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Abstract
We provide a characterization of isometries in the sense of the Carathéodory—Reiffen metric
in the symmetrized bidisc.

1 Introduction

Let D € C" be a domain. We say that a function Fp : D x C" — [0, +00) is a Finsler
metric if it is an upper semi-continuous function and

Fp(A; tv) = |t|Fp(A;v) forany d € D,v e C", t € C.

Assume that D; C C™" and D, C C™ are domains with Finsler metrics Fp, and Fp,,
respectively. We say that a C! mapping ¢ : D| — D is an isometry if

Fp, (A X) = Fp,(¢(V); drp(M)(X)) forany i € Dy, X € C", ey

where dj ¢ denotes the R-differential of ¢ at A. In case n; = 1 the equation (1) is equivalent
with
¢ ¢

0 d
Fp (1) = Fp,($0): 5-() +§52(0) foranya.e D& €T, @)

where T = {r € C : |[t| = 1} denotes the unit circle.

The paper is motivated by the question whether an isometry is holomorphic or anti-
holomorphic. This problem was considered in many papers and, it seems, that in case of
invariant metrics (Kobayashi metric, Carathéodory metric, etc) is very difficult (see [2, 8,
10]).

We denote by D = {r € C : |¢t| < 1} the unit disc. For a domain D C C" we define a
biholomorphically invariant Finsler metric as follows

|[F'()X]

ro0 )= s { L5

F:D—-D holomorphic}

forany A € D and any X € C". We call yp the Carathéodory-Reiffen (pseudo)metric for D
(see e.g. [6], Chapter 2). According to the above definition a C'-mapping ¢ : D; — D5 isa
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y-isometry if
YD, (@ (A); drp (X)) = yp, (A; X)

forany A € Dy and any X € C"!.
Put

7:C*3(z,w) > (z+w, zw) € C?

and G, = 7(D?). We call G, the symmetrized bidisc (see e.g. [1]). One of the main results
of our paper is the following.

Theorem 1 Let ¢ : D — Gy be a mapping of class C. Assume that ¢ is a y-isometry. Then
¢ is holomorphic or anti-holomorphic.

As a corollary, we obtain the following result.

Corollary2 Let F : Gy — Gy be a mapping of class C' and a y-isometry. Then F is
holomorphic or anti-holomorphic.

2 Proof of Theorem 1
For any A € Gy, there exists an automorphism & of G, such that ®(1) = (0, p), where
p € [0, 1). Define a set ¥ = {(2¢, 2):te D} called the royal set. We have
Y ={DP0) : ® € Aut(Gy)}.
Recall the following result (see [6], Chapter 7)

|(Fp)s )X + (F), (W)Y }
neTys,
1—|F)|?

VG, ((s, p); (X, Y)) = max {

where A = (s, p) € Gy and Fy(s, p) = 2'”’_:, n € T. Note that

2—n
, 2n°p —2 , 2n
(F,,)s(s, p) = m and (F,,)p(s, p) = 7 TIS.
Hence,
. _ |("*p — DX + 02 —ns)Y|
6:((s, p); (X, ¥)) = max {2(1 gyt T rra e B T},

In particular, we have

Maxger |X (1 — w?p) — 2Y 0|

v6, (0, p); (X, Y)) = )

where p € [0, 1) and (X, Y) € C2.
The main result of this section is the following.

Theorem 3 Let (X1, Y)), (X2, Y2) € C2 be fixed vectors and let p € (0, 1) be a fixed number.
Assume that there exists a constant C > 0 such that

V6, ((0, p); (X1, Y1) + E(X2,Y2)) = C  forany& € T. 3)
Then (X1, Y1) =0o0r (X2, Y,) =0.
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We assume that (X1, Y1) # 0 and (X», Y») # 0. Consider polynomials
Pi(z) = pX;z* +2Y;z—X;, z€C,j=1.2,
and their duals,
Qi) =2"Pj(1/2) = —X;z> +2Y;z+ pX;, z€C,j=1,2.
We have P;(2)Q;(z) = 12|Pj (z)|2 for any z € T. Note that the equality (3) means that

max;er | P1(2) + & P2(2)|
2(1 = p?)

