1 Introduction

Infinite-energy weak Leray solutions to the Navier–Stokes equations were introduced by Lemarié-Rieusset in 1999 [8] (they are presented more completely in [9] and [10]). This has allowed demonstration of the existence of local weak solutions for a uniformly locally square integrable initial data.

Other constructions of infinite-energy solutions for locally uniformly square integrable initial data were given in 2006 by Basson [1] and in 2007 by Kikuchi and Seregin [7]. These solutions allowed Jia and Sverak [6] to construct in 2014 the self-similar solutions for large (homogeneous of degree -1) smooth data. Their result has been extended in 2016 by Lemarié-Rieusset [10] to solutions for rough locally square integrable data. We remark that an homogeneous (of degree -1) and locally square integrable data is automatically uniformly locally \(L^2\).

Recently, Bradshaw and Tsai [2] and Chae and Wolf [3] considered the case of solutions which are self-similar according to a discrete subgroup of dilations. Those solutions are related to an initial data which is self-similar only for a discrete group of dilations; in contrast to the case of self-similar solutions for all dilations, such initial data, when locally \(L^2\), is not necessarily uniformly locally \(L^2\), therefore their results are no consequence of constructions described by Lemarié-Rieusset in [10].

In this paper, we construct an alternative theory to obtain infinite-energy global weak solutions for large initial data, which include the discretely self-similar locally square integrable data. More specifically, we consider the weights

$$\begin{aligned} w_\gamma (x)=\frac{1}{(1+\vert x\vert )^\gamma } \end{aligned}$$

with \(0<\gamma \), and the spaces

$$\begin{aligned} L^2_{w_\gamma }=L^2(w_\gamma \, \mathrm{d}x). \end{aligned}$$

Our main theorem is the following one:

Theorem 1

Let \(0<\gamma \leqq 2\). If \(\mathbf{u}_{0}\) is a divergence-free vector field such that \(\mathbf{u}_0\in L^2_{w_\gamma }({\mathbb {R}}^3)\) and if \({\mathbb {F}}\) is a tensor \({\mathbb {F}}(t,x)=\left( F_{i,j}(t,x)\right) _{1\leqq i,j\leqq 3}\) such that \({\mathbb {F}}\in L^2((0,+\infty ), L^2_{w_\gamma })\), then the Navier–Stokes equations with initial value \(\mathbf{u}_0\)

$$\begin{aligned} (NS) \left\{ \begin{array}{l} \partial _t \mathbf{u}= \Delta \mathbf{u}-(\mathbf{u}\cdot \mathbf{\nabla })\mathbf{u}- \mathbf{\nabla }p +\mathbf{\nabla }\cdot {\mathbb {F}} \\ \\ \mathbf{\nabla }\cdot \mathbf{u}=0, \quad \quad \mathbf{u}(0,.)=\mathbf{u}_0 \end{array}\right. \end{aligned}$$

have a global weak solution \(\mathbf{u}\) such that:

  • for every \(0<T<+\infty \), \(\mathbf{u}\) belongs to \(L^\infty ((0,T), L^2_{w_\gamma })\) and \(\mathbf{\nabla }\mathbf{u}\) belongs to \(L^2((0,T),L^2_{w_\gamma })\)

  • the pressure p is related to \(\mathbf{u}\) and \({\mathbb {F}}\) through the Riesz transforms \(R_i =\frac{\partial _i}{\sqrt{-\Delta }}\) by the formula

    $$\begin{aligned} p =\sum _{i=1}^3\sum _{j=1}^3 R_iR_j(u_iu_j-F_{i,j}) \end{aligned}$$

    where, for every \(0<T<+\infty \), \(\sum _{i=1}^3\sum _{j=1}^3 R_iR_j(u_iu_j)\) belongs to \(L^{4}((0,T),L^{6/5}_{w_{\frac{6\gamma }{5}}})\) and \(\sum _{i=1}^3\sum _{j=1}^3 R_iR_j F_{i,j} \) belongs to \(L^{2}((0,T),L^{2}_{w_\gamma })\)

  • the map \(t\in [0,+\infty )\mapsto \mathbf{u}(t,.)\) is weakly continuous from \([0,+\infty )\) to \(L^2_{w_\gamma }\), and is strongly continuous at \(t=0\) :

    $$\begin{aligned} \lim _{t\rightarrow 0} \Vert \mathbf{u}(t,.)-\mathbf{u}_0\Vert _{L^2_{w_\gamma }}=0. \end{aligned}$$
  • the solution \(\mathbf{u}\) is suitable: there exists a non-negative locally finite measure \(\mu \) on \((0,+\infty )\times {\mathbb {R}}^3\) such that

    $$\begin{aligned}&\partial _t\left( \frac{\vert \mathbf{u}\vert ^2}{2}\right) =\Delta \left( \frac{\vert \mathbf{u}\vert ^2}{2}\right) -\vert \mathbf{\nabla }\mathbf{u}\vert ^2\\&\quad - \mathbf{\nabla }\cdot \left( \Big (\frac{\vert \mathbf{u}\vert ^2}{2}+p\Big )\mathbf{u}\right) + \mathbf{u}\cdot (\mathbf{\nabla }\cdot {\mathbb {F}})-\mu . \end{aligned}$$

In particular, we have the energy controls

$$\begin{aligned} \begin{aligned}&\Vert \mathbf{u}(t,. )\Vert _{L^2_{w_\gamma }}^2 +2\int _0^t \Vert \mathbf{\nabla }\mathbf{u}(s,.)\Vert _{L^2_{w_\gamma }}^2\, \mathrm{d}s \\&\quad \leqq \Vert \mathbf{u}_0 \Vert _{L^2_{w_\gamma }}^2 -\int _0^t \int \mathbf{\nabla }\vert \mathbf{u}\vert ^2\cdot \mathbf{\nabla }w_\gamma \, \mathrm{d}x \, \mathrm{d}s +\int _0^t\int (\vert \mathbf{u}\vert ^2+2p) \mathbf{u}\cdot \mathbf{\nabla }(w_\gamma )\, \, \mathrm{d}x \, \mathrm{d}s \\&\qquad -2\sum _{i=1}^3\sum _{j=1}^3 \int _0^t\int F_{i,j} (\partial _i u_j) w_\gamma +F_{i,j} u_i \partial _j(w_\gamma ) \, \mathrm{d}x \, \mathrm{d}s \end{aligned} \end{aligned}$$

and

$$\begin{aligned} \Vert \mathbf{u}(t,. )\Vert _{L^2_{w_\gamma }}^2\leqq & {} \Vert \mathbf{u}_0 \Vert _{L^2_{w_\gamma }}^2 +C_\gamma \int _0^t \Vert {\mathbb {F}}(s,.)\Vert ^2_{L^2_{w_\gamma }}\, \mathrm{d}s \\&+\, C_\gamma \int _0^t \Vert \mathbf{u}(s,. )\Vert _{L^2_{w_\gamma }}^2 + \Vert \mathbf{u}(s,. )\Vert _{L^2_{w_\gamma }}^6 \, \mathrm{d}s \end{aligned}$$

Remark

We use the following notations: the vector \(\mathbf{u}\) is given by its coordinates \(\mathbf{u}=(\mathbf{u}_1,\mathbf{u}_2,\mathbf{u}_3)\). The operator \(\mathbf{u}\cdot \nabla \) is the differential operator \(\mathbf{u}_1\partial _1+\mathbf{u}_2\partial _2+\mathbf{u}_3\partial _3\). Thus, \(\nabla \cdot (f\mathbf{u})=f \nabla \cdot \mathbf{u}+ \mathbf{u}\cdot \nabla f\).

For \({\mathbb {F}}=(F_{i,j})\), we write \(\nabla \cdot {\mathbb {F}}\) for the vector \(\displaystyle (\sum _{i=1}^3 \partial _i F_{i,1}, \sum _{i=1}^3 \partial _i F_{i,2}, \sum _{i=1}^3 \partial _i F_{i,3} )\).

For the vector fields \(\mathbf{b}\) and \(\mathbf{u}\), we define \(\mathbf{b}\otimes \mathbf{u}\) as \((b_iu_j)_{1\leqq i\leqq 3, 1\leqq j\leqq 3}\). Thus, if \(\mathbf{b}\) is divergence free (that is if \(\mathbf{\nabla }\cdot \mathbf{b}=0\)) we have \(\mathbf{\nabla }\cdot (\mathbf{b}\otimes \mathbf{u})=(\mathbf{b}\cdot \mathbf{\nabla })\mathbf{u}\).

A key tool for proving Theorem 1 and for applying it to the study of discretely self-similar solutions is given by the following a priori estimates for an advection-diffusion problem:

Theorem 2

Let \(0<\gamma \leqq 2\). Let \(0<T<+\infty \). Let \(\mathbf{u}_{0}\) be a divergence-free vector field such that \(\mathbf{u}_0\in L^2_{w_\gamma }({\mathbb {R}}^3)\) and \({\mathbb {F}}\) be a tensor \({\mathbb {F}}(t,x)=\left( F_{i,j}(t,x)\right) _{1\leqq i,j\leqq 3}\) such that \({\mathbb {F}}\in L^2((0,T), L^2_{w_\gamma })\). Let \(\mathbf{b}\) be a time-dependent divergence free vector-field (\(\mathbf{\nabla }\cdot \mathbf{b}=0\)) such that \(\mathbf{b}\in L^3((0,T),L^3_{w_{3\gamma /2}})\).

Let \(\mathbf{u}\) be a solution of the following advection-diffusion problem:

$$\begin{aligned} (AD) \left\{ \begin{array}{l} \partial _t \mathbf{u}= \Delta \mathbf{u}-(\mathbf{b}\cdot \mathbf{\nabla })\mathbf{u}- \mathbf{\nabla }p +\mathbf{\nabla }\cdot {\mathbb {F}} \\ \\ \mathbf{\nabla }\cdot \mathbf{u}=0, \quad \quad \mathbf{u}(0,.)=\mathbf{u}_0 \end{array}\right. \end{aligned}$$

such that

  • \(\mathbf{u}\) belongs to \(L^\infty ((0,T), L^2_{w_\gamma })\) and \(\mathbf{\nabla }\mathbf{u}\) belongs to \(L^2((0,T),L^2_{w_\gamma })\);

  • the pressure p is related to \(\mathbf{u}\), \(\mathbf{b}\) and \({\mathbb {F}}\) through the Riesz transforms \(R_i =\frac{\partial _i}{\sqrt{-\Delta }}\) by the formula

    $$\begin{aligned} p=\sum _{i=1}^3\sum _{j=1}^3 R_iR_j(b_iu_j-F_{i,j}) \end{aligned}$$

    where \(\sum _{i=1}^3\sum _{j=1}^3 R_iR_j(b_iu_j)\) belongs to \(L^{3}((0,T),L^{6/5}_{w_{\frac{6\gamma }{5}}})\) and \(\sum _{i=1}^3\sum _{j=1}^3 R_iR_j F_{i,j} \) belongs to \(L^{2}((0,T),L^{2}_{w_\gamma })\);

  • the map \(t\in [0,T)\mapsto \mathbf{u}(t,.)\) is weakly continuous from [0, T) to \(L^2_{w_\gamma }\), and is strongly continuous at \(t=0\) :

    $$\begin{aligned} \lim _{t\rightarrow 0} \Vert \mathbf{u}(t,.)-\mathbf{u}_0\Vert _{L^2_{w_\gamma }}=0; \end{aligned}$$
  • there exists a non-negative locally finite measure \(\mu \) on \((0,T)\times {\mathbb {R}}^3\) such that

    $$\begin{aligned} \partial _t\left( \frac{\vert \mathbf{u}\vert ^2}{2}\right) =\Delta \left( \frac{\vert \mathbf{u}\vert ^2}{2}\right) -\vert \mathbf{\nabla }\mathbf{u}\vert ^2- \mathbf{\nabla }\cdot \left( \frac{\vert \mathbf{u}\vert ^2}{2}\mathbf{b}\right) -\mathbf{\nabla }\cdot (p\mathbf{u}) + \mathbf{u}\cdot (\mathbf{\nabla }\cdot {\mathbb {F}})-\mu . \end{aligned}$$
    (1)

Then, we have the energy controls

$$\begin{aligned}\begin{aligned}&\Vert \mathbf{u}(t,. )\Vert _{L^2_{w_\gamma }}^2 +2\int _0^t \Vert \mathbf{\nabla }\mathbf{u}(s,.)\Vert _{L^2_{w_\gamma }}^2\, \mathrm{d}s \\&\quad \leqq \Vert \mathbf{u}_0 \Vert _{L^2_{w_\gamma }}^2 -\int _0^t \int \mathbf{\nabla }\vert \mathbf{u}\vert ^2\cdot \mathbf{\nabla }w_\gamma \, \mathrm{d}x \, \mathrm{d}s +\int _0^t\int \vert \mathbf{u}\vert ^2 \mathbf{b}\cdot \mathbf{\nabla }(w_\gamma ) \, \mathrm{d}x \, \mathrm{d}s \\&\qquad + 2\int _0^t\int p\mathbf{u}\cdot \mathbf{\nabla }(w_\gamma )\, \mathrm{d}x\, \mathrm{d}s -2\sum _{i=1}^3\sum _{j=1}^3 \int _0^t\int F_{i,j} (\partial _i u_j) w_\gamma \\&\qquad +F_{i,j} u_i \partial _j(w_\gamma )\, \mathrm{d}x\, \mathrm{d}s \end{aligned} \end{aligned}$$

and

$$\begin{aligned} \begin{aligned}&\Vert \mathbf{u}(t,. )\Vert _{L^2_{w_\gamma }}^2 + \int _0^t \Vert \mathbf{\nabla }\mathbf{u}\Vert _{L^2_{w_\gamma }}^2\, \mathrm{d}s \\&\quad \leqq \Vert \mathbf{u}_0 \Vert _{L^2_{w_\gamma }}^2 +C_\gamma \int _0^t \Vert {\mathbb {F}}(s,.)\Vert ^2_{L^2_{w_\gamma }}\, \mathrm{d}s \\&\qquad + C_\gamma \int _0^t (1+ \Vert \mathbf{b}(s,. )\Vert _{L^3_{w_{3\gamma /2}}}^2 ) \Vert \mathbf{u}(s,. )\Vert _{L^2_{w_\gamma }}^2 \, \mathrm{d}s, \end{aligned} \end{aligned}$$

where \(C_\gamma \) depends only on \(\gamma \) (and not on T, and not on \(\mathbf{b}\), \(\mathbf{u}\), \(\mathbf{u}_0\) nor \({\mathbb {F}}\)).

In particular, we shall prove the following stability result:

Theorem 3

Let \(0<\gamma \leqq 2\). Let \(0<T<+\infty \). Let \(\mathbf{u}_{0,n}\) be divergence-free vector fields such that \(\mathbf{u}_{0,n}\in L^2_{w_\gamma }({\mathbb {R}}^3)\) and \({\mathbb {F}}_n\) be tensors such that \({\mathbb {F}}_n\in L^2((0,T), L^2_{w_\gamma })\). Let \(\mathbf{b}_n\) be time-dependent divergence free vector-fields such that \(\mathbf{b}_n\in L^3((0,T),L^3_{w_{3\gamma /2}})\).

Let \(\mathbf{u}_n\) be solutions of the advection-diffusion problems

$$\begin{aligned} (AD_n) \left\{ \begin{array}{l} \partial _t \mathbf{u}_n= \Delta \mathbf{u}_n -(\mathbf{b}_n\cdot \mathbf{\nabla })\mathbf{u}_n- \mathbf{\nabla }p_n +\mathbf{\nabla }\cdot {\mathbb {F}}_n \\ \\ \mathbf{\nabla }\cdot \mathbf{u}_n=0, \quad \quad \mathbf{u}_n(0,.)=\mathbf{u}_{0,n} \end{array}\right. \end{aligned}$$

such that

  • \(\mathbf{u}_n\) belongs to \(L^\infty ((0,T), L^2_{w_\gamma })\) and \(\mathbf{\nabla }\mathbf{u}_n\) belongs to \(L^2((0,T),L^2_{w_\gamma })\);

  • the pressure \(p_n\) is related to \(\mathbf{u}_n\), \(\mathbf{b}_n\) and \({\mathbb {F}}_n\) by the formula

    $$\begin{aligned} p_n=\sum _{i=1}^3\sum _{j=1}^3 R_iR_j(b_{n,i}u_{n,j}-F_{n,i,j}); \end{aligned}$$
  • the map \(t\in [0,T)\mapsto \mathbf{u}_n(t,.)\) is weakly continuous from [0, T) to \(L^2_{w_\gamma }\), and is strongly continuous at \(t=0\):

    $$\begin{aligned} \lim _{t\rightarrow 0} \Vert \mathbf{u}_n(t,.)-\mathbf{u}_{0,n}\Vert _{L^2_{w_\gamma }}=0. \end{aligned}$$
  • there exists a non-negative locally finite measure \(\mu _n\) on \((0,T)\times {\mathbb {R}}^3\) such that

    $$\begin{aligned}&\partial _t\left( \frac{\vert \mathbf{u}_n\vert ^2}{2}\right) =\Delta \left( \frac{\vert \mathbf{u}_n\vert ^2}{2}\right) -\vert \mathbf{\nabla }\mathbf{u}_n\vert ^2- \mathbf{\nabla }\cdot \left( \frac{\vert \mathbf{u}_n\vert ^2}{2}\mathbf{b}_n\right) \\&\quad -\mathbf{\nabla }\cdot (p_n\mathbf{u}_n) + \mathbf{u}_n\cdot (\mathbf{\nabla }\cdot {\mathbb {F}}_n)-\mu _n; \end{aligned}$$

If \(\mathbf{u}_{0,n}\) is strongly convergent to \(\mathbf{u}_{0,\infty }\) in \(L^2_{w_\gamma }\), if the sequence \({\mathbb {F}}_n\) is strongly convergent to \({\mathbb {F}}_\infty \) in \(L^2((0,T), L^2_{w_\gamma })\), and if the sequence \(\mathbf{b}_n\) is bounded in \(L^3((0,T), L^3_{w_{3\gamma /2}})\), then there exists \(p_\infty \), \(\mathbf{u}_\infty \), \(\mathbf{b}_\infty \) and an increasing sequence \((n_k)_{k\in {\mathbb {N}}}\) with values in \({\mathbb {N}}\) such that

  • \(\mathbf{u}_{n_k}\) converges *-weakly to \(\mathbf{u}_\infty \) in \(L^\infty ((0,T), L^2_{w_\gamma })\), \(\mathbf{\nabla }\mathbf{u}_{n_k}\) converges weakly to \(\mathbf{\nabla }\mathbf{u}_\infty \) in \(L^2((0,T),L^2_{w_\gamma })\);

  • \(\mathbf{b}_{n_k}\) converges weakly to \(\mathbf{b}_\infty \) in \(L^3((0,T), L^3_{w_{3\gamma /2}})\), \(p_{n_k}\) converges weakly to \(p_\infty \) in \(L^{3}((0,T),L^{6/5}_{w_{\frac{6\gamma }{5}}})+L^{2}((0,T),L^{2}_{w_\gamma })\);

  • \(\mathbf{u}_{n_k}\) converges strongly to \(\mathbf{u}_\infty \) in \(L^2_\mathrm{loc}([0,T)\times {\mathbb {R}}^3)\) such that for every \(T_0\in (0,T)\) and every \(R>0\), we have

    $$\begin{aligned} \lim _{k\rightarrow +\infty } \int _0^{T_0} \int _{\vert y\vert <R} \vert \mathbf{u}_{n_k}(s,y)-\mathbf{u}_\infty (s,y)\vert ^2\, \mathrm{d}s\, \mathrm{d}y=0. \end{aligned}$$

Moreover, \(\mathbf{u}_\infty \) is a solution of the advection-diffusion problem

$$\begin{aligned} (AD_\infty ) \left\{ \begin{array}{l} \partial _t \mathbf{u}_\infty = \Delta \mathbf{u}_\infty -(\mathbf{b}_\infty \cdot \mathbf{\nabla })\mathbf{u}_\infty - \mathbf{\nabla }p_\infty +\mathbf{\nabla }\cdot {\mathbb {F}}_\infty \\ \\ \mathbf{\nabla }\cdot \mathbf{u}_\infty =0, \quad \quad \mathbf{u}_\infty (0,.)=\mathbf{u}_{0,\infty } \end{array}\right. \end{aligned}$$

and is such that

  • the map \(t\in [0,T)\mapsto \mathbf{u}_\infty (t,.)\) is weakly continuous from [0, T) to \(L^2_{w_\gamma }\), and is strongly continuous at \(t=0\) :

    $$\begin{aligned} \lim _{t\rightarrow 0} \Vert \mathbf{u}_\infty (t,.)-\mathbf{u}_{0,\infty }\Vert _{L^2_{w_\gamma }}=0; \end{aligned}$$
  • there exists a non-negative locally finite measure \(\mu _\infty \) on \((0,T)\times {\mathbb {R}}^3\) such that

    $$\begin{aligned}&\partial _t\left( \frac{\vert \mathbf{u}_\infty \vert ^2}{2}\right) =\Delta \left( \frac{\vert \mathbf{u}_\infty \vert ^2}{2}\right) -\vert \mathbf{\nabla }\mathbf{u}_\infty \vert ^2- \mathbf{\nabla }\cdot \left( \frac{\vert \mathbf{u}_\infty \vert ^2}{2}\mathbf{b}_\infty \right) \\&\quad -\mathbf{\nabla }\cdot (p_\infty \mathbf{u}_\infty ) + \mathbf{u}_\infty \cdot (\mathbf{\nabla }\cdot {\mathbb {F}}_\infty )-\mu _\infty . \end{aligned}$$

2 Notations

Throughout the text, \(C_\gamma \) is a positive constant whose value may change from line to line but which depends only on \(\gamma \).

