1 Introduction

Let \(D\subset {{\mathbb {C}}}^n\) be a domain. We say that a function \(F_D:D\times {{\mathbb {C}}}^n\rightarrow [0,+\infty )\) is a Finsler metric if it is an upper semi-continuous function and

$$\begin{aligned} F_D(\lambda ;t v)=|t| F_D(\lambda ;v)\quad \text { for any }\lambda \in D,v\in {{\mathbb {C}}}^n,t\in {{\mathbb {C}}}. \end{aligned}$$

Assume that \(D_1\subset {{\mathbb {C}}}^{n_1}\) and \(D_2\subset {{\mathbb {C}}}^{n_2}\) are domains with Finsler metrics \(F_{D_1}\) and \(F_{D_2}\), respectively. We say that a \(C^1\) mapping \(\phi :D_1\rightarrow D_2\) is an isometry if

$$\begin{aligned} F_{D_1}(\lambda ;X)=F_{D_2}(\phi (\lambda );d_{\lambda }\phi (\lambda )(X)) \quad \text { for any } \lambda \in D_1, X\in {{\mathbb {C}}}^{n_1}, \end{aligned}$$
(1)

where \(d_{\lambda } \phi \) denotes the \({{\mathbb {R}}}\)-differential of \(\phi \) at \(\lambda \). In case \(n_1=1\) the equation (1) is equivalent with

$$\begin{aligned} F_{D_1}(\lambda ;1)=F_{D_2}\big (\phi (\lambda );\frac{\partial \phi }{\partial z}(\lambda )+\xi \frac{\partial \phi }{\partial {\bar{z}}}(\lambda ) \big ) \quad \text { for any } \lambda \in D_1, \xi \in {{\mathbb {T}}}, \end{aligned}$$
(2)

where \({{\mathbb {T}}}=\{t\in {{\mathbb {C}}}: |t|=1\}\) denotes the unit circle.

The paper is motivated by the question whether an isometry is holomorphic or anti-holomorphic. This problem was considered in many papers and, it seems, that in case of invariant metrics (Kobayashi metric, Carathéodory metric, etc) is very difficult (see [2, 8, 10]).

We denote by \({{\mathbb {D}}}=\{t\in {{\mathbb {C}}}: |t|<1\}\) the unit disc. For a domain \(D\subset {{\mathbb {C}}}^n\) we define a biholomorphically invariant Finsler metric as follows

$$\begin{aligned} \gamma _{D}(\lambda ,X)=\sup \Bigg \{\frac{|F'(\lambda )X|}{1-|F(\lambda )|^2}: F:D\rightarrow {{\mathbb {D}}}\text { holomorphic}\Bigg \} \end{aligned}$$

for any \(\lambda \in D\) and any \(X\in {{\mathbb {C}}}^n\). We call \(\gamma _D\) the Carathéodory-Reiffen (pseudo)metric for D (see e.g. [6], Chapter 2). According to the above definition a \(C^1\)-mapping \(\phi :D_1\rightarrow D_2\) is a \(\gamma \)-isometry if

$$\begin{aligned} \gamma _{D_2}(\phi (\lambda );d_{\lambda } \phi (X))=\gamma _{D_1}(\lambda ;X) \end{aligned}$$

for any \(\lambda \in D_1\) and any \(X\in {{\mathbb {C}}}^{n_1}\).

Put

$$\begin{aligned} \pi :{{\mathbb {C}}}^2\ni (z,w)\rightarrow (z+w,zw)\in {{\mathbb {C}}}^2 \end{aligned}$$

and \({{\mathbb {G}}}_2=\pi ({{\mathbb {D}}}^2)\). We call \({{\mathbb {G}}}_2\) the symmetrized bidisc (see e.g. [1]). One of the main results of our paper is the following.

Theorem 1

Let \(\phi :{{\mathbb {D}}}\rightarrow {{\mathbb {G}}}_2\) be a mapping of class \(C^1\). Assume that \(\phi \) is a \(\gamma \)-isometry. Then \(\phi \) is holomorphic or anti-holomorphic.