= Cforany & € T.

It is easy to see that

_ maXger (I1P1)] + | P2(2)])
B 2(1 = p?) .

We put

E={zeT:|PI@|+|P2)] =21~ p*)C)
and

EE) ={zeT:|Pi(x) +EPs()| =2(1 — p*)C}.
We have divided the proof of Theorem 3 into a sequence of lemmas.
Lemma 4 Assume that zg € E. Then P (z0) P2(zo) # 0.
Proof Assume that P;(zo) = 0 and that X{ X, # 0. Then
|P1(2)| + |P2(2)| = [P2(z0)| foranyzeT.

Put Q(z) = 22| P»(z0)|> — P2(z) Q2(z). Then Q is a holomorphic polynomial of degree < 4
such that

22 = 1P@I(1P2o)l + 1) 20 foranyz € T.

Then by the Fejér—Riesz theorem (see [4, 7], see also [1, 3]) there exists a polynomial R of
degree < 2 such that
0(z) = Z2|R(z)|*> foranyz e T.
Hence, P; has a double zero at zg. We get
Pi(z) = pXi(z — 20)
and, therefore, p X 12(2) = —Xj. So, X; = 0. A contradiction. O

Lemma5 We have E(§) C E for any & € T. Moreover, E(§1) N E(&) = & when &1 # &;.
In particular, the set E is infinite.

Proof Tt suffices to note that the equality |a + &b| = |a| + |b| where a, b € C\{O}and & € T
is equivalent with § = |ab|/(ba). Now we use the previous Lemma and get that zg € E is
such that zg € E (&) if and only if

_ |P1(z0) P2(z0)]

"~ Pizo)Pa(z0)
o
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Lemma 6 Assume that the equation

|X1p2% +2Y1z = X1| + | X2p2® + 22z — Xo| = 1 @)
has at least 9 solutions in T. Then at least one of the following conditions hold:
) X1 =X,=0;

@) Pj2) = pX;(z = )% j = 1.2, where [X1| = |Xa| = g5, &1 = —0 = . and
eef{-1,1).

Proof From the equality |P;(z)| + |P2(z)] = 1 we get |P»(2)]> = (1 — |P1(z)])? and,
therefore,

4P = A+ PR — P22
‘We have
422 P1(2)01(2) = (> + P1(2) Q1(2) — P2(2) 02(2))*

has at least 9 different solutions. Hence, it holds for any z € C. Using that

P1(2)Q1(z) — P2(2) Q2(z) = p(1X2)? — |X11) + ...

we have | X | = | X2|. Moreover, there exists a polynomial R; such that P1Q; = R%.
Let Pi(z) = pXi(z — ¢1)(z — &1). Note that pX 1§ = —X;. Hence, X; = 0 or
1€ = —%. Assume that X # 0. Note that

01() = pXi1(1 — 512)(1 — &12).
So, P10 = Rf if and only if ¢; = & or ¢; = 1/&). Since {1& = _E we get {1 = &
and, therefore, {12 = —% and Pi(z) = pX1(z — {1)2. By similar arguments, we get P>(z) =
pXo(z — 0)2. Putting these equalities to (4) we get {&» = —¢1 and | X | = | X3| = zplﬁ. ]

Proof of Theorem 3 For the proof, we apply Lemma 6 to the polynomials P =P;/2C(1 -
p?) with X; = X;/Q2C(1 — p)), ¥; = Y;/2C(1 — p?)), wherej =1, 2. Then we have

Pi(z) = pX1(z — )? and Pr(z) = pXa(z + ¢o)%, where |¢o| = ﬁ and, |X1| = |X2| =
1

24+2p° 5 5
There exists & € T such that £ X, = —X . Then
1= max|Py(z) + & Pa(2)] = max p|Xi| - |(z = £0)* — (z + £0)°!. )
zeT zeT
And, therefore, we have
: EN/
1 =4p|X
plXil- 1%l = T+ p

Hence, we get p = 1. A contradiction with the condition p € [0; 1). O

Lemma7 Let f : D — C be a C' function such that for any z € D we have %—{(z) =0or
E)f( ) = 0. Then f is holomorphic or anti-holomorphic in D.