3 The Weights \(\varvec{w}_{\varvec{\delta }}\)

We consider the weights \(w_\delta =\frac{1}{(1+\vert x\vert )^\delta }\) where \(0<\delta \) and \(x\in {\mathbb {R}}^3\). A very important feature of those weights is the control of their gradients:

$$\begin{aligned} \vert \mathbf{\nabla }w_\delta (x)\vert =\delta \frac{w_\delta (x)}{1+\vert x\vert } \end{aligned}$$
(2)

From this control, we can infer the following Sobolev embedding:

Lemma 1

(Sobolev embeddings) Let \(\delta >0\). If \(f\in L^2_{w_\delta }\) and \(\mathbf{\nabla }f\in L^2_{w_\delta }\) then \(f\in L^6_{w_{3\delta }}\) and

$$\begin{aligned} \Vert f\Vert _{L^6_{w_{3\delta }}}\leqq C_\delta (\Vert f\Vert _{L^2_{w_\delta }}+ \Vert \mathbf{\nabla }f\Vert _{L^2_{w_\delta }}). \end{aligned}$$

Proof

Since both f and \(w_{\delta /2}\) are locally in \(H^1\), we write

$$\begin{aligned} \partial _i(f w_{\delta /2})=w_{\delta /2} \partial _i f+ f \partial _i(w_{\delta /2})= w_{\delta /2} \partial _i f -\frac{\delta }{2} \frac{x_i}{\vert x\vert } \frac{1}{1+\vert x\vert }w_{\delta /2} f, \end{aligned}$$

and thus

$$\begin{aligned} \Vert w_{\delta /2}f\Vert _2^2+ \Vert \mathbf{\nabla }(w_{\delta /2}f)\Vert _2^2\leqq \left( 1+\frac{\delta ^2}{2}\right) \Vert w_{\delta /2}f\Vert _2^2 + 2 \Vert w_{\delta /2}\mathbf{\nabla }f\Vert _2^2. \end{aligned}$$

Thus, \(w_{\delta /2} f\) belongs to \(L^6\) (since \(H^1\subset L^6\)), or equivalently \(f\in L^6_{w_{3\delta }}\). \(\quad \square \)

We shall mainly be interested in the case \(\delta \leqq 2\). An important property for \(0<\delta <3\) is

Lemma 2

(Muckenhoupt weights) If \(0<\delta <3\) and \(1<p<+\infty \), then \(w_\delta \) belongs to the Muckenhoupt class \({\mathcal {A}}_p\).

Proof

We recall that a weight w belongs to \({\mathcal {A}}_p({\mathbb {R}}^3)\) for \(1<p<+\infty \) if and only if it satisfies the reverse Hölder inequality

$$\begin{aligned} \!\!\! \sup _{x\in {\mathbb {R}}^3, R>0} \!\! \left( \frac{1}{\vert B(x,R)\vert } \!\int _{B(x,R)}\! \!\!\!\!w(y)\, \mathrm{d}y\right) ^{\frac{1}{p}}\!\! \left( \frac{1}{\vert B(x,R)\vert }\! \int _{B(x,R)} \!\frac{\mathrm{d}y}{w(y)^{\frac{1}{p-1}}}\right) ^{1-\frac{1}{p}} \!\! \!\!<+\infty .\nonumber \\ \end{aligned}$$
(3)

For all \(0<R\leqq 1\) the inequality \(\vert x-y\vert <R\) implies \( \frac{1}{2} (1+\vert x\vert ) \leqq 1+\vert y\vert \leqq 2 (1+\vert x\vert )\), thus we can control the left side in (3) for \(w_\delta \) by \(4^{\frac{\delta }{p}}\).

For all \(R > 1\) and \(\vert x\vert >10 R\), we have that the inequality \(\vert x-y\vert <R\) implies \( \frac{9}{10} (1+\vert x\vert ) \leqq 1+\vert y\vert \leqq \frac{11}{10} (1+\vert x\vert )\), thus we can control the left side in (3) for \(w_\delta \) by \(( \frac{11}{9})^{\frac{\delta }{p}}\).

Finally, for \(R>1\) and \(\vert x\vert \leqq 10 R\), we write

$$\begin{aligned} \begin{aligned}&\left( \frac{1}{\vert B(x,R)\vert } \!\int _{B(x,R)}\! \!\!\!\! w(y)\, \mathrm{d}y\right) ^{\frac{1}{p}} \left( \frac{1}{\vert B(x,R)\vert }\! \int _{B(0,R)} \!\frac{\mathrm{d}y}{w(y)^{\frac{1}{p-1}}}\right) ^{1-\frac{1}{p}} \\&\quad \leqq \left( \frac{1}{\vert B(0, R)\vert } \!\int _{B(x,11\, R)}\! \!\!\!\!w(y)\, \mathrm{d}y\right) ^{\frac{1}{p}}\!\! \left( \frac{1}{\vert B(0,R)\vert }\! \int _{B(0,11 \,R)} \!\frac{\mathrm{d}y}{w(y)^{\frac{1}{p-1}}}\right) ^{1-\frac{1}{p}} \\&\quad = \left( \frac{1}{R^3} \int _0^{11\, R} r^2 \frac{dr}{(1+r)^\delta }\right) ^{\frac{1}{p}} \left( \frac{1}{R^3} \int _0^{11\, R} r^2(1+r)^{\frac{\delta }{p-1}}\, dr\right) ^{1-\frac{1}{p}} \\&\quad \leqq c_{\delta , p} \left( \frac{1}{R^3} \int _0^{11\, R} r^2 \frac{dr}{ r^\delta }\right) ^{\frac{1}{p}} \left( \left( \frac{1}{R^3} \int _0^{11\, R} r^2 dr \right) ^{1-\frac{1}{p}} \right. \\&\qquad \left. + \left( \frac{1}{R^3} \int _0^{11\, R} r^{2+\frac{\delta }{p-1}}\, dr\right) ^{1-\frac{1}{p}} \right) \\&\quad = c_{\delta , p} \frac{11^3}{ (3-\delta )^{\frac{1}{p}} } \left( \frac{ (11R)^{ -\frac{\delta }{p} } }{ 3^{1-\frac{1}{p}}} + \frac{ 1 }{ (3+\frac{\delta }{p-1})^{1-\frac{1}{p}}} \right) . \end{aligned} \end{aligned}$$

The lemma is proved. \(\quad \square \)

Lemma 3

If \(0<\delta <3\) and \(1<p<+\infty \), then the Riesz transforms \(R_i\) and the Hardy–Littlewood maximal function operator are bounded on \(L^p_{w_\delta }=L^p(w_\delta (x)\, \mathrm{d}x)\):

$$\begin{aligned} \Vert R_jf\Vert _{L^p_{w_\delta }}\leqq C_{p,\delta } \Vert f\Vert _{L^p_{w_\delta }} \text { and } \Vert {\mathcal {M}}_f\Vert _{L^p_{w_\delta }}\leqq C_{p,\delta } \Vert f\Vert _{L^p_{w_\delta }}. \end{aligned}$$

Proof

The boundedness of the Riesz transforms or of the Hardy–Littlewwod maximal function on \(L^p(w_\gamma \, \mathrm{d}x)\) are basic properties of the Muckenhoupt class \({\mathcal {A}}_p\) [5].

\(\square \)

We will use strategically the next corollary, which is specially useful to obtain discretely self-similar solutions.

Corollary 1

(Non-increasing kernels) Let \(\theta \in L^1({\mathbb {R}}^3)\) be a non-negative radial function which is radially non-increasing. Then, if \(0<\delta <3\) and \(1<p<+\infty \), we have, for \(f\in L^p_{w_\delta }\), the inequality

$$\begin{aligned} \Vert \theta *f\Vert _{L^p_{w_\delta }} \leqq C_{p,\delta } \Vert f\Vert _{L^p_{w_\delta }} \Vert \theta \Vert _1. \end{aligned}$$

Proof

We have the well-known inequality for radial non-increasing kernels [4]

$$\begin{aligned} \vert \theta *f(x)\vert \leqq \Vert \theta \Vert _1 {\mathcal {M}}_f(x) \end{aligned}$$

so that we may conclude with Lemma 3. \(\quad \square \)

We illustrate the utility of Lemma 3 with the following corollaries:

Corollary 2

Let \(0<\gamma < \frac{5}{2} \) and \(0<T<+\infty \). Let \({\mathbb {F}}\) be a tensor \({\mathbb {F}}(t,x)=\left( F_{i,j}(t,x)\right) _{1\leqq i,j\leqq 3}\) such that \({\mathbb {F}}\in L^2((0,T), L^2_{w_\gamma })\). Let \(\mathbf{b}\) be a time-dependent divergence free vector-field (\(\mathbf{\nabla }\cdot \mathbf{b}=0\)) such that \(\mathbf{b}\in L^3((0,T),L^3_{w_{3\gamma /2}})\).

Let \(\mathbf{u}\) be a solution of the following advection-diffusion problem:

$$\begin{aligned} \left\{ \begin{array}{l} \partial _t \mathbf{u}= \Delta \mathbf{u}-(\mathbf{b}\cdot \mathbf{\nabla })\mathbf{u}- \mathbf{\nabla }q +\mathbf{\nabla }\cdot {\mathbb {F}} \\ \\ \mathbf{\nabla }\cdot \mathbf{u}=0, \end{array}\right. \end{aligned}$$
(4)

such that \(\mathbf{u}\) belongs to \(L^\infty ((0,T), L^2_{w_\gamma })\) and \(\mathbf{\nabla }\mathbf{u}\) belongs to \(L^2((0,T),L^2_{w_\gamma })\), and the pressure q belongs to \({\mathcal {D}}'( (0,T) \times {\mathbb {R}} ^3 )\).

Then, the gradient of the pressure \(\mathbf{\nabla }q\) is necessarily related to \(\mathbf{u}\), \(\mathbf{b}\) and \({\mathbb {F}}\) through the Riesz transforms \(R_i =\frac{\partial _i}{\sqrt{-\Delta }}\) by the formula

$$\begin{aligned} \mathbf{\nabla }q= \mathbf{\nabla }\left( \sum _{i=1}^3\sum _{j=1}^3 R_iR_j(b_iu_j-F_{i,j}) \right) \end{aligned}$$

and \(\sum _{i=1}^3\sum _{j=1}^3 R_iR_j(b_iu_j)\) belongs to \(L^{3}((0,T),L^{6/5}_{w_{\frac{6\gamma }{5}}})\) and \(\sum _{i=1}^3\sum _{j=1}^3 R_iR_j F_{i,j} \) belongs to \(L^{2}((0,T),L^{2}_{w_\gamma })\).

Proof

We define

$$\begin{aligned} p = \left( \sum _{i=1}^3\sum _{j=1}^3 R_iR_j(b_iu_j-F_{i,j}) \right) . \end{aligned}$$

As \( 0< \gamma < \frac{5}{2} \) we can use Lemma 3 to obtain \(\sum _{i=1}^3\sum _{j=1}^3 R_iR_j(b_i u_j)\) belongs to \(L^{3}((0,T),L^{6/5}_{w_{\frac{6\gamma }{5}}})\) and \(\sum _{i=1}^3\sum _{j=1}^3 R_iR_j F_{i,j} \) belongs to \(L^{2}((0,T),L^{2}_{w_\gamma })\).

Taking the divergence in (4), we obtain \( \Delta (q-p)=0 \). We take a test function \(\alpha \in {\mathcal {D}}({\mathbb {R}})\) such that \(\alpha (t)= 0\) for all \(|t| \geqq \varepsilon \), and a test function \(\beta \in {\mathcal {D}}({\mathbb {R}}^3)\); then the distribution \(\mathbf{\nabla }q *( \alpha \otimes \beta ) \) is well defined on \((\varepsilon , T-\varepsilon ) \times {\mathbb {R}}^3\).

We fix \(t \in (\varepsilon , T-\varepsilon )\) and define

$$\begin{aligned} A_{\alpha ,\beta ,t}=( \mathbf{\nabla }q * (\alpha \otimes \beta )- \mathbf{\nabla }p * (\alpha \otimes \beta )) (t,.). \end{aligned}$$

We have

$$\begin{aligned} \begin{aligned} A_{\alpha ,\beta ,t}=&( \mathbf{u}*(-\partial _t\alpha \otimes \beta +\alpha \otimes \Delta \beta ) +(-\mathbf{u}\otimes \mathbf{b}+{\mathbb {F}}) \cdot (\alpha \otimes \mathbf{\nabla }\beta ))(t,.)\\&- ( p * (\alpha \otimes \mathbf{\nabla }\beta )) (t,.) . \end{aligned} \end{aligned}$$
(5)

Convolution with a function in \({\mathcal {D}}({\mathbb {R}}^3)\) is a bounded operator on \(L^2_{w_\gamma }\) and on \(L^{6/5}_{w_{6\gamma /5}}\) (as, for \(\varphi \in {\mathcal {D}}({\mathbb {R}}^3)\) we have \(\vert f*\varphi \vert \leqq C_\varphi {\mathcal {M}}_f\)). Thus, we may conclude from (5) that \(A_{\alpha ,\beta ,t}\in L^2_{w_\gamma }+ L^{6/5}_{w_{6\gamma /5}}\). If \(\max \{ \gamma , \frac{\gamma + 2 }{2} \}<\delta <5/2\) , we have \(A_{\alpha ,\beta ,t}\in L^{6/5}_{w_{6\delta /5}}\).

In particular, \(A_{\alpha ,\beta ,t}\) is a tempered distribution. As we have

$$\begin{aligned} \Delta A_{\alpha ,\beta ,t}=(\alpha \otimes \beta )*(\mathbf{\nabla }\Delta (q-p))(t,.)=0, \end{aligned}$$

we find that \(A_{\alpha ,\beta ,t}\) is a polynomial. We remark that for all \(1<r<+\infty \) and \(0< \delta < 3\), \(L^r_{w_\delta }\) does not contain non-trivial polynomials. Thus, \( A_{\alpha ,\beta ,t}= 0\). We then use an approximation of identity \(\frac{1}{\varepsilon ^4} \alpha (\frac{t}{\varepsilon })\beta (\frac{x}{\varepsilon })\) and conclude that \(\mathbf{\nabla }(q-p)=0\).

\(\square \)

Actually, we can answer a question posed by Bradshaw and Tsai in [2] about the nature of the pressure for self-similar solutions of the Navier–Stokes equations. In effect, we have the next corollary.

Corollary 3

Let \(1<\gamma < \frac{5}{2}\) and \(0<T<+\infty \). Let \({\mathbb {F}}\) be a tensor \({\mathbb {F}}(t,x)=\left( F_{i,j}(t,x)\right) _{1\leqq i,j\leqq 3}\) such that \({\mathbb {F}}\in L^2((0,T), L^2_{w_\gamma })\).

Let \(\mathbf{u}\) be a solution of the following problem:

$$\begin{aligned} \left\{ \begin{array}{l} \partial _t \mathbf{u}= \Delta \mathbf{u}-(\mathbf{u}\cdot \mathbf{\nabla })\mathbf{u}- \mathbf{\nabla }q +\mathbf{\nabla }\cdot {\mathbb {F}} \\ \\ \mathbf{\nabla }\cdot \mathbf{u}=0, \end{array}\right. \end{aligned}$$

such that \(\mathbf{u}\) belongs to \(L^\infty ([0,+\infty ), L^2)_{loc}\) and \(\mathbf{\nabla }\mathbf{u}\) belongs to \(L^2([0,+\infty ),L^2)_{loc}\), and the pressure q is in \({\mathcal {D}}'( (0,T) \times {\mathbb {R}} ^3 )\).

We suppose that there exists \(\lambda >1\) such that \( \lambda ^2 {\mathbb {F}}(\lambda ^2 t,\lambda x)={\mathbb {F}}(t,x) \) and \(\lambda \mathbf{u}(\lambda ^2 t,\lambda x)=\mathbf{u}(t,x)\). Then, the gradient of the pressure \(\mathbf{\nabla }q\) is necessarily related to \(\mathbf{u}\) and \({\mathbb {F}}\) through the Riesz transforms \(R_i =\frac{\partial _i}{\sqrt{-\Delta }}\) by the formula

$$\begin{aligned} \mathbf{\nabla }q= \mathbf{\nabla }\left( \sum _{i=1}^3\sum _{j=1}^3 R_iR_j(u_iu_j-F_{i,j}) \right) \end{aligned}$$

and \(\sum _{i=1}^3\sum _{j=1}^3 R_iR_j(u_iu_j)\) belongs to \(L^{4}((0,T),L^{6/5}_{w_{\frac{6\gamma }{5}}})\) and \(\sum _{i=1}^3\sum _{j=1}^3 R_iR_j F_{i,j} \) belongs to \(L^{2}((0,T),L^{2}_{w_\gamma })\).

Proof

We shall use Corollary 2, and thus we need to show that \(\mathbf{u}\) belongs to \(L^\infty ((0,T), L^2_{w_\gamma } \cap L^3((0,T), L^3_{3\gamma /2}))\) and \(\mathbf{\nabla }\mathbf{u}\) belongs to \(L^2((0,T),L^2_{w_\gamma })\). In fact,

$$\begin{aligned} \Vert u \Vert _{L^\infty ((0,T),L^2_{w_\gamma })}\leqq & {} \sup _{0 \leqq t \leqq T} \int _{|x|<1} |\mathbf{u}(t,x)|^2 \, \mathrm{d}x \\&\quad + c \sup _{0 \leqq t \leqq T} \sum _{k\in {\mathbb {N}}} \int _{\lambda ^{k-1}<|x|<\lambda ^k} \frac{|\mathbf{u}(t,x)|^2}{\lambda ^{\gamma k } } \, \mathrm{d}x \end{aligned}$$

and

$$\begin{aligned}&\sup _{0 \leqq t \leqq T} \sum _{k\geqq 1} \int _{\lambda ^{k-1}<|x|<\lambda ^k} \frac{|\mathbf{u}(t,x)|^2}{\lambda ^{\gamma k } } \, \mathrm{d}x \\&\quad \leqq \sup _{0 \leqq t \leqq T} \sum _{k\in {\mathbb {N}}} \lambda ^{ (1-\gamma ) k } \int _{\lambda ^{-1}<|x|< 1} |\mathbf{u}(\frac{t}{\lambda ^{2k}},x)|^2 \, \mathrm{d}x \\&\quad \leqq c \sup _{0 \leqq t \leqq T} \int _{\lambda ^{-1}<|x|< 1} |\mathbf{u}(t,x)|^2 \, \mathrm{d}x < +\infty . \end{aligned}$$

For \(\mathbf{\nabla }\mathbf{u}\), we compute for \(k\in {\mathbb {N}}\),

$$\begin{aligned} \int _0^T \int _{\lambda ^{k-1}<\vert x\vert<\lambda ^{k}} \vert \mathbf{\nabla }\mathbf{u}(t,x)\vert ^2\, \mathrm{d}t\, \mathrm{d}x=\lambda ^{k}\int _0^{\frac{T}{\lambda ^{2k}}}\int _{\frac{1}{\lambda }<\vert x\vert <1} \vert \mathbf{\nabla }\mathbf{u}(t,x)\vert ^2\, \mathrm{d}x\, \mathrm{d}t. \end{aligned}$$

We may conclude that \(\mathbf{\nabla }\mathbf{u}\) belongs to \(L^2((0,T),L^2_{w_\gamma })\), since for \(\gamma >1\) we have \(\sum _{k\in {\mathbb {N}}} \lambda ^{ (1-\gamma ) k }<+\infty \).

Now, we use the Sobolev embedding described in Lemma 1 to get that \(\mathbf{u}\) belongs to \(L^2((0,T),L^6_{w_{3\gamma }})\), and thus (by interpolation with \(L^\infty ((0,T),L^2_{w_\gamma }))\) to \(L^4((0,T),L^3_{w_{3\gamma /2}})\).

