l(W) ) o - t1g1]

2 1/2
i L
§||Q ||L/V(Q]) At/g Qh (hmh) dx (A V2R |V, i @R
h

In accordance with the energy estimates (5.7), we have

k=1 k—1\2
S ar At/ ok~ (%) dr | < 1. 6.5)

k=0

LV 7 (Qn)

Applying a similar treatment to the second integral we get

k k—1
O, — 0y k 1%
| At (o - 1 101) ax

12

k—1
O, — @ _
<[ a / (u) dr ) bl Lok (AD 2RIVl 30
Q) At

where the first integral on the right-hand side is controlled by means of (5.7).
Thus we may infer that

SVRIEOIVsdlr . 121200 S 1.
(6.6)

' [ Dt - (¢~ o) ax
Q2

6.2.2 Error in the upwind term

Take F = I1) [¢] = n,?n,f[qs] in (2.14) to obtain

> / (Conmn™ @ nI* + (@uup)™ [ n)”)

el

-H@E}Hd&—/ﬂgiuﬁ@if;:vm dx

- > > [ (ngngier o) [febed]] et m as.

Ec€E, T'gECOE
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+ > | ofih@ — 2 [gdiv.u dx
E

E€Ey
bk ek k
+Z Z / ¢'uhgh(un_uh)'ndsx
EcE, TgcoE” VE

= > > [ @b (o-nfnyis)) - n[[uf]] es.

EcE, TpcoE”TE

£ 3 [ a (- nenfio) whm [[of]] e,

EcE, TECOE

+ > / ol (¢ — ETI) [¢]divpuf dx
EcEy’E

+> > / ¢-ukok@ —uf) ndS; =1+ L+ 5L+ L.
E€E, TpcoE” TE

Step 1 Applying Holder’s inequality to /; we obtain

=3 [ @bt (ngnyier—s) wn- [[u)] s,
h

EcE)
12
<[5 > [ bla-off]}
EcE, TpcoE”’TE
1/2
X > [ @b |kl (nenfier-g) as.)

EcE,TpcoE”TE

where the first term is bounded in L2(0, T') in view of the energy estimates (5.8).
Next, as ufl are continuous on each element, we have

S 3 [ @[k n| (menfie - o) s,

EcE, TgCIE

2 1 2
< > lekllLa@ gl o g3 vosy gty =L

EcE)

2y i1 - ¢

where, in accordance with the trace estimates (2.15, 2.16), and the L? — L4 estimates
(2.18),

2
nény (- ¢

k k
P AT AR S

Bk, LY (3E;R3)
1 2 2 2
< Sl e, m0) D ||Qz||Lz,<E)(Hn,?n,Y [B1= @, s T ||vx¢||Ly(E;R3))

EGE[I
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2

1
= e, e 2 leflo (Hn,?n,,v[¢>]—¢H e ||Vx¢||iy(E;R3))

EGE/I

1
< w7l oo, o lof s (H nényigl - ¢

LY (E;R3)

2

2 2
LY (2:R?) +h ||VX¢||LV(Q:R3)) )

Finally, by virtue of (2.4, 2.9),

OV OVl 01,y
[nenfier-of,, o o< |nfmei-el ok |nRe-ef
Vgl Ora1
= th S HH” S P AL
As y > 3, we conclude that
=3 [ (nenfier- o) -n [[ohuf]] .
EcE,” 9En
1
S OIVidlr @, Irillorn S 1- (6.7)

Step 2 Next, we have

=3 3 [ (nen)ien- o) @ m[[of]] o,

EcE, TECOE
12
2
S| Z/[ﬁﬁ‘,m]’[[e’;ﬁﬂ ds,
rer, /T
12
2

<[> > / @@ - nl M2 (9] - ¢ as,

E€E, TpciE’ TE

where, in accordance with (5.10), the first integral is uniformly bounded in L2(O, T).
As for the second integral, we use Holder’s inequality to deduce that