As a corollary, we obtain the following result.

Corollary 2

Let \(F:{{\mathbb {G}}}_2\rightarrow {{\mathbb {G}}}_2\) be a mapping of class \(C^1\) and a \(\gamma \)-isometry. Then F is holomorphic or anti-holomorphic.

2 Proof of Theorem 1

For any \(\lambda \in {{\mathbb {G}}}_2\), there exists an automorphism \(\Phi \) of \({{\mathbb {G}}}_2\) such that \(\Phi (\lambda )=(0,p)\), where \(p\in [0,1)\). Define a set \(\Sigma =\{(2t,t^2): t\in {{\mathbb {D}}}\}\) called the royal set. We have

$$\begin{aligned} \Sigma =\{\Phi (0): \Phi \in {{\,\textrm{Aut}\,}}({{\mathbb {G}}}_2)\}. \end{aligned}$$

Recall the following result (see [6], Chapter 7)

$$\begin{aligned} \gamma _{{{\mathbb {G}}}_2}((s,p);(X,Y))=\max \Bigg \{\frac{|(F_\eta )'_s(\lambda )X+(F_\eta )'_p(\lambda )Y|}{1-|F(\lambda )|^2}:\eta \in {{\mathbb {T}}}\Bigg \}, \end{aligned}$$

where \(\lambda =(s,p)\in {{\mathbb {G}}}_2\) and \(F_{\eta }(s,p)=\frac{2\eta p-s}{2-\eta s}\), \(\eta \in {{\mathbb {T}}}\). Note that

$$\begin{aligned} (F_\eta )'_s(s,p)=\frac{2\eta ^2 p-2}{(2-\eta s)^2} \quad \text { and }\quad (F_\eta )'_p(s,p)=\frac{2\eta }{2-\eta s}. \end{aligned}$$

Hence,

$$\begin{aligned} \gamma _{{{\mathbb {G}}}_2}((s,p);(X,Y))=\max \Big \{\frac{|(\eta ^2 p-1)X+\eta (2-\eta s)Y|}{2\big (1-|p|^2-\Re (\eta (s-{\bar{s}}p))\big )}: \eta \in {{\mathbb {T}}}\Big \}. \end{aligned}$$

In particular, we have

$$\begin{aligned} \gamma _{{{\mathbb {G}}}_2}((0,p);(X,Y))=\frac{\max _{\omega \in {{\mathbb {T}}}}|X(1-\omega ^2p)-2Y\omega |}{2(1-p^2)}, \end{aligned}$$

where \(p\in [0,1)\) and \((X,Y)\in {{\mathbb {C}}}^2\).

The main result of this section is the following.

Theorem 3

Let \((X_1,Y_1), (X_2,Y_2)\in {{\mathbb {C}}}^2\) be fixed vectors and let \(p\in (0,1)\) be a fixed number. Assume that there exists a constant \(C>0\) such that

$$\begin{aligned} \gamma _{{{\mathbb {G}}}_2}\big ((0,p);(X_1,Y_1)+\xi (X_2,Y_2)\big )=C\quad \text { for any }\xi \in {{\mathbb {T}}}. \end{aligned}$$
(3)

Then \((X_1,Y_1)=0\) or \((X_2,Y_2)=0\).

We assume that \((X_1,Y_1)\not =0\) and \((X_2,Y_2)\not =0\). Consider polynomials

$$\begin{aligned} P_j(z)=pX_jz^2+2Y_jz-X_j,\quad z\in {{\mathbb {C}}}, j=1,2, \end{aligned}$$

and their duals,

$$\begin{aligned} Q_j(z)=z^2\overline{P_j(1/{\bar{z}})}= -{\bar{X}}_jz^2+2{\bar{Y}}_jz+p{\bar{X}}_j,\quad z\in {{\mathbb {C}}}, j=1,2. \end{aligned}$$