In particular, \(\sum _{i=1}^3\sum _{j=1}^3 R_iR_j(u_iu_j)\) belongs to \(L^{4}((0,T),L^{6/5}_{w_{\frac{6\gamma }{5}}})\), since we have

$$\begin{aligned} \Vert ( \mathbf{u}\otimes \mathbf{u}) w_\gamma \Vert _{ L^{6/5}} \leqq \Vert \sqrt{w_\gamma } \mathbf{u}\Vert _{ L^{2} } \Vert \sqrt{w_\gamma } \mathbf{u}\Vert _{ L^{3} } \leqq \Vert \sqrt{w_\gamma } \mathbf{u}\Vert ^{\frac{3}{2}}_{ L^{2} } \Vert \sqrt{w_\gamma } \mathbf{u}\Vert ^{\frac{1}{2}}_{ L^{6} .} \end{aligned}$$

\(\square \)

4 A Priori Estimates for the Advection-Diffusion Problem

4.1 Proof of Theorem 2

Let \(0<t_0<t_1<T\). We take a function \( \alpha \in {\mathcal {C}}^\infty ({\mathbb {R}})\) which is non-decreasing, with \(\alpha (t)\) equal to 0 for \(t<1/2\) and equal to 1 for \(t>1\). For \(0<\eta < \min (\frac{t_0}{2},T-t_1) \), we define

$$\begin{aligned} \alpha _{\eta ,t_0,t_1}(t)=\alpha \Big ( \frac{t-t_0}{\eta }\Big )-\alpha \Big (\frac{t-t_1}{\eta }\Big ) . \end{aligned}$$

We take as well a non-negative function \(\phi \in {\mathcal {D}}({\mathbb {R}}^3)\) which is equal to 1 for \(\vert x\vert \leqq 1\) and to 0 for \(\vert x\vert \geqq 2\). For \(R>0\), we define \(\phi _R(x)=\phi (\frac{x}{R})\). Finally, we define, for \(\varepsilon >0\), \(w_{\gamma ,\varepsilon }= \left( 1+\sqrt{\varepsilon ^2+\vert x\vert ^2} \right) ^{-\gamma }\). We have \(\alpha _{\eta ,t_0,t_1}(t)\phi _R(x) w_{\gamma ,\varepsilon }(x)\in {\mathcal {D}}((0,T)\times {\mathbb {R}}^3)\) and \(\alpha _{\eta ,t_0,t_1}(t)\phi _R(x) w_{\gamma ,\varepsilon }(x) \geqq 0\). Thus, using the local energy balance (1) and the fact that \(\mu \geqq 0\), we find

$$\begin{aligned}&-\iint \frac{\vert \mathbf{u}\vert ^2}{2} \partial _t\alpha _{\eta ,t_0,t_1} \phi _R w_{\gamma ,\varepsilon }\, \mathrm{d}x\, \mathrm{d}s \\&\quad \leqq -\sum _{i=1}^3 \iint \partial _i\mathbf{u}\cdot \mathbf{u}\, \alpha _{\eta ,t_0,t_1} (w_{\gamma ,\varepsilon }\partial _i \phi _R+\phi _R \partial _iw_{\gamma ,\varepsilon })\, \mathrm{d}x\, \mathrm{d}s \\&\qquad - \iint \vert \mathbf{\nabla }\mathbf{u}\vert ^2\, \, \alpha _{\eta ,t_0,t_1} \phi _R w_{\gamma ,\varepsilon } \mathrm{d}x\, \mathrm{d}s \\&\qquad + \sum _{i=1}^3 \iint \frac{\vert \mathbf{u}\vert ^2}{2} b_i \alpha _{\eta ,t_0,t_1} (w_{\gamma ,\varepsilon }\partial _i \phi _R+\phi _R \partial _iw_{\gamma ,\varepsilon })\, \mathrm{d}x\, \mathrm{d}s \\&\qquad +\sum _{i=1}^3 \iint \alpha _{\eta ,t_0,t_1} pu_i (w_{\gamma ,\varepsilon }\partial _i \phi _R+\phi _R \partial _iw_{\gamma ,\varepsilon })\, \mathrm{d}x\, \mathrm{d}s \\&\qquad - \sum _{i=1}^3\sum _{j=1}^3 \iint F_{i,j} u_j \alpha _{\eta ,t_0,t_1} (w_{\gamma ,\varepsilon }\partial _i \phi _R+\phi _R \partial _iw_{\gamma ,\varepsilon })\, \mathrm{d}x\, \mathrm{d}s \\&\qquad - \sum _{i=1}^3 \sum _{j=1}^3\iint F_{i,j}\partial _iu_j\ \alpha _{\eta ,t_0,t_1} \phi _R w_{\gamma ,\varepsilon }\, \mathrm{d}x\, \mathrm{d}s. \end{aligned}$$

We remark that, independently of \(R>1\) and \(\varepsilon >0\), we have (for \(0<\gamma \leqq 2\))

$$\begin{aligned} \vert w_{\gamma ,\varepsilon }\partial _i \phi _R\vert +\vert \phi _R \partial _iw_{\gamma ,\varepsilon }\vert \leqq C_\gamma \frac{w_\gamma (x)}{1+\vert x\vert }\leqq C_\gamma w_{3\gamma /2}(x). \end{aligned}$$

Moreover, we know that \(\mathbf{u}\) belongs to \(L^\infty ((0,T),L^2_{w_\gamma })\cap L^2((0,T), L^6_{w_{3\gamma }})\) hence to \(L^4((0,T),L^3_{w_{3\gamma /2}})\). Since \(T<+\infty \), we have as well \(\mathbf{u}\in L^3((0,T), L^3_{w_{3\gamma /2}})\). (This is the same type of integrability as required for \(\mathbf{b}\)). Moreover, we have \(p u_i\in L^1_{w_{3\gamma /2}}\) since \(w_\gamma p\in L^2 ((0,T), L^{6/5}+L^2)\) and \(w_{\gamma /2} \mathbf{u}\in L^2((0,T), L^2\cap L^6)\). All those remarks will allow us to use dominated convergence.

We first let \(\eta \) go to 0. We find that

$$\begin{aligned}&- \lim _{\eta \rightarrow 0} \iint \frac{\vert \mathbf{u}\vert ^2}{2} \partial _t\alpha _{\eta ,t_0,t_1} \phi _R w_{\gamma ,\varepsilon }\, \mathrm{d}x\, \mathrm{d}s \\&\quad \leqq -\sum _{i=1}^3 \int _{t_0}^{t_1}\int \partial _i\mathbf{u}\cdot \mathbf{u}\, (w_{\gamma ,\varepsilon }\partial _i \phi _R+\phi _R \partial _iw_{\gamma ,\varepsilon })\, \mathrm{d}x\, \mathrm{d}s \\&\qquad - \int _{t_0}^{t_1} \int \vert \mathbf{\nabla }\mathbf{u}\vert ^2\, \, \phi _R w_{\gamma ,\varepsilon } \mathrm{d}x\, \mathrm{d}s \\&\qquad + \sum _{i=1}^3 \int _{t_0}^{t_1}\int \frac{\vert \mathbf{u}\vert ^2}{2} b_i (w_{\gamma ,\varepsilon }\partial _i \phi _R+\phi _R \partial _iw_{\gamma ,\varepsilon })\, \mathrm{d}x\, \mathrm{d}s \\&\qquad +\sum _{i=1}^3 \int _{t_0}^{t_1} \int pu_i (w_{\gamma ,\varepsilon }\partial _i \phi _R+\phi _R \partial _iw_{\gamma ,\varepsilon })\, \mathrm{d}x\, \mathrm{d}s \\&\qquad - \sum _{i=1}^3\sum _{j=1}^3 \int _{t_0}^{t_1}\int F_{i,j} u_j (w_{\gamma ,\varepsilon }\partial _i \phi _R+\phi _R \partial _iw_{\gamma ,\varepsilon })\, \mathrm{d}x\, \mathrm{d}s \\&\qquad - \sum _{i=1}^3 \sum _{j=1}^3\int _{t_0}^{t_1} \int F_{i,j}\partial _iu_j\ \phi _R w_{\gamma ,\varepsilon }\, \mathrm{d}x\, \mathrm{d}s. \end{aligned}$$

Let us define

$$\begin{aligned} A_{R,\varepsilon }(t)=\int \vert \mathbf{u}(t,x)\vert ^2 \phi _R(x) w_{\gamma ,\varepsilon }(x)\, \mathrm{d}x. \end{aligned}$$

As we have

$$\begin{aligned} -\iint \frac{\vert \mathbf{u}\vert ^2}{2} \partial _t\alpha _{\eta ,t_0,t_1} \phi _R w_{\gamma ,\varepsilon } \, \mathrm{d}x\, \mathrm{d}s=-\frac{1}{2}\int \partial _t\alpha _{\eta ,t_0,t_1} A_{R,\varepsilon }(s) \, \mathrm{d}s \end{aligned}$$

we find that, when \(t_0\) and \(t_1\) are Lebesgue points of the measurable function \(A_{R,\varepsilon }\)

$$\begin{aligned} \lim _{\eta \rightarrow 0} -\iint \frac{\vert \mathbf{u}\vert ^2}{2} \partial _t\alpha _{\eta ,t_0,t_1} \phi _R w_{\gamma ,\varepsilon } \, \mathrm{d}x\, \mathrm{d}s=\frac{1}{2} ( A_{R,\varepsilon }(t_1)- A_{R,\varepsilon }(t_0)) . \end{aligned}$$

Then, by continuity, we can let \(t_0\) go to 0 and thus replace \(t_0\) by 0 in the inequality. Moreover, if we let \(t_1\) go to t, then by weak continuity, we find that \( A_{R,\varepsilon }(t)\leqq \lim _{t_1\rightarrow t } A_{R,\varepsilon }(t_1)\), so that we may as well replace \(t_1\) by \(t\in (0,T)\). Thus we find that for every \(t\in (0,T)\), we have

$$\begin{aligned}&\int \frac{\vert \mathbf{u}(t,x)\vert ^2}{2} \phi _R w_{\gamma ,\varepsilon }\, \mathrm{d}x \nonumber \\&\quad \leqq \int \frac{\vert \mathbf{u}_0(x)\vert ^2}{2} \phi _R w_{\gamma ,\varepsilon }\, \mathrm{d}x \nonumber \\&\qquad -\sum _{i=1}^3 \int _0^t \int \partial _i\mathbf{u}\cdot \mathbf{u}\, (w_{\gamma ,\varepsilon }\partial _i \phi _R+\phi _R \partial _iw_{\gamma ,\varepsilon })\, \mathrm{d}x\, \mathrm{d}s \nonumber \\&\qquad - \int _0^t \int \vert \mathbf{\nabla }\mathbf{u}\vert ^2\, \, \phi _R w_{\gamma ,\varepsilon } \mathrm{d}x\, \mathrm{d}s \nonumber \\&\qquad + \sum _{i=1}^3 \int _0^t \int \frac{\vert \mathbf{u}\vert ^2}{2} b_i (w_{\gamma ,\varepsilon }\partial _i \phi _R+\phi _R \partial _iw_{\gamma ,\varepsilon })\, \mathrm{d}x\, \mathrm{d}s \nonumber \\&\qquad +\sum _{i=1}^3 \int _0^t \int pu_i (w_{\gamma ,\varepsilon }\partial _i \phi _R+\phi _R \partial _iw_{\gamma ,\varepsilon })\, \mathrm{d}x\, \mathrm{d}s \nonumber \\&\qquad - \sum _{i=1}^3\sum _{j=1}^3 \int _0^t \int F_{i,j} u_j (w_{\gamma ,\varepsilon }\partial _i \phi _R+\phi _R \partial _iw_{\gamma ,\varepsilon })\, \mathrm{d}x\, \mathrm{d}s \nonumber \\&\qquad - \sum _{i=1}^3 \sum _{j=1}^3\int _0^t \int F_{i,j}\partial _iu_j\ \phi _R w_{\gamma ,\varepsilon }\, \mathrm{d}x\, \mathrm{d}s. \end{aligned}$$
(6)

Thus, letting R go to \(+\infty \) and then \(\varepsilon \) go to 0, we find by dominated convergence that, for every \(t\in (0,T)\), we have

$$\begin{aligned}\begin{aligned}&\Vert \mathbf{u}(t,. )\Vert _{L^2_{w_\gamma }}^2 +2\int _0^t \Vert \mathbf{\nabla }\mathbf{u}(s,.)\Vert _{L^2_{w_\gamma }}^2\, \mathrm{d}s \\&\quad \leqq \Vert \mathbf{u}_0 \Vert _{L^2_{w_\gamma }}^2 -\int _0^t \int \mathbf{\nabla }\vert \mathbf{u}\vert ^2\cdot \mathbf{\nabla }w_\gamma \, \mathrm{d}x\, \mathrm{d}s\\&\qquad +\int _0^t\int (\vert \mathbf{u}\vert ^2 \mathbf{b}+2p\mathbf{u}) \cdot \mathbf{\nabla }(w_\gamma )\, \mathrm{d}x\, \mathrm{d}s\\&\qquad -2\sum _{i=1}^3\sum _{j=1}^3 \int _0^t\int F_{i,j} (\partial _i u_j) w_\gamma +F_{i,j} u_i \partial _j(w_\gamma )\, \mathrm{d}x\, \mathrm{d}s. \end{aligned} \end{aligned}$$

Now we write

$$\begin{aligned} \left| \int _0^t\int \mathbf{\nabla }\vert \mathbf{u}\vert ^2\cdot \mathbf{\nabla }w_\gamma \, \mathrm{d}s\, \mathrm{d}s\right|\leqq & {} 2\gamma \int _0^t\int \vert \mathbf{u}\vert \vert \mathbf{\nabla }\mathbf{u}\vert \, w_\gamma \, \mathrm{d}x\, \mathrm{d}s \\\leqq & {} \frac{1}{4} \int _0^t \Vert \mathbf{\nabla }\mathbf{u}\Vert _{L^2_{w_\gamma }}^2\, \mathrm{d}s+4\gamma ^2 \int _0^t \Vert \mathbf{u}\Vert _{L^2_{w_\gamma }}^2\, \mathrm{d}s . \end{aligned}$$

Writing

$$\begin{aligned} p_1=\sum _{i=1}^3\sum _{j=1}^3 R_iR_j(b_iu_j) \text { and } p_2=-\sum _{i=1}^3\sum _{j=1}^3 R_iR_j(F_{i,j}), \end{aligned}$$

and using the fact that \(w_{6\gamma /5}\in {\mathcal {A}}_{6/5}\) and \(w_\gamma \in {\mathcal {A}}_2\), we get

$$\begin{aligned}\begin{aligned}&\left| \int _0^t\int (\vert \mathbf{u}\vert ^2 \mathbf{b}+2p_1\mathbf{u}) \cdot \mathbf{\nabla }(w_\gamma )\, \mathrm{d}x\, \mathrm{d}s\right| \leqq \gamma \int _0^t\int (\vert \mathbf{u}\vert ^2 \vert \mathbf{b}\vert +2\vert p_1\vert \,\vert \mathbf{u}\vert ) \, w_\gamma ^{3/2}\, \mathrm{d}x\, \mathrm{d}s \\&\quad \leqq \gamma \int _0^t \Vert w_\gamma ^{1/2} \mathbf{u}\Vert _6 (\Vert w_\gamma \vert \mathbf{b}\vert \vert \mathbf{u}\vert \Vert _{6/5}+\Vert w_\gamma p_1\Vert _{6/5}) \mathrm{d}s \\&\quad \leqq C_\gamma \int _0^t \Vert w_\gamma ^{1/2} \mathbf{u}\Vert _6 \Vert w_\gamma \vert \mathbf{b}\vert \vert \mathbf{u}\vert \Vert _{6/5} \, \mathrm{d}s \\&\quad \leqq C_\gamma \int _0^t \Vert w_\gamma ^{1/2} \mathbf{u}\Vert _6 \Vert w_\gamma ^{1/2} \mathbf{b}\Vert _3 \Vert w_\gamma ^{1/2}\mathbf{u}\Vert _2 \, \mathrm{d}s \\&\quad \leqq C_\gamma ' \int _0^t (\Vert \mathbf{\nabla }\mathbf{u}\Vert _{L^2_{w_\gamma }}+\Vert \mathbf{u}\Vert _{L^2_{w_\gamma }})\ \Vert \mathbf{b}\Vert _{L^3_{w_{3\gamma /2}}}\Vert \mathbf{u}\Vert _{L^2_{w_\gamma }} \, \mathrm{d}s \\&\quad \leqq \frac{1}{4} \int _0^t \Vert \mathbf{\nabla }\mathbf{u}\Vert _{L^2_{w_\gamma }}^2\, \mathrm{d}s + C''_\gamma \int _0^t \Vert \mathbf{u}\Vert _{L^2_{w_\gamma }}^2 ( \Vert \mathbf{b}\Vert _{L^3_{w_{3\gamma /2}}} + \Vert \mathbf{b}\Vert _{L^3_{w_{3\gamma /2}}}^2)\, \mathrm{d}s \end{aligned} \end{aligned}$$

and

$$\begin{aligned} \begin{aligned}&\left| \int _0^t\int 2p_2\mathbf{u}\cdot \mathbf{\nabla }(w_\gamma )\, \mathrm{d}x\, \mathrm{d}s\right| \\&\quad \leqq 2 \gamma \int _0^t\int \vert p_2\vert \, \vert \mathbf{u}\vert \, w_\gamma \, \mathrm{d}x\, \mathrm{d}s \\&\quad \leqq \gamma \int _0^t \Vert \mathbf{u}\Vert _{L^2_{w_\gamma }}^2+\Vert p_2\Vert _{L^2_{w_\gamma }}^2\, \mathrm{d}s \\&\quad \leqq C_\gamma \int _0^t \Vert \mathbf{u}\Vert _{L^2_{w_\gamma }}^2+\Vert {\mathbb {F}}\Vert _{L^2_{w_\gamma }}^2\, \mathrm{d}s. \end{aligned} \end{aligned}$$

Finally, we have

$$\begin{aligned} \begin{aligned}&\left| 2\sum _{i=1}^3\sum _{j=1}^3 \int _0^t\int F_{i,j} (\partial _i u_j) w_\gamma +F_{i,j} u_i \partial _j(w_\gamma )\, \mathrm{d}x\, \mathrm{d}s\right| \\&\quad \leqq 2 \int _0^t\int \vert F\vert \, (\vert \mathbf{\nabla }\mathbf{u}\vert +\gamma \vert \mathbf{u}\vert ) \, w_\gamma \, \mathrm{d}x\, \mathrm{d}s \\&\quad \leqq \frac{1}{4} \int _0^t \Vert \mathbf{\nabla }\mathbf{u}\Vert _{L^2_{w_\gamma }}^2\, \mathrm{d}s + C_\gamma \int _0^t \Vert \mathbf{u}\Vert _{L^2_{w_\gamma }}^2+\Vert {\mathbb {F}}\Vert _{L^2_{w_\gamma }}^2\, \mathrm{d}s. \end{aligned} \end{aligned}$$

We have obtained

$$\begin{aligned} \begin{aligned}&\Vert \mathbf{u}(t,. )\Vert _{L^2_{w_\gamma }}^2 + \int _0^t \Vert \mathbf{\nabla }\mathbf{u}\Vert _{L^2_{w_\gamma }}^2\, \mathrm{d}s \\&\quad \leqq \Vert \mathbf{u}_0 \Vert _{L^2_{w_\gamma }}^2 +C_\gamma \int _0^t \Vert {\mathbb {F}}(s,.)\Vert ^2_{L^2_{w_\gamma }}\, \mathrm{d}s \\&\qquad + C_\gamma \int _0^t \Bigg (1+ \Vert \mathbf{b}(s,. )\Vert _{L^3_{w_{3\gamma /2}}}^2 \Bigg ) \Vert \mathbf{u}(s,. )\Vert _{L^2_{w_\gamma }}^2 \, \mathrm{d}s \end{aligned} \end{aligned}$$
(7)

and Theorem 2 is proven. \(\quad \square \)

4.2 Passive Transportation

From inequality (7), we have the following direct consequence:

Corollary 4

Under the assumptions of Theorem 2, we have

$$\begin{aligned} \sup _{0<t<T} \Vert \mathbf{u}\Vert _{L^2_{w_\gamma }} \leqq (\Vert \mathbf{u}_0\Vert _{L^2_{w_\gamma }}+ C_\gamma \Vert {\mathbb {F}}\Vert _{L^2((0,T), L^2_{w_\gamma })}) \ e^{C_\gamma (T+ T^{1/3} \Vert \mathbf{b}\Vert _{L^3((0,T), L^3_{w_{3\gamma /2}})}^2)} \end{aligned}$$

and

$$\begin{aligned} \Vert \mathbf{\nabla }\mathbf{u}\Vert _{L^2((0,T),L^2_{w_\gamma )}} \leqq (\Vert \mathbf{u}_0\Vert _{L^2_{w_\gamma }}\!+\! C_\gamma \Vert {\mathbb {F}}\Vert _{L^2((0,T), L^2_{w_\gamma })}) \ e^{C_\gamma (T+ T^{1/3} \Vert \mathbf{b}\Vert _{L^3((0,T), L^3_{w_{3\gamma /2}})}^2)}, \end{aligned}$$

where the constant \(C_\gamma \) depends only on \(\gamma \).

Another direct consequence is the following uniqueness result for the advection-diffusion problem with a (locally in time), bounded \(\mathbf{b}\):

Corollary 5

Let \(0<\gamma < 2\). Let \(0<T<+\infty \). Let \(\mathbf{u}_{0}\) be a divergence-free vector field such that \(\mathbf{u}_0\in L^2_{w_\gamma }({\mathbb {R}}^3)\) and \({\mathbb {F}}\) be a tensor \({\mathbb {F}}(t,x)=\left( F_{i,j}(t,x)\right) _{1\leqq i,j\leqq 3}\) such that \({\mathbb {F}}\in L^2((0,T), L^2_{w_\gamma })\). Let \(\mathbf{b}\) be a time-dependent divergence free vector-field (\(\mathbf{\nabla }\cdot \mathbf{b}=0\)) such that \(\mathbf{b}\in L^3((0,T),L^3_{w_{3\gamma /2}})\). Assume moreover that \(\mathbf{b}\) belongs to \(L^2_t L^\infty _x(K)\) for every compact subset K of \((0,T)\times {\mathbb {R}}^3 \).