>3

2
s -l [Py 101 - ¢ ds,
EcEyTpcoE” TE

2y v
< D2 el = o3 op [ D /F [y 72 | 72 dS,
E

EcEy Mg COE
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Next, by virtue of the trace estimate (2.15) and Holder’s inequality,

= ‘

2y L
SNy ¢l - ¢l 0r | > [ BT ET2 dS,

EcE), rpcoE”’ e
_2 2-2
< Z (h y||n$nx[¢]—¢||%y(E)+h VIIVx¢|Iiy(E))
E€Ey
2y—1
2y
o 3 [ e e
r e
ECOE
_2 2-2
< Z (h y||n$nX[¢]—¢||%y(E)+h 7 | Vx ¢||LV(E))
E€Ey
y—2
3 2;/37;2 3y N
3y =
x(/ s 72 de) >l
OE recoE”’ Ve

Furthermore, by (2.16) and Holder’s inequality,

2r=2
_2 _2 Sy 3y
> (AT 61— 91y ey + B IV ) (/M a7 de)

EcEy

y—
3y

P
| X[ e,

FgCOE

1
<D (Enn,?nhv (61— 1175 (i) +h||vx¢||%y<E>)

EcE)

() (fre)”

—||nhQ ) (61— ¢13 ) |8

P T
LY=2(Qp) LY2(Qp)

+h||Vx ¢||LV(Q) Huh ”

u
L722 (@) ‘ hH %
h LY==(p)

<5 ],

5 6.3 3
<h? maX{V’2}||Vx¢||%V(Q) Hulfl‘ 16

) provided y > 3,

where we have used (2.17).
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Finally, using the time estimates (2.20) we infer that

5 6.3 3
B3 max{y’2}||Vx¢"iV(9) Huﬁ

L(Qp)

15 6.3 1 3
< (AnT2 RT3, o, (AN H“ﬂm(m'
h

Summarizing we conclude that

Ll={> > /F a - (120 1g1 - ¢) twf -n1~ [[of]] as.

EcE, TECOE

2— i; 3
ST OIV Sl @- Il S 1. (6.8)
Step 3 Another application of Holder’s inequality gives rise to
Ll=|> / ol (¢ — ETI) [¢]divauf dx

=2 / 0184 (¢ — T} [@])divpui, dx

Ec€Ey
< bl @yry X Idvif ozl lscey ¢ = I T01]
EcE), ’
Now, by virtue of (2.17) and (2.9),
Ikl > vl zqey ooy & = Y101,
EcE), ’
1
k Lk k v
S w3 lop Iy o 1diviaw, | 2 o) 1w, 1 26 (@, 3 ‘¢ =10, [¢] L3R

-3 .
S h TV o ey @ divaug |20, 105 1 2o, r3) V@l L3 k%)
yielding the desired conclusion
Ll =|> / ofu (¢ — 2 1) [¢])div,uf dx
Eek,” E

SV OIVellr). I o S 1 (6.9)

@ Springer



694 E. Feireisl et al.

Step 4 The last integral
= ¥ [ ¢ ueh-unes,
EcE, TpcoE”E
can be handled in the same way as its counterpart in the continuity method.
6.2.3 Bounds on numerical dissipation
Finally, the numerical viscosity

e £ fiom [T (52) .

el int

can be estimated by means of (5.9, 5.10) in a similar way as in the continuity method

S Sk
o> /r[[gh“h]] ' [[“hv Wﬂ X(uﬁlan) dS, | SH2 0OVl 1y o, 1)

el int

(6.10)

Summing up (6.7)—(6.10) we obtain the consistency formulation of the momentum
method:

/QDt(Qhﬁh) ¢ dx — /Q(Qhﬁh ®uy) : V¢ dx
+/ [uViuy @ Vg + Adivyugdiveg] dx —/ p(op)divye dx
Q Q

=/ R2(1,-) : Vi dx, (6.11)
Q
for any ¢ € C2°(; R3), where Ri is piecewise constant in time,

HR%’ 2 <hb, B >o. (6.12)

LYO,T;L7=1(2;R3)

7 Convergence of the numerical solutions

We are ready to establish convergence of solutions of our numerical method to a
weak solution of the limit problem. We take advantage of the consistency formulation
derived in the preceding section that converts the problem to the framework of the
mathematical theory developed in [10] and [20]. The reader may also consult [1] for
a complete existence proof based on the technique of time discretization very close to
the numerical method applied in the present paper. Throughout the whole section we
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shall systematically use our convention that all quantities defined on €2, are extended
to be zero outside 2.

