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Abstract
We provide a characterization of isometries in the sense of the Carathéodory–Reiffen metric
in the symmetrized bidisc.

1 Introduction

Let D ⊂ C
n be a domain. We say that a function FD : D × C

n → [0,+∞) is a Finsler
metric if it is an upper semi-continuous function and

FD(λ; tv) = |t |FD(λ; v) for any λ ∈ D, v ∈ C
n, t ∈ C.

Assume that D1 ⊂ C
n1 and D2 ⊂ C

n2 are domains with Finsler metrics FD1 and FD2 ,
respectively. We say that a C1 mapping φ : D1 → D2 is an isometry if

FD1(λ; X) = FD2(φ(λ); dλφ(λ)(X)) for any λ ∈ D1, X ∈ C
n1 , (1)

where dλφ denotes the R-differential of φ at λ. In case n1 = 1 the equation (1) is equivalent
with

FD1(λ; 1) = FD2

(
φ(λ); ∂φ

∂z
(λ) + ξ

∂φ

∂ z̄
(λ)

)
for any λ ∈ D1, ξ ∈ T, (2)

where T = {t ∈ C : |t | = 1} denotes the unit circle.
The paper is motivated by the question whether an isometry is holomorphic or anti-

holomorphic. This problem was considered in many papers and, it seems, that in case of
invariant metrics (Kobayashi metric, Carathéodory metric, etc) is very difficult (see [2, 8,
10]).

We denote by D = {t ∈ C : |t | < 1} the unit disc. For a domain D ⊂ C
n we define a

biholomorphically invariant Finsler metric as follows

γD(λ, X) = sup

{ |F ′(λ)X |
1 − |F(λ)|2 : F : D → D holomorphic

}

for any λ ∈ D and any X ∈ C
n . We call γD the Carathéodory-Reiffen (pseudo)metric for D

(see e.g. [6], Chapter 2). According to the above definition a C1-mapping φ : D1 → D2 is a
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γ -isometry if

γD2(φ(λ); dλφ(X)) = γD1(λ; X)

for any λ ∈ D1 and any X ∈ C
n1 .

Put

π : C
2 � (z, w) → (z + w, zw) ∈ C

2

and G2 = π(D2). We call G2 the symmetrized bidisc (see e.g. [1]). One of the main results
of our paper is the following.

Theorem 1 Let φ : D → G2 be a mapping of class C1. Assume that φ is a γ -isometry. Then
φ is holomorphic or anti-holomorphic.

As a corollary, we obtain the following result.

Corollary 2 Let F : G2 → G2 be a mapping of class C1 and a γ -isometry. Then F is
holomorphic or anti-holomorphic.

2 Proof of Theorem 1

For any λ ∈ G2, there exists an automorphism � of G2 such that �(λ) = (0, p), where
p ∈ [0, 1). Define a set 	 = {(2t, t2) : t ∈ D} called the royal set. We have

	 = {�(0) : � ∈ Aut(G2)}.
Recall the following result (see [6], Chapter 7)

γG2((s, p); (X , Y )) = max

{ |(Fη)
′
s(λ)X + (Fη)

′
p(λ)Y |

1 − |F(λ)|2 : η ∈ T

}
,

where λ = (s, p) ∈ G2 and Fη(s, p) = 2ηp−s
2−ηs , η ∈ T. Note that

(Fη)
′
s(s, p) = 2η2 p − 2

(2 − ηs)2
and (Fη)

′
p(s, p) = 2η

2 − ηs
.

Hence,

γG2((s, p); (X , Y )) = max
{ |(η2 p − 1)X + η(2 − ηs)Y |
2
(
1 − |p|2 − �(η(s − s̄ p))

) : η ∈ T

}
.

In particular, we have

γG2((0, p); (X , Y )) = maxω∈T |X(1 − ω2 p) − 2Yω|
2(1 − p2)

,

where p ∈ [0, 1) and (X , Y ) ∈ C
2.

The main result of this section is the following.

Theorem 3 Let (X1, Y1), (X2, Y2) ∈ C
2 be fixed vectors and let p ∈ (0, 1) be a fixed number.