Let \((\mathbf{u}_1, p_1)\) and \((\mathbf{u}_2,p_2)\) be two solutions of the following advection-diffusion problem:

$$\begin{aligned} (AD) \left\{ \begin{array}{l} \partial _t \mathbf{u}= \Delta \mathbf{u}-(\mathbf{b}\cdot \mathbf{\nabla })\mathbf{u}- \mathbf{\nabla }p +\mathbf{\nabla }\cdot {\mathbb {F}} \\ \\ \mathbf{\nabla }\cdot \mathbf{u}=0, \mathbf{u}(0,.)=\mathbf{u}_0 \end{array}\right. \end{aligned}$$

such that, for \(k=1\) and \(k=2\),

  • \(\mathbf{u}_k\) belongs to \(L^\infty ((0,T), L^2_{w_\gamma })\) and \(\mathbf{\nabla }\mathbf{u}_k\) belongs to \(L^2((0,T),L^2_{w_\gamma })\);

  • the pressure \(p_k\) is related to \(\mathbf{u}_k\), \(\mathbf{b}\) and \({\mathbb {F}}\) through the Riesz transforms \(R_i =\frac{\partial _i}{\sqrt{-\Delta }}\) by the formula

    $$\begin{aligned} p_k=\sum _{i=1}^3\sum _{j=1}^3 R_iR_j(b_iu_{k,j}-F_{i,j}); \end{aligned}$$
  • the map \(t\in [0,T)\mapsto \mathbf{u}_k(t,.)\) is weakly continuous from [0, T) to \(L^2_{w_\gamma }\), and is strongly continuous at \(t=0\) :

    $$\begin{aligned} \lim _{t\rightarrow 0} \Vert \mathbf{u}_k(t,.)-\mathbf{u}_0\Vert _{L^2_{w_\gamma }}=0. \end{aligned}$$

Then \(\mathbf{u}_1=\mathbf{u}_2\).

Proof

Let \(\mathbf{v}=\mathbf{u}_1-\mathbf{u}_2\) and \(q=p_1-p_2\). Then we have

$$\begin{aligned} \left\{ \begin{array}{l} \partial _t \mathbf{v}= \Delta \mathbf{v}-(\mathbf{b}\cdot \mathbf{\nabla })\mathbf{v}- \mathbf{\nabla }q \\ \\ \mathbf{\nabla }\cdot \mathbf{v}=0, \quad \quad \mathbf{v}(0,.)=0. \end{array}\right. \end{aligned}$$

Moreover on every compact subset K of \((0,T)\times {\mathbb {R}}^3\), \(\mathbf{b}\otimes \mathbf{v}\) is in \(L^2_t L^2_x\), while it belongs globally to \(L^{3}_t L^{6/5}_{w_{6\gamma /5}}\). Writing, for \(\varphi , \psi \in {\mathcal {D}}((0,T)\times {\mathbb {R}}^3)\) such that \(\psi =1\) on the neigborhood of the support of \(\varphi \),

$$\begin{aligned} \varphi q=q_1+q_2=\varphi \sum _{i=1}^3\sum _{j=1}^3 R_iR_j(\psi b_iv_j)+\varphi \sum _{i=1}^3\sum _{j=1}^3 R_iR_j((1-\psi ) b_i v_j), \end{aligned}$$

we find that \(\Vert q_1\Vert _{L^2L^2}\leqq C_{\varphi ,\psi } \Vert \psi \mathbf{b}\otimes \mathbf{v}\Vert _{L^2 L^2}\) and

$$\begin{aligned} \Vert q_2\Vert _{L^3 L^\infty } \leqq C_{\varphi ,\psi } \Vert \mathbf{b}\otimes \mathbf{v}\Vert _{L^3 L^{6/5}_{w_{6\gamma /5}}} \end{aligned}$$

with

$$\begin{aligned} C_{\varphi ,\psi }\leqq C \Vert \varphi \Vert _\infty \Vert 1-\psi \Vert _\infty \sup _{x\in \mathrm{Supp}\, \varphi } \left( \int _{y\in \mathrm{Supp }\, (1-\psi )} \left( \frac{ (1+\vert y\vert )^\gamma }{\vert x-y\vert ^3}\right) ^6 \right) ^{1/6}<+\infty . \end{aligned}$$

Thus, we may take the scalar product of \(\partial _t \mathbf{v}\) with \(\mathbf{v}\) and find that

$$\begin{aligned} \partial _t(\frac{\vert \mathbf{v}\vert ^2}{2})=\Delta \Big (\frac{\vert \mathbf{v}\vert ^2}{2}\Big )-\vert \mathbf{\nabla }\mathbf{v}\vert ^2- \mathbf{\nabla }\cdot \left( \frac{\vert \mathbf{v}\vert ^2}{2}\mathbf{b}\right) -\mathbf{\nabla }\cdot (q\mathbf{v}) . \end{aligned}$$

Thus we are under the assumptions of Theorem 2 and we may use Corollary 4 to find that \(\mathbf{v}=0\). \(\quad \square \)

4.3 Active Transportation

We begin with the following lemma:

Lemma 4

Let \(\alpha \) be a non-negative bounded measurable function on [0, T) such that, for two constants \(A,B\geqq 0\), we have

$$\begin{aligned} \alpha (t)\leqq A + B\int _0^t \alpha (s)+\alpha (s)^3\, \mathrm{d}s. \end{aligned}$$

If \(T_0>0\) and \(T_1=\min (T,T_0, \frac{1}{8B (A+2BT_0)^2})\), we have, for every \(t\in [0,T_1]\), \(\alpha (t)\leqq \sqrt{ 2} (A+2BT_0)\).

Proof

We write \(\alpha \leqq 1+\alpha ^3\). We define

$$\begin{aligned} \Phi (t)= A+2B T_0 + 2B \int _0^t \alpha ^3\, \mathrm{d}s \text { and } \Psi (t)=A+2BT_0+ 2B \int _0^t \Phi ^3(s)\, \mathrm{d}s. \end{aligned}$$

We have, for \(t\in [0,T_1]\), \(\alpha \leqq \Phi \leqq \Psi \). Since \(\Psi \) is \({\mathcal {C}}^1\), we may write

$$\begin{aligned} \Psi '(t)= 2B \Phi (t)^3 \leqq 2B \Psi (t)^3 \end{aligned}$$

and thus

$$\begin{aligned} \frac{1}{\Psi (0)^2}-\frac{1}{\Psi (t)^2}\leqq 4Bt. \end{aligned}$$

We thus find

$$\begin{aligned} \Psi (t)^2 \leqq \frac{\Psi (0)^2}{1-4B \Psi (0)^2 t}\leqq 2 \Psi (0)^2. \end{aligned}$$

The lemma is proven. \(\quad \square \)

Corollary 6

Assume that \(\mathbf{u}_0\), \(\mathbf{u}\), p, \({\mathbb {F}}\) and \(\mathbf{b}\) satisfy assumptions of Theorem 2. Assume moreover that \(\mathbf{b}\) is the inequality in the next line expresses in which way \(\mathbf {b}\) is controlled by \(\mathbf{u}\): for every \(t\in (0,T)\),

$$\begin{aligned} \Vert \mathbf{b}(t,.)\Vert _{L^3_{w_{3\gamma /2}}}\leqq C_0 \Vert \mathbf{u}(t,.)\Vert _{L^3_{w_{3\gamma /2}}}. \end{aligned}$$

Then there exists a constant \(C_\gamma \geqq 1\) such that if \(T_0<T\) is such that

$$\begin{aligned} C_\gamma (1+C_0^4) \left( 1+C_0^4+\Vert \mathbf{u}_0\Vert _{L^2_{w_\gamma }}^2+\int _0^{T_0} \Vert {\mathbb {F}}\Vert _{L^2_{w_\gamma }}^2\, \mathrm{d}s\right) ^2\, T_0\leqq 1 \end{aligned}$$

then

$$\begin{aligned} \sup _{0\leqq t\leqq T_0} \Vert \ \mathbf{u}(t,.)\Vert _{L^2_{w_\gamma }}^2 \leqq C_\gamma \Bigg (1+ C_0^4 + \Vert \mathbf{u}_0\Vert _{L^2_{w_\gamma }}^2 +\int _0^{T_0} \Vert {\mathbb {F}}\Vert _{L^2_{w_\gamma }}^2\, \mathrm{d}s \Bigg ) \end{aligned}$$

and

$$\begin{aligned} { \int _0^{T_0} \Vert \mathbf{\nabla }\mathbf{u}\Vert _{L^2_{w_\gamma }}^2\, \mathrm{d}s }\leqq C_\gamma \Bigg (1+ C_0^4 + \Vert \mathbf{u}_0\Vert _{L^2_{w_\gamma }}^2 +\int _0^{T_0} \Vert {\mathbb {F}}\Vert _{L^2_{w_\gamma }}^2\, \mathrm{d}s\Bigg ). \end{aligned}$$

Proof

We start from inequality (7):

$$\begin{aligned} \begin{aligned}&\Vert \mathbf{u}(t,. )\Vert _{L^2_{w_\gamma }}^2 + \int _0^t \Vert \mathbf{\nabla }\mathbf{u}\Vert _{L^2_{w_\gamma }}^2\, \mathrm{d}s \\&\quad \leqq \Vert \mathbf{u}_0 \Vert _{L^2_{w_\gamma }}^2 +C_\gamma \int _0^t \Vert {\mathbb {F}}(s,.)\Vert ^2_{L^2_{w_\gamma }}\, \mathrm{d}s \\&\qquad + C_\gamma \int _0^t \Bigg (1+ \Vert \mathbf{b}(s,. )\Vert _{L^3_{w_{3\gamma /2}}}^2 \Bigg ) \Vert \mathbf{u}(s,. )\Vert _{L^2_{w_\gamma }}^2 \, \mathrm{d}s \end{aligned} \end{aligned}$$

We write

$$\begin{aligned} \Vert \mathbf{b}(s,. )\Vert _{L^3_{w_{3\gamma /2}}}^2 \leqq C_0^2 \Vert \mathbf{u}(s,. )\Vert _{L^3_{w_{3\gamma /2}}}^2 \leqq C_0^2 C_\gamma \Vert \mathbf{u}\Vert _{L^2_{w_\gamma }} (\Vert u\Vert _{L^2_{w_\gamma }}+\Vert \mathbf{\nabla }\mathbf{u}\Vert _{L^2_{w_\gamma }}). \end{aligned}$$

This gives

$$\begin{aligned} \begin{aligned} \begin{aligned}&\Vert \mathbf {u}(t,. ) \Vert _{L^2_{w_\gamma }}^2 + \frac{1}{2}\int _0^t \Vert \mathbf {\nabla }\mathbf {u}\Vert ^2_{L^2_{w_\gamma }} \, \mathrm {d}s \\ {}&\quad \leqq \Vert \mathbf {u}_0 \Vert _{L^2_{w_\gamma }}^2 + C_\gamma \int _0^t \Vert {\mathbb {F}}(s,.)\Vert ^2_{L^2_{w_\gamma }}\, \mathrm {d}s \\ {}&\qquad + C_\gamma \int _0^t \Vert \mathbf {u}(s,. )\Vert _{L^2_{w_\gamma }}^2 + C_0^2 \Vert \mathbf {u}(s,. )\Vert _{L^2_{w_\gamma }}^4 + C_0^4 \Vert \mathbf {u}(s,. )\Vert _{L^2_{w_\gamma }}^6 \, \mathrm {d}s \\ {}&\quad \leqq \Vert \mathbf {u}_0 \Vert _{L^2_{w_\gamma }}^2 +C_\gamma \int _0^t \Vert {\mathbb {F}}(s,.)\Vert ^2_{L^2_{w_\gamma }}\, \mathrm {d}s \\ {}&\qquad +2 C_\gamma \int _0^t \Vert \mathbf {u}(s,. )\Vert _{L^2_{w_\gamma }}^2 + C_0^4 \Vert \mathbf {u}(s,. )\Vert _{L^2_{w_\gamma }}^6 \, \mathrm {d}s. \end{aligned}\end{aligned}\end{aligned}$$

For \(t\leqq T_0\), we get

$$\begin{aligned}&\Vert \mathbf{u}(t,. ) \Vert _{L^2_{w_\gamma }}^2 + \frac{1}{2}\int _0^t \Vert \mathbf{\nabla }\mathbf{u}\Vert ^2_{L^2_{w_\gamma }} \, \mathrm{d}s \\&\quad \leqq \Vert \mathbf{u}_0 \Vert _{L^2_{w_\gamma }}^2 +C_\gamma \int _0^{T_0} \Vert {\mathbb {F}}\Vert _{L^2_{w_\gamma }}^2\, \mathrm{d}s \\&\qquad + C_\gamma (1+C_0^4) \int _0^t \Vert \mathbf{u}(s,. )\Vert _{L^2_{w_\gamma }}^2+ \Vert \mathbf{u}(s,. )\Vert _{L^2_{w_\gamma }}^6\, \mathrm{d}s \end{aligned}$$

and we may conclude with Lemma 4. \(\quad \square \)

5 Stability of Solutions for the Advection-Diffusion Problem

5.1 The Rellich Lemma

We recall the Rellich lemma:

Lemma 5

(Rellich) If \(s>0\) and \( (f_n)\) is a sequence of functions on \({\mathbb {R}}^d\) such that

  • the family \((f_n)\) is bounded in \(H^s({\mathbb {R}}^d)\),

  • there is a compact subset of \({\mathbb {R}}^d\) such that the support of each \(f_n\) is included in K,

then there exists a subsequence \((f_{n_k})\) such that \(f_{n_k}\) is strongly convergent in \(L^2({\mathbb {R}}^d)\).

We shall use a variant of this lemma (see [9]):

Lemma 6

(space-time Rellich) If \(s>0\), \(\sigma \in {\mathbb {R}}\) and \( (f_n)\) is a sequence of functions on \((0,T)\times {\mathbb {R}}^d\) such that, for all \(T_0\in (0,T)\) and all \(\varphi \in {\mathcal {D}}({\mathbb {R}}^3)\),

  • \(\varphi f_n\) is bounded in \(L^2((0,T_0), H^s)\),

  • \(\varphi \partial _t f_n\) is bounded in \(L^2((0,T_0), H^\sigma )\),

then there exists a subsequence \((f_{n_k})\) such that \(f_{n_k}\) is strongly convergent in \(L^2_\mathrm{loc}([0,T)\times {\mathbb {R}}^3)\) : if \(f_\infty \) is the limit, we have for all \(T_0\in (0,T)\) and all \(R_0>0\)

$$\begin{aligned} \lim _{n_k\rightarrow +\infty } \int _0^{T_0} \int _{\vert x\vert \leqq R} \vert f_{n_k}-f_\infty \vert ^2 \, \mathrm{d}x\, \mathrm{d}t=0. \end{aligned}$$

Proof

With no loss of generality, we may assume that \(\sigma <\min (1,s)\). Define g by \(g_n(t,x)=\alpha (t)\varphi (x) f_n(t,x)\) if \(t>0\) and \(g_n(t,x)=\alpha (t)\varphi (x) f_n(-t,x)\) if \(t<0\), where \(\alpha \in {\mathcal {C}}^\infty \) on (0, T), is equal to 1 on \([0,T_0]\) and equal to 0 for \(t> \frac{T+T_0}{2}\), and \(\varphi (x)=1\) on \(B(0,R_0)\). Then the support of \(g_n\) is contained in \([-\frac{T+T_0}{2},\frac{T+T_0}{2}]\times \mathrm{Supp} \,\varphi \). Moreover, \(g_n\) is bounded in \(L^2_t H^s\) and \(\partial _t g_n\) is bounded in \(L^2 H^\sigma \) so that \(g_n \) is bounded in \(H^\rho ({\mathbb {R}}\times {\mathbb {R}}^3)\) with \(\rho = \frac{s}{s+1-\sigma }\) (just write \((1+\tau ^2+\xi ^2)^{\frac{s}{s+1-\sigma }} \leqq \left( (1+\tau ^2)(1+\xi ^2)^\sigma \right) ^{\frac{s}{s+1-\sigma }} \left( (1+\xi ^2)^s\right) ^{\frac{1-\sigma }{s+1-\sigma }}\)). By the Rellich lemma, we know that there is a subsequence \(g_{n_k}\) which is strongly convergent in \(L^2({\mathbb {R}}\times {\mathbb {R}}^3)\), thus a subsequence \(f_{n_k}\) which is strongly convergent in \(L^2((0,T_0)\times B(0,R_0))\).

We then iterate this argument for an increasing sequence of times \(T_0<T_1<\dots <T_N\rightarrow T\) and an increasing sequence of radii \(R_0<R_1<\dots <R_N\rightarrow +\infty \) and finish the proof by the classical diagonal process of Cantor. \(\quad \square \)

5.2 Proof of Theorem 3

Assume that \(\mathbf{u}_{0,n}\) is strongly convergent to \(\mathbf{u}_{0,\infty }\) in \(L^2_{w_\gamma }\) and that the sequence \({\mathbb {F}}_n\) is strongly convergent to \({\mathbb {F}}_\infty \) in \(L^2((0,T), L^2_{w_\gamma })\), and assume that the sequence \(\mathbf{b}_n\) is bounded in \(L^3((0,T), L^3_{w_{3\gamma /2}})\). Then, by Theorem 2 and Corollary 4, we know that \(\mathbf{u}_n\) is bounded in \(L^\infty ((0,T), L^2_{w_\gamma })\) and \(\mathbf{\nabla }\mathbf{u}_n\) is bounded in \(L^2((0,T), L^2_{w_\gamma })\). In particular, writing \(p_n=p_{n,1}+ p_{n,2}\) with

$$\begin{aligned} p_{n,1}=\sum _{i=1}^3\sum _{j=1}^3 R_iR_j(b_{n,i}u_{n,j}) \text { and } p_{n,2}=-\sum _{i=1}^3\sum _{j=1}^3 R_iR_j( F_{n,i,j}), \end{aligned}$$

we get that \(p_{n,1}\) is bounded in \(L^{3}((0,T),L^{6/5}_{w_{\frac{6\gamma }{5}}})\) and \(p_{n,2}\) is bounded in \(L^{2}((0,T),L^{2}_{w_\gamma })\).

If \(\varphi \in {\mathcal {D}}({\mathbb {R}}^3)\), we find that \(\varphi \mathbf{u}_n\) is bounded in \(L^2((0,T), H^1)\) and, writing

$$\begin{aligned} \partial _t \mathbf{u}_n= \Delta \mathbf{u}_n - \left( \sum _{i=1}^3 \partial _i(b_{n,i}\mathbf{u}_n) +\mathbf{\nabla }p_{n,1}\right) + \left( \mathbf{\nabla }\cdot {\mathbb {F}}_n-\mathbf{\nabla }p_{n,2}\right) , \end{aligned}$$

\(\varphi \partial _t\mathbf{u}_n\) is bounded in \(L^2 L^2 + L^2 W^{-1,6/5}+ L^2 H^{-1}\subset L^2((0,T), H^{-2})\). Thus, by Lemma 6, there exist \(\mathbf{u}_\infty \) and an increasing sequence \((n_k)_{k\in {\mathbb {N}}}\) with values in \({\mathbb {N}}\) such that \(\mathbf{u}_{n_k}\) converges strongly to \(\mathbf{u}_\infty \) in \(L^2_\mathrm{loc}([0,T)\times {\mathbb {R}}^3)\), and for every \(T_0\in (0,T)\) and every \(R>0\), we have

$$\begin{aligned} \lim _{k\rightarrow +\infty } \int _0^{T_0} \int _{\vert y\vert <R} \vert \mathbf{u}_{n_k}(s,y)-\mathbf{u}_\infty (s,y)\vert ^2\, \mathrm{d}y\, \mathrm{d}s=0. \end{aligned}$$

As \(\mathbf{u}_n\) is bounded in \(L^\infty ((0,T), L^2_{w_\gamma })\) and \(\mathbf{\nabla }\mathbf{u}_n\) is bounded in \(L^2((0,T), L^2_{w_\gamma })\), the convergence of \(\mathbf{u}_{n_k}\) to \(\mathbf{u}_\infty \) in \({\mathcal {D}}'((0,T)\times {\mathbb {R}}^3)\) implies that \(\mathbf{u}_{n_k}\) converges *-weakly to \(\mathbf{u}_\infty \) in \(L^\infty ((0,T), L^2_{w_\gamma })\) and \(\mathbf{\nabla }\mathbf{u}_{n_k}\) converges weakly to \(\mathbf{\nabla }\mathbf{u}_\infty \) in \(L^2((0,T),L^2_{w_\gamma })\).

By Banach–Alaoglu’s theorem, we may assume that there exists \(\mathbf{b}_\infty \) such that \(\mathbf{b}_{n_k}\) converges weakly to \(\mathbf{b}_\infty \) in \(L^3((0,T), L^3_{w_{3\gamma /2}})\). In particular \(b_{n_k,i} u_{n_k,j}\) is weakly convergent in \((L^{6/5}L^{6/5})_\mathrm{loc}\) and thus in \({\mathcal {D}}'((0,T)\times {\mathbb {R}}^3)\); as it is bounded in \(L^{3}((0,T),L^{6/5}_{w_{\frac{6\gamma }{5}}})\), it is weakly convergent in \(L^{3}((0,T),L^{6/5}_{w_{\frac{6\gamma }{5}}})\) to \(b_{\infty ,i}u_{\infty ,j}\). Let

$$\begin{aligned} p_{\infty ,1}=\sum _{i=1}^3\sum _{j=1}^3 R_i R_j(b_{\infty ,i}u_{\infty ,j}) \text { and } p_{\infty ,2}=-\sum _{i=1}^3\sum _{j=1}^3 R_i R_j( F_{\infty ,i,j}). \end{aligned}$$

As the Riesz transforms are bounded on \(L^{6/5}_{w_{\frac{6\gamma }{5}}}\) and on \(L^2_{w_\gamma }\), we find that \(p_{n_k,1}\) is weakly convergent in \(L^{3}((0,T),L^{6/5}_{w_{\frac{6\gamma }{5}}})\) to \(p_{\infty ,1}\) and that \(p_{n_k,2}\) is strongly convergent in \(L^2((0,T),L^2_{w_\gamma })\) to \(p_{\infty ,2}\).