We have \(P_j(z)Q_j(z)=z^2 |P_j(z)|^2\) for any \(z\in {{\mathbb {T}}}\). Note that the equality (3) means that

$$\begin{aligned} \frac{\max _{z\in {{\mathbb {T}}}}|P_1(z)+\xi P_2(z) |}{2(1-p^2)}=C\text { for any }\xi \in {{\mathbb {T}}}. \end{aligned}$$

It is easy to see that

$$\begin{aligned} C=\frac{\max _{z\in {{\mathbb {T}}}}\big (|P_1(z)|+ |P_2(z)|\big )}{2(1-p^2)}. \end{aligned}$$

We put

$$\begin{aligned} E=\{z\in {{\mathbb {T}}}: |P_1(z)|+ |P_2(z)|=2(1-p^2)C\} \end{aligned}$$

and

$$\begin{aligned} E(\xi )=\{z\in {{\mathbb {T}}}: |P_1(z)+ \xi P_2(z)|=2(1-p^2)C\}. \end{aligned}$$

We have divided the proof of Theorem 3 into a sequence of lemmas.

Lemma 4

Assume that \(z_0\in E\). Then \(P_1(z_0)P_2(z_0)\not =0\).

Proof

Assume that \(P_1(z_0)=0\) and that \(X_1X_2\not =0\). Then

$$\begin{aligned} |P_1(z)|+|P_2(z)|\le |P_2(z_0)|\quad \text { for any }z\in {{\mathbb {T}}}. \end{aligned}$$

Put \(Q(z)=z^2|P_2(z_0)|^2-P_2(z)Q_2(z)\). Then Q is a holomorphic polynomial of degree \(\le 4\) such that

$$\begin{aligned} \frac{Q(z)}{z^2}\ge |P_1(z)|\big ( |P_2(z_0)|+|P_2(z)|\big )\ge 0\quad \text { for any } z\in {{\mathbb {T}}}. \end{aligned}$$

Then by the Fejér–Riesz theorem (see [4, 7], see also [1, 3]) there exists a polynomial R of degree \(\le 2\) such that

$$\begin{aligned} Q(z)=z^2|R(z)|^2\quad \text { for any }z\in {{\mathbb {T}}}. \end{aligned}$$

Hence, \(P_1\) has a double zero at \(z_0\). We get

$$\begin{aligned} P_1(z)=pX_1(z-z_0)^2 \end{aligned}$$

and, therefore, \(pX_1z_0^2=-X_1\). So, \(X_1=0\). A contradiction. \(\square \)

Lemma 5

We have \(E(\xi )\subset E\) for any \(\xi \in {{\mathbb {T}}}\). Moreover, \(E(\xi _1)\cap E(\xi _2)=\varnothing \) when \(\xi _1\not =\xi _2\).

In particular, the set E is infinite.

Proof

It suffices to note that the equality \(|a+\xi b|=|a|+|b|\) where \(a,b\in {{\mathbb {C}}}{\setminus }\{0\}\) and \(\xi \in {{\mathbb {T}}}\) is equivalent with \(\xi =|ab|/ (b{\overline{a}})\). Now we use the previous Lemma and get that \(z_0\in E\) is such that \(z_0\in E(\xi )\) if and only if

$$\begin{aligned} \xi =\frac{|P_1(z_0)P_2(z_0)|}{ \overline{P_1(z_0)}P_2(z_0)}. \end{aligned}$$

\(\square \)

Lemma 6

Assume that the equation

$$\begin{aligned} |X_1pz^2+2Y_1z-X_1|+|X_2pz^2+2Y_2z-X_2|=1 \end{aligned}$$
(4)

has at least 9 solutions in \({{\mathbb {T}}}\). Then at least one of the following conditions hold:

  1. (1)

    \(X_1=X_2=0\);

  2. (2)

    \(P_j(z)=pX_j(z-\zeta _j)^2\), \(j=1,2\), where \(|X_1|=|X_2|=\frac{1}{2p+2}\), \(\zeta _1=-\zeta _2=\frac{\epsilon i}{\sqrt{p}}\), and \(\epsilon \in \{-1,1\}\).