Assume that there exists a constant C > 0 such that

γG2

(
(0, p); (X1, Y1) + ξ(X2, Y2)

) = C for any ξ ∈ T. (3)

Then (X1, Y1) = 0 or (X2, Y2) = 0.
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We assume that (X1, Y1) 	= 0 and (X2, Y2) 	= 0. Consider polynomials

Pj (z) = pX j z
2 + 2Y j z − X j , z ∈ C, j = 1, 2,

and their duals,

Q j (z) = z2Pj (1/z̄) = −X̄ j z
2 + 2Ȳ j z + pX̄ j , z ∈ C, j = 1, 2.

We have Pj (z)Q j (z) = z2|Pj (z)|2 for any z ∈ T. Note that the equality (3) means that

maxz∈T |P1(z) + ξ P2(z)|
2(1 − p2)

= C for any ξ ∈ T.

It is easy to see that

C = maxz∈T
(|P1(z)| + |P2(z)|

)

2(1 − p2)
.

We put

E = {z ∈ T : |P1(z)| + |P2(z)| = 2(1 − p2)C}
and

E(ξ) = {z ∈ T : |P1(z) + ξ P2(z)| = 2(1 − p2)C}.
We have divided the proof of Theorem 3 into a sequence of lemmas.

Lemma 4 Assume that z0 ∈ E. Then P1(z0)P2(z0) 	= 0.

Proof Assume that P1(z0) = 0 and that X1X2 	= 0. Then

|P1(z)| + |P2(z)| ≤ |P2(z0)| for any z ∈ T.

Put Q(z) = z2|P2(z0)|2 − P2(z)Q2(z). Then Q is a holomorphic polynomial of degree ≤ 4
such that

Q(z)

z2
≥ |P1(z)|

(|P2(z0)| + |P2(z)|
) ≥ 0 for any z ∈ T.

Then by the Fejér–Riesz theorem (see [4, 7], see also [1, 3]) there exists a polynomial R of
degree ≤ 2 such that

Q(z) = z2|R(z)|2 for any z ∈ T.

Hence, P1 has a double zero at z0. We get

P1(z) = pX1(z − z0)
2

and, therefore, pX1z20 = −X1. So, X1 = 0. A contradiction. �
Lemma 5 We have E(ξ) ⊂ E for any ξ ∈ T. Moreover, E(ξ1) ∩ E(ξ2) = ∅ when ξ1 	= ξ2.

In particular, the set E is infinite.

Proof It suffices to note that the equality |a + ξb| = |a| + |b| where a, b ∈ C\{0} and ξ ∈ T

is equivalent with ξ = |ab|/(ba). Now we use the previous Lemma and get that z0 ∈ E is
such that z0 ∈ E(ξ) if and only if

ξ = |P1(z0)P2(z0)|
P1(z0)P2(z0)

.

�
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Lemma 6 Assume that the equation

|X1 pz
2 + 2Y1z − X1| + |X2 pz

2 + 2Y2z − X2| = 1 (4)

has at least 9 solutions in T. Then at least one of the following conditions hold:

(1) X1 = X2 = 0;
(2) Pj (z) = pX j (z − ζ j )

2, j = 1, 2, where |X1| = |X2| = 1
2p+2 , ζ1 = −ζ2 = εi√

p , and

ε ∈ {−1, 1}.
Proof From the equality |P1(z)| + |P2(z)| = 1 we get |P2(z)|2 = (1 − |P1(z)|)2 and,
therefore,

4|P1(z)|2 = (1 + |P1(z)|2 − |P2(z)|2)2.
We have

4z2P1(z)Q1(z) = (z2 + P1(z)Q1(z) − P2(z)Q2(z))
2

has at least 9 different solutions. Hence, it holds for any z ∈ C. Using that

P1(z)Q1(z) − P2(z)Q2(z) = p(|X2|2 − |X1|2) + . . .

we have |X1| = |X2|. Moreover, there exists a polynomial R1 such that P1Q1 = R2
1 .

Let P1(z) = pX1(z − ζ1)(z − ξ1). Note that pX1ζ1ξ1 = −X1. Hence, X1 = 0 or
ζ1ξ1 = − 1

p . Assume that X1 	= 0. Note that

Q1(z) = pX1(1 − ζ̄1z)(1 − ξ̄1z).