In particular, we find that in \({\mathcal {D}}'((0,T)\times {\mathbb {R}}^3)\),

$$\begin{aligned} \partial _t \mathbf{u}_\infty =\Delta \mathbf{u}_\infty -\sum _{i=1}^3 \partial _i (b_{\infty ,i}\mathbf{u}_\infty )-\mathbf{\nabla }(p_{\infty ,1}+p_{\infty ,2})+\mathbf{\nabla }\cdot {\mathbb {F}}_\infty . \end{aligned}$$

In particular, \(\partial _t\mathbf{u}_\infty \) is locally in \(L^2 H^{-2}\), and thus \(\mathbf{u}_\infty \) has representative such that \(t\mapsto \mathbf{u}_\infty (t,.)\) is continuous from [0, T) to \({\mathcal {D}}'({\mathbb {R}}^3)\) and coincides with \(\mathbf{u}_\infty (0,.)+\int _0^t \partial _t \mathbf{u}_\infty \, \mathrm{d}s\). In \({\mathcal {D}}'((0,T)\times {\mathbb {R}}^3)\), we have that

$$\begin{aligned}&\mathbf{u}_\infty (0,.)+\int _0^t \partial _t \mathbf{u}_\infty \, \mathrm{d}s=\mathbf{u}_\infty =\lim _{n_k\rightarrow +\infty } \mathbf{u}_{n_k}\\ =&\lim _{n_k\rightarrow +\infty } \mathbf{u}_{0,n_k} + \int _0^t \partial _t \mathbf{u}_{n_k}\, \mathrm{d}s=\mathbf{u}_{0, \infty }+\int _0^t \partial _t\mathbf{u}_\infty \, \mathrm{d}s \end{aligned}$$

Thus, \(\mathbf{u}_\infty (0,.)=\mathbf{u}_{0,\infty }\), and \(\mathbf{u}_\infty \) is a solution of \((AD_\infty )\).

Next, we define

$$\begin{aligned} A_n= & {} =\vert \mathbf{\nabla }\mathbf{u}_n\vert ^2 +\mu _n\\= & {} - \partial _t\Big (\frac{\vert \mathbf{u}_n\vert ^2}{2}\Big )+\Delta \Big (\frac{\vert \mathbf{u}_n\vert ^2}{2}\Big )-\mathbf{\nabla }\cdot \left( \frac{\vert \mathbf{u}_n\vert ^2}{2}\mathbf{b}_n\right) -\mathbf{\nabla }\cdot (p_n\mathbf{u}_n) + \mathbf{u}_n\cdot (\mathbf{\nabla }\cdot {\mathbb {F}}_n) . \end{aligned}$$

As \(\mathbf{u}_n\) is bounded in \(L^\infty ((0,T), L^2_{w_\gamma })\) and \(\mathbf{\nabla }\mathbf{u}_n\) is bounded in \(L^2((0,T), L^2_{w_\gamma })\), it is bounded in \(L^2((0,T), L^6_{w_{3\gamma /2}})\) and by interpolation with \(L^\infty ((0,T), L^2_{w_\gamma })\) it is bounded in \(L^{10/3}((0,T), L^{10/3}_{w_{5\gamma /3}})\). Thus, \(u_{n_k}\) is locally bounded in \(L^{10/3}L^{10/3}\) and locally strongly convergent in \(L^2 L^2\); it is then strongly convergent in \(L^3 L^3\). Thus, \(A_{n_k}\) is convergent in \({\mathcal {D}}'((0,T)\times {\mathbb {R}}^3)\) to

$$\begin{aligned} A_\infty = - \partial _t\left( \frac{\vert \mathbf{u}_\infty \vert ^2}{2}\right) +\Delta \left( \frac{\vert \mathbf{u}_\infty \vert ^2}{2}\right) -\mathbf{\nabla }\cdot \left( \frac{\vert \mathbf{u}_\infty \vert ^2}{2}\mathbf{b}_\infty \right) -\mathbf{\nabla }\cdot (p_\infty \mathbf{u}_\infty ) + \mathbf{u}_\infty \cdot (\mathbf{\nabla }\cdot {\mathbb {F}}_\infty ) . \end{aligned}$$

In particular, \(A_\infty =\lim _{n_k\rightarrow +\infty } \vert \mathbf{\nabla }\mathbf{u}_{n_k}\vert ^2 +\mu _{n_k}\). If \(\Phi \in {\mathcal {D}}((0,T)\times {\mathbb {R}}^3)\) is non-negative, we have

$$\begin{aligned} \iint A_\infty \Phi \, \mathrm{d}x\, \mathrm{d}s= & {} \lim _{n_k\rightarrow +\infty }\iint A_{n_k} \Phi \, \mathrm{d}x\, \mathrm{d}s\\\geqq & {} \limsup _{n_k\rightarrow +\infty }\iint \vert \mathbf{\nabla }\mathbf{u}_{n_k}\vert ^2 \Phi \, \mathrm{d}x\, \mathrm{d}s \geqq \iint \vert \mathbf{\nabla }\mathbf{u}_{\infty }\vert ^2 \Phi \, \mathrm{d}x\, \mathrm{d}s \end{aligned}$$

(since \(\sqrt{\Phi }\mathbf{\nabla }\mathbf{u}_{n_k}\) is weakly convergent to \(\sqrt{\Phi }\mathbf{\nabla }\mathbf{u}_\infty \) in \(L^2L^2\)). Thus, there exists a non-negative locally finite measure \(\mu _\infty \) on \((0,T)\times {\mathbb {R}}^3\) such that \(A_\infty =\vert \mathbf{\nabla }\mathbf{u}_\infty \vert ^2 +\mu _\infty \), that is such that

$$\begin{aligned} \partial _t\Big (\frac{\vert \mathbf{u}_\infty \vert ^2}{2}\Big )= & {} \Delta \Big (\frac{\vert \mathbf{u}_\infty \vert ^2}{2}\Big )-\vert \mathbf{\nabla }\mathbf{u}_\infty \vert ^2- \mathbf{\nabla }\cdot \left( \frac{\vert \mathbf{u}_\infty \vert ^2}{2}\mathbf{b}_\infty \right) \\&-\mathbf{\nabla }\cdot (p_\infty \mathbf{u}_\infty ) + \mathbf{u}\cdot (\mathbf{\nabla }\cdot {\mathbb {F}}_\infty )-\mu _\infty . \end{aligned}$$

Finally, we start from inequality (6):

$$\begin{aligned} \int \frac{\vert \mathbf{u}_n(t,x)\vert ^2}{2} \phi _R w_{\gamma ,\varepsilon }\, \mathrm{d}x\leqq & {} \int \frac{\vert \mathbf{u}_{0,n}(x)\vert ^2}{2} \phi _R w_{\gamma ,\varepsilon }\, \mathrm{d}x \\&-\,\sum _{i=1}^3 \int _0^t \int \partial _i\mathbf{u}_n\cdot \mathbf{u}_n\, (w_{\gamma ,\varepsilon }\partial _i \phi _R+\phi _R \partial _iw_{\gamma ,\varepsilon })\, \mathrm{d}x\, \mathrm{d}s \\&\quad - \int _0^t \int \vert \mathbf{\nabla }\mathbf{u}_n\vert ^2\, \, \phi _R w_{\gamma ,\varepsilon } \mathrm{d}x\, \mathrm{d}s \\&\quad + \sum _{i=1}^3 \int _0^t \int \frac{\vert \mathbf{u}_n\vert ^2}{2} b_{n,i} (w_{\gamma ,\varepsilon }\partial _i \phi _R+\phi _R \partial _iw_{\gamma ,\varepsilon })\, \mathrm{d}x\, \mathrm{d}s \\&\quad +\sum _{i=1}^3 \int _0^t \int p_nu_{n,i} (w_{\gamma ,\varepsilon }\partial _i \phi _R+\phi _R \partial _iw_{\gamma ,\varepsilon })\, \mathrm{d}x\, \mathrm{d}s \\&\quad - \sum _{i=1}^3\sum _{j=1}^3 \int _0^t \int F_{n,i,j} u_{n,j} (w_{\gamma ,\varepsilon }\partial _i \phi _R+\phi _R \partial _iw_{\gamma ,\varepsilon })\, \mathrm{d}x\, \mathrm{d}s \\&\quad - \sum _{i=1}^3 \sum _{j=1}^3\int _0^t \int F_{n,i,j}\partial _iu_{n,j}\ \phi _R w_{\gamma ,\varepsilon }\, \mathrm{d}x\, \mathrm{d}s. \end{aligned}$$

This gives

$$\begin{aligned} \begin{aligned}&\limsup _{n_k\rightarrow +\infty }\int \frac{\vert \mathbf{u}_{n_k}(t,x)\vert ^2}{2} \phi _R w_{\gamma ,\varepsilon }\, \mathrm{d}x +\int _0^t \int \vert \mathbf{\nabla }\mathbf{u}_{n_k}\vert ^2\, \, \phi _R w_{\gamma ,\varepsilon } \mathrm{d}x\, \mathrm{d}s \\&\quad \leqq \int \frac{\vert \mathbf{u}_{0,\infty }(x)\vert ^2}{2} \phi _R w_{\gamma ,\varepsilon }\, \mathrm{d}x \\&\qquad -\sum _{i=1}^3 \int _0^t \int \partial _i\mathbf{u}_\infty \cdot \mathbf{u}_\infty \, (w_{\gamma ,\varepsilon }\partial _i \phi _R+\phi _R \partial _iw_{\gamma ,\varepsilon })\, \mathrm{d}x\, \mathrm{d}s \\&\qquad + \sum _{i=1}^3 \int _0^t \int \frac{\vert \mathbf{u}_\infty \vert ^2}{2} b_{\infty ,i} (w_{\gamma ,\varepsilon }\partial _i \phi _R+\phi _R \partial _iw_{\gamma ,\varepsilon })\, \mathrm{d}x\, \mathrm{d}s \\&\qquad +\sum _{i=1}^3 \int _0^t \int p_\infty u_{\infty ,i} (w_{\gamma ,\varepsilon }\partial _i \phi _R+\phi _R \partial _iw_{\gamma ,\varepsilon })\, \mathrm{d}x\, \mathrm{d}s \\&\qquad - \sum _{i=1}^3\sum _{j=1}^3 \int _0^t \int F_{\infty ,i,j} u_{\infty ,j} (w_{\gamma ,\varepsilon }\partial _i \phi _R+\phi _R \partial _iw_{\gamma ,\varepsilon })\, \mathrm{d}x\, \mathrm{d}s \\&\qquad - \sum _{i=1}^3 \sum _{j=1}^3\int _0^t \int F_{\infty ,i,j}\partial _iu_{\infty ,j}\ \phi _R w_{\gamma ,\varepsilon }\, \mathrm{d}x\, \mathrm{d}s. \end{aligned} \end{aligned}$$

As we have

$$\begin{aligned} \mathbf{u}_{n_k}= \mathbf{u}_{0, n_k}+ \int _0^t \partial _t \mathbf{u}_{n_k}\, \mathrm{d}s, \end{aligned}$$

we see that \(\mathbf{u}_{n_k}(t,.)\) is convergent to \(\mathbf{u}_\infty (t,.)\) in \({\mathcal {D}}'({\mathbb {R}}^3)\), hence is weakly convergent in \(L^2_\mathrm{loc}\) (as it is bounded in \(L^2_{w_\gamma }\)), so that:

$$\begin{aligned} \int \frac{\vert \mathbf{u}_\infty (t,x)\vert ^2}{2} \phi _R w_{\gamma ,\varepsilon }\, \mathrm{d}x \leqq \limsup _{n_k\rightarrow +\infty }\int \frac{\vert \mathbf{u}_{n_k}(t,x)\vert ^2}{2} \phi _R w_{\gamma ,\varepsilon }\, \mathrm{d}x . \end{aligned}$$

Similarly, as \(\mathbf{\nabla }\mathbf{u}_{n_k}\) is weakly convergent in \(L^2L^2_{w_\gamma }\), we have

$$\begin{aligned} \int _0^t \int \frac{\vert \mathbf{\nabla }\mathbf{u}_\infty (s,x)\vert ^2}{2} \phi _R w_{\gamma ,\varepsilon }\, \mathrm{d}x \, \mathrm{d}s \leqq \limsup _{n_k\rightarrow +\infty } \int _0^t\int \frac{\vert \mathbf{\nabla }\mathbf{u}_{n_k}(s,x)\vert ^2}{2} \phi _R w_{\gamma ,\varepsilon }\, \mathrm{d}x \, \mathrm{d}s. \end{aligned}$$

Thus, letting R go to \(+\infty \) and then \(\varepsilon \) go to 0, we find by dominated convergence that, for every \(t\in (0,T)\), we have

$$\begin{aligned} \begin{aligned}&\Vert \mathbf{u}_\infty (t,. )\Vert _{L^2_{w_\gamma }}^2 +2\int _0^t \Vert \mathbf{\nabla }\mathbf{u}_\infty (s,.)\Vert _{L^2_{w_\gamma }}^2\, \mathrm{d}s \\&\quad \leqq \Vert \mathbf{u}_{0, \infty } \Vert _{L^2_{w_\gamma }}^2 -\int _0^t \int \mathbf{\nabla }\vert \mathbf{u}_\infty \vert ^2\cdot \mathbf{\nabla }w_\gamma \, \mathrm{d}x\, \mathrm{d}s\\&\qquad +\int _0^t\int (\vert \mathbf{u}_\infty \vert ^2 \mathbf{b}_\infty +2p_\infty \mathbf{u}_\infty ) \cdot \mathbf{\nabla }(w_\gamma )\, \mathrm{d}x\, \mathrm{d}s\\&\qquad -2\sum _{i=1}^3\sum _{j=1}^3 \int _0^t\int F_{\infty ,i,j} (\partial _i u_{\infty ,j}) w_\gamma +F_{\infty ,i,j} u_{\infty ,i} \partial _j(w_\gamma )\, \mathrm{d}x\, \mathrm{d}s. \end{aligned} \end{aligned}$$

Letting t go to 0, we find

$$\begin{aligned} \limsup _{t\rightarrow 0} \Vert \mathbf{u}_\infty (t,. )\Vert _{L^2_{w_\gamma }}^2\leqq \Vert \mathbf{u}_{0,\infty } \Vert _{L^2_{w_\gamma }}^2 . \end{aligned}$$

On the other hand, we know that \(\mathbf{u}_\infty \) is weakly continuous in \(L^2_{w_\gamma }\) and thus we have

$$\begin{aligned} \Vert \mathbf{u}_{0,\infty } \Vert _{L^2_{w_\gamma }}^2 \leqq \liminf _{t\rightarrow 0} \Vert \mathbf{u}_\infty (t,. )\Vert _{L^2_{w_\gamma }}^2 . \end{aligned}$$

This gives \( \Vert \mathbf{u}_{0,\infty } \Vert _{L^2_{w_\gamma }}^2 = \lim _{t\rightarrow 0} \Vert \mathbf{u}_\infty (t,. )\Vert _{L^2_{w_\gamma }}^2 \), which allows to turn the weak convergence into a strong convergence. Theorem 3 is proven. \(\quad \square \)

6 Solutions of the Navier–Stokes Problem with Initial Data in \(\varvec{L}^{\varvec{2}}_{\varvec{w}_{\varvec{\gamma }}}\)

We now prove Theorem 1. The idea is to approximate the problem by a Navier–Stokes problem in \(L^2\), then use the a priori estimates (Theorem 2) and the stability theorem (Theorem 3) to find a solution to the Navier–Stokes problem with data in \(L^2_{w_\gamma })\).

6.1 Approximation by Square Integrable Data

Lemma 7

(Leray’s projection operator) Let \(0<\delta <3\) and \(1<r<+\infty \). If \(\mathbf{v}\) is a vector field on \({\mathbb {R}}^3\) such that \(\mathbf{v}\in L^r_{w_{\delta }}\), then there exists a unique decompostion

$$\begin{aligned} \mathbf{v}=\mathbf{v}_\sigma +\mathbf{v}_\nabla \end{aligned}$$

such that

  • \(\mathbf{v}_\sigma \in L^r_{w_\delta }\) and \(\mathbf{\nabla }\cdot \mathbf{v}_\sigma =0\),

  • \(\mathbf{v}_\nabla \in L^r_{w_\delta }\) and \(\mathbf{\nabla }\wedge \mathbf{v}_\nabla =0\).

We shall write \(\mathbf{v}_\sigma ={\mathbb {P}}\mathbf{v}\), where \({\mathbb {P}}\) is Leray’s projection operator.

Similarly, if \(\mathbf{v}\) is a distribution vector field of the type \(\mathbf{v}=\mathbf{\nabla }\cdot {\mathbb {G}}\) with \({\mathbb {G}}\in L^r_{w_\delta }\) then there exists a unique decompostion

$$\begin{aligned} \mathbf{v}=\mathbf{v}_\sigma +\mathbf{v}_\nabla \end{aligned}$$

such that

  • there exists \({\mathbb {H}}\in L^r_{w_\delta }\) such that \(\mathbf{v}_\sigma \ = \mathbf{\nabla }\cdot {\mathbb {H}}\) and \(\mathbf{\nabla }\cdot \mathbf{v}_\sigma =0\),

  • there exists \(q\in L^r_{w_\delta }\) such that \(\mathbf{v}_\nabla =\mathbf{\nabla }q\) (and thus \(\mathbf{\nabla }\wedge \mathbf{v}_\nabla =0\)).

We shall still write \(\mathbf{v}_\sigma ={\mathbb {P}}\mathbf{v}\). Moreover, the function q is given by

$$\begin{aligned} q=- \sum _{i=1}^3\sum _{j=1}^3 R_i R_j (G_{i,j}). \end{aligned}$$

Proof

As \(w_\delta \in {\mathcal {A}}_r\) the Riesz transforms are bounded on \(L^r_{w_\delta }\). Using the identity

$$\begin{aligned} \Delta \mathbf{v}=\mathbf{\nabla }(\mathbf{\nabla }\cdot \mathbf{v})-\mathbf{\nabla }\wedge (\mathbf{\nabla }\wedge \mathbf{v}) \end{aligned}$$

we find (if the decomposition exists) that

$$\begin{aligned} \Delta \mathbf{v}_\sigma = -\mathbf{\nabla }\wedge (\mathbf{\nabla }\wedge \mathbf{v}_\sigma ) =-\mathbf{\nabla }\wedge (\mathbf{\nabla }\wedge \mathbf{v}) \text { and } \Delta \mathbf{v}_\nabla = \mathbf{\nabla }(\mathbf{\nabla }\cdot \mathbf{v}_\nabla )=\mathbf{\nabla }(\mathbf{\nabla }\cdot \mathbf{v}). \end{aligned}$$

This proves the uniqueness. By linearity, we just have to prove that \(\mathbf{v}=0\implies \mathbf{v}_\nabla =0\). We have \(\Delta \mathbf{v}_\nabla =0\), and thus \(\mathbf{v}_\nabla \) is harmonic; as it belongs to \({\mathcal {S}}'\), we find that it is a polynomial. But a polynomial which belongs to \(L^r_{w_\delta }\) must be equal to 0. Similarly, if \(\mathbf{v}_\nabla =\mathbf{\nabla }q\), then \(\Delta q=\mathbf{\nabla }\cdot \mathbf{v}_\nabla =\mathbf{\nabla }\cdot \mathbf{v}=0\); thus q is harmonic and belongs to \(L^r_{w_\delta }\), hence \(q=0\).

For the existence, it is enough to check that \(v_{\nabla ,i} =-\sum _{j=1}^3 R_iR_j v_j \) in the first case and \(\mathbf{v}_\nabla =\mathbf{\nabla }q\) with \(q= \sum _{i=1}^3\sum _{j=1}^3 R_i R_j (G_{i,j})\) in the second case fulfill the conclusions of the lemma. \(\quad \square \)

Lemma 8

Let \(0<\gamma < 2\). Let \(\mathbf{u}_{0}\) be a divergence-free vector field such that \(\mathbf{u}_0\in L^2_{w_\gamma }({\mathbb {R}}^3)\) and \({\mathbb {F}}\) be a tensor \({\mathbb {F}}(t,x)=\left( F_{i,j}(t,x)\right) _{1\leqq i,j\leqq 3}\) such that \({\mathbb {F}}\in L^2((0,+\infty ), L^2_{w_\gamma })\). Let \(\phi \in {\mathcal {D}}({\mathbb {R}}^3)\) be a non-negative function which is equal to 1 for \(\vert x\vert \leqq 1\) and to 0 for \(\vert x\vert \geqq 2\). For \(R>0\), we define \(\phi _R(x)=\phi (\frac{x}{R})\), \(\mathbf{u}_{0,R}={\mathbb {P}}(\phi _R \mathbf{u}_0)\) and \({\mathbb {F}}_R=\phi _R {\mathbb {F}}\). Then \(\mathbf{u}_{0,R}\) is a divergence-free square integrable vector field and \(\lim _{R\rightarrow +\infty } \Vert \mathbf{u}_{0,R}-\mathbf{u}_0\Vert _{L^2_{w_\gamma }}=0\). Similarly, \({\mathbb {F}}_R\) belongs to \(L^2 L^2\) and \(\lim _{R\rightarrow +\infty } \Vert {\mathbb {F}}_R-{\mathbb {F}}\Vert _{L^2((0,+\infty ),L^2_{w_\gamma })}=0\).