7.1 Local pressure estimates

The uniform bound (5.4) is not sufficient for passing to the limit in the pressure p(p),
the latter being bounded only in the non-reflexive space L>(0, T; L' (R?)). To get
better integrability of the pressure, we use the quantities

¢ = oV A nonl,

where
o(t,x) = Y (o), ¥ € C0,T), 1, 0 € C(Q), —A™'[v]

1
=7 | =5 Fe }
f>x [mz slv]

and F denotes the standard Fourier transform, as test functions in the consistency
formulation (6.11) of the momentum method:

T
/ /wn[p(gh)gh —/\thivxuh] dx dt
0 Q
T
= [ [paivim = @0} Ve - vica™ nan) ax a
T
_ /0 /Q R2: V, (pVy (A~ [noa])) dxds
T
+/ / uVipuy Vi [fpvx(A_l[ﬂQh])] dx dr
0 Q
T
[ [ @@ w9 (ovia o) ax ar
0 Q
T
+ /0 /SZ Dy (onfin) - 9V, (A~ (o] dx dr. (7.1)

Furthermore, using a discretized version of the integration by parts formula and the
consistency formulation of the momentum method (6.2), we deduce that

T
/0 /Q Dy (ontin) - 9V, (A~ o) dx d

T _
- _/ / Wwﬁh V(A non]) dx dt
0 JQ !

T
—/ / pon(t — AU, (1 — A1) - Ve A™' [nDyop] dx di
0o Je
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T _
— _/ / W%ﬁh V(A" nop]) dx dt
0 Jo !

T
+/ / pon(t — ADU,(t — A1) - Ve A~ [ndivy (opup)] dx de
0 Q
T
+/ /(pgh(z‘ — AD(E — Af) - VAT [ndiva,i] dxdi.  (7.2)
0 Q

We observe that the expression on the right-hand side of (7.1) is bounded uniformly
for h — 0. Indeed combining the estimates (5.3), (5.4) we have

2y
sup |lonun(t, ')||L4(R3,R3) SLg=——, (7.3)
1€(0,T) y+1
llonunll <1 % ity =3 (7.4)
unll 7200 775 (R3. 3 , 8= >2ify > 3. )
OhBnllL2(0,T;L5(R3;R3) ~ v +6 Y

The integrals on the right-hand side of (7.1) can therefore be estimated in the same
way as in [10, Chapter 5] and we may conclude that

llonllLy+1 0. 7)x k) < 1 for any compact K C €2. (7.5)

7.2 Weak sequential compactness

In accordance with the uniform estimates (5.4)—(5.6), there is a subsequence of numer-
ical solutions such that

on — o weakly-(*) in L®(0, T; LY (R%)), (7.6)

and
u, — u weakly in L2(O, T; L6(R3; R3)). (7.7)

Moreover, we have o > 0, and, by virtue of (5.1),

/ o(tr,)dx = / oo dx fora.a.t € (0, T).
Q Q

Next, it follows from (2.9) that

bh —wrll 20,7y x20: %) = O (7.8)
in particular,
@, — u weakly in L2(0, T; L°(R?; R?)) (7.9)

provided U}, is extended to be zero outside 2.
Finally, we observe that (5.5) implies

Vyu, — Ven weakly in L2((0, T) x R>: R¥3); (7.10)
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whence the limit velocity field satisfies
ue L20,T; Wh(RY; RY)).