So, P1Q1 = R2
1 if and only if ζ1 = ξ1 or ζ̄1 = 1/ξ1. Since ζ1ξ1 = − 1

p , we get ζ1 = ξ1

and, therefore, ζ 2
1 = − 1

p and P1(z) = pX1(z − ζ1)
2. By similar arguments, we get P2(z) =

pX2(z − ζ2)
2. Putting these equalities to (4) we get ζ2 = −ζ1 and |X1| = |X2| = 1

2p+2 . �
Proof of Theorem 3 For the proof, we apply Lemma 6 to the polynomials P̃j = Pj/(2C(1−
p2)) with X̃ j = X j/(2C(1 − p2)), Ỹ j = Y j/(2C(1 − p2)), where j = 1, 2. Then we have
P̃1(z) = pX̃1(z − ζ0)

2 and P̃2(z) = pX̃2(z + ζ0)
2, where |ζ0| = 1√

p and, |X̃1| = |X̃2| =
1

2+2p .

There exists ξ0 ∈ T such that ξ0 X̃2 = −X̃1. Then

1 = max
z∈T |P̃1(z) + ξ0 P̃2(z)| = max

z∈T p|X̃1| · |(z − ζ0)
2 − (z + ζ0)

2|. (5)

And, therefore, we have

1 = 4p|X̃1| · |ζ0| = 2
√
p

1 + p
.

Hence, we get p = 1. A contradiction with the condition p ∈ [0; 1). �
Lemma 7 Let f : D → C be a C1 function such that for any z ∈ D we have ∂ f

∂z (z) = 0 or
∂ f
∂ z̄ (z) = 0. Then f is holomorphic or anti-holomorphic in D.

Proof Put h = ∂ f
∂z . Then h is a continuous function on D and on a set {z ∈ D : h(z) 	= 0} we

have ∂ f
∂ z̄ ≡ 0. Hence, h is holomorphic on D\h−1(0). By Radó’s theorem, h is holomorphic

in D. If {z ∈ D : h(z) = 0} is a discrete, locally finite set, then f is holomorphic in D. For
otherwise it is equal to D and, therefore, f is an anti-holomorphic function. �
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Proof of Theorem 1 It suffices to show that for any (X1, Y1), (X2, Y2) ∈ C
2, any (s, p) ∈ G2,

and any constant C > 0 such that

γG2

(
(s, p); (X1, Y1) + ξ(X2, Y2)

) = C for any ξ ∈ T, (6)

we have (X1, Y1) = 0 or (X2, Y2) = 0. There exists an automorphism � of G2 such that
�(s, p) = (0, p̃), where p̃ ≥ 0. Then

γG2

(
(s, p); (X1, Y1) + ξ(X2, Y2)

) =
γG2

(
(0, p̃);�′(s, p)(X1, Y1) + ξ�′(s, p)(X2, Y2)

)
. (7)

Since det�′ 	= 0, we get (X1, Y1) = 0 or (X2, Y2) = 0. �

3 Carathéodory isometries

For a domain D ⊂ C
n , we define another biholomorphically invariant function. For any

λ1, λ2 ∈ D we put

cD(λ1, λ2) = sup{ρ(F(λ1), F(λ2)) : F : D → D holomorphic}
We say that a mapping � : D1 → D2 between domains D1, D2 is a Carathéodory isometry
if

cD1(λ1, λ2) = cD2(�(λ1),�(λ2)) for any λ1, λ2 ∈ D1.

We say that � is local c-isometry if for any λ0 ∈ D1 there exists a neighborhood U0 ⊂ D1

of λ0 such that

cD1(λ1, λ2) = cD2(�(λ1),�(λ2)) for any λ1, λ2 ∈ U0.

Note that any c-isometry is a local c-isometry and any local c-isometry is a γ -isometry (see
e.g. [10]). In particular, we have

Theorem 8 Let φ : D → G2 be a local c-isometry of class C1. Then φ is holomorphic or
anti-holomorphic.