Proof

By dominated convergence, we have \(\lim _{R\rightarrow +\infty } \Vert \phi _R \mathbf{u}_0-\mathbf{u}_0\Vert _{L^2_{w_\gamma }}=0\). We conclude by writing \(\mathbf{u}_{0,R}-\mathbf{u}_0={\mathbb {P}}(\phi _R\mathbf{u}_0-\mathbf{u}_0)\). \(\quad \square \)

6.2 Leray’s Mollification

We want to solve the Navier–Stokes equations with initial value \(\mathbf{u}_0\):

$$\begin{aligned} (NS) \left\{ \begin{array}{l} \partial _t \mathbf{u}= \Delta \mathbf{u}-(\mathbf{u}\cdot \mathbf{\nabla })\mathbf{u}- \mathbf{\nabla }p +\mathbf{\nabla }\cdot {\mathbb {F}} \\ \\ \mathbf{\nabla }\cdot \mathbf{u}=0, \quad \quad \mathbf{u}(0,.)=\mathbf{u}_0 \end{array}\right. \end{aligned}$$

We begin with Leray’s method [11] for solving the problem in \(L^2\):

$$\begin{aligned} (NS_R) \left\{ \begin{array}{l} \partial _t \mathbf{u}_R= \Delta \mathbf{u}_R -(\mathbf{u}_R\cdot \mathbf{\nabla })\mathbf{u}_R- \mathbf{\nabla }p_R +\mathbf{\nabla }\cdot \mathbb {F_R} \\ \\ \mathbf{\nabla }\cdot \mathbf{u}_R=0, \quad \quad \mathbf{u}_R(0,.)=\mathbf{u}_{0,R} \end{array}\right. \end{aligned}$$

The idea of Leray is to mollify the non-linearity by replacing \(\mathbf{u}_R\cdot \mathbf{\nabla }\) by \((\mathbf{u}_R*\theta _\varepsilon )\cdot \mathbf{\nabla }\), where \(\theta (x)=\frac{1}{\varepsilon ^3}\theta (\frac{x}{\varepsilon })\), \(\theta \in {\mathcal {D}}({\mathbb {R}}^3)\), \(\theta \) is non-negative and radially decreasing and \(\int \theta \, \mathrm{d}x=1\). We thus solve the problem

$$\begin{aligned} (NS_{R,\varepsilon }) \left\{ \begin{array}{l} \partial _t \mathbf{u}_{R,\varepsilon }= \Delta \mathbf{u}_{R,\varepsilon } -((\mathbf{u}_{R,\varepsilon }*\theta _\varepsilon )\cdot \mathbf{\nabla })\mathbf{u}_{R,\varepsilon }- \mathbf{\nabla }p_{R,\varepsilon } +\mathbf{\nabla }\cdot {\mathbb {F}}_{R} \\ \\ \mathbf{\nabla }\cdot \mathbf{u}_{R,\varepsilon }=0, \quad \quad \mathbf{u}_{R,\varepsilon }(0,.)=\mathbf{u}_{0,R} \end{array}\right. \end{aligned}$$

The classical result of Leray states that the problem \((NS_{R,\varepsilon })\) is well-posed:

Lemma 9

Let \(\mathbf{v}_0\in L^2\) be a divergence-free vector field. Let \({\mathbb {G}}\in L^2((0,+\infty ), L^2)\). Then the problem

$$\begin{aligned} (NS_{\varepsilon }) \left\{ \begin{array}{l} \partial _t \mathbf{v}_\varepsilon = \Delta \mathbf{v}_\varepsilon -((\mathbf{v}_\varepsilon *\theta _\varepsilon )\cdot \mathbf{\nabla })\mathbf{v}_\varepsilon - \mathbf{\nabla }q_\varepsilon +\mathbf{\nabla }\cdot {\mathbb {G}} \\ \\ \mathbf{\nabla }\cdot \mathbf{v}_\varepsilon =0, \quad \quad \mathbf{v}_\varepsilon (0,.)=\mathbf{v}_0 \end{array}\right. \end{aligned}$$

has a unique solution \(\mathbf{v}_\varepsilon \) in \(L^\infty ((0,+\infty ), L^2)\cap L^2((0,+\infty ),\dot{H}^1)\). Moreover, this solution belongs to \({\mathcal {C}}([0,+\infty ), L^2)\).

6.3 Proof of Theorem 1 (Local Existence)

We use Lemma 9 and find a solution \(\mathbf{u}_{R,\varepsilon }\) to the problem \((NS_{R,\varepsilon })\). Then we check that \(\mathbf{u}_{R,\varepsilon }\) fulfills the assumptions of Theorem 2 and of Corollary 6:

  • \(\mathbf{u}_{R,\varepsilon }\) belongs to \(L^\infty ((0,T), L^2_{w_\gamma })\) and \(\mathbf{\nabla }\mathbf{u}_{R,\varepsilon }\) belongs to \(L^2((0,T),L^2_{w_\gamma })\);

  • the map \(t\in [0,+\infty )\mapsto \mathbf{u}_{R, \varepsilon } (t,.)\) is weakly continuous from \([0,+\infty )\) to \(L^2_{w_\gamma }\), and is strongly continuous at \(t=0\) :

    $$\begin{aligned} \lim _{t\rightarrow 0} \Vert \mathbf{u}_{R,\varepsilon } (t,.)-\mathbf{u}_{0, R}\Vert _{L^2_{w_\gamma }}=0, \end{aligned}$$
  • on \((0,T)\times {\mathbb {R}}^3\), \(\mathbf{u}_{R,\varepsilon }\) fulfills the energy equality

    $$\begin{aligned} \partial _t\Big (\frac{\vert \mathbf{u}_{R,\varepsilon }\vert ^2}{2}\Big )= & {} \Delta \Big (\frac{\vert \mathbf{u}_{R,\varepsilon }\vert ^2}{2}\Big )-\vert \mathbf{\nabla }\mathbf{u}_{R,\varepsilon }\vert ^2\\&- \mathbf{\nabla }\cdot \left( \frac{\vert \mathbf{u}\vert ^2}{2}\mathbf{b}_{R,\varepsilon }\right) \\&-\mathbf{\nabla }\cdot (p_{R,\varepsilon }\mathbf{u}_{R,\varepsilon }) + \mathbf{u}_{R,\varepsilon }\cdot (\mathbf{\nabla }\cdot {\mathbb {F}}_R). \end{aligned}$$

    with \(\mathbf{b}_{R,\varepsilon }=\mathbf{u}_{R,\varepsilon }*\theta _\varepsilon \);

  • \(\mathbf{b}_{R,\varepsilon }\) is controlled by \(\mathbf{u}_{R,\varepsilon }\) : for every \(t\in (0,T)\),

    $$\begin{aligned} \Vert \mathbf{b}_{R,\varepsilon }(t,.)\Vert _{L^3_{w_{3\gamma /2}}}\leqq \Vert {\mathcal {M}}_{\mathbf{u}_{R,\varepsilon }(t,.)}\Vert _{L^3_{w_{3\gamma /2}}} \leqq C_0 \Vert \mathbf{u}_{R,\varepsilon }(t,.)\Vert _{L^3_{w_{3\gamma /2}}}. \end{aligned}$$

Thus, we know that, for every time \(T_0\) such that

$$\begin{aligned} C_\gamma (1+C_0^4) \left( 1+C_0^4+\Vert \mathbf{u}_{0,R}\Vert _{L^2_{w_\gamma }}^2+\int _0^{T_0} \Vert {\mathbb {F}}_R\Vert _{L^2_{w_\gamma }}^2\, \mathrm{d}s\right) ^2\, T_0\leqq 1, \end{aligned}$$

we have

$$\begin{aligned} \sup _{0\leqq t\leqq T_0} \Vert \ \mathbf{u}_{R,\varepsilon }(t,.)\Vert _{L^2_{w_\gamma }}^2 \leqq C_\gamma (1+ C_0^4 + \Vert \mathbf{u}_{0,R}\Vert _{L^2_{w_\gamma }}^2 +\int _0^{T_0} \Vert {\mathbb {F}}_R\Vert _{L^2_{w_\gamma }}^2\, \mathrm{d}s ) \end{aligned}$$

and

$$\begin{aligned} { \int _0^{T_0} \Vert \mathbf{\nabla }\mathbf{u}_{R,\varepsilon }\Vert _{L^2_{w_\gamma }}^2\, \mathrm{d}s }\leqq C_\gamma (1+ C_0^4 + \Vert \mathbf{u}_{0,R}\Vert _{L^2_{w_\gamma }}^2 +\int _0^{T_0} \Vert {\mathbb {F}}_R\Vert _{L^2_{w_\gamma }}^2\, \mathrm{d}s). \end{aligned}$$

Moreover, we have that

$$\begin{aligned} \Vert \mathbf{u}_{0,R}\Vert _{L^2_{w_\gamma }}\leqq C_\gamma \Vert \mathbf{u}_0\Vert _{L^2_{w_\gamma }} \text { and } \Vert {\mathbb {F}}_R\Vert _{L^2_{w_\gamma }} \leqq \Vert {\mathbb {F}}\Vert _{L^2_{w_\gamma }}, \end{aligned}$$

so that

$$\begin{aligned} \Vert \mathbf{b}_{R,\varepsilon }\Vert _{L^3((0,T_0), L^3_{w_{3\gamma /2}}}\leqq & {} C_\gamma \Vert \mathbf{u}_{R,\varepsilon }\Vert _{L^3((0,T_0), L^3_{w_{3\gamma /2}}} \\\leqq & {} C'_\gamma T_0^{ \frac{1}{12}} \left( (1+\sqrt{ T_0}) \Vert \mathbf{u}_{R,\varepsilon }\Vert _{L^\infty ((0,T_0), L^2_{w_\gamma })} \right. \\&\left. + \Vert \mathbf{\nabla }\mathbf{u}_{R,\varepsilon }\Vert _{L^2((0,T_0), L^2_{w_\gamma })}\right) \\\leqq & {} C''_\gamma \sqrt{1+ C_0^4 + \Vert \mathbf{u}_{0}\Vert _{L^2_{w_\gamma }}^2 +\int _0^{T_0} \Vert {\mathbb {F}}\Vert _{L^2_{w_\gamma }}^2\, \mathrm{d}s}. \end{aligned}$$

Let \(R_n\rightarrow +\infty \) and \(\varepsilon _n\rightarrow 0\). Let \(\mathbf{u}_{0,n}=\mathbf{u}_{0,R_n}\), \({\mathbb {F}}_n={\mathbb {F}}_{R_n}\), \(\mathbf{b}_n=\mathbf{b}_{R_n,\varepsilon _n}\) and \(\mathbf{u}_n=\mathbf{u}_{R_n,\varepsilon _n}\). We may then apply Theorem 3, since \(\mathbf{u}_{0,n}\) is strongly convergent to \(\mathbf{u}_{0}\) in \(L^2_{w_\gamma }\), \({\mathbb {F}}_n\) is strongly convergent to \({\mathbb {F}}\) in \(L^2((0,T_0), L^2_{w_\gamma })\), and the sequence \(\mathbf{b}_n\) is bounded in \(L^3((0,T_0), L^3_{w_{3\gamma /2}})\). Thus there exists p, \(\mathbf{u}\), \(\mathbf{b}\) and an increasing sequence \((n_k)_{k\in {\mathbb {N}}}\) with values in \({\mathbb {N}}\) such that

  • \(\mathbf{u}_{n_k}\) converges *-weakly to \(\mathbf{u}\) in \(L^\infty ((0,T_0), L^2_{w_\gamma })\), \(\mathbf{\nabla }\mathbf{u}_{n_k}\) converges weakly to \(\mathbf{\nabla }\mathbf{u}\) in \(L^2((0,T_0),L^2_{w_\gamma })\);

  • \(\mathbf{b}_{n_k}\) converges weakly to \(\mathbf{b}\) in \(L^3((0,T_0), L^3_{w_{3\gamma /2}})\), \(p_{n_k}\) converges weakly to p in \(L^{3}((0,T_0),L^{6/5}_{w_{\frac{6\gamma }{5}}})+L^{2}((0,T_0),L^{2}_{w_\gamma })\);

  • \(\mathbf{u}_{n_k}\) converges strongly to \(\mathbf{u}\) in \(L^2_\mathrm{loc}([0,T_0)\times {\mathbb {R}}^3)\).

Moreover, \(\mathbf{u}\) is a solution of the advection-diffusion problem

$$\begin{aligned} \left\{ \begin{array}{l} \partial _t \mathbf{u}= \Delta \mathbf{u}-(\mathbf{b}\cdot \mathbf{\nabla })\mathbf{u}- \mathbf{\nabla }p +\mathbf{\nabla }\cdot {\mathbb {F}} \\ \\ \mathbf{\nabla }\cdot \mathbf{u}=0, \quad \quad \mathbf{u}(0,.)=\mathbf{u}_{0}, \end{array}\right. \end{aligned}$$

and is such that

  • the map \(t\in [0,T_0)\mapsto \mathbf{u}(t,.)\) is weakly continuous from \([0,T_0)\) to \(L^2_{w_\gamma }\), and is strongly continuous at \(t=0\) :

    $$\begin{aligned} \lim _{t\rightarrow 0} \Vert \mathbf{u}(t,.)-\mathbf{u}_{0}\Vert _{L^2_{w_\gamma }}=0; \end{aligned}$$
  • there exists a non-negative locally finite measure \(\mu \) on \((0,T_0)\times {\mathbb {R}}^3\) such that

    $$\begin{aligned} \partial _t\Big (\frac{\vert \mathbf{u}\vert ^2}{2}\Big )=\Delta \Big (\frac{\vert \mathbf{u}\vert ^2}{2}\Big )-\vert \mathbf{\nabla }\mathbf{u}\vert ^2- \mathbf{\nabla }\cdot \left( \frac{\vert \mathbf{u}\vert ^2}{2}\mathbf{b}\right) -\mathbf{\nabla }\cdot (p \mathbf{u}) + \mathbf{u}\cdot (\mathbf{\nabla }\cdot {\mathbb {F}})-\mu , \end{aligned}$$

Finally, as \(\mathbf{b}_n=\theta _{\varepsilon _n}*(\mathbf{u}_n-\mathbf{u})+ \theta _{\varepsilon _n}*\mathbf{u}\), we see that \(\mathbf{b}_{n_k}\) is strongly convergent to \(\mathbf{u}\) in \(L^3_\mathrm{loc}([0,T_0)\times {\mathbb {R}}^3)\), so that \(\mathbf{b}=\mathbf{u}\) : thus, \(\mathbf{u}\) is a solution of the Navier–Stokes problem on \((0,T_0)\). (It is easy to check that

$$\begin{aligned} p=\sum _{i=1}^3\sum _{j=1}^3 R_iR_j(u_iu_j-F_{i,j}) \end{aligned}$$

as \(u_{i,n_k} u_{j,n_k}\) is weakly convergent to \(u_i u_j\) in \(L^{4}((0,T_0),L^{6/5}_{w_{\frac{6\gamma }{5}}})\) and \(w_{\frac{6\gamma }{5}} \in {\mathcal {A}}_{6/5}\).)

6.4 Proof of Theorem 1 (Global Existence)

In order to finish the proof, we shall use the scaling properties of the Navier–Stokes equations : if \(\lambda >0\), then \(\mathbf{u}\) is a solution of the Cauchy initial value problem for the Navier–Stokes equations on (0, T) with initial value \(\mathbf{u}_0\) and forcing tensor \({\mathbb {F}}\) if and only if \(\mathbf{u}_\lambda (t,x)=\lambda \mathbf{u}(\lambda ^2 t,\lambda x)\) is a solution of the Navier–Stokes equations on \((0,T/\lambda ^2)\) with initial value \(\mathbf{u}_{0,\lambda }(x)=\lambda \mathbf{u}_0(\lambda x)\) and forcing tensor \({\mathbb {F}}_\lambda (t,x)=\lambda ^2 {\mathbb {F}}(\lambda ^2 t,\lambda x)\).

We take \(\lambda >1\) and for \(n\in {\mathbb {N}}\) we consider the Navier–Stokes problem with initial value \(\mathbf{v}_{0,n}=\lambda ^n \mathbf{u}_0(\lambda ^n \cdot )\) and forcing tensor \({\mathbb {F}}_n=\lambda ^{2n}{\mathbb {F}}(\lambda ^{2n} \cdot , \lambda ^n \cdot )\). Then we have seen that we can find a solution \(\mathbf{v}_n\) on \((0,T_n)\), with

$$\begin{aligned} C_\gamma \left( 1+\Vert \mathbf{v}_{0,n}\Vert _{L^2_{w_\gamma }}^2+\int _0^{+\infty } \Vert {\mathbb {F}}_n\Vert _{L^2_{w_\gamma }}^2\, \mathrm{d}s\right) ^2\, T_n = 1. \end{aligned}$$

Of course, we have \(\mathbf{v}_n(t,x)=\lambda ^{n}\mathbf{u}_n(\lambda ^{2n}t,\lambda ^n x)\) where \(\mathbf{u}_n\) is a solution of the Navier–Stokes equations on \((0,\lambda ^{2n}T_n)\) with initial value \(\mathbf{u}_0\) and forcing tensor \({\mathbb {F}}\).

Lemma 10

$$\begin{aligned} \lim _{n\rightarrow +\infty } \frac{\lambda ^n}{ 1+\Vert \mathbf{v}_{0,n}\Vert _{L^2_{w_\gamma }}^2+\int _0^{+\infty } \Vert {\mathbb {F}}_n\Vert _{L^2_{w_\gamma }}^2\, \mathrm{d}s}=+\infty . \end{aligned}$$

Proof

We have

$$\begin{aligned} \Vert \mathbf{v}_{0,n}\Vert _{L^2_{w_\gamma }}^2=\int \vert \mathbf{u}_0(x)\vert ^2 \lambda ^{n(\gamma -1)} \frac{(1+\vert x\vert )^\gamma }{(\lambda ^n+\vert x\vert )^\gamma } w_\gamma (x)\, \mathrm{d}x. \end{aligned}$$

We have

$$\begin{aligned} \lambda ^{n(\gamma -1)}\leqq \lambda ^n \end{aligned}$$

as \(\gamma \leqq 2\) and we have, by dominated convergence,

$$\begin{aligned} \lim _{n\rightarrow +\infty } \int \vert \mathbf{u}_0(x)\vert ^2 \frac{(1+\vert x\vert )^\gamma }{(\lambda ^n+\vert x\vert )^\gamma } w_\gamma (x)\, \mathrm{d}x=0. \end{aligned}$$

Similarly, we have

$$\begin{aligned} \int _0^{+\infty } \Vert {\mathbb {F}}_{n}\Vert _{L^2_{w_\gamma }}^2\, \mathrm{d}s =\int _0^{+\infty }\int \vert {\mathbb {F}}(s,x)\vert ^2 \lambda ^{n(\gamma -1)} \frac{(1+\vert x\vert )^\gamma }{(\lambda ^n+\vert x\vert )^\gamma } w_\gamma (x)\, \mathrm{d}x\, \mathrm{d}s=o(\lambda ^n). \end{aligned}$$

Thus, \(\lim _{n\rightarrow +\infty } \lambda ^{2n} T_n=+\infty \).