Remark 7.1 The fact that the weak limit of V,uy coincides with V,u follows from
the “density” of the spaces V}, ¢ in W(;’z stated in (2.9).

In addition, we may use Lemma 2.1 to construct the smooth approximations
R)/ [up],

R) [w;] — u weakly in L*(0, T; W"*(R?; RY)).

It follows from (2.26) that the limit u vanishes on any compact K, C R3\ . Since
is Lipschitz, we conclude that

ue L20, T; Wy 2(2; RY)).

Remark 7.2 Note that this is the only point, where certain regularity of 92 is needed.
As already pointed out, the assumption that € is Lipschitz can be considerably
relaxed.

To establish the weak convergence of convective terms, we need the following result
that can be seen as a variant of [18, Lemma 2.3].

Lemma 7.1 Let {vi}n=0, {wn}n=0 be two sequences of functions in (0, T) x Q, Q a
domain in RN, such that

v, Wy are constant functions in time on any interval [k At, (k + 1)At),
k=0,1,..., At =h,
vy — v weakly in LPY(0, T; LY (Q)),
1 1 1 1

wyp — w weakly in LP*(0, T; L?(Q)), —+ —=—+ — =1,
P1 P2 q1 q2

< rnO @ llwk.r(g) for certaink, p > 1, ||rh||L1(0’T) <1, (7.11)

/ D,vh(]b dx
Q
lwn(t, x) — wp(t, x —E)pr20,7:202(0)) —> 0as |l — O uniformly inh. (7.12)

Then
vawy, — vw in the sense of distributions in (0, T) x Q.
In agreement with the gradient estimates (5.5) and the compactness properties of

the space H‘l,h stated in (2.25), we observe that the sequence {uy};~¢ satisfies the
hypothesis (7.12) with p = g2 = 2 Q = , while the hypothesis (7.11) can be
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checked for gy, onti;, with the help of the consistency formulations (6.2, 6.11). Thus
successive application of Lemma 7.1 gives rise to the following limits:

6
onu, — ou weakly in L2(0, T: L7+5(Q2; R3)), (7.13)
and
ontiy @ uy — ou® u weakly in LI((0, T) x €; R¥*?) forsome g > 1, (7.14)

Remark 7.3 As for the exponent ¢ in (7.14), we recall that

- 00 2 3 2 S 3
onup € L75(0,T; Lv+2(2; R7)) N L0, T; Lv+°(2; RY))
< L"((0, T) x Q; R?) for a certain r > 2

by interpolation.

7.3 Limit in the field equations

At this stage we are ready to pass to the limit in the consistency formulation of the
numerical method. Letting # — 0 in (6.2, 6.11) we obtain

T
/ / [Qa,¢+gu-vx(p] dx df = —/ 009(0, -) dx (7.15)
0 R3 R3

for any ¢ € C°([0, T) x R?);

T
/ / [Qu'3z<ﬂ+9u®u : vx<p+p(9)divx<ﬂ] dx dr (7.16)
0 Ja
T
= / / [,uVXu : Vip + Adivyu divxgo] dx dr —/ ooug - (0, -) dx
0 Ja Q

forany ¢ € C°([0, T') x €; R3).
Remark 7.4 In view of the local pressure estimate (7.5) we may assume that

y+l1
14

p(th‘) — p(o) weakly in L v (K) for any compact K C 2.