4 Applications

In [5] the authors gave a proof of the description of automorphisms of the symmetrized bidisc.
One of the main step in the proof is to show that for any automorphism � : G2 → G2 we
have �(	) ⊂ 	. We show this property by using our approach.

Corollary 9 Let F : G2 → G2 be a holomorphic mapping such that F is a γ -isometry at 0.
Then F(0) ∈ 	. In particular, if F is a γ -isometry on 	, then F(	) ⊂ 	.

Proof Assume that F(0) = (0, p), where p ∈ (0, 1). Then

γG2(0; (X , Y )) = γG2((0, p); a1X + b1Y , a2X + b2Y ) for any X , Y ∈ C,

where a1 = ∂F1
∂s (0), b1 = ∂F1

∂ p (0), a2 = ∂F2
∂s (0), b2 = ∂F2

∂ p (0). Take pairs (X , Y ) = (1, ξ),
where ξ ∈ T. Recall that

γG2(0; (X , Y )) = |X |
2

+ |Y |.

123



51 Page 6 of 6 A. Edigarian

In this way we get a contradiction. �
Now we can prove a Vigué type result (see e.g. [9]).

Corollary 10 Let F : G2 → G2 be a holomorphic mapping such that F is a γ -isometry at
0. Then F is an automorphism of G2.

Proof By the above Corollary, we may assume that F(0) = 0. Then

|X |
2

+ |Y | = |a1X + b1Y |
2

+ |a2X + b2Y | for any X , Y ∈ C,

where a1 = ∂F1
∂s (0), b1 = ∂F1

∂ p (0), a2 = ∂F2
∂s (0), b2 = ∂F2

∂ p (0).

By taking X = 0 and later Y = 0 we get |b1|
2 + |b2| = 1 and |a1|

2 + |a2| = 1
2 . So,

|X |
2

+ |Y | = |a1X + b1Y |
2

+ |a2X + b2Y | ≤
|a1X | + |b1Y |

2
+ |a2X | + |b2Y | ≤ |X |

2
+ |Y |. (8)

We get a1b1 = 0 and a2b2 = 0. Therefore, a1 = 0, |a2| = 1
2 , b2 = 0, |b1| = 2 or b1 = 0,

|b2| = 1, a2 = 0, |a1| = 1. We have | det F ′(0)| = 1. From the Cartan theorem we get that
F is an automorphism. �
Remark 11 The author thanks the anonymous referee for her/his helpful comments that
improved the presentation of the results.

References

1. Agler, J., Young, N.J.: The hyperbolic geometry of the symmetrized bidisc. J. Geom.Anal. 14(3), 375–403
(2004)

2. Antonakoudis, S.: Isometric discs are holomorphic. Invent. Math. 207, 1289–1299 (2017)
3. Edigarian, A.: On extremal mappings in complex ellipsoids. Ann. Pol. Math. 62, 83–96 (1995)
4. Fejér, L.: Über trigonometrische polynome. J. Reine Angew. Math. 146, 53–82 (1916)
5. Jarnicki, M., Pflug, P.: On automorphisms of the symmetrized bidisc. Arch. Math. (Basel) 83, 264–266

(2004)
6. Jarnicki, M., Pflug, P.: Invariant distances and metrics in complex analysis, 2nd extended edition, De

Gruyter Exposiotions in Mathematics (2013)
7. Riesz, F.: Über ein problem des Herr Carathéodory. J. Reine Angew. Math. 146, 83–87 (1915)
8. Seshadri, H., Verma, K.: On isometries of the Carathéodory and Kobayashi metrics on strongly pseudo-

convex domains. Ann. Scuola Norm. Sup. Pisa 5, 393–417 (2006)
9. Vigué, J.P.: Caractérisation des automorphismes analytiques d’un domaine convexe borné,. C.R. Acad.

Sc. Paris Série I Math. 299, 101–104 (1984)
10. Zwonek, W.: A Note on γ -isometries, pp. 137–144. Universitatis Iagellonicae Acta Mathematica,

Bratislava (1993)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123


	Isometries in the symmetrized bidisc
	Abstract
	1 Introduction
	2 Proof of Theorem 1
	3 Carathéodory isometries
	4 Applications
	References