Now, for a given \(T>0\), if \( \lambda ^{2n}T_n>T\) for \(n\geqq n_T\), then \(\mathbf{u}_n\) is a solution of the Navier-Stokes problem on (0, T). Let \(\mathbf{w}_n(t,x)=\lambda ^{n_T} \mathbf{u}_n(\lambda ^{2n_T}t, \lambda ^{n_T}x)\). For \(n\geqq n_T\), \(\mathbf{w}_n\) is a solution of the Navier-Stokes problem on \((0,\lambda ^{-2n_T} T)\) with initial value \(\mathbf{v}_{0,n_T}\) and forcing tensor \({\mathbb {F}}_{n_T}\). As \(\lambda ^{-2n_T}T\leqq T_{n_T}\), we have

$$\begin{aligned} C_\gamma \left( 1+\Vert \mathbf{v}_{0,n_T}\Vert _{L^2_{w_\gamma }}^2+\int _0^{+\infty } \Vert {\mathbb {F}}_{n_T}\Vert _{L^2_{w_\gamma }}^2\, \mathrm{d}s\right) ^2\, \lambda ^{-2n_T} T \leqq 1. \end{aligned}$$

By Corollary 6, we have

$$\begin{aligned} \sup _{0\leqq t\leqq \lambda ^{-2n_T} T} \Vert \ \mathbf{w}_n(t,.)\Vert _{L^2_{w_\gamma }}^2 \leqq C_\gamma \left( 1+ \Vert \mathbf{v}_{0,n_T}\Vert _{L^2_{w_\gamma }}^2 +\int _0^{\lambda ^{-2n_T}T} \Vert {\mathbb {F}}_{n_T}\Vert _{L^2_{w_\gamma }}^2\, \mathrm{d}s \right) \end{aligned}$$

and

$$\begin{aligned} { \int _0^{\lambda ^{-2n_T}T} \Vert \mathbf{\nabla }\mathbf{w}_n\Vert _{L^2_{w_\gamma }}^2\, \mathrm{d}s }\leqq C_\gamma \left( 1+ \Vert \mathbf{v}_{0,n_T}\Vert _{L^2_{w_\gamma }}^2 +\int _0^{\lambda ^{-2n_T}T} \Vert {\mathbb {F}}_{n_T}\Vert _{L^2_{w_\gamma }}^2\, \mathrm{d}s\right) . \end{aligned}$$

We have

$$\begin{aligned} \Vert \mathbf{w}_n\Vert _{L^2_{w_\gamma }}^2= & {} \int \vert \mathbf{u}_n(\lambda ^{2n_T}t,x)\vert ^2 \lambda ^{n_T(\gamma -1)} \frac{(1+\vert x\vert )^\gamma }{(\lambda ^{n_T}+\vert x\vert )^\gamma } w_\gamma (x)\, \mathrm{d}x\\\geqq & {} \lambda ^{-n_T \gamma } \Vert \mathbf{u}_n(\lambda ^{2n_T}t,.)\Vert _{L^2_{w_\gamma }}^2 \end{aligned}$$

and

$$\begin{aligned} \begin{aligned} \int _0^{\lambda ^{-2n_T}T} \Vert \mathbf{\nabla }\mathbf{w}_n\Vert _{L^2_{w_\gamma }}^2\, \mathrm{d}s =&\int _0^T\int \vert \mathbf{\nabla }\mathbf{u}_n(s,x)\vert ^2 \lambda ^{n_T(\gamma -1)} \frac{(1+\vert x\vert )^\gamma }{(\lambda ^{n_T}+\vert x\vert )^\gamma } w_\gamma (x)\, \mathrm{d}x \, \mathrm{d}s \\ \geqq&\lambda ^{-n_T } \int _0^T\Vert \mathbf{\nabla }\mathbf{u}_n \Vert _{L^2_{w_\gamma }}^2\, \mathrm{d}s. \end{aligned} \end{aligned}$$

Thus, we have a uniform control of \(\mathbf{u}_n\) and of \(\mathbf{\nabla }\mathbf{u}_n\) on (0, T) for \(n\geqq n_T\). We may then apply the Rellich lemma (Lemma 6) and Theorem 3 to find a subsequence \(\mathbf{u}_{n_k} \) that converges to a global solution of the Navier–Stokes equations. Theorem 1 is proven. \(\quad \square \)

7 Solutions of the Advection-Diffusion Problem with Initial Data in \(L^2_{w_\gamma }\)

The proof of Theorem 1 on the Navier–Stokes problem can be easily adapted to the case of the advection-diffusion problem:

Theorem 4

Let \(0<\gamma \leqq 2\). Let \(0<T<+\infty \). Let \(\mathbf{u}_{0}\) be a divergence-free vector field such that \(\mathbf{u}_0\in L^2_{w_\gamma }({\mathbb {R}}^3)\) and \({\mathbb {F}}\) be a tensor \({\mathbb {F}}(t,x)=\left( F_{i,j}(t,x)\right) _{1\leqq i,j\leqq 3}\) such that \({\mathbb {F}}\in L^2((0,T), L^2_{w_\gamma })\). Let \(\mathbf{b}\) be a time-dependent divergence free vector-field (\(\mathbf{\nabla }\cdot \mathbf{b}=0\)) such that \(\mathbf{b}\in L^3((0,T),L^3_{w_{3\gamma /2}})\).

Then the advection-diffusion problem

$$\begin{aligned} (AD) \left\{ \begin{array}{l} \partial _t \mathbf{u}= \Delta \mathbf{u}-(\mathbf{b}\cdot \mathbf{\nabla })\mathbf{u}- \mathbf{\nabla }p +\mathbf{\nabla }\cdot {\mathbb {F}} \\ \\ \mathbf{\nabla }\cdot \mathbf{u}=0, \quad \quad \mathbf{u}(0,.)=\mathbf{u}_0 \end{array}\right. \end{aligned}$$

has a solution \(\mathbf{u}\) such that:

  • \(\mathbf{u}\) belongs to \(L^\infty ((0,T), L^2_{w_\gamma })\) and \(\mathbf{\nabla }\mathbf{u}\) belongs to \(L^2((0,T),L^2_{w_\gamma })\);

  • the pressure p is related to \(\mathbf{u}\), \(\mathbf{b}\) and \({\mathbb {F}}\) through the Riesz transforms \(R_i =\frac{\partial _i}{\sqrt{-\Delta }}\) by the formula

    $$\begin{aligned} p=\sum _{i=1}^3\sum _{j=1}^3 R_iR_j(b_iu_j-F_{i,j}); \end{aligned}$$
  • the map \(t\in [0,T)\mapsto \mathbf{u}(t,.)\) is weakly continuous from [0, T) to \(L^2_{w_\gamma }\), and is strongly continuous at \(t=0\):

    $$\begin{aligned} \lim _{t\rightarrow 0} \Vert \mathbf{u}(t,.)-\mathbf{u}_0\Vert _{L^2_{w_\gamma }}=0; \end{aligned}$$
  • there exists a non-negative locally finite measure \(\mu \) on \((0,T)\times {\mathbb {R}}^3\) such that

    $$\begin{aligned} \partial _t\Big (\frac{\vert \mathbf{u}\vert ^2}{2}\Big )=\Delta \Big (\frac{\vert \mathbf{u}\vert ^2}{2}\Big )-\vert \mathbf{\nabla }\mathbf{u}\vert ^2- \mathbf{\nabla }\cdot \left( \frac{\vert \mathbf{u}\vert ^2}{2}\mathbf{b}\right) -\mathbf{\nabla }\cdot (p\mathbf{u}) + \mathbf{u}\cdot (\mathbf{\nabla }\cdot {\mathbb {F}})-\mu . \end{aligned}$$

Proof

Again, we define \(\phi _R(x)=\phi (\frac{x}{R})\), \(\mathbf{u}_{0,R}={\mathbb {P}}(\phi _R \mathbf{u}_0)\) and \({\mathbb {F}}_R=\phi _R {\mathbb {F}}\). Moreover, we define \(\mathbf{b}_R={\mathbb {P}}(\phi _R \mathbf{b})\). We then solve the mollified problem

$$\begin{aligned} (AD_{R,\varepsilon }) \left\{ \begin{array}{l} \partial _t \mathbf{u}_{R,\varepsilon }= \Delta \mathbf{u}_{R,\varepsilon } -((\mathbf{b}_R*\theta _\varepsilon )\cdot \mathbf{\nabla })\mathbf{u}_{R,\varepsilon }- \mathbf{\nabla }p_{R,\varepsilon } +\mathbf{\nabla }\cdot {\mathbb {F}}_{R,\varepsilon } \\ \\ \mathbf{\nabla }\cdot \mathbf{u}_{R,\varepsilon }=0, \quad \quad \mathbf{u}_{R,\varepsilon }(0,.)=\mathbf{u}_{0,R}, \end{array}\right. \end{aligned}$$

for which we easily find a unique solution \(\mathbf{u}_{R,\varepsilon }\) in \(L^\infty ((0,T), L^2)\cap L^2((0,T),\dot{H}^1)\). Moreover, this solution belongs to \({\mathcal {C}}([0,T), L^2)\).

Again, \(\mathbf{u}_{R,\varepsilon }\) fulfills the assumptions of Theorem 2:

  • \(\mathbf{u}_{R,\varepsilon }\) belongs to \(L^\infty ((0,T), L^2_{w_\gamma })\) and \(\mathbf{\nabla }\mathbf{u}_{R,\varepsilon }\) belongs to \(L^2((0,T),L^2_{w_\gamma })\)

  • the map \(t\in [0,T)\mapsto \mathbf{u}_{R, \varepsilon }(t,.)\) is weakly continuous from [0, T) to \(L^2_{w_\gamma }\), and is strongly continuous at \(t=0\):

    $$\begin{aligned} \lim _{t\rightarrow 0} \Vert \mathbf{u}_{R, \varepsilon }(t,.)-\mathbf{u}_{0,R}\Vert _{L^2_{w_\gamma }}=0. \end{aligned}$$
  • on \((0,T)\times {\mathbb {R}}^3\), \(\mathbf{u}_{R,\varepsilon }\) fulfills the energy equality:

    $$\begin{aligned} \partial _t\Big (\frac{\vert \mathbf{u}_{R,\varepsilon }\vert ^2}{2}\Big )= & {} \Delta \Big (\frac{\vert \mathbf{u}_{R,\varepsilon }\vert ^2}{2}\Big )-\vert \mathbf{\nabla }\mathbf{u}_{R,\varepsilon }\vert ^2- \mathbf{\nabla }\cdot \left( \frac{\vert \mathbf{u}\vert ^2}{2}\mathbf{b}_{R,\varepsilon }\right) \\&-\,\mathbf{\nabla }\cdot (p_{R,\varepsilon }\mathbf{u}_{R,\varepsilon }) + \mathbf{u}_{R,\varepsilon }\cdot (\mathbf{\nabla }\cdot {\mathbb {F}}_R). \end{aligned}$$

    with \(\mathbf{b}_{R,\varepsilon }=\mathbf{b}_R*\theta _\varepsilon \).

Thus, by Corollary 4 we know that,

$$\begin{aligned} \sup _{0<t<T} \Vert \mathbf{u}_{R,\varepsilon } \Vert _{L^2_{w_\gamma }} \leqq (\Vert \mathbf{u}_{0,R}\Vert _{L^2_{w_\gamma }}+ C_\gamma \Vert {\mathbb {F}}_R\Vert _{L^2((0,T), L^2_{w_\gamma })}) \ e^{C_\gamma (T+ T^{1/3} \Vert \mathbf{b}_{R,\varepsilon } \Vert _{L^3((0,T), L^3_{w_{3\gamma / 2}})}^2)} \end{aligned}$$

and

$$\begin{aligned} \Vert \mathbf{\nabla }\mathbf{u}_{R,\varepsilon } \Vert _{L^2((0,T),L^2_{w_\gamma } ) } \leqq (\Vert \mathbf{u}_{0,R}\Vert _{L^2_{w_\gamma } }+ C_\gamma \Vert {\mathbb {F}}_R \Vert _{L^2((0,T), L^2_{w_\gamma })}) \ e^{C_\gamma (T+ T^{1/3} \Vert \mathbf{b}_{R,\varepsilon } \Vert _{L^3((0,T), L^3_{w_{3\gamma /2}})}^2)}, \end{aligned}$$

where the constant \(C_\gamma \) depends only on \(\gamma \).

Moreover, we have that

$$\begin{aligned} \Vert \mathbf{u}_{0,R}\Vert _{L^2_{w_\gamma }}\leqq C_\gamma \Vert \mathbf{u}_0\Vert _{L^2_{w_\gamma }}, \Vert {\mathbb {F}}_R\Vert _{L^2_{w_\gamma }} \leqq \Vert {\mathbb {F}}\Vert _{L^2_{w_\gamma }} \end{aligned}$$

and

$$\begin{aligned} \Vert \mathbf{b}_{R,\varepsilon }\Vert _{L^3((0,T), L^3_{w_{3\gamma /2}} ) } \leqq \Vert {\mathcal {M}}_{\mathbf{b}_R}\Vert _{L^3((0,T), L^3_{w_{3\gamma /2}} ) }\leqq C_\gamma ' \Vert \mathbf{b}\Vert _{L^3((0,T), L^3_{w_{3\gamma /2}} ) }. \end{aligned}$$

Let \(R_n\rightarrow +\infty \) and \(\varepsilon _n\rightarrow 0\). Let \(\mathbf{u}_{0,n}=\mathbf{u}_{0,R_n}\), \({\mathbb {F}}_n={\mathbb {F}}_{R_n}\), \(\mathbf{b}_n=\mathbf{b}_{R_n,\varepsilon _n}\) and \(\mathbf{u}_n=\mathbf{u}_{R_n,\varepsilon _n}\). We may then apply Theorem 3, since \(\mathbf{u}_{0,n}\) is strongly convergent to \(\mathbf{u}_{0}\) in \(L^2_{w_\gamma }\), \({\mathbb {F}}_n\) is strongly convergent to \({\mathbb {F}}\) in \(L^2((0,T), L^2_{w_\gamma })\), and the sequence \(\mathbf{b}_n\) is strongly convergent to \(\mathbf{b}\) in \(L^3((0,T), L^3_{w_{3\gamma /2}})\). Thus there exists p, \(\mathbf{u}\) and an increasing sequence \((n_k)_{k\in {\mathbb {N}}}\) with values in \({\mathbb {N}}\) such that

  • \(\mathbf{u}_{n_k}\) converges *-weakly to \(\mathbf{u}\) in \(L^\infty ((0,T), L^2_{w_\gamma })\), \(\mathbf{\nabla }\mathbf{u}_{n_k}\) converges weakly to \(\mathbf{\nabla }\mathbf{u}\) in \(L^2((0,T),L^2_{w_\gamma })\);

  • \(p_{n_k}\) converges weakly to p in \(L^{3}((0,T),L^{6/5}_{w_{\frac{6\gamma }{5}}})+L^{2}((0,T),L^{2}_{w_\gamma })\);

  • \(\mathbf{u}_{n_k}\) converges strongly to \(\mathbf{u}\) in \(L^2_\mathrm{loc}([0,T)\times {\mathbb {R}}^3)\).

We then easily finish the proof. \(\quad \square \)

8 Application to the Study of \(\lambda \)-Discretely Self-similar Solutions

We may now apply our results to the study of \(\lambda \)-discretely self-similar solutions for the Navier–Stokes equations.

Definition 1

Let \(\mathbf{u}_0\in L^2_\mathrm{loc}({\mathbb {R}}^3)\). We say that \(\mathbf{u}_0\) is a \(\lambda \)-discretely self-similar function (\(\lambda \)-DSS) if there exists \(\lambda >1\) such that \(\lambda \mathbf{u}_0(\lambda x)= \mathbf{u}_0\).

A vector field \(\mathbf{u}\in L^2_\mathrm{loc}([0,+\infty )\times {\mathbb {R}}^3)\) is \(\lambda \)-DSS if there exists \(\lambda >1\) such that \(\lambda \mathbf{u}(\lambda ^2 t,\lambda x)=\mathbf{u}(t,x)\).

A forcing tensor \({\mathbb {F}}\in L^2_\mathrm{loc}([0,+\infty )\times {\mathbb {R}}^3)\) is \(\lambda \)-DSS if there exists \(\lambda >1\) such that \(\lambda ^2 {\mathbb {F}}(\lambda ^2 t,\lambda x)={\mathbb {F}}(t,x)\).

We shall speak of self-similarity if \(\mathbf{u}_0\), \(\mathbf{u}\) or \({\mathbb {F}}\) are \(\lambda \)-DSS for every \(\lambda >1\).

Examples

  • Let \(\gamma >1 \) and \(\lambda >1\). Then, for two positive constants \(A_{\gamma ,\lambda }\) and \(B_{\gamma ,\lambda }\), we have : if \(\mathbf{u}_0\in L^2_\mathrm{loc}({\mathbb {R}}^3)\) is \(\lambda \)-DSS, then \(\mathbf{u}_0\in L^2_{w_\gamma }\) and

    $$\begin{aligned} A_{\gamma ,\lambda } \int _{ 1<\vert x\vert \leqq \lambda } \vert \mathbf{u}_0(x)\vert ^2\, \mathrm{d}x \leqq \int \vert \mathbf{u}_0(x)\vert ^2 w_\gamma (x)\, \mathrm{d}x \leqq B_{\gamma ,\lambda } \int _{ 1<\vert x\vert \leqq \lambda } \vert \mathbf{u}_0(x)\vert ^2\, \mathrm{d}x. \end{aligned}$$
  • \(\mathbf{u}_0\in L^2_\mathrm{loc}\) is self-similar if and only if it is of the form \(\mathbf{u}_0=\frac{\mathbf{w}_0(\frac{x}{\vert x\vert })}{\vert x\vert }\) with \(\mathbf{w}_0\in L^2(S^2)\).

  • \({\mathbb {F}}\) belongs to \(L^2((0,+\infty ),L^2_{w_\gamma })\) with \(\gamma >1\) and is self-similar if and only if it is of the form \({\mathbb {F}}(t,x)=\frac{1}{t} {\mathbb {F}}_0(\frac{x}{\sqrt{t}})\) with \(\int \vert {\mathbb {F}}_0(x)\vert ^2 \frac{1}{\vert x\vert }\, \mathrm{d}x <+\infty \).

Proof

  • If \(\mathbf{u}_0\) is \(\lambda \)-DSS and if \(k\in {\mathbb {Z}}\) we have

    $$\begin{aligned} \!\!\ \!\!\ \int _{\lambda ^k<\vert x\vert<\lambda ^{k+1}} \!\!\ \!\!\ \vert \mathbf{u}_0(x)\vert ^2 w_\gamma (x)\, \mathrm{d}x \leqq \frac{\lambda ^k}{(1+\lambda ^k)^\gamma } \int _{1<\vert x\vert <\lambda } \!\!\ \!\!\ \vert \mathbf{u}_0(x)\vert ^2 \, \mathrm{d}x \end{aligned}$$

    with \(\sum _{k\in {\mathbb {Z}}} \frac{\lambda ^k}{(1+\lambda ^k)^\gamma }<+\infty \) for \(\gamma >1\).

  • If \(\mathbf{u}_0\) is self-similar, we have \(\mathbf{u}_0(x ) =\frac{1}{\vert x\vert } \mathbf{u}_0(\frac{x}{\vert x\vert })\). From this equality, we find that, for \(\lambda >1\)

    $$\begin{aligned} \int _{1<\vert x\vert <\lambda } \vert \mathbf{u}_0(x)\vert ^2\, \mathrm{d}x =(\lambda -1) \int _{S^2} \vert \mathbf{u}_0(\sigma ) \vert ^2 \, \mathrm{d}\sigma . \end{aligned}$$
  • If \({\mathbb {F}}\) is self-similar, then it is of the form \({\mathbb {F}}(t,x)=\frac{1}{t} {\mathbb {F}}_0(\frac{x}{\sqrt{t}})\). Moreover, we have

    $$\begin{aligned} \int _0^{+\infty } \!\!\! \int \vert {\mathbb {F}}(t,x)\vert ^2\, w_\gamma (x) \, \mathrm{d}x\, \mathrm{d}s= & {} \int _0^{+\infty } \!\!\ \int \vert {\mathbb {F}}_0(x)\vert ^2 w_\gamma (\sqrt{t}\, x) \, \mathrm{d}x \, \frac{\mathrm{d}t}{\sqrt{t}} \\= & {} C_\gamma \int \vert {\mathbb {F}}_0(x)\vert ^2\, \frac{\mathrm{d}x}{\vert x\vert }. \end{aligned}$$

    with \( C_\gamma =\int _0^{+\infty } \frac{1}{(1+ \sqrt{\theta })^\gamma } \frac{\mathrm{d}\theta }{\sqrt{\theta }}<+\infty \). \(\quad \square \)

In this section, we are going to give a new proof of the results of Chae and Wolf [3] and Bradshaw and Tsai [2] on the existence of \(\lambda \)-DSS solutions of the Navier–Stokes problem (and of Jia and Šverák [6] for self-similar solutions) :

Theorem 5

Let \(4/3<\gamma < 2 \) and \(\lambda >1\). If \(\mathbf{u}_{0}\) is a \(\lambda \)-DSS divergence-free vector field (such that \(\mathbf{u}_0\in L^2_{w_\gamma }({\mathbb {R}}^3)\)) and if \({\mathbb {F}}\) is a \(\lambda \)-DSS tensor \({\mathbb {F}}(t,x)=\left( F_{i,j}(t,x)\right) _{1\leqq i,j\leqq 3}\) such that \({\mathbb {F}}\in L^2_\mathrm{loc}([0,+\infty )\times {\mathbb {R}}^3)\), then the Navier–Stokes equations with initial value \(\mathbf{u}_0\)

$$\begin{aligned} (NS) \left\{ \begin{array}{l} \partial _t \mathbf{u}= \Delta \mathbf{u}-(\mathbf{u}\cdot \mathbf{\nabla })\mathbf{u}- \mathbf{\nabla }p +\mathbf{\nabla }\cdot {\mathbb {F}} \\ \\ \mathbf{\nabla }\cdot \mathbf{u}=0, \quad \quad \mathbf{u}(0,.)=\mathbf{u}_0 \end{array}\right. \end{aligned}$$

have a global weak solution \(\mathbf{u}\) such that

  • \(\mathbf{u}\) is a \(\lambda \)-DSS vector field;

  • for every \(0<T<+\infty \), \(\mathbf{u}\) belongs to \(L^\infty ((0,T), L^2_{w_\gamma })\) and \(\mathbf{\nabla }\mathbf{u}\) belongs to \(L^2((0,T),L^2_{w_\gamma })\);

  • the map \(t\in [0,+\infty )\mapsto \mathbf{u}(t,.)\) is weakly continuous from \([0,+\infty )\) to \(L^2_{w_\gamma }\), and is strongly continuous at \(t=0\):

    $$\begin{aligned} \lim _{t\rightarrow 0} \Vert \mathbf{u}(t,.)-\mathbf{u}_0\Vert _{L^2_{w_\gamma }}=0; \end{aligned}$$
  • the solution \(\mathbf{u}\) is suitable, and there exists a non-negative locally finite measure \(\mu \) on \((0,+\infty )\times {\mathbb {R}}^3\) such that

    $$\begin{aligned} \partial _t\Big (\frac{\vert \mathbf{u}\vert ^2}{2}\Big )=\Delta \Big (\frac{\vert \mathbf{u}\vert ^2}{2}\Big )-\vert \mathbf{\nabla }\mathbf{u}\vert ^2- \mathbf{\nabla }\cdot \left( (\frac{\vert \mathbf{u}\vert ^2}{2}+p)\mathbf{u}\right) + \mathbf{u}\cdot (\mathbf{\nabla }\cdot {\mathbb {F}})-\mu . \end{aligned}$$