7.4 Strong convergence of the density

In order to finish the proof of convergence we have to show a.e. pointwise convergence
of the numerical densities in order to replace p(o) by p(e) in (7.16). To this end, we
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use the method of Lions [20] based on a “weak continuity” property of the effective
viscous flux. Going back to (7.1), (7.2), we focus on the term

T
| w9 [ovaa e ] axar. 7.17)
0 Q
Following [19], we perform integration by parts to obtain
/ Vouy : Voo dx =/ Vauy : (vx —VxT)qbdx—i—/ Vo, : VI dx
Q Q Q

=/ curlyuy, : curl, ¢ dx +/ Viuy, : VXTq) dx
Q Q

=/ curlyuy, : curl,¢ dx +/ divyuy, @ dive¢ dx + error term,
Q Q

where the error is estimated by means of [19, Lemma 8.2] as

S hIVhun g2 k353 V2@l 12 (0. k27 -
(7.18)

/ Vi, - VXT¢ dx —/ divyuy, : diveg dx
Q Q

Returning to (7.17), we get

T
| i 9 [o9aa e ] axar
0 Q
T
:/ /curlhuh : curl, [QDVX(A_I[T’]Q},])] dx dt
0 Q
T
.ol —1
[ [ Vs VT [o¥i(a " nenD ] ax
0 Q
with
T
| e 92 [ovaa~ e | axar
0 Q
T
_ T —1 . 0
= [ [ s 97 [9, (47 [n0n = n&2t0n]) ] ax ar

+/0T/thuh Ve [(pVx (A_l [ﬂRhQ[Qh]])] dx dr

where R hQ are the regularizing operators introduced in Lemma 2.1. Thus, recalling the
bounds (5.10) and applying Lemma 2.1, we obtain

T T
_ p@ 2 <72 2 < pl-a
| en = Rt a1 S0 [ iy g, d S B
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where K C €2 is a compact set containing the spatial support of the function 7. In
particular, the integral

/OT/Qthh v [¢Vx (A*l [th - ’IR;,Q[Q;,]])] dx dr

vanishes for # — 0 and may be included in the error term on the right-hand side of
(7.1).
Similarly, by the same token,

T 1/2
0 ~ 2 -l
VxR, lenlll 20,702k ; R3)) & (/0 ||Qh||th(Q) df) Sh7y

whence, in accordance with (7.18) we may replace

/OT/Qthh : VxT [@Vx (A_l I:UR}?[Qh]:I):I dx dt
~ /OT/Qdthuh s divy [gon (A_1 [nRhQ[Qh]])] dx dr
T . . -1
%/0 /levhuh - div, [gon (A [ngh])] dx dr.

Summing up the previous estimates and regrouping terms in (7.1) we obtain

T
/ / WI[P(Qh)Qh -+ M)thivxuh] dx dr
0 Q
T
= /0 /Q [()\ + w)div,uy, — p(Qh):va(P . Vx(Ail[th]) dx dr

T _
- / / Wmﬁh V(A [nop)) dx dr
0 Ja t
T
+/ / ueurlyuy, - curl, [(pVx(A_l[th])] dx dr
0 Q
T
—/ /(Qhﬁh Quy) : (thp ® VX(A*I[th])) dx dt
0 Q
T
—/0 /Qso(ghﬁh ®up) : (Ve ® Vi) (A [noy]) dx dr

T
+/O /Q(D(Qhﬁh)(f — A1) - Vo A [ndivy (opun)] dx dr+En(p, 1), (7.19)

with the error term Ej (¢, n) — 0 as h — 0 for any fixed ¢, 1.

Remark 7.5 It is worth noting that this is the only step in the proof, where we have
used the artificial viscosity term included in the upwinding.
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Now we apply a similar treatment to the limit Eq. (7.16), specifically, we use the
test functions

¢ = oV A" nol.

After a straightforward manipulation (cf. [10, Chapter 6]) we arrive at

T
/ / wn[p(g)g -+ M)Qdivxu] dx dr
0 Q
T
- / / [Adiven — 5@ |Vag - Vo (A Inel) d dr
0 Q
T
_ / / dpou - V(A [nol) dx di
0 Q
T
+/ /,ucurlxu~curlx [gon(Afl[nQ])] dx dr
0 Q
T
—~ / / (u®u): (w ® vxm—l[ng])) dx dr
0 Q
T
—/ / plou®u) : (Vy ® Vi) (A '[no]) dx dr
0 Q