Proof

From the equality \(|P_1(z)|+|P_2(z)|=1\) we get \(|P_2(z)|^2=(1-|P_1(z)|)^2\) and, therefore,

$$\begin{aligned} 4|P_1(z)|^2=(1+|P_1(z)|^2-|P_2(z)|^2)^2. \end{aligned}$$

We have

$$\begin{aligned} 4z^2P_1(z)Q_1(z)=(z^2+P_1(z)Q_1(z)-P_2(z)Q_2(z))^2 \end{aligned}$$

has at least 9 different solutions. Hence, it holds for any \(z\in {{\mathbb {C}}}\). Using that

$$\begin{aligned} P_1(z)Q_1(z)-P_2(z)Q_2(z)=p(|X_2|^2-|X_1|^2)+\dots \end{aligned}$$

we have \(|X_1|=|X_2|\). Moreover, there exists a polynomial \(R_1\) such that \(P_1Q_1=R_1^2\).

Let \(P_1(z)=pX_1(z-\zeta _1)(z-\xi _1)\). Note that \(pX_1\zeta _1\xi _1=-X_1\). Hence, \(X_1=0\) or \(\zeta _1\xi _1=-\frac{1}{p}\). Assume that \(X_1\not =0\). Note that

$$\begin{aligned} Q_1(z)=p\overline{X_1}(1-{\bar{\zeta }}_1 z)(1-{\bar{\xi }}_1 z). \end{aligned}$$

So, \(P_1Q_1=R_1^2\) if and only if \(\zeta _1=\xi _1\) or \({\bar{\zeta }}_1=1/\xi _1\). Since \(\zeta _1\xi _1=-\frac{1}{p}\), we get \(\zeta _1=\xi _1\) and, therefore, \(\zeta _1^2=-\frac{1}{p}\) and \(P_1(z)=pX_1(z-\zeta _1)^2\). By similar arguments, we get \(P_2(z)=pX_2(z-\zeta _2)^2\). Putting these equalities to (4) we get \(\zeta _2=-\zeta _1\) and \(|X_1|=|X_2|=\frac{1}{2p+2}\). \(\square \)

Proof of Theorem 3

For the proof, we apply Lemma 6 to the polynomials \({\tilde{P}}_j=P_j/(2C(1-p^2))\) with \({\tilde{X}}_j=X_j/(2C(1-p^2))\), \({\tilde{Y}}_j=Y_j/(2C(1-p^2))\), where \(j=1,2\). Then we have \({\tilde{P}}_1(z)=p{\tilde{X}}_1(z-\zeta _0)^2\) and \({\tilde{P}}_2(z)=p{\tilde{X}}_2(z+\zeta _0)^2\), where \(|\zeta _0|=\frac{1}{\sqrt{p}}\) and, \(|{\tilde{X}}_1|=|{\tilde{X}}_2|=\frac{1}{2+2p}\).

There exists \(\xi _0\in {{\mathbb {T}}}\) such that \(\xi _0 {\tilde{X}}_2=-{\tilde{X}}_1\). Then

$$\begin{aligned} 1=\max _{z\in {{\mathbb {T}}}}| {\tilde{P}}_1(z)+\xi _0 {\tilde{P}}_2(z)|= \max _{z\in {{\mathbb {T}}}}p|{\tilde{X}}_1|\cdot |(z-\zeta _0)^2-(z+\zeta _0)^2|. \end{aligned}$$
(5)

And, therefore, we have

$$\begin{aligned} 1=4p|{\tilde{X}}_1| \cdot |\zeta _0|=\frac{2\sqrt{p}}{1+p}. \end{aligned}$$

Hence, we get \(p=1\). A contradiction with the condition \(p\in [0;1)\). \(\square \)

Lemma 7

Let \(f:{{\mathbb {D}}}\rightarrow {{\mathbb {C}}}\) be a \(C^1\) function such that for any \(z\in {{\mathbb {D}}}\) we have \(\frac{\partial f}{\partial z}(z)=0\) or \(\frac{\partial f}{\partial {\bar{z}}}(z)=0\). Then f is holomorphic or anti-holomorphic in \({{\mathbb {D}}}\).