Proof Puth = 0f . Then A is a continuous functionon D andon aset {z € D : h(z) # 0} we

have B—J; = 0. Hence, h is holomorphic on D\~ ~!(0). By Radé’s theorem, / is holomorphic
inD. If {z € D : h(z) = 0} is a discrete, locally finite set, then f is holomorphic in . For
otherwise it is equal to D and, therefore, f is an anti-holomorphic function. O
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Proof of Theorem 1 Tt suffices to show that for any (X1, Y1), (X2, Y2) € C?, any (s, p) € Go,
and any constant C > 0 such that

¥e, ((s, p); (X1, Y1) +£(X2, ¥2)) =C forany & €T, (6)

we have (X1, Y1) = 0 or (X3, Y2) = 0. There exists an automorphism @ of G, such that
@ (s, p) = (0, p), where p > 0. Then

G, ((s. p): (X1, Y1) +6(X2, Y2)) =
6, (0, p); ' (s, p)(X1, Y1) + ED'(s, p) (X2, V2)). @
Since det @ # 0, we get (X1, Y1) = 0 or (X2, Y2) = 0. O

3 Carathéodory isometries
For a domain D C C", we define another biholomorphically invariant function. For any
A1, A2 € D we put

cp(h, A2) = sup{p(F(r1), F(X2)) : F : D — D holomorphic}

We say that a mapping ® : D; — D, between domains Dy, D; is a Carathéodory isometry
if

cp (A1, A2) = cp, (P(A1), P(A2)) forany Ay, Az € Dy.

We say that ® is local c-isometry if for any Ao € D; there exists a neighborhood Uy C D
of Ag such that

cpy (A1, A2) = cp, (P (A1), P(X2)) forany Ay, Ay € Up.

Note that any c-isometry is a local c-isometry and any local c-isometry is a y-isometry (see
e.g. [10]). In particular, we have

Theorem 8 Let ¢ : D — Go be a local c-isometry of class C'. Then ¢ is holomorphic or
anti-holomorphic.

4 Applications

In [5] the authors gave a proof of the description of automorphisms of the symmetrized bidisc.
One of the main step in the proof is to show that for any automorphism ® : G, — G, we
have ®(X) C X. We show this property by using our approach.

Corollary9 Let F : Gy — Gy be a holomorphic mapping such that F is a y-isometry at 0.
Then F(0) € Z. In particular, if F is a y-isometry on X, then F(X) C Z.

Proof Assume that F(0) = (0, p), where p € (0, 1). Then
76,05 (X, Y)) = ye, (0, p); a1 X + b1Y, a2 X + byY) forany X,Y € C,

where a1 = 55L(0), by = L(0), @ = 52(0), by = G2 (0). Take pairs (X, ¥) = (1,£),
where & € T. Recall that

, | X
Y6, (05 (X, Y)) = -5 7t Y]
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In this way we get a contradiction. O

Now we can prove a Vigué type result (see e.g. [9]).

Corollary 10 Let F : Gy — Gy be a holomorphic mapping such that F is a y-isometry at
0. Then F is an automorphism of G.

Proof By the above Corollary, we may assume that F(0) = 0. Then

X X +b1Y
%+|Y| = Mz#ll—H@Xﬁ—bzﬂ forany X,Y € C,
where aj = %£1(0), b = %(0)702 = 22(0), b, = %(0)

By taking X = 0 and later Y = 0 we get % + |by| = 1 and ‘aT‘l + lap| = % So,
| X| la1 X + b1Y|

la1 X[+ [b1Y] IX]
f+|a2X|+|b2Y|§7+IY|. ®)

We get ajby = 0 and aby = 0. Therefore, a; = 0, |az| = % by =0,|b| =20rb; =0,
|b2] = 1,a, = 0, |aj| = 1. We have | det F/(0)| = 1. From the Cartan theorem we get that
F is an automorphism. O

Remark 11 The author thanks the anonymous referee for her/his helpful comments that
improved the presentation of the results.
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