8.1 The Linear Problem

Following Chae and Wolf, we consider an approximation of the problem that is consistent with the scaling properties of the equations: let \(\theta \) be a non-negative and radially decreasing function in \({\mathcal {D}}({\mathbb {R}}^3)\) with \(\int \theta \, \mathrm{d}x=1\). We define \(\theta _{\varepsilon ,t}(x)=\frac{1}{(\varepsilon \sqrt{t})^3}\ \theta (\frac{x}{\varepsilon \sqrt{t}})\). We then will study the “mollified” problem

$$\begin{aligned} (NS_\varepsilon ) \left\{ \begin{array}{l} \partial _t \mathbf{u}_\varepsilon = \Delta \mathbf{u}_\varepsilon -((\mathbf{u}_\varepsilon *\theta _{\varepsilon ,t}) \cdot \mathbf{\nabla })\mathbf{u}_\varepsilon - \mathbf{\nabla }p_\varepsilon +\mathbf{\nabla }\cdot {\mathbb {F}} \\ \\ \mathbf{\nabla }\cdot \mathbf{u}=0, \quad \quad \mathbf{u}(0,.)=\mathbf{u}_0 \end{array}\right. \end{aligned}$$

and begin with the linearized problem

$$\begin{aligned} (LNS_\varepsilon ) \left\{ \begin{array}{l} \partial _t \mathbf{v}= \Delta \mathbf{v}- ((\mathbf{b}*\theta _{\varepsilon ,t})\cdot \mathbf{\nabla })\mathbf{v}- \mathbf{\nabla }q +\mathbf{\nabla }\cdot {\mathbb {F}} \\ \\ \mathbf{\nabla }\cdot \mathbf{v}=0, \quad \quad \mathbf{v}(0,.)=\mathbf{u}_0. \end{array}\right. \end{aligned}$$

Lemma 11

Let \(1<\gamma < 2\). Let \(\lambda >1\) Let \(\mathbf{u}_{0}\) be a \(\lambda \)-DSS divergence-free vector field such that \(\mathbf{u}_0\in L^2_{w_\gamma }({\mathbb {R}}^3)\) and \({\mathbb {F}}\) be a \(\lambda \)-DSS tensor \({\mathbb {F}}(t,x)=\left( F_{i,j}(t,x)\right) _{1\leqq i,j\leqq 3}\) such that, for every \(T>0\), \({\mathbb {F}}\in L^2((0,T), L^2_{w_\gamma })\). Let \(\mathbf{b}\) be a \(\lambda \)-DSS time-dependent divergence free vector-field (\(\mathbf{\nabla }\cdot \mathbf{b}=0\)) such that, for every \(T>0\), \(\mathbf{b}\in L^3((0,T),L^3_{w_{3\gamma /2}})\).

Then the advection-diffusion problem

$$\begin{aligned} (LNS_\varepsilon ) \left\{ \begin{array}{l} \partial _t \mathbf{v}= \Delta \mathbf{v}- ((\mathbf{b}*\theta _{\varepsilon ,t})\cdot \mathbf{\nabla })\mathbf{v}- \mathbf{\nabla }q +\mathbf{\nabla }\cdot {\mathbb {F}} \\ \\ \mathbf{\nabla }\cdot \mathbf{v}=0, \quad \quad \mathbf{v}(0,.)=\mathbf{u}_0 \end{array}\right. \end{aligned}$$

has a unique solution \(\mathbf{v}\) such that:

  • for every positive T, \(\mathbf{v}\) belongs to \(L^\infty ((0,T), L^2_{w_\gamma })\) and \(\mathbf{\nabla }\mathbf{v}\) belongs to \(L^2((0,T),L^2_{w_\gamma })\);

  • the pressure p is related to \(\mathbf{v}\), \(\mathbf{b}\) and \({\mathbb {F}}\) through the Riesz transforms \(R_i =\frac{\partial _i}{\sqrt{-\Delta }}\) by the formula

    $$\begin{aligned} p=\sum _{i=1}^3\sum _{j=1}^3 R_iR_j((b_i*\theta _{\varepsilon ,t})v_j-F_{i,j}); \end{aligned}$$
  • the map \(t\in [0,+\infty )\mapsto \mathbf{v}(t,.)\) is weakly continuous from \([0,+\infty )\) to \(L^2_{w_\gamma }\), and is strongly continuous at \(t=0\):

    $$\begin{aligned} \lim _{t\rightarrow 0} \Vert \mathbf{v}(t,.)-\mathbf{u}_0\Vert _{L^2_{w_\gamma }}=0. \end{aligned}$$

This solution \(\mathbf{v}\) is a \(\lambda \)-DSS vector field.

Proof

As we have \(\vert \mathbf{b}(t,.)*\theta _{\varepsilon ,t}\vert \leqq {\mathcal {M}}_{\mathbf{b}(t,.)} \) and thus

$$\begin{aligned} \Vert \mathbf{b}(t,.)*\theta _{\varepsilon ,t}\Vert _{L^3((0,T), L^3_{w_{3\gamma /2}})}\leqq C_\gamma \Vert \mathbf{b}\Vert _{L^3((0,T), L^3_{w_{3\gamma /2}})}, \end{aligned}$$

we see that we can use Theorem 4 to get a solution \(\mathbf{v}\) on (0, T).

As clearly \(\mathbf{b}*\theta _{\varepsilon ,t}\) belongs to \(L^2_t L^\infty _x(K)\) for every compact subset K of \((0,T)\times {\mathbb {R}}^3 \), we can use Corollary 5 to see that \(\mathbf{v}\) is unique.

Let \(\mathbf{w}(t,x)=\frac{1}{\lambda }\mathbf{v}(\frac{t}{\lambda ^2}, \frac{x}{\lambda })\). As \(b*\theta _{\varepsilon ,t}\) is still \(\lambda \)-DSS, we see that \(\mathbf{w}\) is solution of \((LNS_\varepsilon )\) on (0, T), so that \(\mathbf{w}=\mathbf{v}\). This means that \(\mathbf{v}\) is \(\lambda \)-DSS. \(\quad \square \)

8.2 The Mollified Navier–Stokes Equations

The solution \(\mathbf{v}\) provided by Lemma 11 belongs to \(L^3((0,T), L^3_{w_{3\gamma /2}})\) (as \(\mathbf{v}\) belongs to \(L^\infty ((0,T), L^2_{w_\gamma })\) and \(\mathbf{\nabla }\mathbf{v}\) belongs to \(L^2((0,T),L^2_{w_\gamma })\)). Thus we have a mapping \(L_\varepsilon : \mathbf{b}\mapsto \mathbf{v}\) which is defined from

$$\begin{aligned} X_{T,\gamma }=\{\mathbf{b}\in L^3((0,T), L^3_{w_{3\gamma /2}})\ /\ \mathbf{b}\text { is } \lambda -\text {DSS}\} \end{aligned}$$

to \(X_{T,\gamma }\) by \(L_\varepsilon (\mathbf{b})=\mathbf{v}\).

Lemma 12

For \(4/3<\gamma \), \(X_{T,\gamma }\) is a Banach space for the equivalent norms \(\Vert \mathbf{b}\Vert _{L^3((0,T),L^3_{w_{3\gamma /2}})}\) and \(\Vert \mathbf{b}\Vert _{L^3((0,T/{\lambda ^2}),\times B(0,\frac{1}{\lambda }))}\).

Proof

We have

$$\begin{aligned} \int _0^T \int _{B(0,1)} \vert \mathbf{b}(t,x)\vert ^3\, \mathrm{d}x\, \mathrm{d}t= \lambda ^2 \int _0^{\frac{T}{\lambda ^2}} \int _{B(0,\frac{1}{\lambda })} \vert \mathbf{b}(t,x)\vert ^3\, \mathrm{d}x\, \mathrm{d}t \end{aligned}$$

and , for \(k\in {\mathbb {N}}\),

$$\begin{aligned} \int _0^T \int _{\lambda ^{k-1}<\vert x\vert<\lambda ^{k}} \vert \mathbf{b}(t,x)\vert ^3\, \mathrm{d}x\, \mathrm{d}t=\lambda ^{2k}\int _0^{\frac{T}{\lambda ^{2k}}}\int _{\frac{1}{\lambda }<\vert x\vert <1} \vert \mathbf{b}(t,x)\vert ^3\, \mathrm{d}x\, \mathrm{d}t. \end{aligned}$$

We may conclude, since for \(\gamma >4/3\) we have \(\sum _{k\in {\mathbb {N}}} \lambda ^{k (2-\frac{3\gamma }{2})}<+\infty \). \(\quad \square \)

Lemma 13

For \(4/3<\gamma < 2\), the mapping \(L_\varepsilon \) is continuous and compact on \(X_{T,\gamma }\).

Proof

Let \(\mathbf{b}_n\) be a bounded sequence in \(X_{T,\gamma }\) and let \(\mathbf{v}_n=L_\varepsilon (\mathbf{b}_n)\). We remark that the sequence \(\mathbf{b}_n(t,.)*\theta _{\varepsilon ,t}\) is bounded in \(X_{T,\gamma }\). Thus, by Theorem 2 and Corollary 4, the sequence \(\mathbf{v}_n\) is bounded in \(L^\infty ((0,T), L^2_{w_\gamma })\) and \(\mathbf{\nabla }\mathbf{v}_n\) is bounded in \(L^2((0,T),L^2_{w_\gamma })\).

We now use Theorem 3 and get that then there exists \(q_\infty \), \(\mathbf{v}_\infty \), \(\mathbf{B}_\infty \) and an increasing sequence \((n_k)_{k\in {\mathbb {N}}}\) with values in \({\mathbb {N}}\) such that

  • \(\mathbf{v}_{n_k}\) converges *-weakly to \(\mathbf{v}_\infty \) in \(L^\infty ((0,T), L^2_{w_\gamma })\), \(\mathbf{\nabla }\mathbf{v}_{n_k}\) converges weakly to \(\mathbf{\nabla }\mathbf{v}_\infty \) in \(L^2((0,T),L^2_{w_\gamma })\);

  • \(\mathbf{b}_{n_k}*\theta _{\varepsilon ,t}\) converges weakly to \(\mathbf{B}_\infty \) in \(L^3((0,T), L^3_{w_{3\gamma /2}})\);

  • the associated pressures \(q_{n_k}\) converge weakly to \(q_\infty \) in \(L^{3}((0,T),L^{6/5}_{w_{\frac{6\gamma }{5}}})+L^{2}((0,T),L^{2}_{w_\gamma })\);

  • \(\mathbf{v}_{n_k}\) converges strongly to \(\mathbf{v}_\infty \) in \(L^2_\mathrm{loc}([0,T)\times {\mathbb {R}}^3)\) : for every \(T_0\in (0,T)\) and every \(R>0\), we have

    $$\begin{aligned} \lim _{k\rightarrow +\infty } \int _0^{T_0} \int _{\vert y\vert <R} \vert \mathbf{v}_{n_k}(s,y)-\mathbf{v}_\infty (s,y)\vert ^2\, \mathrm{d}s\, \mathrm{d}y=0. \end{aligned}$$

As \(\sqrt{w_\gamma }\mathbf{v}_n\) is bounded in \(L^\infty ((0,T),L^2)\) and in \(L^2((0,T), L^6)\), it is bounded in \(L^{10/3}((0,T)\times {\mathbb {R}}^3)\). The strong convergence of \(\mathbf{v}_{n_k}\) in \(L^2_\mathrm{loc}([0,T)\times {\mathbb {R}}^3)\) then implies the strong convergence of \(\mathbf{v}_{n_k}\) in \(L^3_\mathrm{loc}((0,T)\times {\mathbb {R}}^3)\).

Moreover, \(\mathbf{v}_\infty \) is still \(\lambda \)-DSS (a property that is stable under weak limits).We find that \(\mathbf{v}_\infty \in X_{T,\gamma }\) and that

$$\begin{aligned} \lim _{n_k\rightarrow +\infty } \int _0^{\frac{T}{\lambda ^2}} \int _{B(0,\frac{1}{\lambda })} \vert \mathbf{v}_{n_k}(s,y)-\mathbf{v}_\infty (s,y)\vert ^3\, \mathrm{d}s\, \mathrm{d}y=0. \end{aligned}$$

This proves that \(L_\varepsilon \) is compact.

If we assume moreover that \(\mathbf{b}_n\) is convergent to \(\mathbf{b}_\infty \) in \(X_{T,\gamma }\), then necessarily we have \(\mathbf{B}_\infty =\mathbf{b}_\infty *\theta _{\varepsilon ,t}\), and \(\mathbf{v}_\infty = L_\varepsilon (\mathbf{b}_\infty )\). Thus, the relatively compact sequence \(\mathbf{v}_n\) can have only one limit point; thus it must be convergent. This proves that \(L_\varepsilon \) is continuous. \(\quad \square \)

Lemma 14

Let \(4/3<\gamma < 2\). If, for some \(\mu \in [0,1]\), \(\mathbf{v}\) is a solution of \(\mathbf{v}=\mu L_\varepsilon (\mathbf{v})\) then

$$\begin{aligned} \Vert \mathbf{v}\Vert _{X_{T, \gamma }}\leqq C_{\mathbf{u}_0,{\mathbb {F}},\gamma , T}, \end{aligned}$$

where the constant \(C_{\mathbf{u}_0,{\mathbb {F}},\gamma , T}\) depends only on \(\mathbf{u}_0\), \({\mathbb {F}}\), \(\gamma \) and T (but not on \(\mu \) nor on \(\varepsilon \)).

Proof

We have \(\mathbf{v}=\mu \mathbf{w}\); with

$$\begin{aligned} \left\{ \begin{array}{l} \partial _t \mathbf{w}= \Delta \mathbf{w}-((\mathbf{v}*\theta _{\varepsilon ,t}) \cdot \mathbf{\nabla })\mathbf{w}- \mathbf{\nabla }q +\mathbf{\nabla }\cdot {\mathbb {F}} \\ \\ \mathbf{\nabla }\cdot \mathbf{w}=0, \quad \quad \mathbf{w}(0,.)=\mathbf{u}_0. \end{array}\right. \end{aligned}$$

Multiplying by \(\mu \), we find that

$$\begin{aligned} \left\{ \begin{array}{l} \partial _t \mathbf{v}= \Delta \mathbf{v}-((\mathbf{v}*\theta _{\varepsilon ,t}) \cdot \mathbf{\nabla })\mathbf{v}- \mathbf{\nabla }(\mu q) +\mathbf{\nabla }\cdot \mu {\mathbb {F}} \\ \\ \mathbf{\nabla }\cdot \mathbf{v}=0, \quad \quad \mathbf{v}(0,.) =\mu \mathbf{u}_0. \end{array}\right. \end{aligned}$$

We then use Corollary 6. We choose \(T_0\in (0,T)\) such that

$$\begin{aligned} C_\gamma \left( 1+\Vert \mathbf{u}_0\Vert _{L^2_{w_\gamma }}^2+\int _0^{T_0} \Vert {\mathbb {F}}\Vert _{L^2_{w_\gamma }}^2\, \mathrm{d}s\right) ^2\, T_0\leqq 1. \end{aligned}$$

Then, as

$$\begin{aligned} C_\gamma \left( 1+\Vert \mu \mathbf{u}_0\Vert _{L^2_{w_\gamma }}^2+\int _0^{T_0} \ \Vert \mu {\mathbb {F}} \Vert _{L^2_{w_\gamma }}^2\, \mathrm{d}s\right) ^2\, T_0\leqq 1. \end{aligned}$$

we know that

$$\begin{aligned} \sup _{0\leqq t\leqq T_0} \Vert \ \mathbf{v}(t,.)\Vert _{L^2_{w_\gamma }}^2 \leqq C_\gamma \left( 1 + \mu ^2 \Vert \mathbf{u}_0\Vert _{L^2_{w_\gamma }}^2 +\mu ^2\int _0^{T_0} \Vert {\mathbb {F}}\Vert _{L^2_{w_\gamma }}^2\, \mathrm{d}s \right) \end{aligned}$$

and

$$\begin{aligned} { \int _0^{T_0} \Vert \mathbf{\nabla }\mathbf{v}\Vert _{L^2_{w_\gamma }}^2\, \mathrm{d}s }\leqq C_\gamma \left( 1 +\mu ^2 \Vert \mathbf{u}_0\Vert _{L^2_{w_\gamma }}^2 +\mu ^2\int _0^{T_0} \Vert {\mathbb {F}}\Vert _{L^2_{w_\gamma }}^2\, \mathrm{d}s\right) . \end{aligned}$$

In particular, we have

$$\begin{aligned} \int _0^{T_0} \Vert \mathbf{v}\Vert _{L^3_{w_{3\gamma /2}}}^3\, \mathrm{d}s \leqq C_\gamma T_0^{1/4} \left( 1 + \Vert \mathbf{u}_0\Vert _{L^2_{w_\gamma }}^2 +\int _0^{T_0} \Vert {\mathbb {F}}\Vert _{L^2_{w_\gamma }}^2\, \mathrm{d}s\right) ^{\frac{3}{2}}. \end{aligned}$$

As \(\mathbf{v}\) is \(\lambda \)-DSS, we can go back from \(T_0\) to T. \(\quad \square \)

Lemma 15

Let \(4/3<\gamma \leqq 2\). There is at least one solution \(\mathbf{u}_\varepsilon \) of the equation \(\mathbf{u}_\varepsilon =L_\varepsilon (\mathbf{u}_\varepsilon )\).

Proof

Obvious due to the Leray–Schauder principle (and the Schaefer theorem), since \(L_\varepsilon \) is continuous and compact and since we have uniform a priori estimates for the fixed points of \(\mu L_\varepsilon \) for \(0\leqq \mu \leqq 1\). \(\quad \square \)

8.3 Proof of Theorem 5

We may now finish the proof of Theorem 5. We consider the solutions \(\mathbf{u}_\varepsilon \) of \(\mathbf{u}_\varepsilon =L_\varepsilon (\mathbf{u}_\varepsilon )\).

By Lemma 14, \(\mathbf{u}_\varepsilon \) is bounded in \(L^3((0,T), L^3_{w_{3\gamma /2}})\), and so is \(\mathbf{u}_\varepsilon *\theta _{\varepsilon ,t}\). We then know, by Theorem 2 and Corollary 4, that the familly \(\mathbf{u}_\varepsilon \) is bounded in \(L^\infty ((0,T), L^2_{w_\gamma })\) and \(\mathbf{\nabla }\mathbf{u}_\varepsilon \) is bounded in \(L^2((0,T),L^2_{w_\gamma })\).

We now use Theorem 3 and get that then there exists p, \(\mathbf{u}\), \(\mathbf{B}\) and a decreasing sequence \((\varepsilon _k)_{k\in {\mathbb {N}}}\) (converging to 0) with values in \((0,+\infty )\) such that

  • \(\mathbf{u}_{\varepsilon _k}\) converges *-weakly to \(\mathbf{u}\) in \(L^\infty ((0,T), L^2_{w_\gamma })\), \(\mathbf{\nabla }\mathbf{u}_{\varepsilon _k}\) converges weakly to \(\mathbf{\nabla }\mathbf{u}\) in \(L^2((0,T),L^2_{w_\gamma })\);

  • \(\mathbf{u}_{\varepsilon _k}*\theta _{\varepsilon _k,t}\) converges weakly to \(\mathbf{B}\) in \(L^3((0,T), L^3_{w_{3\gamma /2}})\);

  • the associated pressures \(p_{\varepsilon _k}\) converge weakly to p in \(L^{3}((0,T),L^{6/5}_{w_{\frac{6\gamma }{5}}})+L^{2}((0,T),L^{2}_{w_\gamma })\);

  • \(\mathbf{u}_{\varepsilon _k}\) converges strongly to \(\mathbf{u}\) in \(L^2_\mathrm{loc}([0,T)\times {\mathbb {R}}^3)\).

Moreover we easily see that \(\mathbf{B}=\mathbf{u}\). Indeed, we have that \(\mathbf{u}*\theta _{\varepsilon ,t}\) converges strongly in \(L^2_\mathrm{loc}((0,T)\times {\mathbb {R}}^3)\) as \(\varepsilon \) goes to 0 (since it is bounded by \({\mathcal {M}}_\mathbf{u}\) and converges, for each fixed t, strongly in \(L^2_\mathrm{loc}({\mathbb {R}}^3)\)); moreover, we have \( \vert (\mathbf{u}-\mathbf{u}_\varepsilon )*\theta _{\varepsilon ,t}\vert \leqq {\mathcal {M}}_{\mathbf{u}-\mathbf{u}_\varepsilon }\), so that the strong convergence of \(\mathbf{u}_{\varepsilon _k}\) to \(\mathbf{u}\) is kept by convolution with \(\theta _{\varepsilon ,t}\) as far as we work on compact subsets of \((0,T)\times {\mathbb {R}}^3 \) (and thus don’t allow t to go to 0).

Thus, Theorem 5 is proven. \(\quad \square \)