Proof

Put \(h=\frac{\partial f}{\partial z}\). Then h is a continuous function on \({{\mathbb {D}}}\) and on a set \(\{z\in {{\mathbb {D}}}: h(z)\not =0\}\) we have \(\frac{\partial f}{\partial {\bar{z}}}\equiv 0\). Hence, h is holomorphic on \({{\mathbb {D}}}{\setminus } h^{-1}(0)\). By Radó’s theorem, h is holomorphic in \({{\mathbb {D}}}\). If \(\{z\in {{\mathbb {D}}}: h(z)=0\}\) is a discrete, locally finite set, then f is holomorphic in \({{\mathbb {D}}}\). For otherwise it is equal to \({{\mathbb {D}}}\) and, therefore, f is an anti-holomorphic function. \(\square \)

Proof of Theorem 1

It suffices to show that for any \((X_1,Y_1), (X_2,Y_2)\in {{\mathbb {C}}}^2\), any \((s,p)\in {{\mathbb {G}}}_2\), and any constant \(C>0\) such that

$$\begin{aligned} \gamma _{{{\mathbb {G}}}_2}\big ((s,p);(X_1,Y_1)+\xi (X_2,Y_2)\big )=C\quad \text { for any }\xi \in {{\mathbb {T}}}, \end{aligned}$$
(6)

we have \((X_1,Y_1)=0\) or \((X_2,Y_2)=0\). There exists an automorphism \(\Phi \) of \({{\mathbb {G}}}_2\) such that \(\Phi (s,p)=(0,{\tilde{p}})\), where \({\tilde{p}}\ge 0\). Then

$$\begin{aligned}{} & {} \gamma _{{{\mathbb {G}}}_2}\big ((s,p);(X_1,Y_1)+\xi (X_2,Y_2)\big )=\nonumber \\{} & {} \quad \gamma _{{{\mathbb {G}}}_2}\big ((0,{\tilde{p}});\Phi '(s,p)(X_1,Y_1)+\xi \Phi '(s,p)(X_2,Y_2)\big ). \end{aligned}$$
(7)

Since \(\det \Phi '\not =0\), we get \((X_1,Y_1)=0\) or \((X_2,Y_2)=0\). \(\square \)

3 Carathéodory isometries

For a domain \(D\subset {{\mathbb {C}}}^n\), we define another biholomorphically invariant function. For any \(\lambda _1,\lambda _2\in D\) we put

$$\begin{aligned} c_{D}(\lambda _1,\lambda _2)=\sup \{\rho (F(\lambda _1),F(\lambda _2)): F:D\rightarrow {{\mathbb {D}}}\text { holomorphic}\} \end{aligned}$$

We say that a mapping \(\Phi :D_1\rightarrow D_2\) between domains \(D_1,D_2\) is a Carathéodory isometry if

$$\begin{aligned} c_{D_1}(\lambda _1,\lambda _2)=c_{D_2}(\Phi (\lambda _1),\Phi (\lambda _2))\quad \text { for any }\lambda _1,\lambda _2\in D_1. \end{aligned}$$

We say that \(\Phi \) is local c-isometry if for any \(\lambda _0\in D_1\) there exists a neighborhood \(U_0\subset D_1\) of \(\lambda _0\) such that

$$\begin{aligned} c_{D_1}(\lambda _1,\lambda _2)=c_{D_2}(\Phi (\lambda _1),\Phi (\lambda _2))\quad \text { for any }\lambda _1,\lambda _2\in U_0. \end{aligned}$$

Note that any c-isometry is a local c-isometry and any local c-isometry is a \(\gamma \)-isometry (see e.g. [10]). In particular, we have

Theorem 8

Let \(\phi :{{\mathbb {D}}}\rightarrow {{\mathbb {G}}}_2\) be a local c-isometry of class \(C^1\). Then \(\phi \) is holomorphic or anti-holomorphic.