T
+ / / pou - VA~ [ndiv, (ow)] dx dr. (7.20)
0 Q

The principal idea due to Lions [20] is that all terms on the right-hand side of (7.19)
converge to their counterparts in (7.20). This has been proved in the continuous case in
[20] and for the time discretization problem in [1, Section 3.3], Lions [20]. The same
result at the level of numerical discretization was obtained by Karlsen and Karper [18],
Karper [19]. Here, we recall that the error terms in (7.19) vanish for 2 — 0; whence
the most difficult task is to show that

T
—/0 /Qw(ghﬁh ®up) : (Ve ® Vi) (A [noy]) dx dr

T
+/ / @(ontiy)(t — Ar) - Vo A~ divy (nopuy) dx dr
0 Q

—

T
—/ / peu®u) : (V, ® V,)(A™[no]) dx dr
0 Q

T
+/ /(pgu-VxA_ldivx(nQu) dx dr. (7.21)
0 Q

Moreover, in view of the numerical dissipation estimates (5.7), we may replace
(onup)(t — At) by opuy,. Finally, we observe that the velocity field uy, can be approx-
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imated by its spatial regularization in the spirit of Lemma 2.1,
lup — R;‘,/[uh]||L2(0,T;Lq(Q;R3)) S hﬂ, B =pB(g) > 0forany2 < g <6.

In particular, we may write R ,‘I/ [uy] in place of uy, in (7.21). Now, the limit (7.21) can
be verified exactly as in [1, Section 3.3] or Karper [19, Lemma 9.3].

Thus we get the desired conclusion - the effective viscous flux identity due to Lions
[20]:

T
/ / <P[P(Qh)9h -+ M)thivxuh] dx dt
0 Jo

T
— / / go[p(g)g - (A + M)Qdivxu] dx dr (7.22)
0 Q

as h — 0 forany ¢ € C2°((0, T') x ), which yields the crucial relation
odiv,u > odiv,u. (7.23)

The inequality (7.23) implies convergence o, — ¢ a.e. in (0, T) x 2. Indeed the
regularization procedure of DiPerna and Lions [7] can be applied to show that g is a
renormalized solution of the continuity equation, in particular,

T
/ olog(o)(z, -) dx +/ / odivyudx dr < / 00 log(op) dx for any T € [0, T],
Q 0 Ja Q

(7.24)
cf. [10, Chapter 6]. On the other hand, passing to the limit in the renormalized conti-
nuity method (4.1) for b(0) = o log(o) we obtain

T
/ olog(o)(t, -) dx +/ / odiviudx dt < / oolog(op) dx fora.at € (0, 7).
Q 0o Ja Q

(7.25)
Combining (7.23)—(7.25) we get
olog(o) = ¢log(e)
yielding the desired conclusion
on — ¢in L'((0, T) x Q). (7.26)

Seeing that the energy inequality (1.12) follows from (4.5) we have completed the
proof of Theorem 3.1.
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8 Unconditional convergence

Our ultimate goal is to discuss the situation when both the data pg, ug and the underlying
physical domain €2 are regular. Specifically, we claim the following result concerning
unconditional convergence of bounded numerical solutions.

Theorem 8.1 In addition to the hypotheses of Theorem 3.1, suppose that Q2 is a
bounded domain of class C*tV and the initial data satisfy

e WH(Q), 0z¢>0 in Q ueW (@R,
and n = 0. Moreover, suppose that there exists a positive constant r such that
of <r forall k=1,2,..., h— 0. (8.1)

Then the convergence claimed in Theorem 3.1 is unconditional, meaning the limit
solution o, W is regular, unique, and the whole family of numerical solutions converges
to it.

Proof The hypothesis (8.1) implies that the density component of the limit solution
is bounded. Using the conditional regularity result proved in [11, Theorem 2.4] and
[15, Theorem 4.6] we conclude that the limit solution is regular whence unique. 0O

Under the condition described in Theorem 8.1, it is possible to obtain qualitative
estimates on the rate of convergence of the numerical scheme, see [12].
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