4 Applications

In [5] the authors gave a proof of the description of automorphisms of the symmetrized bidisc. One of the main step in the proof is to show that for any automorphism \(\Phi :{{\mathbb {G}}}_2\rightarrow {{\mathbb {G}}}_2\) we have \(\Phi (\Sigma )\subset \Sigma \). We show this property by using our approach.

Corollary 9

Let \(F:{{\mathbb {G}}}_2\rightarrow {{\mathbb {G}}}_2\) be a holomorphic mapping such that F is a \(\gamma \)-isometry at 0. Then \(F(0)\in \Sigma \). In particular, if F is a \(\gamma \)-isometry on \(\Sigma \), then \(F(\Sigma )\subset \Sigma \).

Proof

Assume that \(F(0)=(0,p)\), where \(p\in (0,1)\). Then

$$\begin{aligned} \gamma _{{{\mathbb {G}}}_2}(0;(X,Y))=\gamma _{{{\mathbb {G}}}_2}((0,p); a_1X+b_1Y, a_2X+b_2Y)\quad \text { for any }X,Y\in {{\mathbb {C}}}, \end{aligned}$$

where \(a_1=\frac{\partial F_1}{\partial s}(0)\), \(b_1=\frac{\partial F_1}{\partial p}(0)\), \(a_2=\frac{\partial F_2}{\partial s}(0)\), \(b_2=\frac{\partial F_2}{\partial p}(0)\). Take pairs \((X,Y)=(1,\xi )\), where \(\xi \in {{\mathbb {T}}}\). Recall that

$$\begin{aligned} \gamma _{{{\mathbb {G}}}_2}(0;(X,Y))=\frac{|X|}{2}+|Y|. \end{aligned}$$

In this way we get a contradiction. \(\square \)

Now we can prove a Vigué type result (see e.g. [9]).

Corollary 10

Let \(F:{{\mathbb {G}}}_2\rightarrow {{\mathbb {G}}}_2\) be a holomorphic mapping such that F is a \(\gamma \)-isometry at 0. Then F is an automorphism of \({{\mathbb {G}}}_2\).

Proof

By the above Corollary, we may assume that \(F(0)=0\). Then

$$\begin{aligned} \frac{|X|}{2}+|Y|=\frac{|a_1X+b_1Y|}{2}+ |a_2X+b_2Y|\quad \text { for any }X,Y\in {{\mathbb {C}}}, \end{aligned}$$

where \(a_1=\frac{\partial F_1}{\partial s}(0)\), \(b_1=\frac{\partial F_1}{\partial p}(0)\), \(a_2=\frac{\partial F_2}{\partial s}(0)\), \(b_2=\frac{\partial F_2}{\partial p}(0)\).

By taking \(X=0\) and later \(Y=0\) we get \(\frac{|b_1|}{2}+|b_2|=1\) and \(\frac{|a_1|}{2}+|a_2|=\frac{1}{2}\). So,

$$\begin{aligned}{} & {} \frac{|X|}{2}+|Y|=\frac{|a_1X+b_1Y|}{2}+ |a_2X+b_2Y|\le \nonumber \\{} & {} \quad \frac{|a_1X|+|b_1Y|}{2}+ |a_2X|+|b_2Y|\le \frac{|X|}{2}+|Y|. \end{aligned}$$
(8)

We get \(a_1b_1=0\) and \(a_2b_2=0\). Therefore, \(a_1=0\), \(|a_2|=\frac{1}{2}\), \(b_2=0\), \(|b_1|=2\) or \(b_1=0\), \(|b_2|=1\), \(a_2=0\), \(|a_1|=1\). We have \(|\det F'(0)|=1\). From the Cartan theorem we get that F is an automorphism. \(\square \)

Remark 11

The author thanks the anonymous referee for her/his helpful comments that improved the presentation of the results.